高中数学直线方程公式

合集下载

直线方程和圆的方程概念及知识点拓展(高中数学)

直线方程和圆的方程概念及知识点拓展(高中数学)

直线与圆的概念公式及拓展一.直线的倾斜角与斜率1.直线的倾斜角α的范围[)π,0。

当直线l 与x 轴重合或平行时,规定倾斜角为0。

注意几种角的范围:异面直线所成的角⎥⎦⎤ ⎝⎛2,0π; 直线和平面所成角⎥⎦⎤⎢⎣⎡20π,; 二面角[]π,0; 两向量的夹角[]π,0;2.斜率定义:倾斜角不是90°的直线,它的倾斜角α的正切值叫做这条直线的斜率k , 即k=tan α(α≠90°);倾斜角为90°的直线没有斜率。

直线方程:Ax+By+C=0的斜率BAk -=。

方向向量:若()n m a ,=为直线的方向向量,则直线的斜率mn k =。

已知直线上两点:过两点()),(,,2211y x y x 的直线的斜率1212x x y y k --=。

二.直线方程的五种形式:1.点斜式:已知直线过点(x 0,y 0),斜率为k ,则直线方程)(00x x k y y -=-,它不包括垂直于x 轴的直线。

2.斜截式:已知直线斜率为k ,在y 轴上的截距b ,则直线方程为y =kx +b ,它不包括垂直于x 轴的直线。

3.两点式:已知直线过了P 1(x 1,y 1),P 2(x 2,y 2) (x 1≠x 2,y 1≠y 2)两点,则直线方程为121121x x x x y y y y --=--,它不包括垂直于x 轴的直线。

4.截距式:已知直线在x ,y 轴上的截距分别为a ,b ( a ≠0,b ≠0)则直线方程为1=+bya x ,它不包括垂直于坐标轴的直线和过原点的直线。

5.直线的一般式方程:任何直线都可以写成Ax +By +C =0(其中A ,B 不同时为0)的形式。

拓展:1.直线在坐标轴上的截距可正,可负,也可为0。

直线的斜率为1或直线过原点,则直线两截距互为相反数; 直线的斜率为-1或直线过原点,则直线两截距相等。

2.设直线方程的一些常用技巧:(1)已知直线y 轴截距b ,常设其方程为y =kx +b 。

高中数学必修知识点总结:第三章直线与方程

高中数学必修知识点总结:第三章直线与方程

高中数学必修知识点总结:第三章直线与方程1. 直线的一般方程直线的一般方程可以表示为:Ax + By + C = 0。

其中A、B、C是常数,A和B 不同时为0。

这个方程可以通过直线上任意两点的坐标来确定。

2. 直线的斜截式方程直线的斜截式方程可以表示为:y = kx + b。

其中k是直线的斜率,b是y轴截距。

通过斜截式方程,我们可以方便地确定直线的斜率和截距。

3. 直线的点斜式方程直线的点斜式方程可以表示为:y - y1 = k(x - x1)。

其中(x1, y1)是直线上的一个已知点,k是直线的斜率。

根据点斜式方程,我们可以通过已知点和斜率来确定直线的方程。

4. 直线的两点式方程直线的两点式方程可以表示为:(y - y1)/(x - x1) = (y2 - y1)/(x2 - x1)。

其中(x1, y1)和(x2, y2)是直线上的两个已知点。

通过两点式方程,我们可以直接利用已知点的坐标来确定直线的方程。

5. 直线的斜率公式和截距公式直线的斜率可以通过斜率公式来计算:k = (y2 - y1)/(x2 - x1)。

直线的截距可以通过截距公式来计算:b = y1 - kx1。

通过斜率公式和截距公式,我们可以方便地计算直线的斜率和截距。

6. 直线的平行和垂直关系如果直线1的斜率等于直线2的斜率,则直线1和直线2平行。

如果直线1的斜率与直线2的斜率的乘积为-1,则直线1和直线2垂直。

7. 直线与坐标轴的交点直线与x轴的交点可以通过将y设为0得到,直线与y轴的交点可以通过将x 设为0得到。

8. 直线的倾斜角直线的倾斜角可以通过斜率来计算:θ = arctan(k),其中k是直线的斜率。

9. 直线的距离公式直线Ax + By + C = 0到点(x0, y0)的距离可以通过公式计算:d = |Ax0 + By0 +C|/√(A²+B²)。

10. 直线与线段的位置关系直线与线段的位置关系可以分为以下三种情况:•直线与线段相交•直线与线段不相交•直线与线段重合通过计算直线与线段的交点,可以确定它们的位置关系。

(完整版)高中数学解析几何公式大全

(完整版)高中数学解析几何公式大全

(完整版)高中数学解析几何公式大全一、直线方程1. 点斜式:y y1 = m(x x1),其中m是直线的斜率,(x1, y1)是直线上的一个点。

2. 斜截式:y = mx + b,其中m是直线的斜率,b是直线在y轴上的截距。

3. 一般式:Ax + By + C = 0,其中A、B、C是常数。

二、圆的方程1. 标准式:(x a)2 + (y b)2 = r2,其中(a, b)是圆心的坐标,r是圆的半径。

2. 一般式:x2 + y2 + Dx + Ey + F = 0,其中D、E、F是常数。

三、椭圆的方程1. 标准式:((x h)2/a2) + ((y k)2/b2) = 1,其中(a, b)是椭圆的半长轴和半短轴,(h, k)是椭圆中心的坐标。

2. 一般式:((x h)2/a2) + ((y k)2/b2) 1 = 0,其中(a, b)是椭圆的半长轴和半短轴,(h, k)是椭圆中心的坐标。

四、双曲线的方程1. 标准式:((x h)2/a2) ((y k)2/b2) = 1,其中(a, b)是双曲线的实轴和虚轴,(h, k)是双曲线中心的坐标。

2. 一般式:((x h)2/a2) ((y k)2/b2) 1 = 0,其中(a, b)是双曲线的实轴和虚轴,(h, k)是双曲线中心的坐标。

五、抛物线的方程1. 标准式:y2 = 4ax,其中a是抛物线的焦点到准线的距离。

2. 一般式:y2 = 4ax + b,其中a是抛物线的焦点到准线的距离,b是抛物线在y轴上的截距。

六、直线与圆的位置关系1. 判定直线与圆的位置关系:计算直线到圆心的距离d与圆的半径r的关系。

如果d < r,直线与圆相交;如果d = r,直线与圆相切;如果d > r,直线与圆相离。

2. 直线与圆的交点:解直线方程和圆的方程,得到两个交点的坐标。

七、直线与椭圆的位置关系1. 判定直线与椭圆的位置关系:将直线方程代入椭圆方程,得到一个关于x的一元二次方程。

高中数学必修一公式整理精选全文

高中数学必修一公式整理精选全文

可编辑修改精选全文完整版高中数学必修一公式整理一、几何公式1、直线:(1) 直线的方程是y=kx+b,其中k为斜率,b为y轴截距;(2) 直线的斜率的计算公式:斜率K=(点1的纵坐标减去点2的纵坐标)除以(点1的横坐标减去点2的横坐标)。

2、平面图形(1) 三角形三边关系:任意一边长加上另外两边长,总长度要大于第三边。

(2) 三角形面积公式:面积 = (底边×高)÷2(3) 矩形的面积公式:面积 = 长×宽(4) 圆的面积公式:面积= π × 半径×半径二、代数公式1、平方差(1) 一元二次方程的解法:ax²+bx+c=0,解法为:x={-b±√(b²-4ac) }/2a(2) 二元二次方程的解法:ax²+bxy+cy²+dx+ey+f=0,解法为:x=(-be+√(b²-4ac)(-de+√(d²-4af))/(2a);y=(2a(-be+√(b²-4ac))/(-de+√(d²-4af))。

2、二次函数(1) 二次函数公式:y=ax²+bx+c,其中a不等于0(2) 二次函数的对称轴:x轴的方程为: x= -b/2a(3) 二次函数的极值的计算:极值的 x 值为: -b/2a , 极值的 y 值为:y=a(-b/2a)²+b(-b/2a)+c三、数列公式1、等差数列公式(1) 求和公式:Sn=n(a1+an)/2,其中n为项数,a1为首项,an为末项;(2) 首项公式:a1=Sn/n-(n-1)d,其中n为项数,Sn为该数列的前n项和,d为公差;(3) 末项公式:an=a1+(n-1)d,其中a1为首项,n为项数,d为公差;(4) 公差公式:d=(an-a1)/(n-1),其中an为末项,a1首项,n为项数;2、等比数列的公式(1) 求和公式:Sn=a1(1-qn)/(1-q),其中a1为首项,q为公比,n为项数;(2) 首项公式:a1=Sn(1-q)/(1-qn),其中Sn为该数列的前n项和,q为公比,n为项数;(3) 末项公式:an=a1q(n-1),其中a1为首项,q为公比,n为项数;(4) 公比公式:q=(an/a1)^(1/(n-1)),其中an为末项,a1首项,n 为项数;。

高中数学中的直线方程解法

高中数学中的直线方程解法

高中数学中的直线方程解法直线方程是高中数学中的基础知识之一,它是解决几何问题和代数问题的重要工具。

在高中数学中,我们学习了多种直线方程的解法,包括点斜式、一般式和截距式等。

本文将探讨这些直线方程的解法,并分析它们的特点和应用。

一、点斜式点斜式是直线方程中最常见的一种形式。

它的一般形式为:y-y₁ = m(x-x₁)。

其中,(x₁, y₁)是直线上的一点,m是直线的斜率。

通过已知的点和斜率,我们可以很容易地确定直线的方程。

例如,已知直线上的一点为A(2, 3),斜率为2/3。

我们可以使用点斜式来确定直线的方程。

将已知的点和斜率代入点斜式的公式中,得到:y-3 = (2/3)(x-2)。

将该方程进行化简,即可得到直线的方程。

点斜式的优点是方便快捷,通过已知点和斜率即可确定直线的方程。

但是它的缺点是不适用于垂直于x轴或y轴的直线,因为这些直线的斜率不存在。

二、一般式一般式是直线方程中的另一种常见形式。

它的一般形式为:Ax + By + C = 0。

其中,A、B、C是常数,且A和B不同时为0。

通过已知的系数,我们可以得到直线的方程。

例如,已知直线的一般式为2x - 3y + 6 = 0。

我们可以通过一般式来确定直线的方程。

将一般式进行化简,得到斜率截距式的形式:y = (2/3)x + 2。

从中可以看出,斜率为2/3,截距为2。

一般式的优点是适用于各种类型的直线,包括垂直于x轴或y轴的直线。

但是它的缺点是不直观,不容易从方程中看出直线的斜率和截距。

三、截距式截距式是直线方程中的另一种常见形式。

它的一般形式为:x/a + y/b = 1。

其中,a和b是直线与x轴和y轴的截距。

通过已知的截距,我们可以得到直线的方程。

例如,已知直线与x轴和y轴的截距分别为4和3。

我们可以使用截距式来确定直线的方程。

将已知的截距代入截距式的公式中,得到:x/4 + y/3 = 1。

从中可以看出,直线与x轴和y轴的截距分别为4和3。

高中数学直线和圆知识点总结

高中数学直线和圆知识点总结

高中数学直线和圆知识点总结高中数学直线和圆学问点总结直线和圆一.直线1.斜率与倾斜角:ktan,[0,)(1)[0,2(2))时,k0;2时,k不存在;(3)(2,)时,k0(4)当倾斜角从0增加到90时,斜率从0增加到;当倾斜角从90增加到180时,斜率从增加到02.直线方程(1)点斜式:yy0k(xx0)(2)斜截式:ykxbyy1y2y1xayb(3)两点式:xx1x2x1(4)截距式:1(5)一般式:AxByC03.距离公式(1)点P1(x1,y1),P2(x2,y2)之间的距离:P1P2(x2x1)(y2y1)|Ax0By0C|AB2222(2)点P(x0,y0)到直线AxByC0的距离:d(3)平行线间的距离:AxByC10与AxByC20的距离:d4.位置关系(1)截距式:ykxb形式重合:k1k2b1b2相交:k1k2平行:k1k2b1b2垂直:k1k21(2)一般式:AxByC0形式重合:A1B2A2B1且A1C2A2C1且B1C2C1B2平行:A1B2A2B1且A1C2A2C1且B1C2C1B21|C1C2|AB垂直:A1A2B1B20相交:A1B2A2B15.直线系A1xB1yC1+(A2xB2yC2)0表示过两直线l1:A1xB1yC10和l2:A2xB2yC20交点的所有直线方程(不含l2)二.圆1.圆的方程(1)标准形式:(xa)2(yb)2R2(R0)(2)一般式:x2y2DxEyF0(D2E24F0)xx0rcos(3)参数方程:(是参数)yy0rsin【注】题目中消失动点求量时,通常可实行参数方程转化为三角函数问题去解决.(4)以A(x1,y1),B(x2,y2)为直径的圆的方程是:(xxA)(xxB)(yyA)(yyB)02.位置关系(1)点P(x0,y0)和圆(xa)2(yb)2R2的位置关系:222当(x0a)(y0b)R时,点P(x0,y0)在圆(xa)2(yb)2R2内部222当(x0a)(y0b)R时,点P(x0,y0)在圆(xa)2(yb)2R2上222222当(x0a)(y0b)R时,点P(x0,y0)在圆(xa)(yb)R外(2)直线AxByC0和圆(xa)(yb)R的位置关系:推断圆心O(a,b)到直线AxByC0的距离d当dR时,直线和圆相交(有两个交点);当dR时,直线和圆相切(有且仅有一个交点);当dR时,直线和圆相离(无交点);1|AaBbC|AB22222与半径R的大小关系3.圆和圆的位置关系推断圆心距dO1O2与两圆半径之和R1R2,半径之差R1R2(R1R2)的大小关系当dR1R2时,两圆相离,有4条公切线;当dR1R2时,两圆外切,有3条公切线;当R1R2dR1R2时,两圆相交,有2条公切线;当dR1R2时,两圆内切,有1条公切线;当0dR1R2时,两圆内含,没有公切线;4.当两圆相交时,两圆相交直线方程等于两圆方程相减5.弦长公式:l2Rd22扩展阅读:高中数学直线与圆的方程学问点总结高中数学之直线与圆的方程一、概念理解:1、倾斜角:①找α:直线向上方向、x轴正方向;②平行:α=0°;③范围:0°≤α<180°。

高中数学-直线的方程的几种形式

高中数学-直线的方程的几种形式

返回
返回
学点一 直线的点斜式方程 求倾斜角为直线y= - 3 x+1的倾斜角的一半且分别满 足下列条件的直线方程: (1)经过点(-4,1); (2)在y轴上的截距为-10.
【分析】通过已知直线的斜率求出所求直线的斜率, 再分别由直线的点斜式方程和斜截式方程求解.
返回
【解析】直线y= - 3x+1的斜率为 3,可知此直线的 倾斜角为120°,由题意知所求直线的倾斜角为60°,故 所求直线的斜率k= 3 . (1)由于直线过(-4,1),由直线的点斜式方程得 y-1= 3(x+4),即 3x-y+1+4 3=0. (2)由于直线在y轴上的截距为-10,所以由直线的斜截 式方程得y= 3x-10,即 3 x-y-10=0.
返回
4.利用待定系数法求直线方程时,要能根据题中所给
已知条件选用最恰当的形式,并能根据问题的需要灵
活准确地进行互化.在研究无特殊限制的直线情况时,
常将直线化为一般形式,而当研究直线的斜率与倾斜
角时,又以直线的斜截式最为方便,也常将直线方程
的一般式化为斜截式:当B≠0时,直线方程为
y=- A x- C , 其中- A为直线的斜率,- C为直线在y
m2 -2m-3 (2)当斜率为-1时,有 - m2 -2m-3 1 ,但要注意
2m 2 m-1 2m2+m-1≠0.
返回
【解析】(1)由题意可得
m2-2m-3≠0 ① 2m-6 3 ②
m 2 -2m -3
由②解得m=3或m= 5 .
3
分别代入①检验可知m= 5 .
3
(2)由题意可得
2m2+m-1≠0 ③
返回
三角形的三个顶点分别是A(-5,0),B(3,-3),C(0,2), 如图2-4-1所示,求这个三角形三边所在直线的方程.

高中数学-直线的方程

高中数学-直线的方程

直线的方程1.直线的点斜式方程2.直线的斜截式方程3.直线的两点式方程和截距式方程4.线段的中点坐标公式若点P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2),设P (x ,y )是线段P 1P 2的中点,则⎩⎪⎨⎪⎧x =x 1+x 22,y =y 1+y 22.5.直线的一般式方程6.直线的一般式与点斜式、斜截式、两点式、截距式的关系直线的点斜式方程知识点1 求直线的点斜式方程【例1-1】(南京校级模拟)根据条件写出下列直线的点斜式方程: (1)过点A (-4,3),斜率k =2; (2)经过点B (-1,4),倾斜角为45°; (3)过点C (-1,2),且与x 轴平行; (4)过点D (2,1)和E (3,-4).【变式训练1-1】(蜀山区校级月考)根据条件写出下列直线的点斜式方程: (1)经过点A (2,5),斜率是4; (2)经过点B (2,3),倾斜角是135°; (3)经过点C (-1,-1),与x 轴平行.知识点2 直线的斜截式方程【例2-1】(菏泽调研)根据条件写出下列直线的斜截式方程.(1)斜率为2,在y轴上的截距是-5;(2)倾斜角为150°,在y轴上的截距是-8;(3)倾斜角为60°,与y轴的交点到坐标原点的距离为8.【变式训练2-1】(宁波校级月考)写出下列直线的斜截式方程:(1)直线斜率是3,在y轴上的截距是-3;(2)直线倾斜角是45°,在y轴上的截距是5;(3)直线在x轴上的截距为4,在y轴上的截距为-2.知识点3 点斜式、斜截式方程的综合应用(1)当a为何值时,直线l1:y=-x+2a与直线l2:y=(a2-2)x+2平行?(2)当a为何值时,直线l1:y=(2a-1)x+3与直线l2:y=4x-3垂直?【变式训练3-1】求证:不论m为何值,直线l:y=(m-1)x+2m+1总过第二象限.【变式训练3-2】(赤峰期末)是否存在过点(-5,-4)的直线l ,使它与两坐标轴围成的三角形的面积为5?课堂练习1.过点()3,2,斜率是23的直线方程是( ) A .243y x =+ B .223y x =+ C .230x y -=D .320x y -=2.已知直线的方程是y +2=-x -1,则( ) A .直线经过点(-1,2),斜率为-1 B 直线经过点(2,-1),斜率为-1 C .直线经过点(-1,-2),斜率为-1 D .直线经过点(-2,-1),斜率为13.直线y =3(x -3)的斜率与在y 轴上的截距分别是( )A .3,3B .3,-3C .3,3D .-3,-3 4.直线y =kx +b 经过第一、三、四象限,则有( ) A .k >0,b >0 B .k >0,b <0 C .k <0,b >0D .k <0,b <05.过点()2,0且与直线25y x =+垂直的直线l 的方程是( )A .24y x =-B .24y x =-+C .112y x =- D .112y x =-+ 6.已知直线l 过点()2,0,且与直线21y x =-+平行,则直线l 的方程为( )A .24y x =-B .24y x =+C .24y x =-+D .24y x =--7.直线y =2x -5在y 轴上的截距是________.8.在y 轴上的截距为-6,且与y 轴相交成30°角的直线方程是________.9.与直线l :y =34x +1平行,且在两坐标轴上截距之和为1的直线l 1的方程为________.10.斜率为34,且与坐标轴所围成的三角形的周长是12的直线方程是________.11.写出下列直线的斜截式方程:(1)直线的倾斜角为45°且在y 轴上的截距是1; (2)直线过点A (3,1)且在y 轴上的截距是-1.12.(1)求经过点(1,1),且与直线y =2x +7平行的直线的点斜式方程; (2)求经过点(-2,-2),且与直线y =3x -5平行的直线的斜截式方程.直线的两点式方程知识点1 直线的两点式方程【例1-1】已知三角形的顶点是A (1,3),B (-2,-1),C (1,-2),求这个三角形三边所在直线的方程.【变式训练1-1】(开江县校级开学考)过(1,1),(2,-1)两点的直线方程为 ( ) A .2x -y -1=0 B .x -2y +3=0 C .2x +y -3=0 D .x +2y -3=0知识点2 直线的截距式方程【例2-1】(诸暨市校级期中)求过点A (3,4),且在两坐标轴上的截距互为相反数的直线l 的方程.【变式训练2-1】若将例2-1中“截距互为相反数”改为“截距相等”呢?知识点3 直线的综合应用【例3-1】(沭阳县校级期中)已知三角形的三个顶点A(-5,0),B(3,-3),C(0,2),求BC边所在直线的方程,以及该边上中线所在直线的方程.【变式训练3-1】(天心区校级期末)求过点A(4,2),且在两坐标轴上的截距的绝对值相等的直线l的方程.课堂练习1.(锡山区校级期中)过两点(-2,1)和(1,4)的直线方程为()A.y=x+3 B.y=-x+1C.y=x+2 D.y=-x-22.(红桥区期中)经过P(4,0),Q(0,-3)两点的直线方程是()A.x4+y3=1 B.x3+y4=1C.x4-y3=1 D.x3-y4=13.(江宁区校级月考)过点P(4,-3)且在坐标轴上截距相等的直线有()A.1条B.2条C.3条D.4条4.(临泉县校级月考)经过两点(5,0),(2,-5)的直线方程为()A.5x+3y-25=0 B.5x-3y-25=0C.3x-5y-25=0 D.5x-3y+25=05.(朝阳区校级月考)已知直线l:ax+y-2=0在x轴和y轴上的截距相等,则实数a的值是() A.1 B.-1C.-2或-1 D.-2或16.(庐江县校级期末)点M(4,m)关于点N(n,-3)的对称点为P(6,-9),则()A.m=-3,n=10 B.m=3,n=10C.m=-3,n=5 D.m=3,n=57.(海淀区校级期末)已知A(2,-1),B(6,1),则在y轴上的截距是-3,且经过线段AB中点的直线方程为________.8.(红岗区校级期末)过点P(3,2),且在坐标轴上截得的截距相等的直线方程是________.9.(兴庆区校级期末)求经过点A(-2,3),且在x轴上的截距等于在y轴上截距的2倍的直线方程.10.(城关区校级期末)求经过点A(-2,3),B(4,-1)的直线的两点式方程,并把它化成点斜式、斜截式和截距式.能力提升1.(鼓楼区校级期末)两条直线l1:xa-yb=1和l2:xb-ya=1在同一直角坐标系中的图象可以是()2.(秦州区校级期末)直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是 ( ) A.⎝⎛⎭⎫-1,15B.⎝⎛⎭⎫-∞,12∪(1,+∞) C .(-∞,1)∪⎝⎛⎭⎫15,+∞D .(-∞,-1)∪⎝⎛⎭⎫12,+∞3.(金湖县校级期中)垂直于直线3x -4y -7=0,且与两坐标轴围成的三角形的面积为6的直线在x 轴上的截距是________.4.(启东市校级月考)已知A (3,0),B (0,4),直线AB 上一动点P (x ,y ),则xy 的最大值是________. 5.(杨浦区校级期末)在△ABC 中,已知A (5,-2),B (7,3),且AC 边的中点M 在y 轴上,BC 边的中点N 在x 轴上,求: (1)顶点C 的坐标; (2)直线MN 的方程.直线的一般式方程知识点1 直线的一般式方程与其他形式的转化【例1-1】(水富市校级期末)(1)下列直线中,斜率为-43,且不经过第一象限的是( )A .3x +4y +7=0B .4x +3y +7=0C .4x +3y -42=0D .3x +4y -42=0(2)直线3x -5y +9=0在x 轴上的截距等于( ) A.3B .-5C.95D .-33【变式训练1-1】(包河区校级期末)根据下列条件分别写出直线的方程,并化为一般式方程.(1)斜率是3,且经过点A (5,3); (2)斜率为4,在y 轴上的截距为-2; (3)经过A (-1,5),B (2,-1)两点; (4)在x ,y 轴上的截距分别是-3,-1.知识点2 直线的一般式方程的应用【例2-1】(上虞区期末)(1)若方程(m 2+5m +6)x +(m 2+3m )y +1=0表示一条直线,则实数m 满足________. (2)已知方程(2m 2+m -3)x +(m 2-m )y =4m -1表示直线.当m =____________时,直线的倾斜角为45°;当m =____________时,直线在x 轴上的截距为1.【例2-2】(柳南区校级期末)已知直线l 的方程为3x +4y -12=0,求满足下列条件的直线l ′的方程: (1)过点(-1,3),且与l 平行; (2)过点(-1,3),且与l 垂直.【变式训练2-1】(佛山校级月考)已知直线l 经过点P (2,1),且与直线2x -y +2=0平行,那么直线l 的方程是( ) A .2x -y -3=0 B .x +2y -4=0 C .2x -y -4=0D .x -2y -4=0【变式训练2-2】(西湖区校级月考)设直线l 1:(a +1)x +3y +2=0,直线l 2:x +2y +1=0.若l 1∥l 2,则a =________;若l 1⊥l 2,则a =________.课堂练习1.(芜湖校级月考)已知ab <0,bc <0,则直线ax +by =c 通过( ) A .第一、二、三象限 B .第一、二、四象限 C .第一、三、四象限D .第二、三、四象限2.(南岸区校级期末)过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0D .x +2y -1=03.(辽源期末)若直线x -2y +5=0与直线2x +my -6=0互相垂直,则实数m 等于( ) A .-1B .1C.12D .-124.(宜兴县校级期中)直线l 1:ax -y +b =0,l 2:bx -y +a =0(a ≠0,b ≠0,a ≠b )在同一坐标系中的图形大致是( )5.(城关区校级期末)直线(2m 2-5m +2)x -(m 2-4)y +5m =0的倾斜角45°,则m 的值为( ) A .-2B .2C .-3D .36.(金凤区校级期末)若直线ax +2y +1=0与直线x +y -2=0互相平行,那么a 的值等于________. 7.(越秀区校级期末)已知过点A (-2,m ),B (m ,4)的直线与直线2x +y -1=0互相垂直,则m =________. 8.(凯里市校级期末)已知两条直线a 1x +b 1y +4=0和a 2x +b 2y +4=0都过点A (2,3),则过两点P 1(a 1,b 1),P 2(a 2,b 2)的直线方程为________________.9.(和平区校级期中)若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m需满足的条件;(2)若该直线的斜率k=1,求实数m的值.10.(如东县期中)(1)已知直线l1:2x+(m+1)y+4=0与直线l2:mx+3y-2=0平行,求m的值;(2)当a为何值时,直线l1:(a+2)x+(1-a)y-1=0与直线l2:(a-1)x+(2a+3)y+2=0互相垂直?能力提升1.(昌江区校级期末)若三条直线x+y=0,x-y=0,x+ay=3能构成三角形,则a满足的条件是________.2.(河南校级月考)已知直线l:5ax-5y-a+3=0.(1)求证:不论a为何值,直线l总经过第一象限;(2)为使直线不经过第二象限,求a的取值范围.3.(镜湖区校级期中)已知平面内两点A(8,-6),B(2,2).(1)求AB的中垂线方程;(2)求过点P(2,-1)且与直线AB平行的直线l的方程;(3)一束光线从B点射向(2)中的直线l,若反射光线过点A,求反射光线所在直线的方程.11/ 11。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.斜率公式
①若直线的倾斜角为α, 则k=tan α (α2
π
≠)
②若直线过点111(,)P x y 和222(,)P x y 两点. 则21
21
y y k x x -=
-
2.方向向量坐标 :
()()k y y x x x x p
p x x ,1,111
2
1
2
1
22
1
1
2=---=
-
3.两条直线的平行和垂直
(1)若111:l y k x b =+,222:l y k x b =+
①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-.
(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①111
12222
||A B C l l A B C ⇔
=≠
; ②1212120l l A A B B ⊥⇔+=
4..直线的五种方程
(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).
(3)两点式
11
2121
y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).
(4)截距式
1x y
a b
+=(a b 、分别为直线的横、纵截距,0a b ≠、) (5)一般式 0Ax By C ++=(其中A 、B 不同时为0).
5.“到角”及“夹角”公式 :

l 1
:b k x y 11+= ; l
2
:b k
x y 22
+=
()
(1)当121-≠k k 时 ⎪⎪⎩

⎪⎨⎧+
-=+-=k k k k l l k k k k l l 212
1212
11
2
2
11tan 1tan θθθθ,则的角为与,则的角为到
(2)当
121-=k k 时,两直线的夹角为
2
π
6.两点间的距离公式
若点()y x A 21, , ()y x B 22,
则 ()y y x x AB 1
2
1
2
,--=
即 终点坐标-始点坐标
()()y y x x 12122
2
--+=
若()y
x y x 2
2
,+=
⇒=
7.点到直线间的距离公式 点()y x p 00,到 l : Ax+By+C=0的距离为
B
A y x C B
A d 2
2
00+++=
8.平行线间的距离公式
0:11=++C l By Ax 与 0:22=++C l By Ax ()c c 21≠ 的
距离为B
A c c d 2
2
21
+-=
9.四种常用直线系方程
(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为
00()y y k x x -=-(除
直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为
00()()0A x x B y y -+-=,其中,A B 是待定的系数.
(2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0
l A x B y C ++=
的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数.
(3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.
(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直的直线系方程是
0Bx Ay λ-+=,λ是参变量.
.。

相关文档
最新文档