高等数学(一)高起专
成人高考专升本高等数学一考试真题及参考答案

20XX年成人高考专升本高等数学一考试真题及参考答案
一、选择题:每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求。
第1题设b≠0,当x→0时,sinbx是x2的( )
A.高阶无穷小量
B.等价无穷小量
C.同阶但不等价无穷小量
D.低阶无穷小量
参考答案:D
参考答案:C
第3题函数f(x)=x3-12x+1的单调减区间为( )
A.(-∞,+∞)
B.(-∞,-2)
C.(-2,2)
D.(2,+∞)
参考答案:C
参考答案:A 第5题
参考答案:B
参考答案:D 第7题
参考答案:B
参考答案:A
参考答案:B
参考答案:A
二、填空题:本大题共10小题。
每小题4分,共40分,将答案填在题中横线上。
参考答案:1
参考答案:2
第13题设y=x2+e2,则dy=________
参考答案:(2x+e2)dx
第14题设y=(2+x)100,则Y’=_________.
参考答案:100(2+z)99
参考答案:-In∣3-x∣+C
参考答案:0
参考答案:1/3(e3一1)
参考答案:y2cosx
第19题微分方程y’=2x的通解为y=__________.
参考答案:x2+C
参考答案:1
三、解答题:本大翘共8个小题,共70分。
解答应写出推理,演算步骤。
第21题
第22题
第23题
第24题
第25题
第26题设二元函数z=x2+xy+y2+x-y-5,求z的极值.
第27题
第28题。
成人高考(专升本)高等数学(一)知识点复习资料

它们是作为相应三角函数的反函数定义出来的,由于
[答]
.
,y=cosx在定义域内不单调,所以对于
2.初等函数
1.直线的倾角和斜率:
当
2.直线的斜截式方程: 3.两 直 线 的 平 行 与 垂 直 : 己 知 两 条 直 线
时,函数
的左极限是 A,记作
或
所谓初等函数是指由基本初等函数经过有限次的四则
,只考虑
母 y换成 x得
(1)各组函数中,两个函数相等的是
3)对分段函数求函数值时,不同点的函数值应代入相 结论:
应范围的公式中去求;
这就是
的反函数。
A.
4)分段函数的定义域是各段定义域的并集。
(1)直接函数
与它的反函数 y=
的
例 4.分段函数
图形,必定对称于直线 y=x(一般地,二者是不同的函
B.
数,其图形是不同的曲线);
(2)
是微积分中常用的指数函数。 4.对数函数
例如,匀速直线运动路程公式 示速度)
(其中 v表 内自变量 x的不同值,函数不能用一个统一的公式表示, 是 一 个 函 数 , 则 称 它 为 而是要用两个或两个以上的公式来表示。这类函数称为
的反函数,记为
自由落体运动
(其中 g为重力加速度)
“分段函数”。
3.了解函数
与其反函数
之间的关
系(定义域、值域、图像),会求单调函数的反函数。
4.熟练掌握函数的四则运算与复合运算。
5.掌握基本初等函数的性质及其图像。
6.了解初等函数的概念。
7.会建立简单实际问题的函数关系式。
(4)设
,则
例 5.函数的性质
它的定义域是
高等数学(1)(高起专)

(A)[2019年春季] 姓名学号学习中心 专业 年级 考试时间 高等数学(1)(高起专)阶段性作业1 总分: 100 分 得分: 6 分一、单选题 1. 若函数 ,则 。
(6分) (A) 0 (B) (C) 1 (D) 不存在参考答案:D 您的回答:D 正确 2. 下列变量中,是无穷小量的为 。
(6分) (A) (B) (C) (D) 参考答案:D 3. 当 时,2x+x 2sin 是x 的 。
(6分) (A) 等价无穷小 (B) 同阶但不等价的无穷小 (C) 高阶无穷小 (D) 低阶无穷小参考答案:B 4. f(x)在x 0处左:右极限存在并相等是f(x)在x 0处连续的 。
(5分) (A) 充分条件 (B) 必要条件 (C) 充分必要条件 (D) 前三者均不对参考答案:B 5. 设函数 在 处可导, ,则当 时,必有 。
(6分) (A) 是 的等价无穷小; (B) 是 的高阶无穷小; (C) 是比 高阶的无穷小; (D) 是 的同阶无穷小; 参考答案:C 6. 函数y= (a>0,a≠1)是 。
(6分)(A) 奇 函数 (B) 非奇非偶函数 (C) 偶 函数 (D) 奇偶性取决于a 的取值参考答案:C 7. 下列函数中,奇函数是 。
(5分) (A) (B) (C) (D)参考答案:B 8. = 。
(5分) (B) (C) 3 (D) 1参考答案:B 9. 下列极限正确的是 。
(5分) (A) (B) (C) (D)参考答案:A 10. 当 时,下列哪个是 的高阶无穷小? 。
(5分) (A) (B) (C) (D)参考答案:B 11. 设f(x)= 则x=1为f(x)的 参考答案:C 跳跃间断点 。
(5分).设(A) 是的高阶无穷小是的等价无穷小12. 设f(x)= , 则= 。
(5分)(A) 1 (B) 2 (C) -1(D) 不存在参考答案:A13参考答案:D ,则当时。
(5分)(A) 是的低阶无穷小(D) 与是同阶但非等价无穷小14. )=。
高等数学(一)(高起专).pdf

单选题1.A.AB.BC.CD.D答案:A2.A.AB.BC.CD.D答案:B3.A.AB.BC.CD.D答案:B4.A.AB.BC.CD.D答案:C5.A.AB.BC.CD.D答案:A6.A.AB.BC.CD.D答案:D7.A.AB.BC.CD.D答案:B8.A.AB.BC.CD.D答案:B9.A.AB.BC.CD.D答案:B10.A.AB.BC.CD.D答案:C11.A.AB.BC.CD.D答案:B12.A.AB.BC.CD.D答案:C13.A.AB.BC.CD.D答案:C14.A.AB.BC.CD.D答案:B15.A.AB.BC.CD.D答案:A16.A.AB.BC.CD.D答案:A17.A.AB.BC.CD.D答案:A18.A.AB.BC.CD.D答案:C计算题1.求。
答案:2.设,求。
答案:因为所以。
3.求。
答案:利用洛必达法则,有.4.设,求常数。
答案:因为时分子趋于零,而极限存在,故必有分母的极限也趋于零,即有,于是,代回原极限,得.最后两式左边的极限可以算出为,它应该等于,便解得,代入前一表达式,知.5.设函数在点处连续,试确定常数的值。
答案:因为函数在点处连续,故有。
由于上述极限存在,而分母的极限为零,必有,代回原极限式,有,从而得到。
6.设函数,求。
答案:因为,故得。
7.求曲线在点(1,)处切线方程.答案:因为,所以曲线在点(1,)处的切线方程为.8.求极限答案:. 9.若当时,与是等价无穷小,求。
答案:因为当时,与是等价无穷小,则有,因此有。
但是无穷小,故知。
专升本资料成人高考(专科起点升本科)《高等数学(一)》

2020年全国各类成人高考(专科起点升本科)《高等数学(一)》考点精讲及典型题(含历年真题)详解
完整版>精研学习䋞>免费试用20%资料
全国547所院校视频及题库资料
考研全套>视频资料>课后答案>往年真题>职称考试
目录
第1章极限与连续
1.1考点精讲
1.2典型题(含历年真题)详解
第2章一元函数微分学
2.1考点精讲
2.2典型题(含历年真题)详解
第3章一元函数积分学
3.1考点精讲
3.2典型题(含历年真题)详解第4章空间解析几何
4.1考点精讲
4.2典型题(含历年真题)详解第5章多元函数微积分学
5.1考点精讲
5.2典型题(含历年真题)详解第6章无穷级数
6.1考点精讲
6.2典型题(含历年真题)详解第7章常微分方程
7.1考点精讲
7.2典型题(含历年真题)详解。
成人高考专升本(高等数学一)考试真题及答案

成人高考专升本(高等数学一)考试真题及答案-卷面总分:176分答题时间:120分钟试卷题量:35题一、单选题(共16题,共58分)1.当x→0时,sin(x^2+5x^3)与x^2比较是()A.较高阶无穷小量B.较低阶的无穷小量C.等价无穷小量D.同阶但不等价无穷小量正确答案:C您的答案:本题解析:暂无解析2.设y=x^-5+sinx,则y′等于()A.B.C.D.正确答案:A您的答案:本题解析:暂无解析3.若事件A与B互斥,且P(A)=0.5P(AUB)=0.8,则P(B)等于()A.0.3B.0.4C.0.2D.0.1正确答案:A您的答案:本题解析:暂无解析4.设函数y=2x+sinx,则y'=A.1-cosxB.1+cosxC.2-cosxD.2+cosx正确答案:D您的答案:本题解析:暂无解析5.设函数y=e^x-2,则dy=A.B.D.正确答案:B您的答案:本题解析:暂无解析6.设函数y=(2+x)^3,则y'=A.(2+x)^2B.3(2+x)^2C.(2+x)^4D.3(2+x)^4正确答案:B您的答案:本题解析:暂无解析7.设函数y=3x+1,则y'=()A.0B.1C.2D.3正确答案:A您的答案:本题解析:暂无解析8.设函数z=3x2y,则αz/αy=()A.6yB.6xyC.3xD.3X^2正确答案:D您的答案:本题解析:暂无解析9.设y=x^4,则y'=()A.B.C.D.正确答案:C您的答案:本题解析:暂无解析10.设y=x+inx,则dy=()A.C.D.dx正确答案:B您的答案:本题解析:暂无解析11.设y+sinx,则y''=()A.-sinxB.sinxC.-cosxD.cosx正确答案:A您的答案:本题解析:暂无解析12.在空间直角坐标系中,方程x^2+y^2=1表示的曲面是()A.柱面B.球面C.锥面D.旋转抛物面正确答案:A您的答案:本题解析:暂无解析13.设z=x^2-3y,则dz=()A.2xdx-3ydyB.x^2dx-3dyC.2xdx-3dyD.x^2dx-3ydy正确答案:C您的答案:本题解析:暂无解析14.微分方程y'=2y的通解为y=()A.B.C.D.正确答案:A您的答案:本题解析:暂无解析15.设b≠0,当x→0时,sinbx是x2的()A.高阶无穷小量B.等价无穷小量C.同阶但不等价无穷小量D.低阶无穷小量正确答案:D您的答案:本题解析:暂无解析16.函数f(x)=x^3-12x+1的单调减区间为()A.(-∞,+∞)B.(-∞,-2)C.(-2,2)D.(2,+∞)正确答案:C您的答案:本题解析:暂无解析二、填空题(共13题,共52分)17.设函数y=x3,则y/=()正确答案:3x^2您的答案:18.设函数y=(x-3)^4,则dy=()正确答案:4(x-3)^3dx您的答案:19.设函数y=sin(x-2),则y"=()正确答案:-sin(x-2)您的答案:20.过坐标原点且与直线(x-1)/3=(y+1)/2+(z-3)/-2垂直的平面方程为()正确答案:3x+2y-2z=0您的答案:21.设函数x=3x+y2,则dz=()正确答案:3dx+2ydy您的答案:22.微分方程y/=3x2的通解为y=()正确答案:x^3+C您的答案:23.函数y=1/3x^3-x的单调减少区间为______.正确答案:(-1,1)您的答案:24.过点(1,-1,-2)且与平面2x-2y+3z=0垂直的直线方程为______.正确答案:您的答案:25.微分方程y'=x+1的通解为y=______.正确答案:您的答案:26.函数-e^-x是f(x)的一个原函数,则f(x)=()正确答案:您的答案:27.函数y=x-e^x的极值点x=()正确答案:0您的答案:28.设函数y=cos2x,求y″=()正确答案:-4cos2x您的答案:29.设z=e^xy,则全微分dz=()正确答案:您的答案:三、计算题(共13题,共52分)30.求曲线y=x^3-3x+5的拐点。
2020年成人高等学校招生全国统一考试专升本 高等数学(一)

6.设函数y =x +2s i n x ,则d y =( )A .(1+c o s x )dx B .(1+2c o s x )dx C .(1-c o s x )dx D .(1-2c o s x )d x 7.设函数z =x 2-4y 2,则d z =( )A .x d x -4y d yB .x d x -y d yC .2x d x -4y d yD .2x d x -8y d y8.方程x 2+y 2-z 2=0表示的二次曲面是( )A .圆锥面B .球面C .旋转抛物面D .柱面9.l i m x ң1x 2+x +1x 2-x +2=( )A .2B .1C .32D .1210.微分方程y '+y =0的通解为y =( )A .C x e xB .C x e -x C .C exD .C e-x 第Ⅱ卷(非选择题,共110分)得分评卷人二、填空题(11~20小题,每小题4分,共40分)11.ʏ1-ɕe xd x =.12.设函数y =e 2x,则d y =.13.l i m x ң0s i n x2x2=.14.ʏ(3x +2s i n x )dx =.15.曲线y =a r c t a n (3x +1)在点0,π4处切线的斜率为.16.若函数f (x )x 2-2,x ɤ0,a +s i n x ,x >0在x =0处连续,则a =.17.过点(-1,2,3)且与直线x -12=y +23=z -24垂直的平面方程为.18.函数f (x )=x 3-6x 的单调递减区间为.19.区域D ={(x ,y )|1ɤx ɤ2,1ɤy ɤx 2}的面积为.20.方程y 3+l n y -x 2=0在点(1,1)的某邻域确定隐函数y =y (x ),则d y d xx =1=.得分评卷人三、解答题(21~28题,共70分.解答应写出推理㊁演算步骤) 21.(本题满分8分)计算ʏx s i n x d x .22.(本题满分8分)已知函数f (x )=e xc o s x ,求f ᵡπ2.23.(本题满分8分)计算l i m x ң01-c o s x -x 22s i n 2x.24.(本题满分8分)计算ʏ1031+x dx.参考答案一㊁选择题1.ʌ答案ʏʌ解析ɔʏ1-ɕex d x =ex1-ɕ=e -0=e.12.ʌ答案ɔ2e 2xdx ʌ解析ɔy '=(e 2x )'=2e 2x ,故d y =y'd x =2e 2xd x .13.ʌ答案ɔ1ʌ解析ɔx ң0时,x 2ң0,故有l i m x ң0s i n x 2x2=1.14.ʌ答案ɔ32x 2-2c o s x +C ʌ解析ɔʏ(3x +2s i n x )dx =32x 2-2c o s x +C .15.ʌ答案ɔ32ʌ解析ɔy '=[a r c t a n (3x +1)]'=31+(3x +1)2,故曲线在点0,π4处的切线斜率为y'x =031+(3x +1)2x =0=32.16.ʌ答案ɔ-2ʌ解析ɔ由于f (x )在x =0处连续,故有l i m x ң0-f (x )=l i m x ң0+f (x )=f (0),而f (0)=-2,l i m x ң0-f (x )=l i m x ң0-(x 2-2)=-2,l i m x ң0+f (x )=l i m x ң0+(a +s i n x )=a ,因此a =-2.17.ʌ答案ɔ2x +3y +4z =16ʌ解析ɔ已知直线与所求平面垂直,故所求平面的法向量为n =(2,3,4),因此所求平面的方程为2(x +1)+3(y -2)+4(z -3)=0,即2x +3y +4z =16.18.ʌ答案ɔ(-2,2)ʌ解析ɔ易知f '(x )=3x 2-6,令f '(x )<0,则有-2<x <2,故f (x )的单调递减区间为(-2,2).19.ʌ答案ɔ43ʌ解析ɔ区城D 的面积为ʏ21(x 2-1)d x =13x 3-x21=43.20.ʌ答案ɔ12ʌ解析ɔ方程两边对x 求导,得3y 2㊃d y d x +1y ㊃d y d x -2x =0,即d y d x =2x y 3y 3+1,故有d y d x x =1=2x y 3y 3+1x =1=2ˑ1ˑ13ˑ13+1=12.三、解答题21.ʏxs i n x d x =-ʏx d (c o s x )=-(x c o s x -ʏc o s xd x )=-xc o s x +ʏc o s xd x =-xc o s x +s i n x +C .22.f'(x )=e x c o s x +e x ㊃(c o s x )'=e xco s x -e xs i n x =e x(c o s x -s i n x ),fᵡ(x )=e x (c o s x -s i n x )+e x (c o s x -s i n x )'=e x(c o s x -s i n x )+e x(-s i n x -c o s x )=-2e xs i n x ,故有f ᵡπ2=-2e π2s i n π2=-2e π2.23.l i m x ң01-c o s x -x 22s i n 2x =l i m x ң01-c o s x 2s i n 2x -l i m x ң0x 22s i n 2x=l i m x ң012x 22x 2-12l i m x ң0x 2x 2=14-12=-14.24.ʏ1031+x d x =ʏ10(1+x )13d (x +1)=11+13(1+x )13+110=34(1+x )4310=34(243-1).25.原方程对应的特征方程为r 2-r -2=0,。
高等数学1(高起专)

平顶山学院补考课程:高等数学1(高起专)总时长:120分钟1. (判断题) 一切初等函数在其定义域内都连续. ( )(本题3.0分)A. 正确B. 错误答案: A解析: 无2. (判断题) 是奇函数. ( )(本题3.0分)A. 正确B. 错误答案: A解析: 无3. (判断题) 若函数在区间上可导,则在上必连续. ( )(本题3.0分)A. 正确B. 错误答案: A解析: 无4. (判断题) 函数在点处取得极值,则必有. ( )(本题3.0分)A. 正确B. 错误答案: B解析: 无5. (判断题) 曲线在点处的切线方程为x=0. ( )(本题3.0分)A. 正确B. 错误答案: B解析: 无6. (填空题) 若,则___.(本题3.0分)答案: (1) ;得分点:未设置解析: 无7. (填空题) 函数的定义域为___.(本题3.0分)答案: (1) ;得分点:未设置解析: 无8. (填空题) 函数的定义域为___.(本题3.0分)答案: (1) ;得分点:未设置解析: 无9. (填空题) 函数的间断点为___间断点.(本题3.0分) 答案: (1) ;得分点:未设置解析: 无10. (填空题) 是函数的___间断点.(本题3.0分) 答案: (1) 无穷;得分点:未设置解析: 无11. (填空题) 设,则___.(本题3.0分)答案: (1) ;得分点:未设置解析: 无12. (填空题) 函数的微分___.(本题3.0分)答案: (1) ;得分点:未设置解析: 无13. (填空题) 函数在点处的全微分___.(本题3.0分) 答案: (1) ;得分点:未设置解析: 无14. (填空题) 函数的单调递增区间为___.(本题3.0分)答案: (1) ;得分点:未设置解析: 无15. (填空题) 函数的凹区间为___ .(本题3.0分)答案: (1) ;得分点:未设置解析: 无16. (问答题) 求.(本题10.0分)答案: ……………5分…………10分得分点:未设置解析: 无17. (问答题) 求.(本题10.0分)答案: ………………10分得分点:未设置解析: 无18. (问答题) 求函数的导数.(本题10.0分)答案: ………………5分………………10分得分点:未设置解析: 无19. (问答题)(本题10.0分)答案:得分点:未设置解析: 无20. (问答题) 判定函数的单调性,并求其极值和拐点.(本题15.0分)。