二次函数与面积专题

合集下载

中考数学总复习《二次函数压轴题(面积问题)》专题训练-附含答案

中考数学总复习《二次函数压轴题(面积问题)》专题训练-附含答案

中考数学总复习《二次函数压轴题(面积问题)》专题训练-附含答案学校:___________班级:___________姓名:___________考号:___________1.如图,在平面直角坐标系中,抛物线2y ax x c =-+与y 轴交于点()0,4A -,与x 轴交于点()4,0B ,连接AB .(1)求抛物线的解析式.(2)P 是AB 下方抛物线上的一动点,过点P 作x 轴的平行线交AB 于点C ,过点P 作PD x ⊥轴于点D .①求PC PD +的最大值.①连接PA ,PB ,是否存在点P ,使得线段PC 把PAB 的面积分成3:5两部分?若存在,请直接写出点P 的坐标;若不存在,请说明理由.2.综合与探究如图1,抛物线212y x bx c =-++经过点(4,0)B 和(0,2)C ,与x 轴的另一个交点为A ,连接AC ,BC .(1)求该抛物线的解析式及点A 的坐标;(2)如图1,点D 是线段AC 的中点,连接BD .点E 是抛物线上一点,若ABE BCD S S =△△,设点E 的横坐标为x ,请求出x 的值;(3)试探究在抛物线上是否存在一点P ,使得45PBO OBC ∠+∠=︒?若存在,请直接写出点P 的坐标;若不存在,请说明理由.3.如图抛物线2y ax bx c =++经过点()1,0A -,点()0,3C ,且OB OC =.(1)求抛物线的解析式及其对称轴;(2)点D 、E 是直线1x =上的两个动点,且1DE =,点D 在点E 的上方,求四边形ACDE 的周长的最小值.(3)点P 为抛物线上一点,连接CP ,直线CP 把四边形CBPA 的面积分为3:5两部分,求点P 的坐标.4.已知二次函数23y ax bx a =+-经过点()1,0A -和()0,3C ,与x 轴交于另一点B ,抛物线的顶点为D .(1)求此二次函数解析式;(2)连接DC 、BC 和DB ,判断BCD △的形状并说明理由;(3)在对称轴右侧抛物线上找一点P ,使得P 、D 、C 构成以PC 为底边的等腰三角形,求出点P 的坐标及此时四边形PBCD 的面积.5.如图,抛物线214y x bx c =-++与x 轴交于点,A B 两点(点A 在点B 的右侧),点()()8,02,0A B -、,与y 轴交于点C .(1)求抛物线的解析式; (2)点D 为抛物线的顶点,过点D 作DE AC ∥交抛物线于点E ,点P 为抛物线上点,D E 之间的一动点,连接,,,,AC AE AP CE CP ,线段,AP CE 交于点G ,记CPG △的面积为1,S AEG △的面积为2S ,且12S S S =-,求S 的最大值及此时点P 的坐标;(3)在(2)的条件下,将拋物线沿射线AC 方向平移5个单位长度后得到新抛物线,点Q 是新拋物线对称轴上一动点,在平面内确定一点R ,使得以点P Q B R 、、、为顶点的四边形是矩形.直接写出所有符合条件的点R 的坐标.6.如图,有一个长为30米的篱笆,一面利用墙(墙的最大可用长度18a =米)围成的中间隔有一道篱笆的长方形花圃设花圃的宽AB 为x 米,面积为y 平方米.(1)求y 与x 的函数关系式,并直接写出自变量x 的取值范围;(2)如何设计才能使长方形花圃面积最大;并求其最大面积.7.如图,过原点的抛物线212y x bx c =-++与x 轴的另一个交点为A ,且抛物线的对称轴为直线2x =,点B 为顶点(1)求抛物线的解析式(2)如图(1),点C 为直线OB 上方抛物线上一动点,连接AB,BC 和AC ,线段AC 交直线OB 于点E ,若CBE △的面积为1S ,ABE 的面积为2S ,求12S S 的最大值 (3)如图(2),设直线()20y kx k k =-≠与抛物线交于D ,F 两点,点D 关于直线2x =的对称点为D ,直线D F '与直线2x =交于点P ,求证:BP 的长是定值.8.抛物线2y x bx c =-++经过点A ,B ,C ,已知()1,0A -和()0,3C .(1)求抛物线的解析式及顶点E 的坐标;(2)点D 在BC 上方的抛物线上.①如图1,若CAB ABD ∠=∠,求点D 的坐标;①如图2,直线BD 交y 轴于点N ,过点B 作AD 的平行线交y 轴于点M ,当点D 运动时,求CBD AMNS S △△的最大值及此时点D 的坐标. 9.在平面直角坐标系中,O 为坐标原点,抛物线244y ax ax =-+交x 轴于点A 、B (A 左B右),交y 轴于点C ,直线123y x =-+,经过B 点,交y 轴于点D .(1)如图1,求a 的值;(2)如图2,点P 在第一象限内的抛物线上,过点A 、B 作x 轴的垂线,分别交直线PD 于点E 和F ,若PF DE =,求点P 的坐标;(3)如图3,在(2)的条件下,点Q 在第一象限内的抛物线上,过点Q 作QH DP ⊥于点H ,交直线BD 于点R ,连接EQ 和ER ,当QE ER =时,求ERQ △的面积.10.已知抛物线213222y x x =-++与x 轴交于B 、C 两点(点B 在点C 的左侧),与y 轴交于点A .(1)判断ABC 的形状,并说明理由.(2)设点(,)P m n 是抛物线在第一象限部分上的点,过点P 作PH x ⊥轴于H ,交AC 于点Q ,设四边形OAPC 的面积为S ,求S 关于m 的函数关系式,并求使S 最大时点P 的坐标和QHC △的面积;(3)在(2)的条件下,点N 是坐标平面内一点,抛物线的对称轴上是否存在点M ,使得以P 、C 和M 、N 为顶点的四边形是菱形,若存在,写出点M 的坐标,并选择一个点写出过程,若不存在,请说明理由.11.已知,如图,在平面直角坐标系中,点O 为坐标原点,直线6y x =+与x 轴相交于点B ,与y 轴交于点C ,点A 是x 轴正半轴上一点,且满足2tan 3ACO ∠=.(1)若抛物线2y ax bx c =++经过A 、B 和C 三点,求抛物线的解析式;(2)若点M 是第二象限内抛物线上的一个动点,过点M 作MP y ∥轴,交BC 于点P ,连接OP ,在第一象限内找一点Q ,过点Q 作⊥OQ OP 且OQ OP =,连接PQ ,MQ ,设MPQ 的面积为S ,点P 的横坐标为t ,求S 与t 的函数关系式,并直接写出自变量的取值范围;(3)在(2)的条件下,设PQ 与y 轴相交于点R ,若53=PR PC 时,求点P 的坐标. 12.已知抛物线22y ax ax c =-+过点()10A -,和()03C ,,与x 轴交于另一点B .(1)求抛物线的解析式;(2)若抛物线的顶点为D ,在直线BC 上方抛物线上有一点P (与D 不重合),BCP 面积与BCD △面积相等,求点P 的坐标;(3)若点E 为抛物线对称轴上一点,在平面内是否存在点F ,使得以E 、F 和B 、C 为顶点的四边形是菱形,若存在,请直接写出F 点的坐标;若不存在,请说明理由.13.如图,抛物线过点()08D ,,与x 轴交于()20A -,,()40B ,两点.(1)求抛物线的解析式;(2)若点C 为二次函数的顶点,求BCD S △.14.如图,O 为平面直角坐标系坐标原点,抛物线22y ax ax c =-+经过点()6,0B ,点()0,6C 与x 轴交于另一点A .(1)求抛物线的解析式;(2)D 点为第一象限抛物线上一点,连接AD 和BD ,设点D 的横坐标为t ,ABD △的面积为S ,求S 关于t 的函数解析式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,P 为第四象限抛物线上一点,连接PA 交y 轴于点E ,点F 在线段BC 上,点G 在直线AD 上,若1tan 2DAO ∠=,四边形BEFG 为菱形,求点P 的坐标. 15.已知抛物线2()20y ax x c a =++≠与x 轴交于点(1,0)A -和点B ,与直线3y x =-+交于点B 和点C ,M 为抛物线的顶点,直线ME 是抛物线的对称轴.(1)求抛物线的解析式及点M 的坐标;(2)点P 为直线BC 上方抛物线上一点,连接PB ,PC ,当PBC 的面积取最大值时,求点P 的坐标.参考答案:1.(1)2142y x x =-- (2)① PC PD +取得最大值254 ① 53,2⎛⎫- ⎪⎝⎭或 316,2⎛⎫+- ⎪⎝⎭2.(1)213222y x x =-++ (1,0)-; (2)3172+或3172-或3332+或3332- (3)存在,517(,)39--或113(,)39-3.(1)故抛物线的表达式为:223y x x =-++,函数的对称轴为:1x =;(2)10113++(3)()4,5-或()8,45-4.(1)223y x x =-++(2)BCD △为直角三角形(3)点P 的坐标为()2,3,四边形PBCD 的面积为45.(1)213442y x x =-++ (2)S 的最大值为1,()4,6P(3)()7,3或()5,3-6.(1)2330S x x =-+ 410x ≤<;(2)当宽AB 为5米,长15BC =米时,长方形花圃的最大面积为75平方米.7.(1)2122y x x =-+ (2)188.(1)()1,4(2)①()2,3D ;①CBD AMN S S △△的最大值为916,此时315,24D ⎛⎫ ⎪⎝⎭9.(1)13a =- (2)()4,4P(3)1010.(1)直角三角形(2)244S m m =-++ (2,3)P 1QHC S =(3)存在,点M 坐标为3651(,)22+或3651(,)22-或333(,)22或333(,)22-或31(,)22,理由见解析11.(1)211642=--+y x x (2)()2396042S t t t =---<< (3)()()124,2,2,4P P --12.(1)223y x x =-++(2)()23P ,(3)存在,点F 的坐标为()417,或()417-,或()2314-+,或()2314--,13.(1)228y x x =-++(2)614.(1)211642y x x =-++ (2)2553042S t t =-++ (3)()8,6P -15.(1)抛物线的解析式为223y x x =-++,点M 的坐标为(1,4)(2)315,24P ⎛⎫ ⎪⎝⎭。

二次函数中的面积计算问题(包含铅垂高)

二次函数中的面积计算问题(包含铅垂高)

(D)二次函数中的面积计算问题【典型例子】例如,如图所示,二次函数2y x bx c =++图像x 在A 和B 两点(A 在B 的左边)与y 轴相交,在C 点与轴相交,顶点为M ,MAB ∆为直角三角形,图像的对称轴是一条直线2-=x ,该点P 是两点之间抛物线上的移动点,A C ,则PAC ∆面积的最大值为(C )A.274 B. 112C 。

278D.3 二次函数中常见的面积问题类型:1.选择填空的简单应用2.不规则三角形的面积用S=3.使用4.使用相似的三角形5.使用分割法将不规则图形转为规则图形例 1如图 1 所示,已知正方形ABCD 的边长为 1 , E , F , G , H 为每边的点, AE=BF=CG=DH ,设面积为小s 正方形EFGH 为, AE 为x , 那么about s 的x 函数图大致为 (乙)示例 2.回答以下问题:如图1所示,抛物线的顶点坐标为C 点( 1,4 ),与x 轴相交于A 点( 3 , 0),与y 轴相交于B 点。

抛物线和直线AB 的解析公式;(2)求△ CA AB 和S △ CAB 的垂直高度CD ;(3)假设点P 是抛物线上(第一象限)上的一个移动点,是否存在点P ,使得S △ PA B = 89S △ CA B ,如果存在,求点P 的坐标;如果不存在,请解释原因。

思想分析这个问题是二次函数中的常见面积问题。

该方法不是唯一的。

可以使用截补法,但是有点麻烦。

如图第10题xyABCOM图1B铅垂高水平宽ha图2A xC Oy ABD 112所示,我们可以画出一种计算三角形面积的新方法:ah S ABC 21=∆即三角形的面积等于水平宽度与前导垂直乘积的一半。

掌握了这个公式之后,思路就直截了当,过程也比较简单,计算量也相对少了很多。

答: (1)据已知,抛物线的解析公式可以设为y 1 = a ( x - 1 ) 2+ 4 ( a ≠ 0 ) 。

将A (3, 0)代入解析表达式,得到a = - 1 ,∴抛物线的解析公式为y 1 = - ( x - 1 ) 2+ 4,即y 1 = - x 2+2 x +3。

专题27 二次函数与面积压轴问题(学生版)

专题27 二次函数与面积压轴问题(学生版)

专题27二次函数与面积压轴问题【例1】(2022·湖北随州·统考中考真题)如图1,平面直角坐标系xOy 中,抛物线y =ax 2+bx +c +a <0与x 轴分则点A 和点B 1,0,与y 轴交于点C ,对称轴为直线x =−1,且OA =OC ,P 为抛物线上一动点.(1)直接写出抛物线的解析式;(2)如图2,连接AC ,当点P 在直线AC 上方时,求四边形PABC 面积的最大值,并求出此时P 点的坐标;(3)设M 为抛物线对称轴上一动点,当P ,M 运动时,在坐标轴上是否存在点N ,使四边形PMCN 为矩形?若存在,直接写出点P 及其对应点N 的坐标;若不存在,请说明理由.经典例题【例2】(2022·广西贺州·统考中考真题)如图,抛物线y=−x2+bx+c过点A(−1,0),B(3,0),与y轴交于点C.(1)求抛物线的解析式;(2)点P为抛物线对称轴上一动点,当△PCB是以BC为底边的等腰三角形时,求点P的坐标;(3)在(2)条件下,是否存在点M为抛物线第一象限上的点,使得S△BCM=S△BCP若存在,求出点M的横坐标;若不存在,请说明理由.【例3】(2022·河南洛阳·统考二模)如图,抛物线y=−x2−2x+3的图象与x轴交于A,B两点,(点A在点B 的左边),与y轴交于点C.(1)直接写出A,B,C的坐标;(2)点M为线段AB上一点(点M与点A,点B不重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N,若点P在点Q的左侧,当矩形PMNQ 的周长最大时,求△AEM的面积.【例4】(2022·福建·统考中考真题)在平面直角坐标系xOy中,已知抛物线y=ax2+bx经过A(4,0),B(1,4)两点.P是抛物线上一点,且在直线AB的上方.(1)求抛物线的解析式;(2)若△OAB面积是△PAB面积的2倍,求点P的坐标;(3)如图,OP交AB于点C,PD∥BO交AB于点D.记△CDP,△CPB,△CBO的面积分别为S1,S2,S3.判断S1S2+S2S3是否存在最大值.若存在,求出最大值;若不存在,请说明理由.【例5】(2022·湖南岳阳·统考中考真题)如图1,在平面直角坐标系xOy中,抛物线F1:y=x2+bx+c经过点A−3,0和点B1,0.(1)求抛物线F1的解析式;(2)如图2,作抛物线F2,使它与抛物线F1关于原点O成中心对称,请直接写出抛物线F2的解析式;(3)如图3,将(2)中抛物线F2向上平移2个单位,得到抛物线F3,抛物线F1与抛物线F3相交于C,D两点(点C 在点D的左侧).①求点C和点D的坐标;②若点M,N分别为抛物线F1和抛物线F3上C,D之间的动点(点M,N与点C,D不重合),试求四边形CMDN 面积的最大值.培优训练1.(2022·广东·统考中考真题)如图,抛物线y=x2+bx+c(b,c是常数)的顶点为C,与x轴交于A,B两点,A1,0,AB=4,点P为线段AB上的动点,过P作PQ//BC交AC于点Q.(1)求该抛物线的解析式;(2)求△CPQ面积的最大值,并求此时P点坐标.2.(2022·湖南常德·统考中考真题)如图,已经抛物线经过点O(0,0),A(5,5),且它的对称轴为x=2.(1)求此抛物线的解析式;(2)若点B是抛物线对称轴上的一点,且点B在第一象限,当△OAB的面积为15时,求B的坐标;(3)在(2)的条件下,P是抛物线上的动点,当PA−PB的值最大时,求P的坐标以及PA−PB的最大值3.(2022·湖北襄阳·统考中考真题)在平面直角坐标系中,直线y=mx-2m与x轴,y轴分别交于A,B两点,顶点为D的抛物线y=-x2+2mx-m2+2与y轴交于点C.(1)如图,当m=2时,点P是抛物线CD段上的一个动点.①求A,B,C,D四点的坐标;②当△PAB面积最大时,求点P的坐标;(2)在y轴上有一点M(0,73m),当点C在线段MB上时,①求m的取值范围;②求线段BC长度的最大值.4.(2019·广东河源·校联考一模)如图,已知抛物线的顶点为A1,4,抛物线与y轴交于点B0,3,与x轴交于C、D两点,点P是抛物线上的一个动点.(1)求此抛物线的解析式.(2)求于C、D两点坐标及三角形△BCD的面积.(3)若点P在x轴上方的抛物线上,满足S△PCD=12S△BCD,求点P的坐标.5.(2022·湖南娄底·统考中考真题)如图,抛物线y=12x2−2x−6与x轴相交于点A、点B,与y轴相交于点C.(1)请直接写出点A,B,C的坐标;(2)点P m,n0<m<6在抛物线上,当m取何值时,△PBC的面积最大?并求出△PBC面积的最大值.(3)点F是抛物线上的动点,作FE//AC交x轴于点E,是否存在点F,使得以A、C、E、F为顶点的四边形是平行四边形?若存在,请写出所有符合条件的点F的坐标;若不存在,请说明理由.6.(2022·四川攀枝花·统考中考真题)如图,二次函数y=ax2+bx+c的图象与x轴交于O(O为坐标原点),A两点,且二次函数的最小值为−1,点M(1,m)是其对称轴上一点,y轴上一点B(0,1).(1)求二次函数的表达式;(2)二次函数在第四象限的图象上有一点P,连结PA,PB,设点P的横坐标为t,△PAB的面积为S,求S与t的函数关系式;(3)在二次函数图象上是否存在点N,使得以A、B、M、N为顶点的四边形是平行四边形?若存在,直接写出所有符合条件的点N的坐标,若不存在,请说明理由.7.(2022·山东日照·校考一模)如图,抛物线y=ax2+bx+3与x轴交于A1,0,B3,0两点,与y轴交于点C.(1)求抛物线的解析式;(2)如图2,M是抛物线x轴下方的抛物线上一点,连接MO、MB、MC,若△MOC的面积是△MBC面积的3倍,求点M的坐标(3)如图3,连接AC、BC,在抛物线上是否存在点N(不与点A重合),使得∠BCN=∠ACB?若存在求出点N的横坐标,若不存在说明理由8.(2022·黑龙江·统考中考真题)如图,抛物线y=x2+bx+c经过点A−1,0,点B2,−3,与y轴交于点C,抛物线的顶点为D.(1)求抛物线的解析式;(2)抛物线上是否存在点P,使△PBC的面积是△BCD面积的4倍,若存在,请直接写出点P的坐标:若不存在,请说明理由.9.(2022·四川巴中·统考中考真题)如图1,抛物线y=ax2+2x+c,交x轴于A、B两点,交y轴于点C,F 为抛物线顶点,直线EF垂直于x轴于点E,当y≥0时,−1≤x≤3.(1)求抛物线的表达式;(2)点P是线段BE上的动点(除B、E外),过点P作x轴的垂线交抛物线于点D.①当点P的横坐标为2时,求四边形ACFD的面积;②如图2,直线AD,BD分别与抛物线对称轴交于M、N两点.试问,EM+EN是否为定值?如果是,请求出这个定值;如果不是,请说明理由.10.(2022·黑龙江绥化·校考二模)如图,抛物线y=−x2+bx+c与直线AB交于A(−4,−4),B(0,4)两点,且点D是它的顶点,在y轴上有一点C(0,−1).(1)求出抛物线的解析式及直线AB的解析式;(2)点E在直线AB上运动,若△BCE是等腰三角形时,求点E的坐标;(3)设点N是抛物线上一动点,若SΔBDN=32SΔBDO,求点N的坐标.11.(2022·重庆璧山·统考一模)如图,在平面直角坐标系xOy中,抛物线y=ax2+43x+c与x轴交于点A−3,0,与y轴交于点C0,−2.(1)求抛物线的解析式;(2)如图1,连接AC,点D为线段AC下方抛物线上一动点,过点D作DE∥y轴交线段AC于E点,连接EO,记△ADC的面积为S1,△AEO的面积为S2,求S1−S2的最大值及此时点D的坐标;(3)如图2,在(2)问的条件下,将抛物线沿射线CB M在原抛物线的对称轴上,点N为新抛物线上一点,直接写出所有使得以点A、D、M、N为顶点的四边形是平行四边形的点N的坐标,并把求其中一个点N的坐标的过程写出来.12.(2023·广西玉林·一模)已知二次函数y=x2+2bx−3b的图象经过点A1,0.(1)求该二次函数的表达式;(2)二次函数图象与x轴的另一个交点为B,与y轴的交点为C,点P从点A出发在线段AB上以每秒2个单位长度的速度向点B运动,同时点Q从点B出发,在线段BC上以每秒1个单位长度的速度向点C运动,直到其中一点到达终点时,两点停止运动,求△BPQ面积的最大值;(3)在点P、Q运动的过程中,是否存在使△PBQ与△BOC相似的时刻,如果存在,求出运动时间t,如果不存在,请说明理由.13.(2022·内蒙古·中考真题)如图,抛物线y=ax2+x+c经过B(3,0),D−2,−x轴的另一个交点为A,与y轴相交于点C.(1)求抛物线的解析式和点C的坐标;(2)若点M在直线BC上方的抛物线上运动(与点B,C不重合),求使△MBC面积最大时M点的坐标,并求最大面积;(请在图1中探索)(3)设点Q在y轴上,点P在抛物线上,要使以点A,B,P,Q为顶点的四边形是平行四边形,求所有满足条件的点P的坐标.(请在图2中探索)14.(2022·辽宁大连·统考中考真题)在平面直角坐标系中,抛物线y=x2−2x−3与x轴相交于点A,B(点A 在点B的左侧),与y轴相交于点C,连接AC.(1)求点B,点C的坐标;(2)如图1,点E m,0在线段OB上(点E不与点B重合),点F在y轴负半轴上,OE=OF,连接AF,BF,EF,设△ACF 的面积为S1,△BEF的面积为S2,S=S1+S2,当S取最大值时,求m的值;(3)如图2,抛物线的顶点为D,连接CD,BC,点P在第一象限的抛物线上,PD与BC相交于点Q,是否存在点P,使∠PQC=∠ACD,若存在,请求出点P的坐标;若不存在,请说明理由.15.(2022·山东济南·模拟预测)如图1,已知抛物线y=ax2+bx+3经过点A−1,0和点B3,0,与y轴交于点C,点P为第一象限内抛物线上的动点.连接OP交BC于点D,连接PC.(1)试确定抛物线的解析式;(2)当S△CPD:S△BPD=1:2时,请求出点D的坐标;(3)如图2,连接AC,设P点横坐标为m(0<m<3),求当m为何值时,四边形BACP的面积最大?并求出点P 的坐标.16.(2022·甘肃嘉峪关·校考一模)如图,已知抛物线y=−x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A−1,0,C0,3.(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.17.(2022·山东济南·模拟预测)如图,抛物线y=ax2+bx−3与x轴相交于B(−1,0),C(3,0)两点.(1)求抛物线的函数表达式;(2)点D在抛物线的对称轴上,且位于x轴的上方,将△BCD沿直线BD翻折得到△BC'D,若点C'恰好落在抛物线的对称轴上,求点C'和点D的坐标;(3)在(2)的条件下,设抛物线与y轴交于点Q,连接BQ、DQ,点P为抛物线上的一个动点(点P与点Q不重合),且S△PBD=S△BDQ,请求出所有满足条件的点P的横坐标.18.(2022·重庆大渡口·重庆市第三十七中学校校考二模)如图,在平面直角坐标系中,抛物线y=x2+bx+c 与直线AB交于A,B两点,其中A(0,1),B(4,−1).(1)求该抛物线的函数表达式;(2)点P,Q为直线AB下方抛物线上任意两点,且满足点P的横坐标为m,点Q的横坐标为m+1,过点P和点Q分别作y轴的平行线交直线AB于C点和D点,连接PQ,求四边形PQDC面积的最大值;(3)在(2)的条件下,将抛物线y=x2+bx+c沿射线AB平移25个单位,得到新的抛物线y1,点E为点P的对应点,点F为y1的对称轴上任意一点,点G为平面直角坐标系内一点,当点B,E,F,G构成以EF为边的菱形时,直接写出所有符合条件的点G的坐标.19.(2022·山东菏泽·统考二模)如图,抛物线y=ax2+bx+6经过A−2,0、B4,0两点,与y轴交于点C,D是抛物线上一动点,设点D的横坐标为m1<m<4,连结AC,BC,DB,DC.(1)求抛物线的函数表达式.(2)当△BCD的面积等于△AOC的面积的34时,求m的值.(3)当m=2时,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B、D、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的的坐标;若不存在,请说明理由.20.(2022·四川绵阳·校考二模)如图,直角三角形的斜边AB在x轴上,直角顶点在y轴正半轴上,已知A−1,0,C0,2,抛物线y=ax2+bx+c a≠0经过点A,B,C.(1)求抛物线的解析式.(2)如图①,点P是y轴右侧抛物线上一动点,若∠PCB=∠ACO,求点P的坐标.(3)如图②,点P是第一象限内抛物线上的一个动点,连接PA交BC于点E,交y轴于点F,连接PB.设ΔPBE,ΔCEF的面积分别为S1,S2,求S1−S2的最大值.21.(2022·山东淄博·统考中考真题)如图,抛物线y=﹣x2+bx+c与x轴相交于A,B两点(点A在点B的左侧),顶点D(1,4)在直线l:y=43x+t上,动点P(m,n)在x轴上方的抛物线上.(1)求这条抛物线对应的函数表达式;(2)过点P作PM⊥x轴于点M,PN⊥l于点N,当1<m<3时,求PM+PN的最大值;(3)设直线AP,BP与抛物线的对称轴分别相交于点E,F,请探索以A,F,B,G(G是点E关于x轴的对称点)为顶点的四边形面积是否随着P点的运动而发生变化,若不变,求出这个四边形的面积;若变化,说明理由.22.(2022·辽宁阜新·统考中考真题)如图,已知二次函数y=−x2+bx+c的图像交x轴于点A−1,0,B5,0,交y轴于点C.(1)求这个二次函数的表达式;(2)如图1,点M从点B出发,以每秒2个单位长度的速度沿线段BC向点C运动,点N从点O出发,以每秒1个单位长度的速度沿线段OB向点B运动,点M,N同时出发.设运动时间为t秒(0<t<5).当t为何值时,△BMN的面积最大?最大面积是多少?(3)已知P是抛物线上一点,在直线BC上是否存在点Q,使以A,C,P,Q为顶点的四边形是平行四边形?若存在,直接写出点Q坐标;若不存在,请说明理由.23.(2022·山东枣庄·统考中考真题)如图①,已知抛物线L:y=x2+bx+c的图象经过点A(0,3),B(1,0),过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点.(1)求抛物线的关系式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当△OPE面积最大时,求出P点坐标;(3)将抛物线L向上平移h个单位长度,使平移后所得抛物线的顶点落在△OAE内(包括△OAE的边界),求h的取值范围;(4)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P,使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.24.(2022·山东日照·统考中考真题)在平面直角坐标系xOy中,已知抛物线y=-x2+2mx+3m,点A(3,0).(1)当抛物线过点A时,求抛物线的解析式;(2)证明:无论m为何值,抛物线必过定点D,并求出点D的坐标;(3)在(1)的条件下,抛物线与y轴交于点B,点P是抛物线上位于第一象限的点,连接AB,PD交于点M,PD 与y轴交于点N.设S=S△PAM-S△BMN,问是否存在这样的点P,使得S有最大值?若存在,请求出点P的坐标,并求出S的最大值;若不存在,请说明理由.。

二次函数面积问题

二次函数面积问题

二次函数与面积专题例1:已知二次函数y=ax2+bx+c(a≠0)的图象经过点A(2,0),B(0,-1),D(-1,0)三点,。

(1)求二次函数的解析式。

(2)求S△BCD。

(3)在抛物线上找一点P,使S△ADP=S△BCD,求P坐标?(4)线段CD上有一动点P,过P作PQ//Y轴交抛物线于Q点,求PQ线段的最大值?(5)线段CD下方抛物线有一动点P,求三角形PCD面积的最大值?练习1:如图,抛物线y=(x+1)2+k与x轴交于A、B两点,与y轴交于点C(0,﹣3)(1)求抛物线的对称轴及k的值;(2)抛物线的对称轴上存在一点P,使得PA+PC的值最小,求此时点P的坐标;(3)点M是抛物线上的一动点,且在第三象限。

①当M点运动到何处时,△AMB的面积最大?求出△AMB的最大面积及此时点M的坐标;②当M点运动到何处时,四边形AMCB的面积最大?求出四边形AMCB的最大面积及此时点的坐标.练习2:平面直角坐标系中,口ABOC如图放置,点A、C的坐标分别为(0,3)、(﹣1,0),将此平行四边形绕点O顺时针旋转90°,得到口A'B'OC'.(1)若抛物线过点C,A,A',求此抛物线的解析式;(2)口ABOC和口A'B'OC'重叠部分△OC'D的周长;(3)点M是第一象限内抛物线上的一动点,问:点M在何处时△AMA'的面积最大?最大面积是多少?并求出此时M的坐标.例2:已知:m,n是方程x2-6x+5=0的两个实数根,且m<n,抛物线y=-x2+bx+c的图象经过点A(m,0),B(0,n),如图所示.(1)求这个抛物线的解析式;(2)设(1)中的抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C,D的坐标和△BCD的面积;(3)P是线段OC上的一点,过点P作PH⊥x轴,与抛物线交于H点,若直线BC•把△PCH 分成面积之比为2:3的两部分,请求出P点的坐标练习1:(锦江区2021一诊)练习2:(成都2016中考)如图,在平面直角坐标系xOy中,抛物线()213=+-与x轴y a x交于A、B两点(点A在点B左侧),与y轴交于点C(0,8-),顶点为D,对称轴与x轴3交于点H.过点H的直线l交抛物线于P,Q两点,点Q在y轴右侧.(1)求a的值及点A、B的坐标;(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN能否成为菱形?若能,求出点N的坐标;若不能,请说明理由.巩固1:(2021青白江一诊)巩固2:如图,己知抛物线y=x 2+bx+c 与x 轴交于点A (1,0)和点B ,与y 轴交于点C (0,﹣3).(1)求抛物线的解析式;(2)如图(1),己知点H (0,﹣1).问在抛物线上是否存在点G (点G 在y 轴的左侧),使得S △GHC =S △GHA ?若存在,求出点G 的坐标;若不存在,请说明理由;(3)如图(2),抛物线上点D 在x 轴上的正投影为点E (﹣2,0),F 是OC 的中点,连接DF ,P 为线段BD 上的一点,若∠EPF=∠BDF ,求线段PE 的长.巩固2:在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,且点A (0,2),点C (-1,0),如图所示,抛物线y =2ax2+ax -23经过点B . (1)求点B 的坐标;(2)求抛物线的解析式;(3)若三角板ABC 从点C 开始以每秒1个单位长度的速度向x 轴正方向平移,求点A 落在抛物线上时所用的时间,并求三角板在平移过程中扫过的面积;(4)在抛物线上是否还存在点P (点B 除外),使△ACP 仍然是以AC 为直角边的等腰直角三角形?若存在,求所有点P 的坐标;若不存在,请说明理由.。

二次函数中的面积问题

二次函数中的面积问题

二次函数——面积问题(一)〖知识要点〗一.求面积常用方法:1. 直接法(一般以坐标轴上线段或以与轴平行的线段为底边)2. 利用相似图形,面积比等于相似比的平方3. 利用同底或同高三角形面积的关系4. 割补后再做差或做和(三边均不在坐标轴上的三角形及不规则多边形需把图形分解) 二. 常见图形及公式抛物线解析式y=ax2 +bx+c (a≠0)抛物线与x 轴两交点的距离AB=︱x1–x2︱=抛物线顶点坐标(-, ) 抛物线与y 轴交点(0,c )“歪歪三角形中间砍一刀”,即三角形面积等于水平宽与铅垂高乘积的一半. 〖基础习题〗 1、若抛物线y=-x2–x+6与x 轴交于A 、B 两点,则AB= ,此抛物线与y 轴交于点C ,则C 点的坐标为 ,△ABC 的面积为.2、若抛物线y=x2 + 4x 的顶点是P ,与X 轴的两个交点是C 、D 两点,则△PCD 的面积是_____________.3、已知抛物线与轴交于点A ,与轴的正半轴交于B 、C 两点,且BC=2,S △ABC=3,则=,B C 铅垂高水平宽ha图1 C BA O y x DB A O y x P=.〖典型例题〗● 面积最大问题1、二次函数的图像与轴交于点A (-1,0)、B (3,0),与轴交于点C ,∠ACB=90°.(1)求二次函数的解析式;(2)P 为抛物线X 轴上方一点,若使得△PAB 面积最大,求P 坐标(3)P 为抛物线X 轴上方一点,若使得四边形PABC 面积最大,求P 坐标(4) P 为抛物线上一点,若使得,求P 点坐标。

● 同高情况下,面积比=底边之比2.已知:如图,直线y=﹣x+3与x 轴、y 轴分别交于B 、C ,抛物线y=﹣x2+bx+c 经过点B 、C ,点A 是抛物线与x 轴的另一个交点.(1)求B 、C 两点的坐标和抛物线的解析式;(2)若点P 在直线BC 上,且,求点P 的坐标.3.已知:m 、n 是方程x2﹣6x+5=0的两个实数根,且m <n ,抛物线y=﹣x2+bx+c 的图象经过点A (m ,0)、B (0,n ).(1)求这个抛物线的解析式;(2)设(1)中抛物线与x 轴的另一交点为C ,抛物线的顶点为D ,试求出点C 、D 的坐标和△BCD 的面积;(注:抛物线y=ax2+bx+c (a≠0)的顶点坐标为(3)P 是线段OC 上的一点,过点P 作PH ⊥x 轴,与抛物线交于H 点,若直线BC 把△PCH 分成面积之比为2:3的两部分,请求出P 点的坐标. yx B A C O三角形面积等于水平宽与铅垂高乘积的一半4.阅读材料:如图,过△ABC的三个顶点分别作出水平垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们可以得出一种计算三角形面积的新方法:S△ABC=ah,即三角形面积等于水平宽与铅垂高乘积的一半.解答下列问题:如图,抛物线顶点坐标为点C(1,4)交x轴于点A,交y轴于点B(0,3)(1)求抛物线解析式和线段AB的长度;(2)点P是抛物线(在第一象限内)上的一个动点,连接PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB;(3)在第一象限内抛物线上求一点P,使S△PAB=S△CAB.法一:同底情况下,面积相等转化成平行线法二:同底情况下,面积相等转化成铅垂高相等变式一:如图2,点P是抛物线(在第一象限内)上的一个动点,连结PA,PB,是否存在一点P,使S△PAB=S△CAB?若存在,求出P点的坐标;若不存在,请说明理由.变式二:抛物线上是否存在一点P,使S△PAB=S△CAB?若存在,求出P点的坐标;若不存在,请说明点动+面积5.如图1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm,如果点P由B出发沿BA方向向点A匀速运动,同时点Q由A出发沿AC方向向点C匀速运动,它们的速度均为2cm/s,连接PQ,设运动的时间为t(单位:s)(0≤t≤4).解答下列问题:(1)当t为何值时,PQ∥BC.(2)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在求出此时t的值;若不存在,请说明理由.(3)如图2,把△APQ沿AP翻折,得到四边形AQPQ′.那么是否存在某时刻t使四边形AQPQ′为菱形?若存在,求出此时菱形的面积;若不存在,请说明理由.形动+面积6.如图1,抛物线y=ax2+bx+3(a≠0)与x轴、y轴分别交于点A(﹣1,0)、B(3,0)、点C三点.(1)试求抛物线的解析式;(2)点D(2,m)在第一象限的抛物线上,连接BC、BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)如图2,在(2)的条件下,将△BOC沿x轴正方向以每秒1个单位长度的速度向右平移,记平移后的三角形为△B′O′C′.在平移过程中,△B′O′C′与△BCD重叠的面积记为S,设平移的时间为t秒,试求S与t之间的函数关系式?。

二次函数的应用课件面积问题(共10张PPT)

二次函数的应用课件面积问题(共10张PPT)
使销售利润最大?
请同学们完成这个 问题的解答
你会解吗?
例6:用6m长的铝合金型材料做一个形状如图所示的矩形窗框。窗框 的长、宽各为多少时,它的透光面积最大?最大透光面积是多少?
解:设矩形的宽为x米,矩形的透光面积为y米。由题 意得:
y=x· 6-3x 2
(0<x<2)
即:y=- 3 x2+3x
2
配方,得:
的距离)能否通过此隧道? 如图,某隧道口的横截面是抛物线形,已知路宽AB为6米,最高点离地面的距离OC为5米.以最高点O为坐标原点,抛物线的对称轴为y轴,1
米为数轴的单位长度,建立平面直角坐标系,
A CB
)
(6)y=- x2-4x+1
值范围; 例6:用6m长的铝合金型材料做一个形状如图所示的矩形窗框。
该店想通过降低售价、增加销售量的办法来提高利润。
O x
(2) 有一辆宽2.8米,高3米的 y=x·
(0<x<2)
∴当x=5,y最大值=50
农用货车(货物最高处与地面AB y随着x的增大而减小。
(4)y=100-5x2 将这个函数关系式配方,得:
y=- 3 (x-1)2+ 3
2
2
∴它的顶点坐标是(1,1.5)
∴当x=1,y最大值=1.5
因为x=1时,满足0<x<2,这时
6-3x 2
=1.5
答:当矩形窗框的宽为5m时,长为1.5m时,它的透光
面积最大,最大面积为1.5m2。
1.求下列函数的最大值或最小值:
(1)y=x2-3x+4
(2)y=1-2x-x2
物线的对称轴为y轴,1米为数轴的单位长度,建立平面直角

最全二次函数中的面积问题(中考数学必考题型)

最全二次函数中的面积问题(中考数学必考题型)

二次函数中的面积问题二次函数中的面积问题是中考的热点,面积问题如果是规则图形可以用常见的面积公式解决问题的就直接用面积公式,如果不能直接用面积公式在坐标系中处理面积问题,通常有以下三种思路:第一是割补法:分割求和、补形作差,其中用的最多的是铅垂线法;第二是同底等高利用平行线转化求面积;第三如果遇到的是面积比可以考虑用相似的性质得到线段比去解决相关问题。

【引例1】在平面直角坐标系中,已知()1,1A 、()7,3B 、()4,7C ,求△ABC 的面积.【铅垂法】()11112222ABCACDBCDC D B A SSSCD AE CD BF CD AE BF y y x x =+=⋅+⋅=+=-⋅-【方法梳理】(1)求A 、B 两点水平距离,即水平宽;(2)过点C 作x 轴垂线与AB 交于点D ,可得点D 横坐标同点C ; (3)求直线AB 解析式并代入点D 横坐标,得点D 纵坐标; (4)根据C 、D 坐标求得铅垂高; (5)12S =⨯水平宽铅垂高.二、转化法——借助平行线转化:若S △ABP =S △ABQ , 若S △ABP =S △ABQ ,当P ,Q 在AB 同侧时,PQ △AB . 当P ,Q 在AB 异侧时,AB 平分PQPABQQBA PDEF OyxCBA 铅垂高水平宽DA BCxyOE三、面积比类型例1.如图,在平面直角坐标系中,直线y =﹣5x +5与x 轴,y 轴分别交于A 、C 两点,抛物线y =x 2﹣6x +5经过A 、C 两点,与x 轴的另一交点为B .若点M 为x 轴下方抛物线上一动点,当点M 运动到某一位置时,△ABM 的面积等于△ABC 面积的,求此时点M 的坐标;例2.如图,抛物线223y x x =-++与x 轴交于A 、B 两点,与y 轴交于点C ,连接BC ,抛物线在线段BC 上方部分取一点P ,连接PB 、PC .(1)过点P 作PH△x 轴交BC 边于点H ,求PH 的最大值;(2)求△PBC 面积的最大值(可以用铅垂线法和平行线法);PyxO CB A变式1.如图,已知二次函数y=﹣x2+2x+3的图象经过点A(﹣1,0),B(3,0),与y轴交于点C.点D为抛物线的顶点,直线BC的解析式为y=﹣x+3,求△BCD 的面积;变式2.如图,抛物线y=﹣x2+4x﹣3;与x轴交于A,B两点,与y轴交于C 点,直线BC方程为y=x﹣3.点P为抛物线上一点,若S△PBC=S△ABC,求P 的坐标;变式3.已知抛物线y=x2﹣2x﹣3经过(﹣1,0),(3,0)两点,与y轴交于点C,直线y=kx与抛物线交于A,B两点.是否存在实数k使得△ABC的面积为?若存在,求出k的值;若不存在,请说明理由.变式4.如图,在直角坐标系中,二次函数y=x2﹣2x﹣3的图象与x轴相交于点A (﹣1,0)和点B(3,0),与y轴交于点C.若点D为第四象限内二次函数图象上的动点,设点D的横坐标为m,△BCD的面积为S.求S关于m的函数关系式,并求出S的最大值.例3.如图,抛物线y=﹣x2+4x﹣3与x轴交于点A(1,0)、B(3,0),与y轴交于点C,连接AC,BC.P为抛物线上一点,若S△PBC=S△ABC,求出点P的坐标;【引例2】如图,抛物线y=﹣x2+x+4与坐标轴分别交于A,B,C三点,P 是第一象限内抛物线上的一点且横坐标为m.当CP与x轴不平行时,求的最大值;(化斜为直)例4.如图,抛物线y=﹣x2+2x+3与x轴交于点A和点B,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD,OD交BC于点F,当S△COF:S△CDF =3:2时,求点D的坐标.变式1.抛物线y=x2﹣4x与直线y=x交于原点O和点B,与x轴交于另一点A,顶点为D.M是点B关于抛物线对称轴的对称点,Q是抛物线上的动点,它的横坐标为m(0<m<5),连接MQ,BQ,MQ与直线OB交于点E.设△BEQ和△BEM的面积分别为S1和S2,求的最大值.变式2.已知:如图,二次函数y=﹣x2+x+4;点Q是线段AB上的动点,过点Q作QE△AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;变式3.已知二次函数解析式为y=3x2﹣3,直线l的解析式为y=,点P 为抛物线上第四象限上的一动点,过P作y轴的平行线交AD于M,作PN△AD 于N,当△PMN面积有最大值时,求点P的坐标;例4.如图抛物线y=﹣x2+2x+3经过点A(﹣1,0),点C(0,3),点P为抛物线上一点,连接CP,直线CP把四边形CBP A的面积分为3:5两部分,求点P的坐标.变式1.已知抛物线y=x2﹣2x﹣3.与x轴交于A、B两点(点A在点B的左边),与y轴交于点C(0,﹣3),顶点D的坐标为(1,﹣4).若直线y=mx﹣m﹣4将四边形ACDB的面积分为1:2两部分,则m的值为多少作业:1.已知二次函数y=2x2﹣8x+6的图象交x轴于A,B两点.若其图象上有且只有P1,P2,P3三点满足===m,则m的值是()A.1B.C.2D.42.已知抛物线y=x2﹣x+3;经过A(3,0)、B(4,1)两点,且与y轴交于点C.设抛物线与x轴的另一个交点为D,在抛物线上是否存在点P,使△P AB 的面积是△BDA面积的2倍?若存在,求出点P的坐标;若不存在,请说明理由.3.如图,抛物线y=﹣x2+2x+3与x轴相交于A、B两点,与y轴相交于点C,且点B与点C的坐标分别为B(3,0),C(0,3),点M是抛物线的顶点,点P为线段MB上一个动点,过点P作PD△x轴于点D,若OD=m.设△PCD 的面积为S,试判断S有最大值或最小值吗?若有,求出其最值,若没有,请说明理由;。

专题 二次函数与面积有关问题(专项训练)(解析版)

专题 二次函数与面积有关问题(专项训练)(解析版)

专题03 二次函数与面积有关问题(专项训练)1.(2022•成都)如图,在平面直角坐标系xOy中,直线y=kx﹣3(k≠0)与抛物线y=﹣x2相交于A,B两点(点A在点B的左侧),点B关于y轴的对称点为B'.(1)当k=2时,求A,B两点的坐标;(2)连接OA,OB,AB',BB',若△B'AB的面积与△OAB的面积相等,求k的值;【解答】解:(1)当k=2时,直线为y=2x﹣3,由得:或,∴A(﹣3,﹣9),B(1,﹣1);(2)当k>0时,如图:∵△B'AB的面积与△OAB的面积相等,∴OB'∥AB,∴∠OB'B=∠B'BC,∵B、B'关于y轴对称,∴OB=OB',∠ODB=∠ODB'=90°,∴∠OB'B=∠OBB',∴∠OBB'=∠B'BC,∵∠ODB=90°=∠CDB,BD=BD,∴△BOD≌△BCD(ASA),∴OD=CD,在y=kx﹣3中,令x=0得y=﹣3,∴C(0,﹣3),OC=3,∴OD=OC=,D(0,﹣),在y=﹣x2中,令y=﹣得﹣=﹣x2,解得x=或x=﹣,∴B(,﹣),把B(,﹣)代入y=kx﹣3得:﹣=k﹣3,解得k=;当k<0时,过B'作B'F∥AB交y轴于F,如图:在y=kx﹣3中,令x=0得y=﹣3,∴E(0,﹣3),OE=3,∵△B'AB的面积与△OAB的面积相等,∴OE=EF=3,∵B、B'关于y轴对称,∴FB=FB',∠FGB=∠FGB'=90°,∴∠FB'B=∠FBB',∵B'F∥AB,∴∠EBB'=∠FB'B,∴∠EBB'=∠FBB',∵∠BGE=90°=∠BGF,BG=BG,∴△BGF≌△BGE(ASA),∴GE=GF=EF=,∴OG=OE+GE=,G(0,﹣),在y=﹣x2中,令y=﹣得﹣=﹣x2,解得x=或x=﹣,∴B(,﹣),把B(,﹣)代入y=kx﹣3得:﹣=k﹣3,解得k=﹣,综上所述,k的值为或﹣;2.(2021•枣庄)如图,在平面直角坐标系中,直线y=﹣x+3与x轴交于点A,与y轴交于点B,抛物线y=x2+bx+c经过坐标原点和点A,顶点为点M.(1)求抛物线的关系式及点M的坐标;(2)点E是直线AB下方的抛物线上一动点,连接EB,EA,当△EAB的面积等于时,求E点的坐标;【解答】解:(1)对于y=﹣x+3,令y=﹣x+3=0,解得x=6,令x=0,则y=3,故点A、B的坐标分别为(6,0)、(0,3),∵抛物线y=x2+bx+c经过坐标原点,故c=0,将点A的坐标代入抛物线表达式得:0=×36+6b,解得b=﹣2,故抛物线的表达式为y=x2﹣2x;则抛物线的对称轴为x=3,当x=3时,y=x2﹣2x=﹣3,则点M的坐标为(3,﹣3);(2)如图1,过点E作EH∥y轴交AB于点H,设点E的坐标为(x,x2﹣2x),则点H(x,﹣x+3),则△EAB的面积=S△EHB+S△EHA=×EH×OA=6×(﹣x+3﹣x2+2x)=,解得x=1或,故点E的坐标为(1,﹣)或(,﹣);3.(2021•柳州)在平面直角坐标系xOy中,已知抛物线:y=ax2+bx+c交x轴于A(﹣1,0),B(3,0)两点,与y轴交于点C(0,﹣).(1)求抛物线的函数解析式;(2)如图1,点D为第四象限抛物线上一点,连接OD,过点B作BE⊥OD,垂足为E,若BE=2OE,求点D的坐标;(3)如图2,点M为第四象限抛物线上一动点,连接AM,交BC于点N,连接BM,记△BMN的面积为S1,△ABN的面积为S2,求的最大值.【解答】解:(1)依题意,设y=a(x+1)(x﹣3),代入C(0,﹣)得:a•1•(﹣3)=﹣,解得:a=,∴y=(x+1)(x﹣3)=x2﹣x﹣;(2)∵BE=2OE,设OE为x,BE=2x,由勾股定理得:OE2+BE2=OB2,x2+4x2=9,解得:x1=,x2=﹣(舍),∴OE=,BE=,过点E作TG平行于OB,T在y轴上,过B作BG⊥TG于G,∴△ETO∽△OEB,∴==,∴OE2=OB•TE,∴TE==,∴OT==,∴E(,﹣),∴直线OE的解析式为y=﹣2x,∵OE的延长线交抛物线于点D,∴,解得:x1=1,x2=﹣3(舍),当x=1时,y=﹣2,∴D(1,﹣2);(3)如图所示,延长BC于点F,AF∥y轴,过A点作AH⊥BF于点H,作MT∥y轴交BF于点T,过M点作MG⊥BF于点J,∵AF∥MT,∴∠AFH=∠MTJ,∵AH⊥BF,MJ⊥BF,∴∠AHF=∠MJT=90°,∴△AFH∽△MJT,∴=,∵S1=NB•MJ,S2=NB•AH,∴==,设直线BC的解析式为y=kx+b,将B,C两点代入得,,解得:,∴直线BC的解析式为y=x﹣,当x=﹣1时,y=•(﹣1)﹣=﹣2,∴F(﹣1,﹣2),∴AF=2,设M(x,x2﹣x﹣),∴MT=x﹣﹣(x2﹣x﹣)=﹣(x﹣)2+,∴a=﹣<0,∴MT max=,∴=====.4.(2020•宿迁)二次函数y=ax2+bx+3的图象与x轴交于A(2,0),B(6,0)两点,与y轴交于点C,顶点为E.(1)求这个二次函数的表达式,并写出点E的坐标;(2)如图①,D是该二次函数图象的对称轴上一个动点,当BD的垂直平分线恰好经过点C时,求点D的坐标;(3)如图②,P是该二次函数图象上的一个动点,连接OP,取OP中点Q,连接QC,QE,CE,当△CEQ的面积为12时,求点P的坐标.【解答】解:(1)将A(2,0),B(6,0)代入y=ax2+bx+3,得,解得∴二次函数的解析式为y=﹣2x+3.∵y=﹣1,∴E(4,﹣1).(2)如图1,图2,连接CB,CD,由点C在线段BD的垂直平分线CN上,得CB=CD.设D(4,m),∵C(0,3),由勾股定理可得:42+(m﹣3)2=62+32.解得m=3±.∴满足条件的点D的坐标为(4,3+)或.(3)如图3,设CQ交抛物线的对称轴于点M,设P(n,﹣2n+3),则Q(),设直线CQ的解析式为y=kx+3,则nk+3.解得k=,于是CQ:y=()x+3,当x=4时,y=4()+3=n﹣5﹣,∴M(4,n﹣5﹣),ME=n﹣4﹣.∵S△CQE=S△CEM+S△QEM=.∴n2﹣4n﹣60=0,解得n=10或n=﹣6,当n=10时,P(10,8),当n=﹣6时,P(﹣6,24).综合以上可得,满足条件的点P的坐标为(10,8)或(﹣6,24).5.(2020•淄博)如图,在直角坐标系中,四边形OABC是平行四边形,经过A(﹣2,0),B,C三点的抛物线y=ax2+bx+(a<0)与x轴的另一个交点为D,其顶点为M,对称轴与x轴交于点E.(1)求这条抛物线对应的函数表达式;(2)已知R是抛物线上的点,使得△ADR的面积是▱OABC的面积的,求点R的坐标;【解答】解:(1)OA=2=BC,故函数的对称轴为x=1,则x=﹣=1①,将点A的坐标代入抛物线表达式得:0=4a﹣2b+②,联立①②并解得,故抛物线的表达式为:y=﹣x2+x+③;(2)∵y=﹣x2+x+=﹣(x﹣1)2+3,∴抛物线的顶点M(1,3)令y=0,可得x=﹣2或4,∴点D(4,0);∵△ADR的面积是▱OABC的面积的,∴×AD×|y R|=×OA×OB,则×6×|y R|=×2×,解得:y R=±④,联立④③并解得或,故点R的坐标为(1+,﹣)或(1,﹣)或(1,)或(1﹣,);6.(2020•天水)如图所示,抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C,且点A的坐标为A(﹣2,0),点C的坐标为C(0,6),对称轴为直线x =1.点D是抛物线上一个动点,设点D的横坐标为m(1<m<4),连接AC,BC,DC,DB.(1)求抛物线的函数表达式;(2)当△BCD的面积等于△AOC的面积的时,求m的值;【解答】解:(1)由题意得:,解得:,∴抛物线的函数表达式为:y=﹣x2+x+6;(2)过点D作DE⊥x轴于E,交BC于G,过点C作CF⊥ED交ED的延长线于F,如图1所示:∵点A的坐标为(﹣2,0),点C的坐标为(0,6),∴OA=2,OC=6,∴S△AOC=OA•OC=×2×6=6,∴S△BCD=S△AOC=×6=,当y=0时,﹣x2+x+6=0,解得:x1=﹣2,x2=4,∴点B的坐标为(4,0),设直线BC的函数表达式为:y=kx+n,则,解得:,∴直线BC的函数表达式为:y=﹣x+6,∵点D的横坐标为m(1<m<4),∴点D的坐标为:(m,﹣m2+m+6),点G的坐标为:(m,﹣m+6),∴DG=﹣m2+m+6﹣(﹣m+6)=﹣m2+3m,CF=m,BE=4﹣m,∴S△BCD=S△CDG+S△BDG=DG•CF+DG•BE=DG×(CF+BE)=×(﹣m2+3m)×(m+4﹣m)=﹣m2+6m,∴﹣m2+6m=,解得:m1=1(不合题意舍去),m2=3,∴m的值为3;7.(2021•沈阳)如图,平面直角坐标系中,O是坐标原点,抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的左侧),点B坐标是(3,0).抛物线与y轴交于点C (0,3),点P是抛物线的顶点,连接PC.(1)求抛物线的函数表达式并直接写出顶点P的坐标.(2)直线BC与抛物线对称轴交于点D,点Q为直线BC上一动点.当△QAB的面积等于△PCD面积的2倍时,求点Q的坐标;【解答】解(1)由题意得,,∴b=2,∴y=﹣x2+2x+3=﹣((x﹣1)2+4,∴P(1,4).(2)①如图1,作CE⊥PD于E,∵C(0,3),B(3,0),∴直线BC:y=﹣x+3,∴D(1,2),可设Q(a,3﹣a),∴CE=PE=DE,∴△PCD是等腰直角三角形,∴S△PCD=PD•CE=×2×1=1,∴AB•|3﹣a|=2,∴×4•|3﹣a|=2,∴a=2或a=4.∴Q(2,1)或(4,﹣1).8.(2021•辽宁)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点C(﹣1,0),与y 轴交于点B(0,3),连接AB,BC,点P是抛物线第一象限上的一动点,过点P作PD ⊥x轴于点D,交AB于点E.(1)求抛物线的解析式;(2)如图1,作PF⊥PD于点P,使PF=OA,以PE,PF为邻边作矩形PEGF.当矩形PEGF的面积是△BOC面积的3倍时,求点P的坐标;【解答】解:(1)由题意得:,解得,故抛物线的表达式为y=﹣x2+x+3;(2)对于y=﹣x2+x+3,令y=﹣x2+x+3=0,解得x=4或﹣1,故点A的坐标为(4,0),则PF=2,由点A、B的坐标得,直线AB的表达式为y=﹣x+3,设点P的坐标为(x,﹣x2+x+3),则点E(x,﹣x+3),则矩形PEGF的面积=PF•PE=2×(﹣x2+x+3+x﹣3)=3S△BOC=3××BO•CO =×3×1,解得x=1或3,故点P的坐标为(1,)或(3,3);9.(2022•南宁一模)如图1所示抛物线与x轴交于O,A两点,OA=6,其顶点与x轴的距离是6.(1)求抛物线的解析式;(2)点P在抛物线上,过点P的直线y=x+m与抛物线的对称轴交于点Q.当△POQ与△P AQ的面积之比为1:3时,求m的值;【解答】解:(1)∵OA=6,∴抛物线的对称轴为直线x=3,设抛物线的解析式为y=a(x﹣3)2+k,∵顶点与x轴的距离是6,∴顶点为(3,﹣6),∴y=a(x﹣3)2﹣6,∵抛物线经过原点,∴9a﹣6=0,∴a=,∴y=(x﹣3)2﹣6;(2)①设直线y=x+m与y轴的交点为E,与x轴的交点为F,∴E(0,m),F(﹣m,0),∴OE=|m|,AF=|6+m|,∵直线y=x+m与坐标轴的夹角为45°,∴OM=|m|,AN=|6+m|,∵S△POQ:S△P AQ=1:3,∴OM:AN=1:3,∴|m|:|6+m|=1:3,解得m=﹣或m=3;10.(2022•本溪二模)如图,抛物线y=﹣x2+bx+c经过A(3,0),C(﹣1,0)两点,与y轴交于点B.(1)求抛物线的解析式;(2)如图1,点M是线段AB上方抛物线上一动点,以AB为边作平行四边形ABMD,连接OM,若OM将平行四边形ABMD的面积分成为1:7的两部分,求点M的横坐标;【解答】解:(1)将(3,0),(﹣1,0)代入y=﹣x2+bx+c,得,解得,∴;(2)连接AM,设AB与OM的交点为N,作NH⊥OA于点H,则NH∥OB,∵A(3,0),B(0,4),设直线AB的解析式为y=kx+4,∴3k+4=0,∴k=﹣,∴y=﹣x+4,设点M,点N,∵S△BMN:S△ABM=1:4,∴S△BMN:S△ABM=1:4,∴BN:AN=1:3,∵NH∥OB,∴△ANH∽△AOB,∴,即,解得,∴,∴直线OM的解析式为y=4x,联立方程组,解得,∵点M在第一象限,∴,∴点M的横坐标为;11.(2022•新抚区模拟)如图,直线y=mx+n与抛物线y=﹣x2+bx+c交于A(﹣2,0),B(2,2)两点,直线AB与y轴交于点C.(1)求抛物线与直线AB的解析式;(2)点P在抛物线上,直线PC交x轴于Q,连接PB,当△PBC的面积是△ACQ面积的2倍时,求点P的坐标;【解答】解:(1)将A(﹣2,0),B(2,2)代入y=﹣x2+bx+c得,解得,∴抛物线解析式为y=﹣x2+x+5.将A(﹣2,0),B(2,2)代入y=mx+n得,解得,∴直线AB解析式为y=x+1.(2)①点P在x轴上方是,过点P作x轴平行线,交y轴于点F,交直线AB于点E,将x=0代入y=x+1得y=1,∴点C坐标为(0,1),∵A(﹣2,0),B(2,2),∴C为AB中点,即AC=BC,∴当△PBC的面积是△ACQ面积的2倍时,点P到BC的距离是点Q到AC的距离的2倍,∵PE∥OA,∴△EPC∽△AQC,∴=2,∵PF∥OA,∴△PFC∽△OQC,∴==2,∴点P纵坐标为FC+OC=3OC=3,将y=3代入y=﹣x2+x+5得3=﹣x2+x+5,解得x1=﹣,x2=+,∴点P坐标为(﹣,3)或(+,3).②点P在x轴下方,连接BQ,PK⊥x轴于点K,∵C为AB中点,∴S△AQC=S△BQC,∵△PBC的面积是△ACQ面积的2倍,∴S△PBQ=S△BQC,∴点Q为CP中点,又∵∠CQO=∠PQK,∠COQ=∠PKQ=90°,∴△OCQ≌△KPQ,∴CQ=KP,即点P纵坐标为﹣1,将y=﹣1代入y=﹣x2+x+5得﹣1=﹣x2+x+5,解得x1=,x2=,∴点P坐标为(,﹣1),(,﹣1),综上所述,点P坐标为(﹣,3)或(+,3)或(,﹣1)或(,﹣1),12.(2022•福建)在平面直角坐标系xOy中,已知抛物线y=ax2+bx经过A(4,0),B (1,4)两点.P是抛物线上一点,且在直线AB的上方.(1)求抛物线的解析式;(2)若△OAB面积是△P AB面积的2倍,求点P的坐标;【解答】解:(1)将A(4,0),B(1,4)代入y=ax2+bx,∴,解得.∴抛物线的解析式为:y=﹣x2+x.(2)设直线AB的解析式为:y=kx+t,将A(4,0),B(1,4)代入y=kx+t,∴,解得.∵A(4,0),B(1,4),∴S△OAB=×4×4=8,∴S△OAB=2S△P AB=8,即S△P AB=4,过点P作PM⊥x轴于点M,PM与AB交于点N,过点B作BE⊥PM于点E,如图,∴S△P AB=S△PNB+S△PNA=PN×BE+PN×AM=PN=4,∴PN=.设点P的横坐标为m,∴P(m,﹣m2+m)(1<m<4),N(m,﹣m+),∴PN=﹣m2+m﹣(﹣m+)=.解得m=2或m=3;∴P(2,)或(3,4).13.(2022•苏州二模)如图,已知抛物线y=x2+bx+c与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,OA=OC=3.(1)求抛物线的函数表达式;(2)若点P为直线AC下方抛物线上一点,连接BP并交AC于点Q,若AC分∠△ABP 的面积为1:2两部分,请求出点P的坐标;【解答】解:(1)∵OA=OC=3,∴A(﹣3,0),C(0,﹣3),将点A、C代入y=x2+bx+c,∴,解得,∴y=x2+2x﹣3;(2)令x2+2x﹣3=0,解得x=﹣3或x=1,∴B(1,0),过点P作PG⊥x轴交于点G,过点Q作QH⊥x轴交于点H,∴PG∥QH,设直线AC的解析式为y=kx+b,∴,解得,∴y=﹣x﹣3,设P(t,t2+2t﹣3),直线BP的解析式为y=k'x+b',∴,解得,∴y=(t+3)x﹣(t+3),联立方程组,解得,∴Q(,),∵AC分∠△ABP的面积为1:2两部分,∴=或=,当=时,=,解得t=﹣1或t=﹣2,∴P(﹣1,﹣4)或(﹣2,﹣3);当=时,=,此时t无解,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重庆市巴川中学初2019级九上数学专题训练三
——二次函数与面积问题
班级______姓名_______等级________
题型一:在抛物线上求一点,与已知三角形的面积相等(或成倍数).
例1、定义:如图1,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,点P在抛物线上(点P与A,B两点不重合),如果△ABP的三边满足AP2+BP2=AB2,则称点P为抛物线y=ax2+bx+c(a≠0)的勾股点.
(1)直接写出抛物线y=-x2+1的勾股点的坐标;
(2)如图2,已知抛物线C:y=ax2+bx(a≠0)与x轴交于A,B两点,点P(1,3)是抛物线C的勾股点,求抛物线C的函数表达式;
(3)在(2)的条件下,点Q在抛物线C上,求满足条件S△ABQ=S△ABP的点Q(异于点P)的坐标.
图1图2
练习1. 如图,已知抛物线322
++-=x x y 与x 轴交于点A 和点B ,与y 轴交于点C ,连接BC 交抛物线的对称轴于点E,D 是抛物线的顶点.
(1)直接写出点A 、B 、C 、D 的坐标,并求出S △ABD ; (2)求出直线BC 的解析式;
(3)若点P 在第一象限内的抛物线上,且S △ABP =4S △COE ,求P 点坐标.
题型二:已知二定点,在抛物线上求一动点,使三角形面积最大
例2.如图,已知抛物线y=ax2+bx-3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(-1,0),C点坐标是(-4,-3).
(1)求抛物线的解析式;
(2)若点E是位于直线AC的上方抛物线上的一动点,试求△ACE的最大面积及E点的坐标;(3)在(2)的条件下,在抛物线上是否存在异于点E的P点,使S△PAC=S△EAC,若存在,求出点P的坐标;若不存在,请说明理由.
变式:在抛物线上是否存在点P,使S△PAC=S△ABC,若存在,求出点P的坐标;若不存在,请说明理由.
A
B
C
x y
O
A
B
C
x y
O
[练习]1.如图, 已知抛物线y=
2
1x 2
+bx+c 与y 轴相交于C ,与x 轴相交于A 、B ,点A 的坐标为(2,0),点C 的坐标为(0,-1). (1)求抛物线的解析式;
(2)点E 是线段AC 上一动点,过点E 作DE△x 轴于点D ,连结DC ,当△DCE 的面积最大时,求点D 的坐标;
(3)在直线BC 上是否存在一点P ,使△ACP 为等腰三角形,若存在,求点P 的坐标,若不存在,说明理由.
2.在平面直角坐标系xoy中,规定:抛物线y=a(x-h)2+k的伴随直线为y=a(x-h)+k.例如:抛物线y=2(x+1)2-3的伴随直线为y=2(x+1)-3,即y=2x-1
(1)在上面规定下,抛物线y=(x+1)2-4的顶点为.伴随直线为;抛物线y=(x+1)2-4与其伴随直线的交点坐标为和;
(2)如图,顶点在第一象限的抛物线y=m(x-1)2-4m与其伴随直线相交于点A,B (点A在点B 的右侧)与x轴交于点C,D.
△若△CAB=90°求m的值;
27△如果点P(x,y)是直线BC上方抛物线的一个动点,△PBC的面积记为S,当S 取得最大值
4时,求m的值.
3.抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).
(1)求该抛物线所对应的函数解析式;
(2)该抛物线与直线y=0.6x2+3相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N,连结PC、PD,在点P运动过程中,△PCD 的面积是否存在最大值?若存在,求出这个最大值及P的坐标;若不存在,说明理由;
(3)在(2)的条件下,在抛物线上是否存在点Q,使S△QCD=S△PCD,若存在,求出点Q的坐标,若不存在,请说明理由.
4.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣5交y轴于点A,交x轴于点B(﹣5,0)和点C(1,0),过点A作AD△x轴交抛物线于点D.
(1)求此抛物线的表达式;
(2)点E是抛物线上一点,且点E关于x轴的对称点在直线AD上,求△EAD的面积;
(3)若点P是直线AB下方的抛物线上一动点,当点P运动到某一位置时,△ABP的面积最大,求出此时点P的坐标和△ABP的最大面积.
题型三:抛物线中,以面积为条件的几何问题
例3.如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A 在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.
(1)求抛物线的函数表达式.
(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?
(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.
练习3:1.如图,二次函数y=﹣x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,OB=OC=3,直线l是抛物线的对称轴,E是抛物线的顶点.
(1)求b,c的值;
(2)如图1,连BE,线段OC上的点F关于直线l的对称点F′恰好在线段BE上,求点F的坐标;
(3)如图2,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M、与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?若存在,求出点Q的坐标;若不存在,说明理由.
2.如图,已知二次函数y=ax2+bx+c的图象的顶点坐标为(2,﹣9),该函数的图象与y轴交于点A(0,﹣5),与x轴交于点B,C
(1)求该二次函数的解析式;
(2)求点B的坐标;
(3)过点A作AD△x轴,交二次函数的图象于点D,M为二次函数图象上一点,设点M的横坐标为m,且0<m≤5,过点M作MN△y轴,交AD于点N,连接AM,MD,设△AMD的面积为s.
△求s关于m的函数解析式;
△判断出当点M在何位置时,△AMD的面积最大,并求出最大面积.
3.二次函数y=ax2+bx+6(a≠0)的图象交y轴于C点,交x轴于A,B两点(点A在点B的左侧),点A、点B的横坐标是一元二次方程x2﹣4x﹣12=0的两个根.
(1)求出点A、点B的坐标及该二次函数表达式.
(2)如图2,连接AC、BC,点Q是线段OB上一个动点(点Q不与点O、B重合),过点Q 作QD△AC交于BC点D,设Q点坐标(m,0),当△CDQ面积S最大时,求m的值.
(3)如图3,线段MN是直线y=x上的动线段(点M在点N左侧),且MN=,若M点的横坐标为n,过点M作x轴的垂线与x轴交于点P,过点N作x轴的垂线与抛物线交于点Q.以点P,M,Q,N为顶点的四边形能否为平行四边形?若能,请求出n的值;若不能,请说明理由.
4.如图,已知点C(0,3),抛物线的顶点为A(2,0),与y轴交于点B(0,1),F在抛物线的对称轴上,且纵坐标为1.点P是抛物线上的一个动点,过点P作PM△x轴于点M,交直线CF 于点H,设点P的横坐标为m.
(1)求抛物线的解析式;
(2)若点P在直线CF下方的抛物线上,用含m的代数式表示线段PH的长,并求出线段PH 的最大值及此时点P的坐标;
(3)当PF﹣PM=1时,若将“使△PCF面积为2”的点P记作“巧点”,则存在多个“巧点”,且使△PCF 的周长最小的点P也是一个“巧点”,请直接写出所有“巧点”的个数,并求出△PCF的周长最小时“巧点”的坐标.。

相关文档
最新文档