二次函数与面积专题训练
二次函数与图形面积练习题

二次函数与图形面积练习题例题1、如图所示、围成一个矩形花圃,花圃的一边利用足够长的墙,另三边用总长为32米的篱笆恰好围成。
围成的花圃是如图所示的矩形ABCD设AB边的长为x米,矩形ABCD的面积为S平方米。
(1)求S与x之间的函数关系式并写出自变量x的取值范围);(2)当x为何值时,S有最大值?并求出最大值?例题2、如图、已知平行四边形ABCD的周长为8cm,∠B=30°,若边长AB=xcm,求:(1)求平行四边形ABCD的面积y与x之间的函数关系式,并写出自变量x的取值范围?(2)求当x取何值时,平行四边形ABCD的面积有最大值?最大值是多少?例题3、如图、一个正方形纸板的边长为10cm,将它割去一个正方形,留下四个全等的直角三角形(图中阴影部分)。
设AE=BF=CG=DH=xcm,阴影部分的面积为y(1)求y关于x的函数解析式和自变量的取值范围?(2)当x取何值时,阴影部分的面积最大?最大值是多少?例题4、用一段长为30m的篱笆围成一个一边靠墙,墙长为13m,中间隔有一道篱笆的矩形菜园,为了方便出入,在如图所示位置装上1.5m宽的门,这个矩形菜园的长、宽各为多少时菜园的面积最大,最大面积是多少?例题5、如图、等腰直角三角形ABC以2cm/s的速度沿直线m匀速向正方形CDEF移动,直到AB与EF 重合。
设移动xs时,三角形与正方形重合部分的面积为y(1)当x=2.7时,y的值分别为多少?(2)求从开始移动时到AB与EF重合时,y与x的关系式,并求出x的取值范围?例题6.汪赛响应国家“自主创业”的号召,在三里铜锣湾广场投资开办了一个运动服装商店,服装的批发价为每件25元,现在的售价为每件45元,经过一段时间经营后查询财务报表可知,每星期可卖出155件.现在开展市场调查发现:如果每件的售价每涨1元(售价每件不能高于50元),那么每星期少卖10件.设每件涨价x元,每星期的利润为w元.(1)求w与x的函数关系式及自变量x的取值范围;(2)如何定价才能使每星期的利润最大且每星期的销量较大?每星期的最大利润是多少?。
二次函数---面积问题 当堂训练

当堂训练已知抛物线y=-x2+2x+3交x轴于点A和B,交y轴于点C,顶点坐标为D.(1)求△BCD面积。
(2)设点E是线段BC上方的抛物线上的一个动点,是否存在一点E,使△EBC面积最大?若存在,请求出点E的坐标,若不存在,请说明理由.变式:已知抛物线y=-x2+2x+3交x轴于点A和B,交y轴于点C,顶点坐标为D.(1)设点E是线段BC上方的抛物线上的一个动点,是否存在一点E,使四边形ABEC面积最大?若存在,请求出点E的坐标,若不存在,请说明理由.2、“平行于y 轴的动线段长度的最大值”的问题:由于平行于y 轴的线段上各个点的横坐标相等(常设为t ),借助于两个端点所在的函数图象解析式,把两个端点的纵坐标分别用含有字母t 的代数式表示出来,再由两个端点的高低情况,运用平行于y 轴的线段长度计算公式-y y 下上或21y y -,把动线段的长度就表示成为一个自变量为t ,且开口向下的二次函数解析式,利用二次函数的性质,即可求得动线段长度的最大值及端点坐标。
8.三角形面积的最大值问题:① “抛物线上是否存在一点,使之和一条定线段构成的三角形面积最大”的问题(简称“一边固定两边动的问题”):(方法2)过动点向y 轴作平行线找到与定线段(或所在直线)的交点,从而把动三角形分割成两个基本模型的三角形,动点坐标一母示后,进一步可得到1(-)-x 2S y y =∙动三角形上(动)下(动)右(定)左(定)(x ),转化为一个开口向下的二次函数问题来求出最大值。
② “三边均动的动三角形面积最大”的问题(简称“三边均动”的问题):先把动三角形分割成两个基本模型的三角形(有一边在x 轴或y 轴上的三角形,或者有一边平行于x 轴或y 轴的三角形,称为基本模型的三角形)面积之差,设出动点在x 轴或y 轴上的点的坐标,而此类题型,题中一定含有一组平行线,从而可以得出分割后的一个三角形与图中另一个三角形相似(常为图中最大的那一个三角形)。
初中数学:利用二次函数解决面积最值问题练习(含答案)

初中数学:利用二次函数解决面积最值问题练习(含答案)一、选择题1.关于二次函数y=x2+4x-7的最大(小)值,下列叙述正确的是( )A.当x=2时,函数有最大值B.当x=2时,函数有最小值C.当x=-2时,函数有最大值D.当x=-2时,函数有最小值2.如图K-6-1,假设篱笆(虚线部分)的长度为16 m,则所围成矩形ABCD的最大面积是( )图K-6-1A.60 m2 B.63 m2 C.64 m2 D.66 m23.如图K-6-2所示,C是线段AB上的一个动点,AB=1,分别以AC和CB为一边作正方形,用S表示这两个正方形的面积之和,下列判断正确的是( )图K-6-2A.当C是AB的中点时,S最小B.当C是AB的中点时,S最大C.当C为AB的三等分点时,S最小D.当C为AB的三等分点时,S最大4.如图K-6-3,在矩形ABCD中,AB=2,点E在边AD上,∠ABE=45°,BE=DE,连结BD,点P在线段DE上,过点P作PQ∥BD交BE于点Q,连结QD.设PD=x,△PQD的面积为y,则能表示y与x之间函数关系的图象大致是( )图K-6-3图K-6-4二、填空题5.已知二次函数y=ax2+bx+c(a<0)的图象如图K-6-5所示,当-5≤x≤0时,函数y 的最大值是________,最小值是________.图K-6-56.已知一个直角三角形两直角边的长度之和为30,则这个直角三角形的面积最大为________.7.如图K-6-6,在△ABC中,∠B=90°,AB=6 cm,BC=12 cm,动点P从点A开始沿边AB 向点B以1 cm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向点C以2 cm/s的速度移动(不与点C重合).如果点P,Q分别从A,B同时出发,那么经过________s,四边形APQC 的面积最小.链接学习手册例2归纳总结图K-6-68.如图K-6-7①,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图②是点P 运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是________.图K-6-7三、解答题9.某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50 m.设饲养室长为x(m),占地面积为y(m2).(1)如图K-6-8①,问饲养室长x为多少时,占地面积y最大?(2)如图②,现要求在图中所示位置留2 m宽的门,且仍使饲养室的占地面积最大.小敏说:“只要饲养室长比(1)中的长多2 m就行了.”请你通过计算,判断小敏的说法是否正确.图K-6-810.如图K-6-9所示,在矩形ABCD中,AB=6 cm,BC=8 cm,点P从点A开始沿AB边向点B以1 cm/s的速度移动,点Q从点B开始沿BC边向点C以2 cm/s的速度移动.如果点P,Q 分别从点A,B同时出发,设运动时间为t s(0<t≤4),△PDQ的面积为S cm2,求S关于t的函数表达式,并求△PDQ面积的最小值.图K-6-911.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80 m的围网在水库中围成了如图K-6-10所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为x m,矩形区域ABCD的面积为y m2.(1)求y与x之间的函数表达式,并注明自变量x的取值范围;(2)当x为何值时,y有最大值?最大值是多少?图K-6-10如图K-6-11①,抛物线y=ax2+bx+c经过平行四边形ABCD的顶点A(0,3),B(-1,0),D(2,3),抛物线与x轴的另一交点为E.经过点E的直线l将平行四边形ABCD分割为面积相等的两部分,与抛物线交于另一点F.P为直线l上方抛物线上一动点,设点P的横坐标为t.(1)求抛物线的函数表达式.(2)当t为何值时,△PFE的面积最大?并求最大值的立方根.(3)是否存在点P使△PAE为直角三角形?若存在,求出t的值;若不存在,请说明理由.图K-6-11[课堂达标]1.[解析] D ∵y=x 2+4x -7=(x +2)2-11, ∴此抛物线的开口向上,顶点为最低点, ∴x =-2时,函数有最小值.2.[解析] C 设BC =x m,则AB =(16-x)m,矩形ABCD 的面积为y m 2, 根据题意,得y =(16-x)x =-x 2+16x =-(x -8)2+64,当x =8时,y max =64, 则所围成矩形ABCD 的最大面积是64 m 2. 故选C.3.[解析] A 设AC =x,则BC =1-x, 所以S =x 2+(1-x)2=2x 2-2x +1,所以当x =--22×2=12时,S 有最小值. 4.解析] C 易得BE =DE =2 2,则EP =EQ =2 2-x,过点Q 作QF ⊥AD 于点F,则QF =222-x)=2-22x,∴y =12PD·QF=12x(2-22x)=-24x 2+x =-24(x -2)2+22. 5.[答案] 6 -3 6.[答案] 112.5[解析] 设一条直角边长为x,则另一条直角边长为30-x, 故S =12x(30-x)=-12(x -15)2+112.5.∵-12<0,∴当x =15时,S 最大=112.5.故答案为112.5.7.答案] 3[解析] 设点P,Q同时出发后经过的时间为t s,四边形APQC的面积为S cm2,则S=S△ABC -S△PBQ=12×12×6-12(6-t)×2t=t2-6t+36=(t-3)2+27.∴当t=3时,S取得最小值.故填3.8.[答案] 12[解析] 观察图象,可以获得以下信息:①点P在由B→C的过程中,BP的长度y随时间x 变化的关系为正比例函数,表现在图象上应该是一段线段;②点P在由C→A的过程中,BP的长度y随时间x变化的关系为二次函数,表现在图象上应该是抛物线的一部分;③当BP⊥AC时,BP 的长度最短,反映在图象上应为抛物线的最低点;④当点P到达点A时,此时BP=5,∴AB=AC =5,AC边上的高BP=4,此时,由勾股定理,得AP=CP=52-42=3,∴AC=6,∴S△ABC =12×4×6=12.9.解:(1)根据题意,得y=x·50-x2=-12(x-25)2+6252,∴当x=25时,y最大,即当饲养室长为25 m时,占地面积y最大.(2)根据题意,得y=x·50-(x-2)2=-12(x-26)2+338,∴当x=26时,y最大,即当饲养室长为26 m时,占地面积y最大.∵26-25=1≠2,∴小敏的说法不正确.10.解:由题意知AP =t cm,BQ =2t cm, ∴PB =(6-t)cm,QC =(8-2t)cm,∴S =48-4t -t(6-t)-3(8-2t)=t 2-4t +24=(t -2)2+20. ∵t =2在0<t≤4范围内, ∴当t =2时,S 取最小值,为20, 即△PDQ 面积的最小值为20 cm 2. 11.解:(1)∵三块矩形区域的面积相等,∴矩形AEFD 的面积是矩形BCFE 的面积的2倍,∴AE =2BE.设BE =a,则AE =2a, ∴8a +2x =80,∴a =-14x +10,2a =-12x +20,∴y =(-12x +20)x +(-14x +10)x=-34x 2+30x.∵a =-14x +10>0,∴x<40,则y =-34x 2+30x(0<x<40).(2)∵y=-34x 2+30x =-34(x -20)2+300(0<x<40),且二次项系数为-34<0,∴当x =20时,y 有最大值,最大值为300. [素养提升]解:(1)将点A(0,3),B(-1,0),D(2,3)分别代入y =ax 2+bx +c,得⎩⎨⎧c =3,a -b +c =0,4a +2b +c =3,解得⎩⎨⎧a =-1,b =2,c =3.∴抛物线的函数表达式为y =-x 2+2x +3.(2)∵直线l 将平行四边形ABCD 分割为面积相等的两部分, ∴直线l 必过其对称中心⎝ ⎛⎭⎪⎫12,32.由点A,D 的坐标知,抛物线的对称轴为直线x =1,∴E(3,0),设直线l 的函数表达式为y =kx +m,代入⎝ ⎛⎭⎪⎫12,32和(3,0),得⎩⎨⎧12k +m =32,3k +m =0.解得⎩⎪⎨⎪⎧k =-35,m =95.∴直线l 的函数表达式为y =-35x +95.由⎩⎨⎧y =-35x +95,y =-x 2+2x +3,可得x F=-25.如图①,过点P 作PH⊥x 轴于点H,交l 于点M,过点F 作FN⊥PH 于点N. ∵点P 的纵坐标为y P =-t 2+2t +3,点M 的纵坐标为y M =-35t +95,∴PM =y P -y M =-t 2+2t +3+35t -95=-t 2+135t +65,则S △PFE =S △PFM +S △PEM =12PM·FN+12PM ·EH =12PM·(FN+EH)=12(-t 2+135t +65)(3+25)=-17 10·(t-1310)2+289100×1710,∴当t=1310时,△PFE的面积最大,最大值的立方根为3289100×1710=1710.(3)如图②,过点P作PK⊥x轴于点K,过点A作AQ⊥PK于点Q,则在Rt△PKE中,PE2=PK2+KE2=(-t2+2t+3)2+(3-t)2;在Rt△AQP中,PA2=AQ2+PQ2=t2+(-t2+2t)2;在Rt△AOE中,AE2=OA2+OE2=18.由图可知∠PEA≠90°.①若∠PAE=90°,则PE2=PA2+AE2,∴(-t2+2t+3)2+(3-t)2=t2+(-t2+2t)2+18,即-t2+t=0,解得t=1或t=0(舍去).②若∠APE=90°,则AE2=PE2+PA2,∴18=(-t2+2t+3)2+(3-t)2+t2+(-t2+2t)2,即(t-3)(t2-t-1)=0,解得t=3(舍去)或t=1+52或t=1-52<-25(舍去).综上可知,存在满足条件的点P,t的值为1或1+52.1。
专题27 二次函数与面积压轴问题(学生版)

专题27二次函数与面积压轴问题【例1】(2022·湖北随州·统考中考真题)如图1,平面直角坐标系xOy 中,抛物线y =ax 2+bx +c +a <0与x 轴分则点A 和点B 1,0,与y 轴交于点C ,对称轴为直线x =−1,且OA =OC ,P 为抛物线上一动点.(1)直接写出抛物线的解析式;(2)如图2,连接AC ,当点P 在直线AC 上方时,求四边形PABC 面积的最大值,并求出此时P 点的坐标;(3)设M 为抛物线对称轴上一动点,当P ,M 运动时,在坐标轴上是否存在点N ,使四边形PMCN 为矩形?若存在,直接写出点P 及其对应点N 的坐标;若不存在,请说明理由.经典例题【例2】(2022·广西贺州·统考中考真题)如图,抛物线y=−x2+bx+c过点A(−1,0),B(3,0),与y轴交于点C.(1)求抛物线的解析式;(2)点P为抛物线对称轴上一动点,当△PCB是以BC为底边的等腰三角形时,求点P的坐标;(3)在(2)条件下,是否存在点M为抛物线第一象限上的点,使得S△BCM=S△BCP若存在,求出点M的横坐标;若不存在,请说明理由.【例3】(2022·河南洛阳·统考二模)如图,抛物线y=−x2−2x+3的图象与x轴交于A,B两点,(点A在点B 的左边),与y轴交于点C.(1)直接写出A,B,C的坐标;(2)点M为线段AB上一点(点M与点A,点B不重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N,若点P在点Q的左侧,当矩形PMNQ 的周长最大时,求△AEM的面积.【例4】(2022·福建·统考中考真题)在平面直角坐标系xOy中,已知抛物线y=ax2+bx经过A(4,0),B(1,4)两点.P是抛物线上一点,且在直线AB的上方.(1)求抛物线的解析式;(2)若△OAB面积是△PAB面积的2倍,求点P的坐标;(3)如图,OP交AB于点C,PD∥BO交AB于点D.记△CDP,△CPB,△CBO的面积分别为S1,S2,S3.判断S1S2+S2S3是否存在最大值.若存在,求出最大值;若不存在,请说明理由.【例5】(2022·湖南岳阳·统考中考真题)如图1,在平面直角坐标系xOy中,抛物线F1:y=x2+bx+c经过点A−3,0和点B1,0.(1)求抛物线F1的解析式;(2)如图2,作抛物线F2,使它与抛物线F1关于原点O成中心对称,请直接写出抛物线F2的解析式;(3)如图3,将(2)中抛物线F2向上平移2个单位,得到抛物线F3,抛物线F1与抛物线F3相交于C,D两点(点C 在点D的左侧).①求点C和点D的坐标;②若点M,N分别为抛物线F1和抛物线F3上C,D之间的动点(点M,N与点C,D不重合),试求四边形CMDN 面积的最大值.培优训练1.(2022·广东·统考中考真题)如图,抛物线y=x2+bx+c(b,c是常数)的顶点为C,与x轴交于A,B两点,A1,0,AB=4,点P为线段AB上的动点,过P作PQ//BC交AC于点Q.(1)求该抛物线的解析式;(2)求△CPQ面积的最大值,并求此时P点坐标.2.(2022·湖南常德·统考中考真题)如图,已经抛物线经过点O(0,0),A(5,5),且它的对称轴为x=2.(1)求此抛物线的解析式;(2)若点B是抛物线对称轴上的一点,且点B在第一象限,当△OAB的面积为15时,求B的坐标;(3)在(2)的条件下,P是抛物线上的动点,当PA−PB的值最大时,求P的坐标以及PA−PB的最大值3.(2022·湖北襄阳·统考中考真题)在平面直角坐标系中,直线y=mx-2m与x轴,y轴分别交于A,B两点,顶点为D的抛物线y=-x2+2mx-m2+2与y轴交于点C.(1)如图,当m=2时,点P是抛物线CD段上的一个动点.①求A,B,C,D四点的坐标;②当△PAB面积最大时,求点P的坐标;(2)在y轴上有一点M(0,73m),当点C在线段MB上时,①求m的取值范围;②求线段BC长度的最大值.4.(2019·广东河源·校联考一模)如图,已知抛物线的顶点为A1,4,抛物线与y轴交于点B0,3,与x轴交于C、D两点,点P是抛物线上的一个动点.(1)求此抛物线的解析式.(2)求于C、D两点坐标及三角形△BCD的面积.(3)若点P在x轴上方的抛物线上,满足S△PCD=12S△BCD,求点P的坐标.5.(2022·湖南娄底·统考中考真题)如图,抛物线y=12x2−2x−6与x轴相交于点A、点B,与y轴相交于点C.(1)请直接写出点A,B,C的坐标;(2)点P m,n0<m<6在抛物线上,当m取何值时,△PBC的面积最大?并求出△PBC面积的最大值.(3)点F是抛物线上的动点,作FE//AC交x轴于点E,是否存在点F,使得以A、C、E、F为顶点的四边形是平行四边形?若存在,请写出所有符合条件的点F的坐标;若不存在,请说明理由.6.(2022·四川攀枝花·统考中考真题)如图,二次函数y=ax2+bx+c的图象与x轴交于O(O为坐标原点),A两点,且二次函数的最小值为−1,点M(1,m)是其对称轴上一点,y轴上一点B(0,1).(1)求二次函数的表达式;(2)二次函数在第四象限的图象上有一点P,连结PA,PB,设点P的横坐标为t,△PAB的面积为S,求S与t的函数关系式;(3)在二次函数图象上是否存在点N,使得以A、B、M、N为顶点的四边形是平行四边形?若存在,直接写出所有符合条件的点N的坐标,若不存在,请说明理由.7.(2022·山东日照·校考一模)如图,抛物线y=ax2+bx+3与x轴交于A1,0,B3,0两点,与y轴交于点C.(1)求抛物线的解析式;(2)如图2,M是抛物线x轴下方的抛物线上一点,连接MO、MB、MC,若△MOC的面积是△MBC面积的3倍,求点M的坐标(3)如图3,连接AC、BC,在抛物线上是否存在点N(不与点A重合),使得∠BCN=∠ACB?若存在求出点N的横坐标,若不存在说明理由8.(2022·黑龙江·统考中考真题)如图,抛物线y=x2+bx+c经过点A−1,0,点B2,−3,与y轴交于点C,抛物线的顶点为D.(1)求抛物线的解析式;(2)抛物线上是否存在点P,使△PBC的面积是△BCD面积的4倍,若存在,请直接写出点P的坐标:若不存在,请说明理由.9.(2022·四川巴中·统考中考真题)如图1,抛物线y=ax2+2x+c,交x轴于A、B两点,交y轴于点C,F 为抛物线顶点,直线EF垂直于x轴于点E,当y≥0时,−1≤x≤3.(1)求抛物线的表达式;(2)点P是线段BE上的动点(除B、E外),过点P作x轴的垂线交抛物线于点D.①当点P的横坐标为2时,求四边形ACFD的面积;②如图2,直线AD,BD分别与抛物线对称轴交于M、N两点.试问,EM+EN是否为定值?如果是,请求出这个定值;如果不是,请说明理由.10.(2022·黑龙江绥化·校考二模)如图,抛物线y=−x2+bx+c与直线AB交于A(−4,−4),B(0,4)两点,且点D是它的顶点,在y轴上有一点C(0,−1).(1)求出抛物线的解析式及直线AB的解析式;(2)点E在直线AB上运动,若△BCE是等腰三角形时,求点E的坐标;(3)设点N是抛物线上一动点,若SΔBDN=32SΔBDO,求点N的坐标.11.(2022·重庆璧山·统考一模)如图,在平面直角坐标系xOy中,抛物线y=ax2+43x+c与x轴交于点A−3,0,与y轴交于点C0,−2.(1)求抛物线的解析式;(2)如图1,连接AC,点D为线段AC下方抛物线上一动点,过点D作DE∥y轴交线段AC于E点,连接EO,记△ADC的面积为S1,△AEO的面积为S2,求S1−S2的最大值及此时点D的坐标;(3)如图2,在(2)问的条件下,将抛物线沿射线CB M在原抛物线的对称轴上,点N为新抛物线上一点,直接写出所有使得以点A、D、M、N为顶点的四边形是平行四边形的点N的坐标,并把求其中一个点N的坐标的过程写出来.12.(2023·广西玉林·一模)已知二次函数y=x2+2bx−3b的图象经过点A1,0.(1)求该二次函数的表达式;(2)二次函数图象与x轴的另一个交点为B,与y轴的交点为C,点P从点A出发在线段AB上以每秒2个单位长度的速度向点B运动,同时点Q从点B出发,在线段BC上以每秒1个单位长度的速度向点C运动,直到其中一点到达终点时,两点停止运动,求△BPQ面积的最大值;(3)在点P、Q运动的过程中,是否存在使△PBQ与△BOC相似的时刻,如果存在,求出运动时间t,如果不存在,请说明理由.13.(2022·内蒙古·中考真题)如图,抛物线y=ax2+x+c经过B(3,0),D−2,−x轴的另一个交点为A,与y轴相交于点C.(1)求抛物线的解析式和点C的坐标;(2)若点M在直线BC上方的抛物线上运动(与点B,C不重合),求使△MBC面积最大时M点的坐标,并求最大面积;(请在图1中探索)(3)设点Q在y轴上,点P在抛物线上,要使以点A,B,P,Q为顶点的四边形是平行四边形,求所有满足条件的点P的坐标.(请在图2中探索)14.(2022·辽宁大连·统考中考真题)在平面直角坐标系中,抛物线y=x2−2x−3与x轴相交于点A,B(点A 在点B的左侧),与y轴相交于点C,连接AC.(1)求点B,点C的坐标;(2)如图1,点E m,0在线段OB上(点E不与点B重合),点F在y轴负半轴上,OE=OF,连接AF,BF,EF,设△ACF 的面积为S1,△BEF的面积为S2,S=S1+S2,当S取最大值时,求m的值;(3)如图2,抛物线的顶点为D,连接CD,BC,点P在第一象限的抛物线上,PD与BC相交于点Q,是否存在点P,使∠PQC=∠ACD,若存在,请求出点P的坐标;若不存在,请说明理由.15.(2022·山东济南·模拟预测)如图1,已知抛物线y=ax2+bx+3经过点A−1,0和点B3,0,与y轴交于点C,点P为第一象限内抛物线上的动点.连接OP交BC于点D,连接PC.(1)试确定抛物线的解析式;(2)当S△CPD:S△BPD=1:2时,请求出点D的坐标;(3)如图2,连接AC,设P点横坐标为m(0<m<3),求当m为何值时,四边形BACP的面积最大?并求出点P 的坐标.16.(2022·甘肃嘉峪关·校考一模)如图,已知抛物线y=−x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A−1,0,C0,3.(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.17.(2022·山东济南·模拟预测)如图,抛物线y=ax2+bx−3与x轴相交于B(−1,0),C(3,0)两点.(1)求抛物线的函数表达式;(2)点D在抛物线的对称轴上,且位于x轴的上方,将△BCD沿直线BD翻折得到△BC'D,若点C'恰好落在抛物线的对称轴上,求点C'和点D的坐标;(3)在(2)的条件下,设抛物线与y轴交于点Q,连接BQ、DQ,点P为抛物线上的一个动点(点P与点Q不重合),且S△PBD=S△BDQ,请求出所有满足条件的点P的横坐标.18.(2022·重庆大渡口·重庆市第三十七中学校校考二模)如图,在平面直角坐标系中,抛物线y=x2+bx+c 与直线AB交于A,B两点,其中A(0,1),B(4,−1).(1)求该抛物线的函数表达式;(2)点P,Q为直线AB下方抛物线上任意两点,且满足点P的横坐标为m,点Q的横坐标为m+1,过点P和点Q分别作y轴的平行线交直线AB于C点和D点,连接PQ,求四边形PQDC面积的最大值;(3)在(2)的条件下,将抛物线y=x2+bx+c沿射线AB平移25个单位,得到新的抛物线y1,点E为点P的对应点,点F为y1的对称轴上任意一点,点G为平面直角坐标系内一点,当点B,E,F,G构成以EF为边的菱形时,直接写出所有符合条件的点G的坐标.19.(2022·山东菏泽·统考二模)如图,抛物线y=ax2+bx+6经过A−2,0、B4,0两点,与y轴交于点C,D是抛物线上一动点,设点D的横坐标为m1<m<4,连结AC,BC,DB,DC.(1)求抛物线的函数表达式.(2)当△BCD的面积等于△AOC的面积的34时,求m的值.(3)当m=2时,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B、D、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的的坐标;若不存在,请说明理由.20.(2022·四川绵阳·校考二模)如图,直角三角形的斜边AB在x轴上,直角顶点在y轴正半轴上,已知A−1,0,C0,2,抛物线y=ax2+bx+c a≠0经过点A,B,C.(1)求抛物线的解析式.(2)如图①,点P是y轴右侧抛物线上一动点,若∠PCB=∠ACO,求点P的坐标.(3)如图②,点P是第一象限内抛物线上的一个动点,连接PA交BC于点E,交y轴于点F,连接PB.设ΔPBE,ΔCEF的面积分别为S1,S2,求S1−S2的最大值.21.(2022·山东淄博·统考中考真题)如图,抛物线y=﹣x2+bx+c与x轴相交于A,B两点(点A在点B的左侧),顶点D(1,4)在直线l:y=43x+t上,动点P(m,n)在x轴上方的抛物线上.(1)求这条抛物线对应的函数表达式;(2)过点P作PM⊥x轴于点M,PN⊥l于点N,当1<m<3时,求PM+PN的最大值;(3)设直线AP,BP与抛物线的对称轴分别相交于点E,F,请探索以A,F,B,G(G是点E关于x轴的对称点)为顶点的四边形面积是否随着P点的运动而发生变化,若不变,求出这个四边形的面积;若变化,说明理由.22.(2022·辽宁阜新·统考中考真题)如图,已知二次函数y=−x2+bx+c的图像交x轴于点A−1,0,B5,0,交y轴于点C.(1)求这个二次函数的表达式;(2)如图1,点M从点B出发,以每秒2个单位长度的速度沿线段BC向点C运动,点N从点O出发,以每秒1个单位长度的速度沿线段OB向点B运动,点M,N同时出发.设运动时间为t秒(0<t<5).当t为何值时,△BMN的面积最大?最大面积是多少?(3)已知P是抛物线上一点,在直线BC上是否存在点Q,使以A,C,P,Q为顶点的四边形是平行四边形?若存在,直接写出点Q坐标;若不存在,请说明理由.23.(2022·山东枣庄·统考中考真题)如图①,已知抛物线L:y=x2+bx+c的图象经过点A(0,3),B(1,0),过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点.(1)求抛物线的关系式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当△OPE面积最大时,求出P点坐标;(3)将抛物线L向上平移h个单位长度,使平移后所得抛物线的顶点落在△OAE内(包括△OAE的边界),求h的取值范围;(4)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P,使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.24.(2022·山东日照·统考中考真题)在平面直角坐标系xOy中,已知抛物线y=-x2+2mx+3m,点A(3,0).(1)当抛物线过点A时,求抛物线的解析式;(2)证明:无论m为何值,抛物线必过定点D,并求出点D的坐标;(3)在(1)的条件下,抛物线与y轴交于点B,点P是抛物线上位于第一象限的点,连接AB,PD交于点M,PD 与y轴交于点N.设S=S△PAM-S△BMN,问是否存在这样的点P,使得S有最大值?若存在,请求出点P的坐标,并求出S的最大值;若不存在,请说明理由.。
专题 二次函数与面积有关问题(专项训练)(解析版)

专题03 二次函数与面积有关问题(专项训练)1.(2022•成都)如图,在平面直角坐标系xOy中,直线y=kx﹣3(k≠0)与抛物线y=﹣x2相交于A,B两点(点A在点B的左侧),点B关于y轴的对称点为B'.(1)当k=2时,求A,B两点的坐标;(2)连接OA,OB,AB',BB',若△B'AB的面积与△OAB的面积相等,求k的值;【解答】解:(1)当k=2时,直线为y=2x﹣3,由得:或,∴A(﹣3,﹣9),B(1,﹣1);(2)当k>0时,如图:∵△B'AB的面积与△OAB的面积相等,∴OB'∥AB,∴∠OB'B=∠B'BC,∵B、B'关于y轴对称,∴OB=OB',∠ODB=∠ODB'=90°,∴∠OB'B=∠OBB',∴∠OBB'=∠B'BC,∵∠ODB=90°=∠CDB,BD=BD,∴△BOD≌△BCD(ASA),∴OD=CD,在y=kx﹣3中,令x=0得y=﹣3,∴C(0,﹣3),OC=3,∴OD=OC=,D(0,﹣),在y=﹣x2中,令y=﹣得﹣=﹣x2,解得x=或x=﹣,∴B(,﹣),把B(,﹣)代入y=kx﹣3得:﹣=k﹣3,解得k=;当k<0时,过B'作B'F∥AB交y轴于F,如图:在y=kx﹣3中,令x=0得y=﹣3,∴E(0,﹣3),OE=3,∵△B'AB的面积与△OAB的面积相等,∴OE=EF=3,∵B、B'关于y轴对称,∴FB=FB',∠FGB=∠FGB'=90°,∴∠FB'B=∠FBB',∵B'F∥AB,∴∠EBB'=∠FB'B,∴∠EBB'=∠FBB',∵∠BGE=90°=∠BGF,BG=BG,∴△BGF≌△BGE(ASA),∴GE=GF=EF=,∴OG=OE+GE=,G(0,﹣),在y=﹣x2中,令y=﹣得﹣=﹣x2,解得x=或x=﹣,∴B(,﹣),把B(,﹣)代入y=kx﹣3得:﹣=k﹣3,解得k=﹣,综上所述,k的值为或﹣;2.(2021•枣庄)如图,在平面直角坐标系中,直线y=﹣x+3与x轴交于点A,与y轴交于点B,抛物线y=x2+bx+c经过坐标原点和点A,顶点为点M.(1)求抛物线的关系式及点M的坐标;(2)点E是直线AB下方的抛物线上一动点,连接EB,EA,当△EAB的面积等于时,求E点的坐标;【解答】解:(1)对于y=﹣x+3,令y=﹣x+3=0,解得x=6,令x=0,则y=3,故点A、B的坐标分别为(6,0)、(0,3),∵抛物线y=x2+bx+c经过坐标原点,故c=0,将点A的坐标代入抛物线表达式得:0=×36+6b,解得b=﹣2,故抛物线的表达式为y=x2﹣2x;则抛物线的对称轴为x=3,当x=3时,y=x2﹣2x=﹣3,则点M的坐标为(3,﹣3);(2)如图1,过点E作EH∥y轴交AB于点H,设点E的坐标为(x,x2﹣2x),则点H(x,﹣x+3),则△EAB的面积=S△EHB+S△EHA=×EH×OA=6×(﹣x+3﹣x2+2x)=,解得x=1或,故点E的坐标为(1,﹣)或(,﹣);3.(2021•柳州)在平面直角坐标系xOy中,已知抛物线:y=ax2+bx+c交x轴于A(﹣1,0),B(3,0)两点,与y轴交于点C(0,﹣).(1)求抛物线的函数解析式;(2)如图1,点D为第四象限抛物线上一点,连接OD,过点B作BE⊥OD,垂足为E,若BE=2OE,求点D的坐标;(3)如图2,点M为第四象限抛物线上一动点,连接AM,交BC于点N,连接BM,记△BMN的面积为S1,△ABN的面积为S2,求的最大值.【解答】解:(1)依题意,设y=a(x+1)(x﹣3),代入C(0,﹣)得:a•1•(﹣3)=﹣,解得:a=,∴y=(x+1)(x﹣3)=x2﹣x﹣;(2)∵BE=2OE,设OE为x,BE=2x,由勾股定理得:OE2+BE2=OB2,x2+4x2=9,解得:x1=,x2=﹣(舍),∴OE=,BE=,过点E作TG平行于OB,T在y轴上,过B作BG⊥TG于G,∴△ETO∽△OEB,∴==,∴OE2=OB•TE,∴TE==,∴OT==,∴E(,﹣),∴直线OE的解析式为y=﹣2x,∵OE的延长线交抛物线于点D,∴,解得:x1=1,x2=﹣3(舍),当x=1时,y=﹣2,∴D(1,﹣2);(3)如图所示,延长BC于点F,AF∥y轴,过A点作AH⊥BF于点H,作MT∥y轴交BF于点T,过M点作MG⊥BF于点J,∵AF∥MT,∴∠AFH=∠MTJ,∵AH⊥BF,MJ⊥BF,∴∠AHF=∠MJT=90°,∴△AFH∽△MJT,∴=,∵S1=NB•MJ,S2=NB•AH,∴==,设直线BC的解析式为y=kx+b,将B,C两点代入得,,解得:,∴直线BC的解析式为y=x﹣,当x=﹣1时,y=•(﹣1)﹣=﹣2,∴F(﹣1,﹣2),∴AF=2,设M(x,x2﹣x﹣),∴MT=x﹣﹣(x2﹣x﹣)=﹣(x﹣)2+,∴a=﹣<0,∴MT max=,∴=====.4.(2020•宿迁)二次函数y=ax2+bx+3的图象与x轴交于A(2,0),B(6,0)两点,与y轴交于点C,顶点为E.(1)求这个二次函数的表达式,并写出点E的坐标;(2)如图①,D是该二次函数图象的对称轴上一个动点,当BD的垂直平分线恰好经过点C时,求点D的坐标;(3)如图②,P是该二次函数图象上的一个动点,连接OP,取OP中点Q,连接QC,QE,CE,当△CEQ的面积为12时,求点P的坐标.【解答】解:(1)将A(2,0),B(6,0)代入y=ax2+bx+3,得,解得∴二次函数的解析式为y=﹣2x+3.∵y=﹣1,∴E(4,﹣1).(2)如图1,图2,连接CB,CD,由点C在线段BD的垂直平分线CN上,得CB=CD.设D(4,m),∵C(0,3),由勾股定理可得:42+(m﹣3)2=62+32.解得m=3±.∴满足条件的点D的坐标为(4,3+)或.(3)如图3,设CQ交抛物线的对称轴于点M,设P(n,﹣2n+3),则Q(),设直线CQ的解析式为y=kx+3,则nk+3.解得k=,于是CQ:y=()x+3,当x=4时,y=4()+3=n﹣5﹣,∴M(4,n﹣5﹣),ME=n﹣4﹣.∵S△CQE=S△CEM+S△QEM=.∴n2﹣4n﹣60=0,解得n=10或n=﹣6,当n=10时,P(10,8),当n=﹣6时,P(﹣6,24).综合以上可得,满足条件的点P的坐标为(10,8)或(﹣6,24).5.(2020•淄博)如图,在直角坐标系中,四边形OABC是平行四边形,经过A(﹣2,0),B,C三点的抛物线y=ax2+bx+(a<0)与x轴的另一个交点为D,其顶点为M,对称轴与x轴交于点E.(1)求这条抛物线对应的函数表达式;(2)已知R是抛物线上的点,使得△ADR的面积是▱OABC的面积的,求点R的坐标;【解答】解:(1)OA=2=BC,故函数的对称轴为x=1,则x=﹣=1①,将点A的坐标代入抛物线表达式得:0=4a﹣2b+②,联立①②并解得,故抛物线的表达式为:y=﹣x2+x+③;(2)∵y=﹣x2+x+=﹣(x﹣1)2+3,∴抛物线的顶点M(1,3)令y=0,可得x=﹣2或4,∴点D(4,0);∵△ADR的面积是▱OABC的面积的,∴×AD×|y R|=×OA×OB,则×6×|y R|=×2×,解得:y R=±④,联立④③并解得或,故点R的坐标为(1+,﹣)或(1,﹣)或(1,)或(1﹣,);6.(2020•天水)如图所示,抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C,且点A的坐标为A(﹣2,0),点C的坐标为C(0,6),对称轴为直线x =1.点D是抛物线上一个动点,设点D的横坐标为m(1<m<4),连接AC,BC,DC,DB.(1)求抛物线的函数表达式;(2)当△BCD的面积等于△AOC的面积的时,求m的值;【解答】解:(1)由题意得:,解得:,∴抛物线的函数表达式为:y=﹣x2+x+6;(2)过点D作DE⊥x轴于E,交BC于G,过点C作CF⊥ED交ED的延长线于F,如图1所示:∵点A的坐标为(﹣2,0),点C的坐标为(0,6),∴OA=2,OC=6,∴S△AOC=OA•OC=×2×6=6,∴S△BCD=S△AOC=×6=,当y=0时,﹣x2+x+6=0,解得:x1=﹣2,x2=4,∴点B的坐标为(4,0),设直线BC的函数表达式为:y=kx+n,则,解得:,∴直线BC的函数表达式为:y=﹣x+6,∵点D的横坐标为m(1<m<4),∴点D的坐标为:(m,﹣m2+m+6),点G的坐标为:(m,﹣m+6),∴DG=﹣m2+m+6﹣(﹣m+6)=﹣m2+3m,CF=m,BE=4﹣m,∴S△BCD=S△CDG+S△BDG=DG•CF+DG•BE=DG×(CF+BE)=×(﹣m2+3m)×(m+4﹣m)=﹣m2+6m,∴﹣m2+6m=,解得:m1=1(不合题意舍去),m2=3,∴m的值为3;7.(2021•沈阳)如图,平面直角坐标系中,O是坐标原点,抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的左侧),点B坐标是(3,0).抛物线与y轴交于点C (0,3),点P是抛物线的顶点,连接PC.(1)求抛物线的函数表达式并直接写出顶点P的坐标.(2)直线BC与抛物线对称轴交于点D,点Q为直线BC上一动点.当△QAB的面积等于△PCD面积的2倍时,求点Q的坐标;【解答】解(1)由题意得,,∴b=2,∴y=﹣x2+2x+3=﹣((x﹣1)2+4,∴P(1,4).(2)①如图1,作CE⊥PD于E,∵C(0,3),B(3,0),∴直线BC:y=﹣x+3,∴D(1,2),可设Q(a,3﹣a),∴CE=PE=DE,∴△PCD是等腰直角三角形,∴S△PCD=PD•CE=×2×1=1,∴AB•|3﹣a|=2,∴×4•|3﹣a|=2,∴a=2或a=4.∴Q(2,1)或(4,﹣1).8.(2021•辽宁)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点C(﹣1,0),与y 轴交于点B(0,3),连接AB,BC,点P是抛物线第一象限上的一动点,过点P作PD ⊥x轴于点D,交AB于点E.(1)求抛物线的解析式;(2)如图1,作PF⊥PD于点P,使PF=OA,以PE,PF为邻边作矩形PEGF.当矩形PEGF的面积是△BOC面积的3倍时,求点P的坐标;【解答】解:(1)由题意得:,解得,故抛物线的表达式为y=﹣x2+x+3;(2)对于y=﹣x2+x+3,令y=﹣x2+x+3=0,解得x=4或﹣1,故点A的坐标为(4,0),则PF=2,由点A、B的坐标得,直线AB的表达式为y=﹣x+3,设点P的坐标为(x,﹣x2+x+3),则点E(x,﹣x+3),则矩形PEGF的面积=PF•PE=2×(﹣x2+x+3+x﹣3)=3S△BOC=3××BO•CO =×3×1,解得x=1或3,故点P的坐标为(1,)或(3,3);9.(2022•南宁一模)如图1所示抛物线与x轴交于O,A两点,OA=6,其顶点与x轴的距离是6.(1)求抛物线的解析式;(2)点P在抛物线上,过点P的直线y=x+m与抛物线的对称轴交于点Q.当△POQ与△P AQ的面积之比为1:3时,求m的值;【解答】解:(1)∵OA=6,∴抛物线的对称轴为直线x=3,设抛物线的解析式为y=a(x﹣3)2+k,∵顶点与x轴的距离是6,∴顶点为(3,﹣6),∴y=a(x﹣3)2﹣6,∵抛物线经过原点,∴9a﹣6=0,∴a=,∴y=(x﹣3)2﹣6;(2)①设直线y=x+m与y轴的交点为E,与x轴的交点为F,∴E(0,m),F(﹣m,0),∴OE=|m|,AF=|6+m|,∵直线y=x+m与坐标轴的夹角为45°,∴OM=|m|,AN=|6+m|,∵S△POQ:S△P AQ=1:3,∴OM:AN=1:3,∴|m|:|6+m|=1:3,解得m=﹣或m=3;10.(2022•本溪二模)如图,抛物线y=﹣x2+bx+c经过A(3,0),C(﹣1,0)两点,与y轴交于点B.(1)求抛物线的解析式;(2)如图1,点M是线段AB上方抛物线上一动点,以AB为边作平行四边形ABMD,连接OM,若OM将平行四边形ABMD的面积分成为1:7的两部分,求点M的横坐标;【解答】解:(1)将(3,0),(﹣1,0)代入y=﹣x2+bx+c,得,解得,∴;(2)连接AM,设AB与OM的交点为N,作NH⊥OA于点H,则NH∥OB,∵A(3,0),B(0,4),设直线AB的解析式为y=kx+4,∴3k+4=0,∴k=﹣,∴y=﹣x+4,设点M,点N,∵S△BMN:S△ABM=1:4,∴S△BMN:S△ABM=1:4,∴BN:AN=1:3,∵NH∥OB,∴△ANH∽△AOB,∴,即,解得,∴,∴直线OM的解析式为y=4x,联立方程组,解得,∵点M在第一象限,∴,∴点M的横坐标为;11.(2022•新抚区模拟)如图,直线y=mx+n与抛物线y=﹣x2+bx+c交于A(﹣2,0),B(2,2)两点,直线AB与y轴交于点C.(1)求抛物线与直线AB的解析式;(2)点P在抛物线上,直线PC交x轴于Q,连接PB,当△PBC的面积是△ACQ面积的2倍时,求点P的坐标;【解答】解:(1)将A(﹣2,0),B(2,2)代入y=﹣x2+bx+c得,解得,∴抛物线解析式为y=﹣x2+x+5.将A(﹣2,0),B(2,2)代入y=mx+n得,解得,∴直线AB解析式为y=x+1.(2)①点P在x轴上方是,过点P作x轴平行线,交y轴于点F,交直线AB于点E,将x=0代入y=x+1得y=1,∴点C坐标为(0,1),∵A(﹣2,0),B(2,2),∴C为AB中点,即AC=BC,∴当△PBC的面积是△ACQ面积的2倍时,点P到BC的距离是点Q到AC的距离的2倍,∵PE∥OA,∴△EPC∽△AQC,∴=2,∵PF∥OA,∴△PFC∽△OQC,∴==2,∴点P纵坐标为FC+OC=3OC=3,将y=3代入y=﹣x2+x+5得3=﹣x2+x+5,解得x1=﹣,x2=+,∴点P坐标为(﹣,3)或(+,3).②点P在x轴下方,连接BQ,PK⊥x轴于点K,∵C为AB中点,∴S△AQC=S△BQC,∵△PBC的面积是△ACQ面积的2倍,∴S△PBQ=S△BQC,∴点Q为CP中点,又∵∠CQO=∠PQK,∠COQ=∠PKQ=90°,∴△OCQ≌△KPQ,∴CQ=KP,即点P纵坐标为﹣1,将y=﹣1代入y=﹣x2+x+5得﹣1=﹣x2+x+5,解得x1=,x2=,∴点P坐标为(,﹣1),(,﹣1),综上所述,点P坐标为(﹣,3)或(+,3)或(,﹣1)或(,﹣1),12.(2022•福建)在平面直角坐标系xOy中,已知抛物线y=ax2+bx经过A(4,0),B (1,4)两点.P是抛物线上一点,且在直线AB的上方.(1)求抛物线的解析式;(2)若△OAB面积是△P AB面积的2倍,求点P的坐标;【解答】解:(1)将A(4,0),B(1,4)代入y=ax2+bx,∴,解得.∴抛物线的解析式为:y=﹣x2+x.(2)设直线AB的解析式为:y=kx+t,将A(4,0),B(1,4)代入y=kx+t,∴,解得.∵A(4,0),B(1,4),∴S△OAB=×4×4=8,∴S△OAB=2S△P AB=8,即S△P AB=4,过点P作PM⊥x轴于点M,PM与AB交于点N,过点B作BE⊥PM于点E,如图,∴S△P AB=S△PNB+S△PNA=PN×BE+PN×AM=PN=4,∴PN=.设点P的横坐标为m,∴P(m,﹣m2+m)(1<m<4),N(m,﹣m+),∴PN=﹣m2+m﹣(﹣m+)=.解得m=2或m=3;∴P(2,)或(3,4).13.(2022•苏州二模)如图,已知抛物线y=x2+bx+c与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,OA=OC=3.(1)求抛物线的函数表达式;(2)若点P为直线AC下方抛物线上一点,连接BP并交AC于点Q,若AC分∠△ABP 的面积为1:2两部分,请求出点P的坐标;【解答】解:(1)∵OA=OC=3,∴A(﹣3,0),C(0,﹣3),将点A、C代入y=x2+bx+c,∴,解得,∴y=x2+2x﹣3;(2)令x2+2x﹣3=0,解得x=﹣3或x=1,∴B(1,0),过点P作PG⊥x轴交于点G,过点Q作QH⊥x轴交于点H,∴PG∥QH,设直线AC的解析式为y=kx+b,∴,解得,∴y=﹣x﹣3,设P(t,t2+2t﹣3),直线BP的解析式为y=k'x+b',∴,解得,∴y=(t+3)x﹣(t+3),联立方程组,解得,∴Q(,),∵AC分∠△ABP的面积为1:2两部分,∴=或=,当=时,=,解得t=﹣1或t=﹣2,∴P(﹣1,﹣4)或(﹣2,﹣3);当=时,=,此时t无解,。
中考数学二次函数与三角形面积专项复习训练测试题(附答案解析)

中考数学二次函数与三角形面积专项复习训练测试题(附答案解析)1、(12分)已知抛物线y=ax2+bx-3经过(-1,0),(3,0)两点,与y轴交于点C,直线y=kx与抛物线交于A,B两点.(1)写出点C的坐标并求出此抛物线的解析式;(2)当原点O为线段AB的中点时,求k的值及A,B两点的坐标;(3)是否存在实数k使得△ABC的面积为3102若存在,求出k的值;若不存在,请说明理由.第1题图2、如图所示,已知抛物线y=-x2+bx+c与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C,抛物线的对称轴与抛物线交于点P、与直线BC相交于点M,连接PB.(1)求该抛物线的解析式;(2)在(1)中位于第一象限内的抛物线上是否存在点D,使得△BCD的面积最大?若存在,求出D点坐标及△BCD面积的最大值;若不存在,请说明理由;(3)在(1)中的抛物线上是否存在点Q,使得△QMB与△PMB的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.第2题图3、如图所示,已知抛物线y =-12x 2+bx +c 与坐标轴分别交于点A (0,8)、B (8,0)和点E ,动点C 从原点O 开始沿OA 方向以每秒1个单位长度移动,动点D 从点B 开始沿BO 方向以每秒1个单位长度移动,动点C 、D 同时出发,当动点D 到达原点O 时,点C 、D 停止运动.(1)直接写出抛物线的解析式:____________________;(2)求△CED 的面积S 与D 点运动时间t 的函数解析式;当t 为何值时,△CED 的面积最大?最大面积是多少?(3)当△CED 的面积最大时,在抛物线上是否存在点P (点E 除外),使△PCD 的面积等于△CED 的最大面积,若存在,求出P 点的坐标;若不存在,请说明理由.第3题图4、(10分)如图所示,在平面直角坐标系xOy 中,一次函数y =x 与二次函数y =x 2+bx 的图象相交于O 、A 两点,点A (3,3),点M 为抛物线的顶点. (1)求二次函数的表达式;(2)长度为22的线段PQ 在线段OA (不包括端点)上滑动,分别过点P 、Q 作x 轴的垂线交抛物线于点P 1、Q 1,求四边形PQQ 1P 1面积的最大值;(3)直线OA 上是否存在点E ,使得点E 关于直线MA 的对称点F 满足S △AOF =S △AOM ?若存在,求出点E 的坐标;若不存在,请说明理由.第4题图中考数学二次函数与三角形面积专项复习训练测试题(附答案解析) 1.解:(1)令x =0,得y =-3, ∴C (0,-3),把(-1,0)和(3,0)代入y =ax 2+bx -3中,得309330a b a b --=⎧⎨+-=⎩,解得12a b =⎧⎨=-⎩,∴抛物线的解析式为y =x 2-2x -3;…………………………(3分)(2)联立方程组223y x x y kx⎧=--⎪⎨=⎪⎩,解得11x y ⎧=⎪⎪⎨⎪=⎪⎩,22x y ⎧=⎪⎪⎨⎪=⎪⎩,∵O 是AB 的中点,∴x 1+x 2=0,即22022k k +++-+= 解得k =-2,∴11x y ⎧=⎪⎨=-⎪⎩或22x y ⎧=⎪⎨=⎪⎩, ∴A (-3,23),B (3,-23);…………………………(7分); (3)不存在实数k 使得△ABC 的面积为3102.理由如下: 假设存在实数k 使得△ABC 的面积为3102,联立方程组223y x x y kx⎧=--⎪⎨=⎪⎩,解得1212222k x k k y ⎧++=⎪⎪⎨++⎪=⎪⎩,2222222k x k k y ⎧+-=⎪⎪⎨+-⎪=⎪⎩,则A(222,22k k k +-+-), B(222,22k k k ++++), ∴S △ABC =12OC (x B -x A )=3102, ∴12×3×=3102, ∴k 2+4k +16=10,即k 2+4k +6=0, ∵b 2-4ac =16-24<0, ∴此方程无解,∴不存在实数k 使得△ABC 的面积为3102.………………(12分)2.解:(1)把点A (-1,0),B (3,0)代入y =-x 2+bx +c ,得10930b c b c --+=⎧⎨-++=⎩,解得23b c =⎧⎨=⎩,∴y =-x 2+2x +3;【一题多解】由题意可知点A (-1,0),点B (3,0)是抛物线与x 轴的两个交点,∴抛物线解析式为y =-(x +1)(x -3)=-x 2+2x +3. (2)存在点D ,使得△BCD 的面积最大.设D (t ,-t 2+2t +3),如解图①,作DH ⊥x 轴于点H ,C 点坐标为(0,3),第2题解图①则S △BCD =S 四边形DCOH +S △BDH -S △BOC =12t (-t 2+2t +3+3)+12(3-t )(-t 2+2t +3)-12×3×3=-32t 2+92t ,∵-32<0,即抛物线开口向下,在对称轴处取得最大值, ∴当t =-922×(-32)=32时,S △BCD =-32×(32)2+92×32=278,即点D 的坐标为(32,154)时,S △BCD 有最大值,且最大面积为278; (3)存在点Q ,使得△QMB 与△PMB 的面积相等.如解图②,∵P (1,4),过点P 且与BC 平行的直线与抛物线的交点即为所求Q 点之一,第2题解图②∵直线BC 为y =-x +3,∴过点P 作BC 的平行直线l 1,设l 1为y =-x +b ,将P (1,4)代入即可得到直线l 1的解析式为y =-x +5,联立方程组2523y x y x x =-+⎧⎪⎨=-++⎪⎩,解得1123x y =⎧⎨=⎩, 2214x y =⎧⎨=⎩, ∴Q 1(2,3);∵直线PM 为x =1,直线BC 为y =-x +3, ∴M (1,2),设PM 与x 轴交于点E , ∵PM =EM =2,∴过点E 作BC 的平行直线l 2,则过点E 且与BC 平行的直线l 2与抛物线的交点也为所求Q 点之一,即将直线BC 向下平移2个单位得到直线l 2,解析式为y =-x +1,联立方程组2123y x y x x =-+⎧⎪⎨=-++⎪⎩,解得11x y ⎧=⎪⎪⎨⎪=⎪⎩,22x y ⎧=⎪⎪⎨⎪=⎪⎩,∴Q 2(3122++-),Q 3(3122---), ∴满足条件的Q 点为Q 1(2,3),Q 2(),Q 3(). 3.解:(1)y =-12x 2+3x +8;【解法提示】把点A (0,8)、B (8,0)代入y =-12x 2+bx +c 可得,83280c b c =⎧⎨-++=⎩,解得38b c =⎧⎨=⎩,∴抛物线解析式为y =-12x 2+3x +8.(2)在y =-12x 2+3x +8中,当y =0时,-12x 2+3x +8=0, 解得x 1=-2,x 2=8, ∴E (-2,0),∴BE =10,∵S △CED =12DE ·OC , ∴S =12t (10-t )=-12t 2+5t ,∴S 与t 的函数关系式为:S =-12t 2+5t , ∵S =-12t 2+5t =-12(t -5)2+252,∴当t =5时,△CED 的面积最大,最大面积为252;(3)存在,当△CED 的面积最大时,t =5,即BD =DE =5,此时,要使S △PCD =S △CED ,CD 为公共边,故只需求出过点B 、E 且平行于CD 的直线即可,如解图.第3题解图设直线CD 的解析式为y =kx +b , 由(2)可知OC =5,OD =3, ∴C (0,5),D (3,0),把C (0,5)、D (3,0)代入y =kx +b ,得530b k b =⎧⎨+=⎩,解得535k b ⎧=-⎪⎨⎪=⎩,∴直线CD 的解析式为y =-53x +5, ∵DE =DB =5,∴过点B 且平行于CD 的直线解析式为y =-53(x -5)+5, 过点E 且平行于CD 的直线解析式为y =-53(x +5)+5, 分别与抛物线解析式联立得:方程①:-12x 2+3x +8=-53(x -5)+5, 解得x 1=8,x 2=43,方程②:-12x 2+3x +8=-53(x +5)+5, 解得x 3=343,x 4=-2(舍去),分别将x 值代入抛物线解析式,得y 1=0,y 2=1009,y 3=-2009, 又∵P 点不与E 点重合,∴满足题意的P 点坐标有3个,分别是P 1(8,0),P 2(43,1009),P 3(343,-2009). 4.解:(1)由题意知,A (3,3)在二次函数y =x 2+bx 的图象上, 将x =3,y =3代入得9+3b =3, 解得b =-2,∴二次函数表达式为y =x 2-2x ;……………………………(2分) (2)如解图①所示,过点P 作PB ⊥QQ 1于点B ,第4题解图①∵PQ =22,且在直线y =x 上,∴PB =QB =2 ,………………………………………………(3分) 设P (a ,a ),则Q (a +2,a +2),P 1(a ,a 2-2a ),Q 1(a +2,(a +2)2-2(a +2)), 即Q 1(a +2,a 2+2a ), ∴四边形PQQ 1P 1的面积为:22(2)(22)22a a a a a a S -+++--=⨯=-2a 2+2a +2=-2(a -12)2+52,…………………………(4分) 当Q 运动到点A 时,OP =OQ -PQ =2,a =1, ∴a 的取值范围为0<a <1,∴当a =12时,四边形PQQ 1P 1的面积最大,最大值为52;…(5分) (3)存在,点E 的坐标为E 1(43,43),E 2(143,143), 如解图②所示,连接OM ,第4题解图②∵点M 为抛物线顶点, ∴M (1,-1),又∵OA 所在直线为y =x , ∴OM ⊥OA ,即∠AOM =90°,在△AOF 和△AOM 中,以OA 为底,当面积相等时,则两三角形OA 边上的高相等, 又∵OM ⊥OA ,且OM =2,∴可作两条与OA 互相平行且距离为2的直线,…………(6分)如解图②所示,在直线HD 、MC 上的点F 均满足S △AOF =S △AOM ,∴只需满足E 点的对称点F 在这两条直线上即可.如解图②,过点A 作AC ⊥MC 于点C ,易得四边形OACM 为矩形,AM 为该矩形的一条对角线,取AM 中点O ′,过O ′作AM 垂线,交OA 于点E 1,交MC 于点F 1,OA =32,∴AM ===,∴AO ′=5,∵△AO′E 1∽△AOM ,…………………………………………(7分)∴11AE AO OE AO AO AM AM '-==,∴=, 解得OE 1=423, ∵点E 1在y =x 上,∴E 1(43,43),……………………………………………………(8分) 同理可得HF 2=GE 2=423, 又∵OG =2OA =62,∴OE 2=62-423=1423,∴E 2(143,143).综上所述,符合条件的E 点的坐标为:E 1(43,43)、 E 2(143,143).…(10分)。
专题03 二次函数与面积有关的问题(知识解读)-备战2023年中考数学《重难点解读专项训练》

专题03 二次函数与面积有关的问题(知识解读)【专题说明】二次函数是初中数学的一个重点,一个难点,也是中考数学必考的一个知识点。
特别是在压轴题中,二次函数和几何综合出现的题型,才是最大的区分度。
与面积有关的问题,更是常见。
本节介绍二次函数考试题型种,与面积问题的常用解法。
同学们,只要熟练运用解法,炉火纯青,在考试答题的时候,能够轻松答题。
【知识点梳理】类型一:面积等量关系类型二:面积平分方法一:利用割补将图形割(补)成三角形或梯形面积的和差,其中需使三角形的底边在坐标轴上或平行于坐标轴;(例如以下4、5两图中,连结BD解法不简便。
)方法二: 铅锤法铅锤高水平宽⨯=21S方法三 :其他面积方法如图1,同底等高三角形的面积相等.平行线间的距离处处相等.如图2,同底三角形的面积比等于高的比.如图3,同高三角形的面积比等于底的比.如图1 如图2 如图3【典例分析】【类型一:面积等量关系】【典例21】(2022•盘锦)如图,抛物线y =x 2+bx +c 与x 轴交于A ,B (4,0)两点(A 在B 的左侧),与y 轴交于点C (0,﹣4).点P 在抛物线上,连接BC ,BP .(1)求抛物线的解析式;(2)如图1,若点P 在第四象限,点D 在线段BC 上,连接PD 并延长交x 轴于点E ,连接CE,记△DCE的面积为S1,△DBP的面积为S2,当S1=S2时,求点P的坐标;【变式1】(2022•泸州)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+x+c经过A (﹣2,0),B(0,4)两点,直线x=3与x轴交于点C.(1)求a,c的值;(2)经过点O的直线分别与线段AB,直线x=3交于点D,E,且△BDO与△OCE的面积相等,求直线DE的解析式;(3)P是抛物线上位于第一象限的一个动点,在线段OC和直线x=3上是否分别存在点F,G,使B,F,G,P为顶点的四边形是以BF为一边的矩形?若存在,求出点F的坐标;若不存在,请说明理由.【类型二:面积平分】【典例2】(2022•沈阳)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3经过点B(6,0)和点D(4,﹣3),与x轴的另一个交点为A,与y轴交于点C,作直线AD.(1)①求抛物线的函数表达式;②直接写出直线AD的函数表达式;(2)点E是直线AD下方的抛物线上一点,连接BE交AD于点F,连接BD,DE,△BDF的面积记为S1,△DEF的面积记为S2,当S1=2S2时,求点E的坐标;【变式2】(2022•内江)如图,抛物线y=ax2+bx+c与x轴交于A(﹣4,0),B(2,0),与y轴交于点C(0,2).(1)求这条抛物线所对应的函数的表达式;(2)若点D为该抛物线上的一个动点,且在直线AC上方,求点D到直线AC的距离的最大值及此时点D的坐标;(3)点P为抛物线上一点,连接CP,直线CP把四边形CBP A的面积分为1:5两部分,求点P的坐标.【典例3】(深圳)如图抛物线y=ax2+bx+c经过点A(﹣1,0),点C(0,3),且OB =OC.(1)求抛物线的解析式及其对称轴;(2)点P为抛物线上一点,连接CP,直线CP把四边形CBP A的面积分为3:5两部分,求点P的坐标.【变式3】(2021秋•合川区)如图,抛物线y=ax2+bx+6(a≠0)与x轴交于A(﹣1,0),B(6,0),与y轴交于点C,点P为第一象限内抛物线上一动点,过点P作x轴的垂线,交直线BC于点D,交x轴于点E,连接PB.(1)求该抛物线的解析式;(2)当△PBD与△BDE的面积之比为1:2时,求点P的坐标;专题03 二次函数与面积有关的问题(知识解读)【专题说明】二次函数是初中数学的一个重点,一个难点,也是中考数学必考的一个知识点。
二次函数分类试题之面积问题

面积问题
1.如图,二次函数y=ax2-4x+c的图象经过坐标原点,与x轴交于点A(-4,0).(1)求二次函数的解析式;
(2)在抛物线上存在点P,满足S△AOP=8,请直接写出点P的坐标.
2.如图,直线AB过x轴上的点A(2,0),且与抛物线y=ax2相交于B、C两点,B点坐标为(1,1).
(1)求直线和抛物线所表示的函数表达式;
(2)在抛物线上是否存在一点D,使得S△OAD=S△OBC?若不存在,说明理由;若存在,请求出点D的坐标。
3.如图,抛物线y=ax2+bx-3的图象经过A、B两点,
(1)求抛物线解析式;
(2)是否在抛物线上存在一点P,使得S△ABP=6?若存在,
请求出P点坐标;若不存在,请说明理由.
(2)求过A 、O 、E 三点的抛物线解析式;
(3)若点P 是(2)中求出的抛物线AE 段上一动点(不与A 、E 重合),设四边形OAPE 的面积为S ,求S 的最大值.
(1)(4,0)E ;(2)2y x x =;(3)
25256)+28
y x =-
5.如图,抛物线过点O (0,0),A (3,3)和B (4,0).
(1)求抛物线的解析式;
(2)若抛物线的顶点为M ,求四边形OMAB 的面积.
抛物线的解析式为y=-x 2+4x ;9
6.如图,抛物线y=-x 2+bx+c 经过直线y=-x+3与坐标轴的两个交点A 、B ,此抛物线与x 轴的另一个交点为C ,抛物线的顶点为D .
(1)求此抛物线的解析式;
(2)点M 为抛物线上的一个动点,求使得△ABM 的面积与△ABD 的面积相等的点M 的坐标.
抛物线的解析式y=-x2+2x+3;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数专题训练——抛物线与图形面积
1、抛物线y=x 2
-4x-5交x 轴于A 、B 两点,交y 轴于点C ,则△ABC 面积为
2、若抛物线y=-x 2–x+6与x 轴交于A 、B 两点,则AB= ,此抛物线与y 轴交于点C ,则C 点的坐标为 ,△ABC 的面积为 .
3、已知二次函数y=x 2
–21x-2
3与x 轴交于A 、B 两点,顶点为C ,则△ABC 的面积为 .
4、若抛物线y=x 2
+ 4x 的顶点是P ,与X 轴的两个交点是C 、D 两点,则△PCD 的面积是_____________.
5、已知抛物线c bx x y ++=2
与y 轴交于点A ,与x 轴的正半轴交于B 、C 两点,且BC=2,S △ABC =3,则b = ,c = .
6、已知二次函数y=ax 2
+bx+c 的图象经过(-1,2
5
-),B(0,-4),C(4,0)三点,则二次函数解析式是_______,顶点D 的坐标是_______,对称轴方程是_______,
=_______
7、已知二次函数y=-2
1x 2+x+4的图象与x 轴的交点从右向左为A 、B 两点,与y 轴交点为C ,顶点为D ,求四边形ABCD 的面积 _______
9、二次函数c bx ax y ++=2
的图像与x 轴交于点A (-12,0)、B (3 ,0),与y 轴交于点C ,∠ACB=90°.
(1)、求二次函数的解析式;
(2)、P 为抛物线X 轴上方一点,若使得△PAB 面积最大,求P 坐标 (3)、P 为抛物线X 轴上方一点,若使得四边形PABC 面积最大,求P 坐标 (4) P 为抛物线上一点,若使得ABC PAB
S S ∆∆=2
1
,求P 点坐标。
10、如图,抛物线8102
+-=ax ax y 经过ABC △的三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC BC =.(1)求抛物线的对称轴;(2)写出A B C ,,三点的坐标并求抛物线的解析式;
(3)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由.
A
C
B
y
x
y x
B
A
C
O
P B A C
O x y Q
图3
11如图,抛物线顶点坐标为点C(1,4),交x 轴于点A(3,0),交y 轴于点B. (1)求抛物线和直线AB 的解析式;
(2)点P 是抛物线(在第一象限内)上的一个动点,连结PA ,PB ,当P 点运动到顶点C 时,求△CAB 的铅垂高CD 及
CAB
S ∆
(3)是否存在一点P ,使S △PAB=89
S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由.
12如图,已知抛物线c x b x a y ++=2经过O(0,0),A(4,0),B(3,3)三点,连结AB ,过点B 作BC ∥x 轴交该抛物线于点C.
(1) 求这条抛物线的函数关系式.
(2) 两个动点P 、Q 分别从O 、A 两点同时出发,以每秒1个单位长度的速度运动. 其中,点P 沿着线段0A 向A 点运动,点Q 沿着折线A →B →C 的路线向C 点运动. 设这两个动点运动的时间为t (秒) (0<t <4),△PQA 的面积记为S.
① 求S 与t 的函数关系式;
② 当t 为何值时,S 有最大值,最大值是多少?并指出此时△PQA 的形状;
③ 是否存在这样的t 值,使得△PQA 是直角三角形?若存在,请直接写出此时P 、Q 两点的坐标;若不存在,请说明理由.
图12-2
x
C
O y
A
B
D
1 1
13.已知抛物线2
y x bx c =++交x 轴于A (1,0)、B (3,0)两点,交y 轴于点C ,其顶点为D . (1)求b 、c 的值并写出抛物线的对称轴;
(2)连接BC ,过点O 作直线OE ⊥BC 交抛物线的对称轴于点E .求证:四边形ODBE 是等腰梯形; (3)抛物线上是否存在点Q ,使得△OBQ 的面积等于四边形ODBE 的面积的
3
1
?若存在,求点Q 的坐标;若不存在,请说明理由.
14.二次函数62
5
412+-=
x x y 的图象与x 轴从左到右两个交点依次为A 、B ,与y 轴交于点C , (1)求A 、B 、C 三点的坐标;
(2)如果P(x ,y)是抛物线AC 之间的动点,O 为坐标原点,试求△POA 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围;
(3)是否存在这样的点P ,使得PO=PA ,若存在,求出点P 的坐标;若不存在,说明理由。
15、如图,抛物线c bx x y ++-=2
与x 轴交与A(1,0),B(- 3,0)两点,
(1)求该抛物线的解析式;
(2)设(1)中的抛物线交y 轴与C 点,在该抛物线的对称轴上是否存在点Q ,使得△QAC 的周长最小?若存在,求出Q 点的坐标;若不存在,请说明理由.
(3)在(1)中的抛物线上的第二象限上是否存在一点P ,使△PBC 的面积最大?,若存在,求出点P 的坐标及△PBC 的面积最大值.若没有,请说明理由.
16、如图,已知抛物线2
43y x x =++交x 轴于A 、B 两点,交y 轴于点C ,•抛物线的对称轴交x 轴于点E ,点B 的坐标为(1-,0).(1)求抛物线的对称轴及点A 的坐标;
(2)在平面直角坐标系xoy 中是否存在点P ,与A 、B 、C 三点构成一个平行四边形?若存在,请写出点P 的坐标;若不存在,请说明理由;
(3)连结CA 与抛物线的对称轴交于点D ,在抛物线上是否存在点M ,使得直线CM 把四边形DEOC 分成面积相等的两部分?若存在,请求出直线CM 的解析式;若不存在,请说明理由.
O
D B
C
A
x
y
E
A
B
C。