二次函数与面积专题

合集下载

二次函数专题一:面积问题-含答案

二次函数专题一:面积问题-含答案

专题一:二次函数中的面积问题(一)利用割补:将图形割(补)成三角形或梯形面积的和差,其中需使三角形的底边在坐标轴上或平行于坐标轴;(例如以下4、5两图中,连结BD 解法不简便。

)例1:如图抛物线与轴交于两点,与轴交于点, (1)k=___-3_____,点的坐标为___(-1,0)___,点的坐标为____(3,0)____; (2)设抛物线的顶点为,求的面积;(3)在轴下方的抛物线上是否存在一点,使四边形的面积最大?若存在,请求出点D 的坐标;若不存在,请说明理由;解:(2)M (1,-4);(3)设,,当m =52时,四边形ABDC 面积最大,为52。

练习1、如图,抛物线与轴交于A 、B 两点,与轴交于点C ,抛物线的对称轴交轴于点D ,已知A (﹣1,0),C (0,2). (1)求抛物线的表达式;(2)点E 是线段BC 上的一个动点,过点E 作轴的垂线与抛物线相交于点F ,当点E 运动到什么位置时,四边形CDBF 的面积最大?求出四边形CDBF 的最大面积及此时E 点的坐标.解:(1)y =-12x 2+32x +2(2)对称轴x =-b 2a =32,\D (32,0), 令-12x 2+32x +2=0,x 1=-1,x 2=4,\B (4,0) ,设F (a ,-12a 2+32a +2),y =x 2-2x +k x A ,B y C (0,-3)A B M D BCM x D ABDC S D BCM =S D OCM +S D BOM -S D BOC =12´3´1+12´3´4-12´3´3=3D (m ,m 2-2m -3) S 四边形ABDC =S D AOC +S D BOD +S D COD=12´1´3+12´|m 2-2m -3|´3+12´m ´3=-12m 2+52m +3-b 2a =-522´(-12)=52,0<m <3y =-12x 2+mx +n x y xxS四边形CDBF =SD COF+SD BOF-SD COD=12´2´a+12´4´(-12a2+32a+2)-12´2´32=-a2+4a+52∵-42´(-1)=2,0<a<4,-1<0,\当a=2时,S四边形CDBF最大,为132此时,直线BC解析式可求得y=-12x+2,\E(2,1)练习2:已知:抛物线的顶点坐标为C(1,4),抛物线交x轴于点A,交y轴于点B(0,3).点P是在第一象限内的抛物线上的一个动点,过点P作y轴的平行线,交AB于点D.是否存在点P,使S△PAB=S△CAB?若存在,求出P点的坐标;若不存在,请说明理由.解:设抛物线解析式为y=a(x-1)2+4,将B(0,3)代入得a=-1\y=-(x-1)2+4=-x2+2x+3,令y=0得x1=-1,x2=3,\A(3,0)连结OC,SD ABC =SD CBO+SD ACO-SD ABO=3,\SD PAB=54×SD ABC=54´3=154设P(m,-m2+2m+3),连结OP、BP,SD PAB =SD BPO+SD APO-SD AOB=12´3´m+12´3´(-m2+2m+3)-12´3´3=-32m2+92m-32m2+92m=154,整理得2m2-6m+0,D=(-6)2-4´2´5=-4<0,所以不存在这样的点P。

二次函数面积问题(整)

二次函数面积问题(整)

二次函数面积问题(整)1.题型一:割补法1.1 求解析式已知抛物线经过点A(4,)和点B(,2),且对称轴为直线l,顶点为C,求解析式。

由对称性可知,顶点C的横坐标为4/2=2,代入抛物线方程得2b+c=-4,又由于抛物线经过点A和B,代入方程可得2b+c=16和-b+c=2.解方程组得b=-3,c=2,代入方程y=-x^2-3x+2即可得到解析式。

1.2 求面积连接AC、BC、BD,求四边形ADBC的面积。

由于AC和BC在对称轴上,所以它们的长度相等。

设AC=BC=x,由顶点C的坐标可知,AC和BC的纵坐标分别为2和-2,因此四边形ADBC的面积为x*4+1/2*x*(-4)=2x。

2.如图,在直角坐标系中,已知直线y=x+4与y轴交于A 点,与x轴交于B点,C点坐标为(-2,),求解析式和四边形AOBM的面积。

2.1 求解析式由于抛物线经过点A、B、C,所以可以列出三个方程,分别是c=4,a+b+c=0,4a-2b+c=-2.解方程组得a=1,b=-3,c=4,因此抛物线的解析式为y=x^2-3x+4.2.2 求面积设抛物线的顶点为M,连接AM和XXX,求四边形AOBM的面积。

由于抛物线的对称轴与x轴垂直,所以顶点M的横坐标为1.5,代入抛物线方程可得纵坐标为4.25.因此,四边形AOBM的面积为1/2*2*4.25=4.25.3.已知抛物线y=3(x+1)^2-12如图所示3.1 求交点坐标抛物线与y轴的交点为(-3,-3),因为当x=0时,y=-3.抛物线与x轴的交点为(-3±2√3,0),因为当y=0时,x=-1±√3.3.2 求面积设顶点D的坐标为(-1,0),连接AD和BD,求四边形ABCD的面积。

由于AD和BD在对称轴上,所以它们的长度相等。

设AD=BD=x,由顶点D的坐标可知,AD和BD的纵坐标分别为3和-3,因此四边形ABCD的面积为x*6+1/2*x*6=9x。

二次函数中的面积计算问题(包含铅垂高)

二次函数中的面积计算问题(包含铅垂高)

(D)二次函数中的面积计算问题【典型例子】例如,如图所示,二次函数2y x bx c =++图像x 在A 和B 两点(A 在B 的左边)与y 轴相交,在C 点与轴相交,顶点为M ,MAB ∆为直角三角形,图像的对称轴是一条直线2-=x ,该点P 是两点之间抛物线上的移动点,A C ,则PAC ∆面积的最大值为(C )A.274 B. 112C 。

278D.3 二次函数中常见的面积问题类型:1.选择填空的简单应用2.不规则三角形的面积用S=3.使用4.使用相似的三角形5.使用分割法将不规则图形转为规则图形例 1如图 1 所示,已知正方形ABCD 的边长为 1 , E , F , G , H 为每边的点, AE=BF=CG=DH ,设面积为小s 正方形EFGH 为, AE 为x , 那么about s 的x 函数图大致为 (乙)示例 2.回答以下问题:如图1所示,抛物线的顶点坐标为C 点( 1,4 ),与x 轴相交于A 点( 3 , 0),与y 轴相交于B 点。

抛物线和直线AB 的解析公式;(2)求△ CA AB 和S △ CAB 的垂直高度CD ;(3)假设点P 是抛物线上(第一象限)上的一个移动点,是否存在点P ,使得S △ PA B = 89S △ CA B ,如果存在,求点P 的坐标;如果不存在,请解释原因。

思想分析这个问题是二次函数中的常见面积问题。

该方法不是唯一的。

可以使用截补法,但是有点麻烦。

如图第10题xyABCOM图1B铅垂高水平宽ha图2A xC Oy ABD 112所示,我们可以画出一种计算三角形面积的新方法:ah S ABC 21=∆即三角形的面积等于水平宽度与前导垂直乘积的一半。

掌握了这个公式之后,思路就直截了当,过程也比较简单,计算量也相对少了很多。

答: (1)据已知,抛物线的解析公式可以设为y 1 = a ( x - 1 ) 2+ 4 ( a ≠ 0 ) 。

将A (3, 0)代入解析表达式,得到a = - 1 ,∴抛物线的解析公式为y 1 = - ( x - 1 ) 2+ 4,即y 1 = - x 2+2 x +3。

二次函数与面积问题

二次函数与面积问题

二次函数与面积问题一、引言二次函数是高中数学中的重要内容之一,它在实际生活中有许多应用。

其中之一就是与面积问题相关联。

本文将详细讨论二次函数与面积问题的关系,并分析实际应用。

首先,我们将介绍二次函数的基本概念和公式,然后探讨如何利用二次函数解决面积问题。

二、二次函数基本概念2.1 二次函数的定义二次函数是指具有形如f(x)=ax2+bx+c的函数,其中a、b、c为实数且a≠0。

二次函数的图像通常为一个抛物线。

2.2 二次函数的图像与性质二次函数的图像可分为三种情况:开口向上、开口向下和与x轴相切。

其开口的方向由二次项的系数a决定。

二次函数还具有顶点坐标、对称轴和零点等性质,这些性质对于解决面积问题非常关键。

2.3 二次函数的标准形式和一般形式二次函数可通过变换转化为标准形式或一般形式。

标准形式为f(x)=a(x−ℎ)2+ k,其中(ℎ,k)为顶点坐标。

一般形式为f(x)=ax2+bx+c。

三、二次函数与面积问题3.1 二次函数与矩形面积问题矩形是我们生活中常见的图形之一。

假设一个矩形的长度为x,宽度为y,则它的面积A可以表示为A=xy。

现在,我们希望找到一个长度固定的矩形,使得它的面积最大。

我们可以建立一个二次函数来解决这个问题。

首先,根据矩形的面积公式A=xy,我们可以将y表示为x的函数:y=Ax。

然后,我们将该函数进行变形,得到一个二次函数的标准形式。

将x的取值范围限定为正实数,我们可以排除矩形不存在的情况。

通过对二次函数的顶点坐标求解,我们可以找到使得面积最大的矩形。

3.2 二次函数与三角形面积问题二次函数与三角形面积问题也有密切的联系。

考虑一个等腰三角形,已知其底边长为x,高为y。

我们希望找到一个底边固定的三角形,使得它的面积最大。

根据三角形的面积公式A=12xy,我们可以得到y=2Ax。

类似地,我们将其转化为二次函数的形式,并求解顶点坐标,从而找到最大面积的三角形。

3.3 二次函数与其他面积问题除了矩形和三角形,二次函数还可以应用于其他形状的面积问题,如圆形、梯形等。

二次函数中的面积问题

二次函数中的面积问题

二次函数——面积问题(一)〖知识要点〗一.求面积常用方法:1. 直接法(一般以坐标轴上线段或以与轴平行的线段为底边)2. 利用相似图形,面积比等于相似比的平方3. 利用同底或同高三角形面积的关系4. 割补后再做差或做和(三边均不在坐标轴上的三角形及不规则多边形需把图形分解) 二. 常见图形及公式抛物线解析式y=ax2 +bx+c (a≠0)抛物线与x 轴两交点的距离AB=︱x1–x2︱=抛物线顶点坐标(-, ) 抛物线与y 轴交点(0,c )“歪歪三角形中间砍一刀”,即三角形面积等于水平宽与铅垂高乘积的一半. 〖基础习题〗 1、若抛物线y=-x2–x+6与x 轴交于A 、B 两点,则AB= ,此抛物线与y 轴交于点C ,则C 点的坐标为 ,△ABC 的面积为.2、若抛物线y=x2 + 4x 的顶点是P ,与X 轴的两个交点是C 、D 两点,则△PCD 的面积是_____________.3、已知抛物线与轴交于点A ,与轴的正半轴交于B 、C 两点,且BC=2,S △ABC=3,则=,B C 铅垂高水平宽ha图1 C BA O y x DB A O y x P=.〖典型例题〗● 面积最大问题1、二次函数的图像与轴交于点A (-1,0)、B (3,0),与轴交于点C ,∠ACB=90°.(1)求二次函数的解析式;(2)P 为抛物线X 轴上方一点,若使得△PAB 面积最大,求P 坐标(3)P 为抛物线X 轴上方一点,若使得四边形PABC 面积最大,求P 坐标(4) P 为抛物线上一点,若使得,求P 点坐标。

● 同高情况下,面积比=底边之比2.已知:如图,直线y=﹣x+3与x 轴、y 轴分别交于B 、C ,抛物线y=﹣x2+bx+c 经过点B 、C ,点A 是抛物线与x 轴的另一个交点.(1)求B 、C 两点的坐标和抛物线的解析式;(2)若点P 在直线BC 上,且,求点P 的坐标.3.已知:m 、n 是方程x2﹣6x+5=0的两个实数根,且m <n ,抛物线y=﹣x2+bx+c 的图象经过点A (m ,0)、B (0,n ).(1)求这个抛物线的解析式;(2)设(1)中抛物线与x 轴的另一交点为C ,抛物线的顶点为D ,试求出点C 、D 的坐标和△BCD 的面积;(注:抛物线y=ax2+bx+c (a≠0)的顶点坐标为(3)P 是线段OC 上的一点,过点P 作PH ⊥x 轴,与抛物线交于H 点,若直线BC 把△PCH 分成面积之比为2:3的两部分,请求出P 点的坐标. yx B A C O三角形面积等于水平宽与铅垂高乘积的一半4.阅读材料:如图,过△ABC的三个顶点分别作出水平垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们可以得出一种计算三角形面积的新方法:S△ABC=ah,即三角形面积等于水平宽与铅垂高乘积的一半.解答下列问题:如图,抛物线顶点坐标为点C(1,4)交x轴于点A,交y轴于点B(0,3)(1)求抛物线解析式和线段AB的长度;(2)点P是抛物线(在第一象限内)上的一个动点,连接PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB;(3)在第一象限内抛物线上求一点P,使S△PAB=S△CAB.法一:同底情况下,面积相等转化成平行线法二:同底情况下,面积相等转化成铅垂高相等变式一:如图2,点P是抛物线(在第一象限内)上的一个动点,连结PA,PB,是否存在一点P,使S△PAB=S△CAB?若存在,求出P点的坐标;若不存在,请说明理由.变式二:抛物线上是否存在一点P,使S△PAB=S△CAB?若存在,求出P点的坐标;若不存在,请说明点动+面积5.如图1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm,如果点P由B出发沿BA方向向点A匀速运动,同时点Q由A出发沿AC方向向点C匀速运动,它们的速度均为2cm/s,连接PQ,设运动的时间为t(单位:s)(0≤t≤4).解答下列问题:(1)当t为何值时,PQ∥BC.(2)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在求出此时t的值;若不存在,请说明理由.(3)如图2,把△APQ沿AP翻折,得到四边形AQPQ′.那么是否存在某时刻t使四边形AQPQ′为菱形?若存在,求出此时菱形的面积;若不存在,请说明理由.形动+面积6.如图1,抛物线y=ax2+bx+3(a≠0)与x轴、y轴分别交于点A(﹣1,0)、B(3,0)、点C三点.(1)试求抛物线的解析式;(2)点D(2,m)在第一象限的抛物线上,连接BC、BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)如图2,在(2)的条件下,将△BOC沿x轴正方向以每秒1个单位长度的速度向右平移,记平移后的三角形为△B′O′C′.在平移过程中,△B′O′C′与△BCD重叠的面积记为S,设平移的时间为t秒,试求S与t之间的函数关系式?。

二次函数的应用课件面积问题(共10张PPT)

二次函数的应用课件面积问题(共10张PPT)
使销售利润最大?
请同学们完成这个 问题的解答
你会解吗?
例6:用6m长的铝合金型材料做一个形状如图所示的矩形窗框。窗框 的长、宽各为多少时,它的透光面积最大?最大透光面积是多少?
解:设矩形的宽为x米,矩形的透光面积为y米。由题 意得:
y=x· 6-3x 2
(0<x<2)
即:y=- 3 x2+3x
2
配方,得:
的距离)能否通过此隧道? 如图,某隧道口的横截面是抛物线形,已知路宽AB为6米,最高点离地面的距离OC为5米.以最高点O为坐标原点,抛物线的对称轴为y轴,1
米为数轴的单位长度,建立平面直角坐标系,
A CB
)
(6)y=- x2-4x+1
值范围; 例6:用6m长的铝合金型材料做一个形状如图所示的矩形窗框。
该店想通过降低售价、增加销售量的办法来提高利润。
O x
(2) 有一辆宽2.8米,高3米的 y=x·
(0<x<2)
∴当x=5,y最大值=50
农用货车(货物最高处与地面AB y随着x的增大而减小。
(4)y=100-5x2 将这个函数关系式配方,得:
y=- 3 (x-1)2+ 3
2
2
∴它的顶点坐标是(1,1.5)
∴当x=1,y最大值=1.5
因为x=1时,满足0<x<2,这时
6-3x 2
=1.5
答:当矩形窗框的宽为5m时,长为1.5m时,它的透光
面积最大,最大面积为1.5m2。
1.求下列函数的最大值或最小值:
(1)y=x2-3x+4
(2)y=1-2x-x2
物线的对称轴为y轴,1米为数轴的单位长度,建立平面直角

专题 二次函数与面积有关问题(专项训练)(解析版)

专题 二次函数与面积有关问题(专项训练)(解析版)

专题03 二次函数与面积有关问题(专项训练)1.(2022•成都)如图,在平面直角坐标系xOy中,直线y=kx﹣3(k≠0)与抛物线y=﹣x2相交于A,B两点(点A在点B的左侧),点B关于y轴的对称点为B'.(1)当k=2时,求A,B两点的坐标;(2)连接OA,OB,AB',BB',若△B'AB的面积与△OAB的面积相等,求k的值;【解答】解:(1)当k=2时,直线为y=2x﹣3,由得:或,∴A(﹣3,﹣9),B(1,﹣1);(2)当k>0时,如图:∵△B'AB的面积与△OAB的面积相等,∴OB'∥AB,∴∠OB'B=∠B'BC,∵B、B'关于y轴对称,∴OB=OB',∠ODB=∠ODB'=90°,∴∠OB'B=∠OBB',∴∠OBB'=∠B'BC,∵∠ODB=90°=∠CDB,BD=BD,∴△BOD≌△BCD(ASA),∴OD=CD,在y=kx﹣3中,令x=0得y=﹣3,∴C(0,﹣3),OC=3,∴OD=OC=,D(0,﹣),在y=﹣x2中,令y=﹣得﹣=﹣x2,解得x=或x=﹣,∴B(,﹣),把B(,﹣)代入y=kx﹣3得:﹣=k﹣3,解得k=;当k<0时,过B'作B'F∥AB交y轴于F,如图:在y=kx﹣3中,令x=0得y=﹣3,∴E(0,﹣3),OE=3,∵△B'AB的面积与△OAB的面积相等,∴OE=EF=3,∵B、B'关于y轴对称,∴FB=FB',∠FGB=∠FGB'=90°,∴∠FB'B=∠FBB',∵B'F∥AB,∴∠EBB'=∠FB'B,∴∠EBB'=∠FBB',∵∠BGE=90°=∠BGF,BG=BG,∴△BGF≌△BGE(ASA),∴GE=GF=EF=,∴OG=OE+GE=,G(0,﹣),在y=﹣x2中,令y=﹣得﹣=﹣x2,解得x=或x=﹣,∴B(,﹣),把B(,﹣)代入y=kx﹣3得:﹣=k﹣3,解得k=﹣,综上所述,k的值为或﹣;2.(2021•枣庄)如图,在平面直角坐标系中,直线y=﹣x+3与x轴交于点A,与y轴交于点B,抛物线y=x2+bx+c经过坐标原点和点A,顶点为点M.(1)求抛物线的关系式及点M的坐标;(2)点E是直线AB下方的抛物线上一动点,连接EB,EA,当△EAB的面积等于时,求E点的坐标;【解答】解:(1)对于y=﹣x+3,令y=﹣x+3=0,解得x=6,令x=0,则y=3,故点A、B的坐标分别为(6,0)、(0,3),∵抛物线y=x2+bx+c经过坐标原点,故c=0,将点A的坐标代入抛物线表达式得:0=×36+6b,解得b=﹣2,故抛物线的表达式为y=x2﹣2x;则抛物线的对称轴为x=3,当x=3时,y=x2﹣2x=﹣3,则点M的坐标为(3,﹣3);(2)如图1,过点E作EH∥y轴交AB于点H,设点E的坐标为(x,x2﹣2x),则点H(x,﹣x+3),则△EAB的面积=S△EHB+S△EHA=×EH×OA=6×(﹣x+3﹣x2+2x)=,解得x=1或,故点E的坐标为(1,﹣)或(,﹣);3.(2021•柳州)在平面直角坐标系xOy中,已知抛物线:y=ax2+bx+c交x轴于A(﹣1,0),B(3,0)两点,与y轴交于点C(0,﹣).(1)求抛物线的函数解析式;(2)如图1,点D为第四象限抛物线上一点,连接OD,过点B作BE⊥OD,垂足为E,若BE=2OE,求点D的坐标;(3)如图2,点M为第四象限抛物线上一动点,连接AM,交BC于点N,连接BM,记△BMN的面积为S1,△ABN的面积为S2,求的最大值.【解答】解:(1)依题意,设y=a(x+1)(x﹣3),代入C(0,﹣)得:a•1•(﹣3)=﹣,解得:a=,∴y=(x+1)(x﹣3)=x2﹣x﹣;(2)∵BE=2OE,设OE为x,BE=2x,由勾股定理得:OE2+BE2=OB2,x2+4x2=9,解得:x1=,x2=﹣(舍),∴OE=,BE=,过点E作TG平行于OB,T在y轴上,过B作BG⊥TG于G,∴△ETO∽△OEB,∴==,∴OE2=OB•TE,∴TE==,∴OT==,∴E(,﹣),∴直线OE的解析式为y=﹣2x,∵OE的延长线交抛物线于点D,∴,解得:x1=1,x2=﹣3(舍),当x=1时,y=﹣2,∴D(1,﹣2);(3)如图所示,延长BC于点F,AF∥y轴,过A点作AH⊥BF于点H,作MT∥y轴交BF于点T,过M点作MG⊥BF于点J,∵AF∥MT,∴∠AFH=∠MTJ,∵AH⊥BF,MJ⊥BF,∴∠AHF=∠MJT=90°,∴△AFH∽△MJT,∴=,∵S1=NB•MJ,S2=NB•AH,∴==,设直线BC的解析式为y=kx+b,将B,C两点代入得,,解得:,∴直线BC的解析式为y=x﹣,当x=﹣1时,y=•(﹣1)﹣=﹣2,∴F(﹣1,﹣2),∴AF=2,设M(x,x2﹣x﹣),∴MT=x﹣﹣(x2﹣x﹣)=﹣(x﹣)2+,∴a=﹣<0,∴MT max=,∴=====.4.(2020•宿迁)二次函数y=ax2+bx+3的图象与x轴交于A(2,0),B(6,0)两点,与y轴交于点C,顶点为E.(1)求这个二次函数的表达式,并写出点E的坐标;(2)如图①,D是该二次函数图象的对称轴上一个动点,当BD的垂直平分线恰好经过点C时,求点D的坐标;(3)如图②,P是该二次函数图象上的一个动点,连接OP,取OP中点Q,连接QC,QE,CE,当△CEQ的面积为12时,求点P的坐标.【解答】解:(1)将A(2,0),B(6,0)代入y=ax2+bx+3,得,解得∴二次函数的解析式为y=﹣2x+3.∵y=﹣1,∴E(4,﹣1).(2)如图1,图2,连接CB,CD,由点C在线段BD的垂直平分线CN上,得CB=CD.设D(4,m),∵C(0,3),由勾股定理可得:42+(m﹣3)2=62+32.解得m=3±.∴满足条件的点D的坐标为(4,3+)或.(3)如图3,设CQ交抛物线的对称轴于点M,设P(n,﹣2n+3),则Q(),设直线CQ的解析式为y=kx+3,则nk+3.解得k=,于是CQ:y=()x+3,当x=4时,y=4()+3=n﹣5﹣,∴M(4,n﹣5﹣),ME=n﹣4﹣.∵S△CQE=S△CEM+S△QEM=.∴n2﹣4n﹣60=0,解得n=10或n=﹣6,当n=10时,P(10,8),当n=﹣6时,P(﹣6,24).综合以上可得,满足条件的点P的坐标为(10,8)或(﹣6,24).5.(2020•淄博)如图,在直角坐标系中,四边形OABC是平行四边形,经过A(﹣2,0),B,C三点的抛物线y=ax2+bx+(a<0)与x轴的另一个交点为D,其顶点为M,对称轴与x轴交于点E.(1)求这条抛物线对应的函数表达式;(2)已知R是抛物线上的点,使得△ADR的面积是▱OABC的面积的,求点R的坐标;【解答】解:(1)OA=2=BC,故函数的对称轴为x=1,则x=﹣=1①,将点A的坐标代入抛物线表达式得:0=4a﹣2b+②,联立①②并解得,故抛物线的表达式为:y=﹣x2+x+③;(2)∵y=﹣x2+x+=﹣(x﹣1)2+3,∴抛物线的顶点M(1,3)令y=0,可得x=﹣2或4,∴点D(4,0);∵△ADR的面积是▱OABC的面积的,∴×AD×|y R|=×OA×OB,则×6×|y R|=×2×,解得:y R=±④,联立④③并解得或,故点R的坐标为(1+,﹣)或(1,﹣)或(1,)或(1﹣,);6.(2020•天水)如图所示,抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C,且点A的坐标为A(﹣2,0),点C的坐标为C(0,6),对称轴为直线x =1.点D是抛物线上一个动点,设点D的横坐标为m(1<m<4),连接AC,BC,DC,DB.(1)求抛物线的函数表达式;(2)当△BCD的面积等于△AOC的面积的时,求m的值;【解答】解:(1)由题意得:,解得:,∴抛物线的函数表达式为:y=﹣x2+x+6;(2)过点D作DE⊥x轴于E,交BC于G,过点C作CF⊥ED交ED的延长线于F,如图1所示:∵点A的坐标为(﹣2,0),点C的坐标为(0,6),∴OA=2,OC=6,∴S△AOC=OA•OC=×2×6=6,∴S△BCD=S△AOC=×6=,当y=0时,﹣x2+x+6=0,解得:x1=﹣2,x2=4,∴点B的坐标为(4,0),设直线BC的函数表达式为:y=kx+n,则,解得:,∴直线BC的函数表达式为:y=﹣x+6,∵点D的横坐标为m(1<m<4),∴点D的坐标为:(m,﹣m2+m+6),点G的坐标为:(m,﹣m+6),∴DG=﹣m2+m+6﹣(﹣m+6)=﹣m2+3m,CF=m,BE=4﹣m,∴S△BCD=S△CDG+S△BDG=DG•CF+DG•BE=DG×(CF+BE)=×(﹣m2+3m)×(m+4﹣m)=﹣m2+6m,∴﹣m2+6m=,解得:m1=1(不合题意舍去),m2=3,∴m的值为3;7.(2021•沈阳)如图,平面直角坐标系中,O是坐标原点,抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的左侧),点B坐标是(3,0).抛物线与y轴交于点C (0,3),点P是抛物线的顶点,连接PC.(1)求抛物线的函数表达式并直接写出顶点P的坐标.(2)直线BC与抛物线对称轴交于点D,点Q为直线BC上一动点.当△QAB的面积等于△PCD面积的2倍时,求点Q的坐标;【解答】解(1)由题意得,,∴b=2,∴y=﹣x2+2x+3=﹣((x﹣1)2+4,∴P(1,4).(2)①如图1,作CE⊥PD于E,∵C(0,3),B(3,0),∴直线BC:y=﹣x+3,∴D(1,2),可设Q(a,3﹣a),∴CE=PE=DE,∴△PCD是等腰直角三角形,∴S△PCD=PD•CE=×2×1=1,∴AB•|3﹣a|=2,∴×4•|3﹣a|=2,∴a=2或a=4.∴Q(2,1)或(4,﹣1).8.(2021•辽宁)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点C(﹣1,0),与y 轴交于点B(0,3),连接AB,BC,点P是抛物线第一象限上的一动点,过点P作PD ⊥x轴于点D,交AB于点E.(1)求抛物线的解析式;(2)如图1,作PF⊥PD于点P,使PF=OA,以PE,PF为邻边作矩形PEGF.当矩形PEGF的面积是△BOC面积的3倍时,求点P的坐标;【解答】解:(1)由题意得:,解得,故抛物线的表达式为y=﹣x2+x+3;(2)对于y=﹣x2+x+3,令y=﹣x2+x+3=0,解得x=4或﹣1,故点A的坐标为(4,0),则PF=2,由点A、B的坐标得,直线AB的表达式为y=﹣x+3,设点P的坐标为(x,﹣x2+x+3),则点E(x,﹣x+3),则矩形PEGF的面积=PF•PE=2×(﹣x2+x+3+x﹣3)=3S△BOC=3××BO•CO =×3×1,解得x=1或3,故点P的坐标为(1,)或(3,3);9.(2022•南宁一模)如图1所示抛物线与x轴交于O,A两点,OA=6,其顶点与x轴的距离是6.(1)求抛物线的解析式;(2)点P在抛物线上,过点P的直线y=x+m与抛物线的对称轴交于点Q.当△POQ与△P AQ的面积之比为1:3时,求m的值;【解答】解:(1)∵OA=6,∴抛物线的对称轴为直线x=3,设抛物线的解析式为y=a(x﹣3)2+k,∵顶点与x轴的距离是6,∴顶点为(3,﹣6),∴y=a(x﹣3)2﹣6,∵抛物线经过原点,∴9a﹣6=0,∴a=,∴y=(x﹣3)2﹣6;(2)①设直线y=x+m与y轴的交点为E,与x轴的交点为F,∴E(0,m),F(﹣m,0),∴OE=|m|,AF=|6+m|,∵直线y=x+m与坐标轴的夹角为45°,∴OM=|m|,AN=|6+m|,∵S△POQ:S△P AQ=1:3,∴OM:AN=1:3,∴|m|:|6+m|=1:3,解得m=﹣或m=3;10.(2022•本溪二模)如图,抛物线y=﹣x2+bx+c经过A(3,0),C(﹣1,0)两点,与y轴交于点B.(1)求抛物线的解析式;(2)如图1,点M是线段AB上方抛物线上一动点,以AB为边作平行四边形ABMD,连接OM,若OM将平行四边形ABMD的面积分成为1:7的两部分,求点M的横坐标;【解答】解:(1)将(3,0),(﹣1,0)代入y=﹣x2+bx+c,得,解得,∴;(2)连接AM,设AB与OM的交点为N,作NH⊥OA于点H,则NH∥OB,∵A(3,0),B(0,4),设直线AB的解析式为y=kx+4,∴3k+4=0,∴k=﹣,∴y=﹣x+4,设点M,点N,∵S△BMN:S△ABM=1:4,∴S△BMN:S△ABM=1:4,∴BN:AN=1:3,∵NH∥OB,∴△ANH∽△AOB,∴,即,解得,∴,∴直线OM的解析式为y=4x,联立方程组,解得,∵点M在第一象限,∴,∴点M的横坐标为;11.(2022•新抚区模拟)如图,直线y=mx+n与抛物线y=﹣x2+bx+c交于A(﹣2,0),B(2,2)两点,直线AB与y轴交于点C.(1)求抛物线与直线AB的解析式;(2)点P在抛物线上,直线PC交x轴于Q,连接PB,当△PBC的面积是△ACQ面积的2倍时,求点P的坐标;【解答】解:(1)将A(﹣2,0),B(2,2)代入y=﹣x2+bx+c得,解得,∴抛物线解析式为y=﹣x2+x+5.将A(﹣2,0),B(2,2)代入y=mx+n得,解得,∴直线AB解析式为y=x+1.(2)①点P在x轴上方是,过点P作x轴平行线,交y轴于点F,交直线AB于点E,将x=0代入y=x+1得y=1,∴点C坐标为(0,1),∵A(﹣2,0),B(2,2),∴C为AB中点,即AC=BC,∴当△PBC的面积是△ACQ面积的2倍时,点P到BC的距离是点Q到AC的距离的2倍,∵PE∥OA,∴△EPC∽△AQC,∴=2,∵PF∥OA,∴△PFC∽△OQC,∴==2,∴点P纵坐标为FC+OC=3OC=3,将y=3代入y=﹣x2+x+5得3=﹣x2+x+5,解得x1=﹣,x2=+,∴点P坐标为(﹣,3)或(+,3).②点P在x轴下方,连接BQ,PK⊥x轴于点K,∵C为AB中点,∴S△AQC=S△BQC,∵△PBC的面积是△ACQ面积的2倍,∴S△PBQ=S△BQC,∴点Q为CP中点,又∵∠CQO=∠PQK,∠COQ=∠PKQ=90°,∴△OCQ≌△KPQ,∴CQ=KP,即点P纵坐标为﹣1,将y=﹣1代入y=﹣x2+x+5得﹣1=﹣x2+x+5,解得x1=,x2=,∴点P坐标为(,﹣1),(,﹣1),综上所述,点P坐标为(﹣,3)或(+,3)或(,﹣1)或(,﹣1),12.(2022•福建)在平面直角坐标系xOy中,已知抛物线y=ax2+bx经过A(4,0),B (1,4)两点.P是抛物线上一点,且在直线AB的上方.(1)求抛物线的解析式;(2)若△OAB面积是△P AB面积的2倍,求点P的坐标;【解答】解:(1)将A(4,0),B(1,4)代入y=ax2+bx,∴,解得.∴抛物线的解析式为:y=﹣x2+x.(2)设直线AB的解析式为:y=kx+t,将A(4,0),B(1,4)代入y=kx+t,∴,解得.∵A(4,0),B(1,4),∴S△OAB=×4×4=8,∴S△OAB=2S△P AB=8,即S△P AB=4,过点P作PM⊥x轴于点M,PM与AB交于点N,过点B作BE⊥PM于点E,如图,∴S△P AB=S△PNB+S△PNA=PN×BE+PN×AM=PN=4,∴PN=.设点P的横坐标为m,∴P(m,﹣m2+m)(1<m<4),N(m,﹣m+),∴PN=﹣m2+m﹣(﹣m+)=.解得m=2或m=3;∴P(2,)或(3,4).13.(2022•苏州二模)如图,已知抛物线y=x2+bx+c与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,OA=OC=3.(1)求抛物线的函数表达式;(2)若点P为直线AC下方抛物线上一点,连接BP并交AC于点Q,若AC分∠△ABP 的面积为1:2两部分,请求出点P的坐标;【解答】解:(1)∵OA=OC=3,∴A(﹣3,0),C(0,﹣3),将点A、C代入y=x2+bx+c,∴,解得,∴y=x2+2x﹣3;(2)令x2+2x﹣3=0,解得x=﹣3或x=1,∴B(1,0),过点P作PG⊥x轴交于点G,过点Q作QH⊥x轴交于点H,∴PG∥QH,设直线AC的解析式为y=kx+b,∴,解得,∴y=﹣x﹣3,设P(t,t2+2t﹣3),直线BP的解析式为y=k'x+b',∴,解得,∴y=(t+3)x﹣(t+3),联立方程组,解得,∴Q(,),∵AC分∠△ABP的面积为1:2两部分,∴=或=,当=时,=,解得t=﹣1或t=﹣2,∴P(﹣1,﹣4)或(﹣2,﹣3);当=时,=,此时t无解,。

中考一轮复习:二次函数与面积专题训练

中考一轮复习:二次函数与面积专题训练

二次函数与面积专题例题1:如图1,抛物线y=mx2﹣11mx+24m (m<0)与x轴交于B、C两点(点B在点C的左侧),抛物线另有一点A在第一象限内,且∠BAC=90°.(1)填空:OB=_________,OC=_________;(2)连接OA,将△OAC沿x轴翻折后得△ODC,当四边形OACD是菱形时,求此时抛物线的解析式;(3)如图2,设垂直于x轴的直线l:x=n与(2)中所求的抛物线交于点M,与CD交于点N,若直线l沿x轴方向左右平移,且交点M始终位于抛物线上A、C两点之间时,试探究:当n为何值时,四边形AMCN的面积取得最大值,并求出这个最大值.例题2.平面直角坐标系中,口ABOC如图放置,点A、C的坐标分别为(0,3)、(﹣1,0),将此平行四边形绕点O顺时针旋转90°,得到口A'B'OC'.(1)若抛物线过点C,A,A',求此抛物线的解析式;(2)口ABOC和口A'B'OC'重叠部分△OC'D的周长;(3)点M是第一象限内抛物线上的一动点,问:点M在何处时△AMA'的面积最大?最大面积是多少?并求出此时M的坐标.例题3:在梯形OABC中,CB∥OA,∠AOC=60°,∠OAB=90°,OC=2,BC=4,以点O为原点,OA所在的直线为x轴,建立平面直角坐标系,另有一边长为2的等边△DEF,DE在x轴上(如图(1)),如果让△DEF以每秒1个单位的速度向左作匀速直线运动,开始时点D与点A重合,当点D到达坐标原点时运动停止.(1)设△DEF运动时间为t,△DEF与梯形OABC重叠部分的面积为S,求S关于t的函数关系式.(2)探究:在△DEF运动过程中,如果射线DF交经过O、C、B三点的抛物线于点G,是否存在这样的时刻t,使得△OAG的面积与梯形OABC的面积相等?若存在,求出t的值;若不存在,请说明理由.例题4:如图,己知抛物线y=x2+bx+c与x轴交于点A(1,0)和点B,与y轴交于点C(0,﹣3).(1)求抛物线的解析式;(2)如图(1),己知点H(0,﹣1).问在抛物线上是否存在点G (点G在y轴的左侧),使得S△GHC=S△GHA?若存在,求出点G的坐标;若不存在,请说明理由;(3)如图(2),抛物线上点D在x轴上的正投影为点E(﹣2,0),F是OC的中点,连接DF,P 为线段BD上的一点,若∠EPF=∠BDF,求线段PE的长.例题5:如图,抛物线y=ax2+bx(a>0)与双曲线y=相交于点A,B.已知点B的坐标为(﹣2,﹣2),点A在第一象限内,且tan∠AOx=4.过点A作直线AC∥x轴,交抛物线于另一点C.(1)求双曲线和抛物线的解析式;(2)计算△ABC的面积;(3)在抛物线上是否存在点D,使△ABD的面积等于△ABC的面积?若存在,请你写出点D的坐标;若不存在,请你说明理由.练习1:如图,抛物线y=(x+1)2+k与x轴交于A、B两点,与y轴交于点C(0,﹣3)(1)求抛物线的对称轴及k的值;(2)抛物线的对称轴上存在一点P,使得PA+PC的值最小,求此时点P的坐标;(3)点M是抛物线上的一动点,且在第三象限.①当M点运动到何处时,△AMB的面积最大?求出△AMB的最大面积及此时点M的坐标;②当M点运动到何处时,四边形AMCB的面积最大?求出四边形AMCB的最大面积及此时点的坐标.练习2:如图,已知二次函数y=x2+bx+c的图象的对称轴为直线x=1,且与x轴有两个不同的交点,其中一个交点坐标为(﹣1,0).(1)求二次函数的关系式;(2)在抛物线上有一点A,其横坐标为﹣2,直线l过点A并绕着点A旋转,与抛物线的另一个交点是点B,点B的横坐标满足﹣2<x B<,当△AOB的面积最大时,求出此时直线l的关系式;(3)抛物线上是否存在点C使△AOC的面积与(2)中△AOB的最大面积相等?若存在,求出点C 的横坐标;若不存在说明理由.练习3:抛物线y=ax2+bx+c与x轴的交点为A(m﹣4,0)和B(m,0),与直线y=﹣x+p相交于点A和点C(2m﹣4,m﹣6).(1)求抛物线的解析式;(2)若点P在抛物线上,且以点P和A,C以及另一点Q为顶点的平行四边形ACQP面积为12,求点P,Q的坐标;(3)在(2)条件下,若点M是x轴下方抛物线上的动点,当△PQM的面积最大时,请求出△PQM 的最大面积及点M的坐标.练习4:如图,已知二次函数y=﹣x2+mx+4m的图象与x轴交于A(x1,0),B(x2,0)两点(B点在A点的右边),与y轴的正半轴交于点C,且(x1+x2)﹣x1x2=10.(1)求此二次函数的解析式.(2)写出B,C两点的坐标及抛物线顶点M的坐标;(3)连接BM,动点P在线段BM上运动(不含端点B,M),过点P作x轴的垂线,垂足为H,设OH的长度为t,四边形PCOH的面积为S.请探究:四边形PCOH的面积S有无最大值?如果有,请求出这个最大值;如果没有,请说明理由.练习5:如图,已知直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB =2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于E和F.(1)求经过A、B、C三点的抛物线的解析式;(2)当BE经过(1)中抛物线的顶点时,求CF的长;(3)连结EF,设△BEF与△BFC的面积之差为S,问:当CF为何值时S最小,并求出这个最小值.练习6:如图,已知抛物线y =-21x2+x +4交x 轴的正半轴于点A ,交y 轴于点B . (1)求A 、B 两点的坐标,并求直线AB 的解析式;(2)设P (x ,y )(x >0)是直线y =x 上的一点,Q 是OP 的中点(O 是原点),以PQ 为对角线作正方形PEQF ,若正方形PEQF 与直线AB 有公共点,求x 的取值范围;(3)在(2)的条件下,记正方形PEQF 与△OAB 公共部分的面积为S ,求S 关于x 的函数解析式,并探究S 的最大值.练习7:在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,且点A (0,2),点C (-1,0),如图所示,抛物线y =2ax 2+ax -23经过点B . (1)求点B 的坐标;(2)求抛物线的解析式;(3)若三角板ABC 从点C 开始以每秒1个单位长度的速度向x 轴正方向平移,求点A 落在抛物线上时所用的时间,并求三角板在平移过程中扫过的面积;(4)在抛物线上是否还存在点P (点B 除外),使△ACP 仍然是以AC 为直角边的等腰直角三角形?若存在,求所有点P 的坐标;若不存在,请说明理由.练习8:如图①,在平面直角坐标系中,等腰直角△AOB 的斜边OB 在x 轴上,顶点A 的坐标为(3,3),AD 为斜边上的高.抛物线y =ax 2+2x 与直线y =21x 交于点O 、C ,点C 的横坐标为6.点P 在x 轴的正半轴上,过点P 作PE ∥y 轴,交射线OA 于点E .设点P 的横坐标为m ,以A 、B 、D 、E 为顶点的四边形的面积为S .(1)求OA 所在直线的解析式.(2)求a 的值.(3)当m ≠3时,求S 与m 的函数关系式.(4)如图②,设直线PE 交射线OC 于点R ,交抛物线于点Q .以RQ 为一边,在RQ 的右侧作矩形RQMN ,其中RN =23.直接写出矩形RQMN 与△AOB 重叠部分为轴对称图形时m 的取值范围.练习9:在平面直角坐标系中,已知抛物线y=ax2+bx+c(a≠0)与x轴相交于点A、B(点A在点B的左边),与y轴相交于点C(0,3),顶点P的坐标是(1,4),对称轴与x轴相交于点D.(1)求出抛物线y=ax2+bx+c的表达式,及点A、B的坐标;(2)如图,点M与点C关于直线PD对称,连接MA、MB、MO,过点D作DE∥OM交线段MB 于点E,连接OE.△BOE的面积记作S1,△MOE的面积记作S2,△MOA的面积记作S3,求证:S1=S2+S3;(3)若(2)中的点M是第一象限内抛物线上的任意一点,其它条件不变,(2)中的结论是否成立?若成立,请说明理由;若不成立,写出新的结论并证明.练习10:如图,已知直线y =-21x +1交坐标轴于A 、B 两点,以线段AB 为边向上作正方形ABCD ,过点A ,D ,C 的抛物线与直线另一个交点为E .(1)请直接写出点C ,D 的坐标;(2)求抛物线的解析式;(3)若正方形以每秒5个单位长度的速度沿射线AB 下滑,直至顶点D 落在x 轴上时停止.设正方形落在x 轴下方部分的面积为S ,求S 关于滑行时间t 的函数关系式,并写出相应自变量t 的取值范围;(4)在(3)的条件下,抛物线与正方形一起平移,直至顶点D 落在x 轴上时停止,求抛物线上C 、E 两点间的抛物线弧所扫过的面积.练习11 如图,已知正比例函数和反比例函数的图象都经过点A (3,3).(1)求正比例函数和反比例函数的解析式;(2)把直线OA 向下平移后与反比例函数的图象交于点B (6,m ),求m 的值和这个一次函数的解析式;(3)第(2)问中的一次函数的图象与x 轴、y 轴分别交于C 、D ,求过A 、B 、D 三点的二次函数的解析式;(4)在第(3)问的条件下,二次函数的图象上是否存在点E ,使四边形OECD 的面积S 1与四边形OABD 的面积S 满足:S 1=32S?若存在,求点E 的坐标;若不存在,请说明理由.练习12 如图,在直角坐标系中,矩形ABCD 的边AD 在y 轴正半轴上,点A 、C 的坐标分别为(0,1)、(2,4).点P 从点A 出发,沿A →B →C 以每秒1个单位的速度运动,到点C 停止;点Q 在x 轴上,横坐标为点P 的横、纵坐标之和.抛物线c bx x y ++-=241经过A 、C 两点.过点P 作x 轴的垂线,垂足为M ,交抛物线于点R .设点P 的运动时间为t (秒),△PQR 的面积为S (平方单位).(1)求抛物线对应的函数关系式.(2)分别求t=1和t=4时,点Q 的坐标.(3)当0<t ≤5时,求S 与t 之间的函数关系式,并直接写出S 的最大值.练习13已知二次函数的图象经过A(2,0)、C(0,12)两点,且对称轴为直线x=4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实用文案级九上数学专题训练三2019重庆市巴川中学初
二次函数与面积问题——________
等级班级______姓名_______
题型一:在抛物线上求一点,与已知三角形的面积相等(或成倍数).2x与P在抛物线上(点P+bx+c(a≠0)与,轴交于AB两点,点y=ax1,抛物线例1、定义:如图2222+bx+c(a≠0)y=ax,则称点P=AB为抛物线,AB两点不重合),如果△ABP的三边满足AP+BP
的勾股点.2 1)直接写出抛物线+1y=-x的勾股点的坐标;(23x的)是抛物线与轴交于A,B两点,点CP(1,+bx(a≠0)y=axC:2(2)如图,已知抛物线勾股点,求抛物线C的函数表达式;)的的点SQ(异于点P=C2(3)在()的条件下,点Q在抛物线上,求满足条件S ABPABQ△△坐
标.
2
图1 图
文案大全.
实用文案
23??2xy??xx y BC连接CB,与,轴交于点与轴交于点A如图,练习1. 已知抛物线和点是抛物线的顶点.交抛物线的对称轴于点E,D S;、D的坐标,并求出C(1)直接写出点A、B、ABD△的解析式;2)求出直线BC(P点坐标.4SP在第一象限内的抛物线上,且S=,求3()若点COE
△△ABP
文案大全.
实用文案
题型二:已知二定点,在抛物线上求一动点,使三角形面积最大
2+bx-3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,2.例如图,已知抛物线y=ax 其中A点的坐标是(-1,0),C点坐标是(-4,-3).
(1)求抛物线的解析式;
(2)若点E是位于直线AC的上方抛物线上的一动点,试求△ACE的最大面积及E点的坐标;(3)在(2)的条件下,在抛物线上是否存在异于点E的P点,使S=S,若存在,求EAC△PAC△出点P的坐标;若不存在,请说明理由.
变式:在抛物线上是否存在点P,使S=S,若存在,求出点P的坐标;若不存在,请ABCPAC△△说明理由.
y
O B x
A
C
y
O B x
A
C
文案大全.
实用文案
12x+bx+c与y轴相交于C,与x轴相交于A、B,点A已知抛物线[练习]1.如图, y=的坐标为2. -1)的坐标为(0,(2,0),点C )求抛物线的解析式;(1的面积最大时,DCE当△D,连结DC,DE点)E是线段AC上一动点,过点E作⊥x轴于点(2 的坐标;求点D的坐标,若不存为等腰三角形,若存在,求点PP,使△ACP(3)在直线BC上是否存在一点. 在,说明理由
y
D o x AB EC
题图26
y
D o xAB EC
题图26
文案大全.
实用文案
2+k的伴随直线为y=a(x-h)+k.例如:抛物线2.在平面直角坐标系xoy中,规定:抛物线y=a(x-h)2-3的伴随直线为y=2(x+1)-3,即y=2(x+1)y=2x-1
2-4的顶点为.伴随直线为(1)在上面规定下,抛物线y=(x+1) ;抛物线
2-4与其伴随直线的交点坐标为和y=(x+1) ;
2-4m与其伴随直线相交于点A,B (点)如图,顶点在第一象限的抛物线y=m(x-1)A在点B(2x轴交于点C,D.的右侧)与
m的值;90°CAB=求①若∠27 S 当取得最大值△PBC的面积记为S,BC②如果点P(x,y)是直线上方抛物线的一个动点,4. 时,求m的值
文案大全.
实用文案
2+bx+3A(1,0)B(5,0)3.y=ax .抛物线经过点和点1 )求该抛物线所对应的函数解析式;
(22y=0.6x+3CDPx轴下方,相交于两点,点、(是抛物线上的动点且位于)该抛物线与直线PM ∥yxCDMN,PCPDP△PCD运动过程中,交于点,、轴和直线连结直线在点分别与轴,、P 的坐标;若不存在,说明理由;的面积是否存在最大值?若存在,求出这个最大值及32QS=SQ的坐)的条件下,在抛物线上是否存在点)在(,若存在,求出点,使(PCD△QCD△标,若不存在,请说
明理由.
文案大全.
实用文案
2+bx﹣5交y轴于点A,交x轴于点B(﹣4.如图,在平面直角坐标系中,抛物线y=ax5,0)和点C(1,0),过点A作AD∥x轴交抛物线于点D.
(1)求此抛物线的表达式;
(2)点E是抛物线上一点,且点E关于x轴的对称点在直线AD上,求△EAD的面积;(3)若点P是直线AB下方的抛物线上一动点,当点P运动到某一位置时,△ABP的面积最大,
求出此时点P的坐标和△ABP的最大面积.
文案大全.
实用文案
题型三:抛物线中,以面积为条件的几何问题
2+bx(a<0)过点E(10,0)例3.如图,抛物线y=ax,矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.
(1)求抛物线的函数表达式.
(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?
(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.
文案大全.
实用文案
2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,练习3:1.如图,二次函数y=﹣xOB=OC=3,直线l是抛物线的对称轴,E是抛物线的顶点.
(1)求b,c的值;
(2)如图1,连BE,线段OC上的点F关于直线l的对称点F′恰好在线段BE上,求点F的坐标;
(3)如图2,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M、与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?若存在,求出点Q的坐标;若不存在,说明理
由.
文案大全.
实用文案
2+bx+c的图象的顶点坐标为(2,﹣9)2.如图,已知二次函数y=ax,该函数的图象与y轴交于点A(0,﹣5),与x轴交于点B,C
(1)求该二次函数的解析式;
(2)求点B的坐标;
(3)过点A作AD∥x轴,交二次函数的图象于点D,M为二次函数图象上一点,设点M的横坐标为m,且0<m≤5,过点M作MN∥y轴,交AD于点N,连接AM,MD,设△AMD的面积为s.
①求s关于m的函数解析式;
②判断出当点M在何位置时,△AMD的面积最大,并求出最大面
积.
文案大全.
实用文案
2+bx+6(a≠0)的图象交y轴于C点,交x轴于A,B两点(点A3.二次函数y=ax在点B的左侧),2﹣4x﹣12=0的横坐标是一元二次方程x的两个根.点A、点B(1)求出点A、点B的坐标及该二次函数表达式.
(2)如图2,连接AC、BC,点Q是线段OB上一个动点(点Q不与点O、B重合),过点Q 作QD∥AC交于BC点D,设Q点坐标(m,0),当△CDQ面积S最大时,求m的
值.
点的横,若MN左侧),且MN=MN)如图3,线段是直线y=x上的动线段(点M在点3(.以Qx轴的垂线与抛物线交于点N轴的垂线与x轴交于点P,过点作M坐标为n,过点作x的值;若不能,请说明理为顶点的四边形能否为平行四边形?若能,请求出n,Q,N,点PM
由.
文案大全.
实用文案
4.如图,已知点C(0,3),抛物线的顶点为A(2,0),与y轴交于点B(0,1),F在抛物线的对称轴上,且纵坐标为1.点P是抛物线上的一个动点,过点P作PM⊥x轴于点M,交直线CF 于点H,设点P的横坐标为m.
(1)求抛物线的解析式;
(2)若点P在直线CF下方的抛物线上,用含m的代数式表示线段PH的长,并求出线段PH 的最大值及此时点P的坐标;
(3)当PF﹣PM=1时,若将“使△PCF面积为2”的点P记作“巧点”,则存在多个“巧点”,且使△PCF的周长最小的点P也是一个“巧点”,请直接写出所有“巧点”的个数,并求出△PCF 的周长最小时“巧点”的坐
标.
文案大全.。

相关文档
最新文档