高一数学必修4模块训练3(答案版)
高一数学训练习题参考答案

数学必修(4)同步练习参考答案§1.1任意角和弧度制一、CDDCBA二、7.{x|x=k•3600+1800, k∈Z}, {x|x=k•1800+450,k∈Z} ; 8.-345°; 9. ;10.第二或第四象限, 第一或第二象限或终边在y轴的正半轴上三、11.{ α|α=k•3600+1200或α=k•3600+3000, k∈Z } -60° 120°12.由7θ=θ+k•360°,得θ=k•60°(k∈Z)∴θ=60°,120°,180°,240°,300°13.∵l=20-2r,∴S= lr= (20-2r)•r=-r2+10r=-(r-5)2+25∴当半径r=5 cm时,扇形的面积最大为25 cm2,此时,α= = =2(rad)14.A点2分钟转过2θ,且π<2θ<π,14分钟后回到原位,∴14θ=2kπ,θ= ,且 <θ< π,∴θ= π或π§1.2.1 任意角的三角函数一、CCDBCD二、7.一、三; 8. 0 ; 9. 或π; 10.二、四三、11.[2kπ, 2kπ,+ ( k∈Z)12.13.∵sinθ= - ,∴角θ终边与单位圆的交点(cosθ,sinθ)=( ,- )又∵P(-2, y)是角θ终边上一点, ∴cosθ<0,∴cosθ= - .14.略.§1.2.2同角三角函数的基本关系式一、BCDBBA二、7. ; 8.0; 9. ; 10.三、11.12.原式= - ==sinx+cosx13.左边=tan2θ-sin2θ= -sin2θ=sin2θ• =sin2θ• =sin2θ•tan2θ=右边14.(1)当m=0时, α=kπ, k∈Z ,cosα=±1, tanα=0(2)当|m|=1时, α=kπ+ , k∈Z ,cosα=0, tanα=0不存在(3)当0<|m|<1时,若α在第一或第四象限,则cosα= tanα= ;若α在第二或第三象限,则cosα=- tanα=- .§1.3 三角函数的诱导公式一、BBCCBC二、7. ; 8.1 ; 9.1 ; 10.三、11. 112. f(θ)= = =cosθ-1∴f( )=cos -1=-13.∵cos(α+β)=1, ∴α+β=2kπ, k∈Z. ∴cos(2α+β)= cos(α+α+β)= cos(π+α)=- cosα= - .14. 由已知条件得:sinα= sinβ①, cos α=- cosβ②,两式推出sinα= ,因为α∈(- , ),所以α= 或- ;回代②,注意到β∈(0,π),均解出β= ,于是存在α= ,β= 或α=- ,β= ,使两等式同时成立。
郑州市2009-2010高一下期期末数学试题(必修3+必修4)(含答案)

7 9 8 4 4 6 4 7 93 郑州市2009-2010高一下期期末数学试题第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在ABC ∆中,D 、E 、F 分别为三边AB 、BC 、CA 的中点,则-等于A .B .C .D .2.函数52cos +=x y 是A .最小正周期为π的偶函数B .最小正周期为π的奇函数C .最小正周期为π2的偶函数D .最小正周期为π2的奇函数3.计算机执行右面的程序段后,输出的结果是A .6 ,6B .6 ,10C .4 ,10D .10 ,64.下图是2010年元旦举行的校园十佳歌手大赛上,七位评委为某位选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数为A .84B .85C .86D .87 5.某单位有职工160人,其中业务员有104人,管理人员32人,后勤服务人员24人,现用分层抽样法从中抽取一容量为20的样本,则抽取管理人员A .3人B .4人C .7人D .12人6.将两个数25=a ,9=b 交换,使9=a ,25=b ,下面语句正确一组是A .B .C .D .7.840和1764的最大公约数是A .84B .12C .168D .25278.在一次教师联欢会上,到会的女教师比男教师多12人,从这些教师中随机挑选一人表演 节目,若选到男教师的概率为209,则参加联欢会的教师共有 A .54人 B .66人 C .120人 D .140人a =b b = a b = a a = b t = b b = a a = t a =c c = b b = a9.若把一个函数的图象向左平移3π个单位,再向下平移2个单位得到函数x y cos =图象 的解析式为A .2)3cos(++=πx y B .2)3cos(--=πx y C .2)3cos(-+=πx y D .2)3cos(+-=πx y 10.下列各组向量中:①)2,1(1-=e ,)7,5(2=e ;②)5,3(1-=e ,)10,6(2-=e ;③)3,2(1-=e ,)43,21(2-=e .其中能作为表示它们所在平面内所有向量的基底的是 A .① B .①③ C .②③ D .①②11.若方程a x x =-cos sin 有解,则实数a 的取值范围是A .11≤≤-aB .12≤<-aC .22≤≤-aD .2||>a12.有5条长度分别为1 ,3,5,7,9的线段,从中任意取出3条,则所取3条线段可构成三角 形的概率是A .53B .103C .52D .107 第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.0300sin 的值是 .14.在长为10cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则正方形的面积介于36cm 2与81cm 2之间的概率是 .15.已知4||=a ,2||=b ,2|2|=-b a ,与的夹角为θ,则θcos 等于 . 16.定义运算b a *为:⎩⎨⎧>≤=*)(,)(,b a b b a a b a ,例如,121=*,则函数x x x f cos sin )(*= 的值域为 .三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知角θ的终边上有一点),3(m P -,且m 42si n =θ,试求θcos 与θtan 的值.。
高一数学必修4模块训练13答案

高一数学必修4模块训练13一.选择题:1.下列命题正确的是A.第一象限角是锐角B.钝角是第二象限角C.终边相同的角一定相等D.不相等的角,它们终边必不相同2.如果1cos()2A π+=-,那么sin()2A π+= A.12 B.12 C.12 D.123.函数2005sin(2004)2y x π=-是 A.奇函数 B.偶函数 C.非奇非偶函数 D.既是奇函数又是偶函数4.给出命题(1)零向量的长度为零,方向是任意的.(2)若a ,b 都是单位向量,则a =b .(3)向量AB 与向量BA 相等.(4)若非零向量AB 与CD 是共线向量,则A ,B ,C ,D 四点共线. 以上命题中,正确命题序号是A.(1)B.(2)C.(1)和(3)D.(1)和(4)5.如果点(sin 2P θ,cos 2)θ位于第三象限,那么角θ所在象限是A.第一象限B.第二象限C.第三象限D.第四象限6.若α是第一象限角,则sin cos αα+的值与1的大小关系是A.sin cos 1αα+>B.sin cos 1αα+=C.sin cos 1αα+<D.不能确定7.在△ABC 中,若sin 2cos sin C A B =,则此三角形必是A.等腰三角形B.正三角形C.直角三角形D.等腰直角三角形8.如图,在△ABC 中,AD 、BE 、CF 分别是BC 、CA 、AB 上的中线,它们交于点G ,则下列各等式中不正确的是 A.23BG BE =B.2CG GF =C.12DG AG =D.121332DA FC BC +=二.填空题:9.设扇形的周长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是 .10.已知(3a =,1),(sin b α=,cos )α,且a ∥b ,则4sin 2cos 5cos 3sin αααα-+= . 三.解答题:11、设平面内的向量(1,7)OA =,(5,1)OB =,(2,1)OM =,点P 是直线OM 上的一个动点,且8PA PB =-,求OP 的坐标及APB ∠的余弦值.12. 设两个非零向量1e 和2e 不共线.(1) 如果=1e +2e ,BC =128e +2e ,CD =133e -2e ,求证:A 、B 、D 三点共线;(2) 若||1e =2,||2e =3,1e 与2e 的夹角为60,是否存在实数m ,使得m 1e 2e +与1e -2e 垂直?并说明理由.参考答案一、选择题:BBBABAAC二、填空题: 9. 2 10. 57三、解答题:11、解:设(,)OP x y =. ∵点P 在直线OM 上, ∴OP 与OM 共线,而OM (2,1)=,∴20x y -=,即2x y =,有(2,)OP y y =.∵(12,7)PA OA OP y y =-=--,(52,1)PB OB OP y y =-=--,∴(12)(52)(7)(1)PA PB y y y y =--+--, 即252012PA PB y y =-+. 又8PA PB =-, ∴2520128y y -+=-,所以2y =,4x =,此时(4,2)OP =. (3,5),(1,1)PA PB =-=-.于是34,2,8PA PB PA PB ===-.∴cos 34PA PB APB PA PB ∠===⋅.12、证明:(1) AD =AB +BC +CD =(1e +2e )+(128e +2e )+(133e -2e )=6(1e +2e )=6∴ //AD AB 且AD 与AB 有共同起点∴ A 、B 、D 三点共线(2)假设存在实数m ,使得m 1e 2e +与1e -2e 垂直,则(m 1e 2e +)⋅(1e -2e )=0∴221122(1)0me m e e e +-⋅-=||1e =2,||2e =3,1e 与2e 的夹角为60∴ 22114e e ==,22229e e ==,1212cos 23cos603e e e e θ⋅==⨯⨯=∴ 43(1)90m m +--= ∴ 6m =故存在实数6m =,使得m 1e 2e +与1e -2e 垂直.关于数学名言警句大全1、数学家本质上是个着迷者,不迷就没有数学。
河南省郑州市2008-2009高一下期期末数学试题(必修3+必修4)(含答案)(word版)

茎 叶 7 68 4 4 6 4 79 5 郑州市2008-2009高一下期期末数学试题第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知角α的终边经过点)1,3(,则角α的最小正值是A .π61B .π31C .π65D .π322.将十进制下的数72转化为八进制下的数为A .)8(011B .)8(101C .)8(110D .)8(111 3.已知平面向量)1,3(=,)3,(-=x ,且⊥,则=xA .3-B .3C .1-D .14.若x x f 2cos )(cos =,则)15(sin 0f 等于 A .23- B .23 C .21 D .21- 5.右图的算法流程图的输出结果是A .5B .7C .9D .11 6.在样本的频率分布直方图中,一共有n 个小矩形,若中间某一个小矩形的面积等于其余1-n 个小矩形面积和的41,且样本容量为160,则中间该组的频数是 A .32 B .20 C .40 D .257.如图所示,墙上挂有一边长为a 的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,半径为2a 的扇形,某人向此板投镖, 假设每次都能击中木板,且击中木板上每个点的可能性都一样,则他击中阴影部分的概率是A .41π- B .4π C .81π- D .与a 的取值有关 8.右图是某次歌唱比赛中,七位评委为某位选手打出分数(百分制) 的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数 和方差分别为A .84,4.84B .84,1.6C .85,1.6D .85,49.要得到函数)22cos(3π-=x y 的图象,可以将函数)42sin(3π-=x y 的图象沿x 轴 A .向右平移4π个单位 B .向左平移4π个单位 C .向右平移8π个单位 D .向左平移8π个单位 10.质地、形状、大小完全相同的3个白球和2个黑球排成一列,那么恰有2个白球相邻的概率为A .41 B .31 C .21 D .53 11.若2009tan 1tan 1=-+αα,则=++12tan 2cos 1αα A .2008 B .2009 C .2010 D .201112.已知0||2||≠=,且关于x 的方程0||2=⋅++x x 有实根,则与的夹角的 取值范围是A .]6,0[πB .],3[ππC .]32,3[ππD .],6[ππ 第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.假设要抽查某种品牌的850颗种子的发芽率,抽取60粒进行实验.利用随机数表抽取种子时,先将850颗种子按001,002,…,850进行编号,如果从随机数表第9行第8列的数4开始向右读,请你依次写出最先检测的4颗种子的编号分别是429,786, ,078.(在横线上填上所缺的种子编号)下面摘取了随机数表第7行至第9行84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 5414.已知向量AB 与单位向量e 同向,且)2,1(-A ,)232,5(--B ,则e 的坐标为 .15.用秦九韶算法计算多项式1876543)(23456++++++=x x x x x x x f ,当4.0=x ,求)(x f 的值时,需要运算的乘法和加法总次数为 次.16.给出下列命题:①存在实数x ,使23cos sin =+x x ;②若α,β是第一象限角,且。
(完整版)高一数学必修4期末试卷及答案,推荐文档

.
2
14.下面有五个命题:
①函数 y=sin4x-cos4x 的最小正周期是 .
②终边在 y 轴上的角的集合是{a|a= k , k Z }. 2
③在同一坐标系中,函数 y=sinx 的图象和函数 y=x 的图象有三个公共点.
④把函数 y 3sin(2x ) 的图像向右平移 得到 y 3sin 2x 的图像.
13
B 头头 头头头头头头 /wxc/
头头头头 头头头 wxckt@
头头 头头头头头头
/wxc/
头头头头 头头头 wxckt@
5 13
C
头头 头头头头头头
/wxc/
A.互相垂直
B.同向平行
C.反向平行
D.既不平行也不垂直
二、填空题(每小题 4 分,共 16 分)
11.
3 sin 70 2 cos2 10
12.已知函数
f
(x)
2 sin
x
5
的图象与直线
y
1的交点中最近的两个交点的距离为
3
,则函数
f(x)Biblioteka 的最小正周期为。13.已知函数 f (x) sin(x ) cos(x ) 是偶函数,且 [0, ] ,则 的值 为
84
84
9.
设函数
f (x)
sin
x
3
(x
R)
,则
f (x) =(
)
A.在区间
2 3
,7 6
上是增函数
B.在区间
,
2
上是减函数
C.在区间
8
, 4
上是增函数
D.在区间
3
,5 6
上是减函数
10.设 D、E、F 分别是△ABC 的三边 BC、CA、AB 上的点,且 DC 2BD, CE 2EA, AF 2FB, 则 AD BE CF 与 BC ( )
2021-2022学年新教材高中数学 模块综合训练课后练习(含解析)新人教B版选择性必修第一册

模块综合训练一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.“ab=4”是“直线2x+ay-1=0与直线bx+2y-2=0平行”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件两直线平行,∴斜率相等.即可得ab=4,又因为不能重合,当a=1,b=4时,满足ab=4,但是重合,故“ab=4”是“直线2x+ay-1=0与直线bx+2y-2=0平行”的必要不充分条件.2.如图,四面体S-ABC 中,D 为BC 中点,点E 在AD 上,AD=3AE ,则SE ⃗⃗⃗⃗⃗ =( ) A.13SA⃗⃗⃗⃗⃗ +12SB ⃗⃗⃗⃗⃗ +13SC ⃗⃗⃗⃗ B.23SA ⃗⃗⃗⃗⃗ +16SB ⃗⃗⃗⃗⃗ +16SC ⃗⃗⃗⃗ C.12SA ⃗⃗⃗⃗⃗ +14SB ⃗⃗⃗⃗⃗ +14SC ⃗⃗⃗⃗ D.12SA ⃗⃗⃗⃗⃗ +13SB ⃗⃗⃗⃗⃗ +16SC ⃗⃗⃗⃗S-ABC 中,D 为BC 中点,点E 在AD 上,AD=3AE ,∴SE ⃗⃗⃗⃗⃗ =SA ⃗⃗⃗⃗⃗ +13AD ⃗⃗⃗⃗⃗ =SA⃗⃗⃗⃗⃗ +13×12(AC ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ )=SA ⃗⃗⃗⃗⃗ +16AC ⃗⃗⃗⃗⃗ +16AB ⃗⃗⃗⃗⃗ =SA ⃗⃗⃗⃗⃗ +16(SC ⃗⃗⃗⃗ −SA ⃗⃗⃗⃗⃗ )+16(SB ⃗⃗⃗⃗⃗ −SA ⃗⃗⃗⃗⃗ )=23SA ⃗⃗⃗⃗⃗ +16SB ⃗⃗⃗⃗⃗ +16SC ⃗⃗⃗⃗ .3.圆P :(x+3)2+(y-4)2=1关于直线x+y-2=0对称的圆Q 的标准方程是( ) A.(x+2)2+(y-1)2=1 B.(x+2)2+(y-5)2=1 C.(x-2)2+(y+5)2=1 D.(x-4)2+(y+3)2=1P :(x+3)2+(y-4)2=1,圆心(-3,4),半径1,关于直线x+y-2=0对称的圆半径不变,设对称圆的圆心为(a ,b ),则{a -32+b+42-2=0,b -4a+3=1,解得{a =-2,b =5,所求圆Q 的标准方程为(x+2)2+(y-5)2=1.4.(2021新高考Ⅰ,5)已知F 1,F 2是椭圆C :x 29+y 24=1的两个焦点,点M 在C 上,则|MF 1|·|MF 2|的最大值为( )A.13B.12C.9D.6|MF 1|+|MF 2|=2a=6,则√|MF 1|·|MF 2|≤|MF 1|+|MF 2|2=3, 则|MF 1|·|MF 2|≤9,当且仅当|MF 1|=|MF 2|=3时,等号成立. 故|MF 1|·|MF 2|的最大值为9.故选C .5.坐标原点O(0,0)在动直线mx+ny-2m-2n=0上的投影为点P,若点Q(-1,-1),那么|PQ|的取值范围为()A.[√2,3√2]B.[√2,2√2]C.[2√2,3√2]D.[1,3√2]mx+ny-2m-2n=0,可化为m(x-2)+n(y-2)=0,故直线过定点M(2,2),坐标原点O(0,0)在动直线mx+ny-2m-2n=0上的投影为点P,故∠OPM=90°,所以P 在以OM为直径的圆上,圆的圆心N为(1,1),半径为√2,根据点与圆的关系,|NQ|=√(1+1)2+(1+1)2=2√2,故√2=2√2−√2≤|PQ|≤√2+2√2=3√2.6.正确使用远光灯对于夜间行车很重要.已知某家用汽车远光灯(如图)的纵断面是抛物线的一部分,光源在抛物线的焦点处,若灯口直径是20 cm,灯深10 cm,则光源到反光镜顶点的距离是()A.2.5 cmB.3.5 cmC.4.5 cmD.5.5 cmxOy ,如图所示,设对应抛物线的标准方程为y 2=2px ,由题意知抛物线过点(10,10),得100=2p×10,得p=5,则p 2=2.5,即焦点坐标为(2.5,0), 则光源到反光镜顶点的距离是2.5cm .7.如图,四棱锥S-ABCD 中,底面是正方形,各棱长都相等,记直线SA 与直线AD 所成角为α,直线SA 与平面ABCD 所成角为β,二面角S-AB-C 的平面角为γ,则( ) A.α>β>γ B.γ>α>β C.α>γ>β D.γ>β>αAC ,BD ,交于点O ,连接OS ,则OA ,OB ,OS 两两垂直,以O 为原点,OA 为x 轴,OB 为y 轴,OS 为z 轴,建立空间直角坐标系,设|AB|=2,则S (0,0,√2),A (√2,0,0),D (0,-√2,0),B (0,√2,0),SA ⃗⃗⃗⃗⃗ =(√2,0,-√2),AD ⃗⃗⃗⃗⃗ =(-√2,-√2,0),SB ⃗⃗⃗⃗⃗ =(0,√2,-√2),cos α=|SA ⃗⃗⃗⃗⃗ ·AD⃗⃗⃗⃗⃗⃗ ||SA ⃗⃗⃗⃗⃗ |·|AD⃗⃗⃗⃗⃗⃗ |=√4×√4=12,平面ABCD 的法向量n =(0,0,1),cos β=|n ·SA ⃗⃗⃗⃗⃗||n |·|SA ⃗⃗⃗⃗⃗ |=√2√4=√22,设平面SAB 的法向量m =(x ,y ,z ),则{m ·SA ⃗⃗⃗⃗⃗=√2x -√2z =0,m ·SB ⃗⃗⃗⃗⃗=√2y -√2z =0,取x=1,得m =(1,1,1),cos γ=|m ·n ||m |·|n |=√3=√33, ∵cos α<cos γ<cos β,∴α>γ>β.8.设F 1,F 2是双曲线C :x 2a 2−y 2b 2=1(a>0,b>0)的左、右焦点,O 是坐标原点,过F 2作C 的一条渐近线的垂线,垂足为P.若|PF 1|=√6|OP|,则C 的离心率为( ) A.√5 B.√3 C.2 D.√2|PF 2|=b ,|OF 2|=c ,∴|PO|=a.在Rt △POF 2中,cos ∠PF 2O=|PF 2||OF 2|=bc ,∵在△PF 1F 2中,cos ∠PF 2F 1=|PF 2|2+|F 1F 2|2-|PF 1|22|PF 2||F 1F 2|=bc ,∴b 2+4c 2-(√6a )22b ·2c=bc ⇒c2=3a 2,∴e=√3.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对得3分.9.(2021新高考Ⅰ,11)已知点P 在圆(x-5)2+(y-5)2=16上,点A (4,0),B (0,2),则( ) A.点P 到直线AB 的距离小于10 B.点P 到直线AB 的距离大于2 C.当∠PBA 最小时,|PB|=3√2 D.当∠PBA 最大时,|PB|=3√2,记圆心为M ,半径为r ,则M (5,5),r=4.由条件得,直线AB 的方程为x 4+y2=1,整理得x+2y-4=0,过点M 作MN 垂直于直线AB ,垂足为N ,直线MN 与圆M 分别交于点P 1,P 2,圆心M (5,5)到直线AB 的距离|MN|=√12+22=√5,于是点P 到直线AB 的距离最小值为|P 2N|=|MN|-r=√5-4,最大值为|P 1N|=|MN|+r=√5+4. 又√5-4<2,√5+4<10,故A 正确,B 错误; 过点B 分别作圆的两条切线BP 3,BP 4,切点分别为点P 3,P 4,则当点P 在P 3处时∠PBA 最大,在P 4处时∠PBA 最小.又|BP 3|=|BP 4|=√|BM |2-r 2=√52+(5-2)2-42=3√2,故C,D 正确.故选A,C,D .10.若a =(-1,λ,-2),b =(2,-1,1),a 与b 的夹角为120°,则λ的值为( ) A.17 B.-17 C.-1 D.1a =(-1,λ,-2),b =(2,-1,1),a 与b 的夹角为120°,∴cos120°=a ·b |a |·|b |=√5+λ2·√6,解得λ=-1或λ=17.11.已知P 是椭圆C :x 26+y 2=1上的动点,Q 是圆D :(x+1)2+y 2=15上的动点,则( ) A.C 的焦距为√5B.C 的离心率为√306C.圆D 在C 的内部D.|PQ|的最小值为2√55c=√6-1=√5,则C的焦距为2√5,e=√5√6=√306.设P(x,y)(-√6≤x≤√6),则|PD|2=(x+1)2+y2=(x+1)2+1-x26=56(x+65)2+45≥45>15,所以圆D在C的内部,且|PQ|的最小值为√45−√15=√55.12.已知直线l过点P(1,0,-1),平行于向量a=(2,1,1),平面α过直线l与点M(1,2,3),则平面α的法向量可能是()A.(1,-4,2)B.(14,-1,12)C.(-14,1,-12) D.(0,-1,1),所研究平面的法向量垂直于向量a=(2,1,1)和向量PM⃗⃗⃗⃗⃗⃗ ,而PM⃗⃗⃗⃗⃗⃗ =(1,2,3)-(1,0,-1)=(0,2,4),选项A,(2,1,1)·(1,-4,2)=0,(0,2,4)·(1,-4,2)=0满足垂直,故正确;选项B,(2,1,1)·(14,-1,12)=0,(0,2,4)·(14,-1,12)=0满足垂直,故正确;选项C,(2,1,1)·(-14,1,-12)=0,(0,2,4)·(-14,1,-12)=0满足垂直,故正确;选项D,(2,1,1)·(0,-1,1)=0,但(0,2,4)·(0,-1,1)≠0,故错误.三、填空题:本题共4小题,每小题5分,共20分.13.过点(1,√2)的直线l将圆x2+y2-4x=0分成两段弧,当劣弧所对圆心角最小时,直线l 的斜率k= .(1,√2)的直线l将圆(x-2)2+y2=4分成两段弧,当劣弧所对的圆心角最小时,就是弦长最小,就是与圆心(2,0)和点(1,√2)的连线垂直的直线,连线的斜率是√2-01-2=-√2,直线l的斜率k=√22.14.(2021新高考Ⅰ,14)已知O为坐标原点,抛物线C:y2=2px(p>0)的焦点为F,P为C上一点,PF与x轴垂直,Q为x轴上一点,且PQ⊥OP.若|FQ|=6,则C的准线方程为.x=-32PF⊥x轴,∴x P=x F=p2,将x P=p2代入y2=2px,得y=±p.不妨设点P在x轴的上方,则P(p2,p),即|PF|=p.如图,由条件得,△PFO∽△QFP,∴|OF||PF|=|PF||QF|,即p2p=p6,解得p=3.故C的准线方程为x=-32.15.如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AA1=AC=BC=1,则异面直线BC1与A1B1所成角为;二面角A-BC1-C的余弦值是.√33C 为原点建立如图空间直角坐标系,则A (0,1,0),B (1,0,0),C 1(0,0,1),A 1(0,1,1),B 1(1,0,1),BC 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,1),A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,-1,0),AB⃗⃗⃗⃗⃗ =(1,-1,0).由cos <BC 1⃗⃗⃗⃗⃗⃗⃗ ,A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ >=|√2×√2|=12,故异面直线BC 1与A 1B 1所成角为π3, 设平面ABC 1的一个法向量为m =(a ,b ,c ),由{m ·BC 1⃗⃗⃗⃗⃗⃗⃗ =-a +c =0,m ·AB⃗⃗⃗⃗⃗ =a -b =0,设a=1,得m =(1,1,1),平面BC 1C 的一个法向量n =(0,1,0),cos <m ,n >=√3=√33.16.已知抛物线的方程为x 2=2py (p>0),过抛物线的焦点,且斜率为1的直线与抛物线交于A ,B 两点,|AB|=8,则p= ,M 为抛物线弧AOB⏜上的动点,△AMB 面积的最大值是 .4√2抛物线的方程为x 2=2py (p>0),过抛物线的焦点F ,且斜率为1的直线与抛物线交于A ,B 两点,故直线AB 的方程为y-p 2=x-0,即y=x+p2,且直线AB 的倾斜角为45°. 代入抛物线的方程x 2=2py ,可得x 2-2px-p 2=0.设A ,B 两点的横坐标分别为m ,n ,m<n ,由根与系数的关系可得m+n=2p ,mn=-p 2.∵|AB|=|AF|+|BF|=(yA +p2)+y B+p2=(m+p2)+p2+(n+p2)+p2=8=m+n+2p=4p=8,∴p=2,故抛物线的方程为x2=4y,直线AB为y=x+1.设与直线AB平行且与抛物线相切的直线方程为y=x+m,代入抛物线方程,得x2-4x-4m=0.由Δ=42+16m=0,得m=-1.与直线AB平行且与抛物线相切的直线方程为y=x-1,两直线间的距离为d=√2=√2,∴△AMB面积的最大值为12·|AB|·d=12×8×√2=4√2.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)求分别满足下列条件的直线l的方程.(1)已知点P(2,1),l过点A(1,3),P到l距离为1;(2)l过点P(2,1)且在x轴,y轴上截距的绝对值相等.当l斜率不存在时,l的方程为x=1,满足条件.当l斜率存在时,设l:y-3=k(x-1),即kx-y+3-k=0,由d=√k2+1=1,得k=-34,即l:3x+4y-15=0.故直线l的方程为x=1或3x+4y-15=0.(2)当直线过原点时,直线的斜率为1-02-0=12,直线l的方程为x-2y=0.当直线截距相等时,设为xa +ya=1,代入(2,1),则a=3,即x+y-3=0.当直线截距互为相反数时,设为xa +y-a=1代入(2,1),则a=1,即x-y-1=0.综上,要求的直线l 的方程为x-2y=0或x+y-3=0或x-y-1=0. 18.(12分)(2021新高考Ⅰ,21)在平面直角坐标系xOy 中,已知点F 1(-√17,0),F 2(√17,0),点M 满足|MF 1|-|MF 2|=2.记M 的轨迹为C.(1)求C 的方程;(2)设点T 在直线x=12上,过T 的两条直线分别交C 于A ,B 两点和P ,Q 两点,且|TA|·|TB|=|TP|·|TQ|,求直线AB 的斜率与直线PQ 的斜率之和.∵|MF 1|-|MF 2|=2,且F 1(-√17,0),F 2(√17,0),∴点M的轨迹为双曲线的右支,且满足{2a =2,c =√17,c 2=a 2+b 2,∴{a 2=1,b 2=16,c 2=17.∴C 的方程为x 2-y 216=1(x ≥1).(2)设T (12,m),显然直线AB 的斜率与直线PQ 的斜率都存在.设直线AB 的方程为y=k 1(x -12)+m ,A (x 1,y 1),B (x 2,y 2), 由{y =k 1(x -12)+m ,16x 2-y 2=16,得16x 2-k 12(x 2-x +14)+2k 1m (x -12)+m2=16,即(16-k 12)x 2+(k 12-2k 1m )x-14k 12+k 1m-m 2-16=0. ∴|TA|·|TB|=(1+k 12)x 1-12x 2-12=(1+k 12)x 1x 2-12(x 1+x 2)+14=(1+k 12)k 1m -14k 12-m 2-1616-k 12−12·2k 1m -k 1216-k 12+14=(1+k 12)-m 2-1216-k 12=(1+k 12)·m 2+12k 12-16.设k PQ =k 2,同理可得|TP|·|TQ|=(1+k 22)·m 2+12k 22-16. ∵|TA|·|TB|=|TP|·|TQ|,∴(1+k 12)·m 2+12k 12-16=(1+k 22)·m 2+12k 22-16. ∴k 22-16k 12=k 12-16k 22.∴k 12=k 22.∵k 1≠k 2,∴k 1=-k 2. ∴k 1+k 2=0.19.(12分)已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)过点A (-2,0),点B 为其上顶点,且直线AB 的斜率为√32.(1)求椭圆C 的方程;(2)设P 为第四象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积是定值.,设直线AB :y-0=√32(x+2),令x=0,则y=√3,于是B (0,√3), 所以a=2,b=√3, 故椭圆C 的方程为x 24+y 23=1.(2)设P (x 0,y 0)(x 0>0,y 0<0),且3x 02+4y 02=12,又A (-2,0),B (0,√3),所以直线AP :y -0y 0-0=x+2x 0+2,令x=0,y M =2y 0x 0+2,则|BM|=√3-y M =√3−2y 0x 0+2=√3x 0+2√3-2y 0x 0+2. 直线BP :√3y -√3=x -0x 0-0,令y=0,x N =√3x 0y -√3,则|AN|=2+x N=2+√3x0y-√3=0√3-√3x0y-√3.所以四边形ABNM的面积为S=12|BM|·|AN|=1 2×√3x0+2√3-2y0x0+2×0√3-√3x0y-√3=0202√3x000√3y02(x y-√3x+2y-2√3)=√3(00√3x00√3)2(λy-√3x+2y-2√3)=2√3,所以四边形ABNM的面积为定值2√3.20.(12分)如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=120°,PA=PC,PB=PD,AC∩BD=O.(1)证明:PO⊥平面ABCD;(2)若PA与平面ABCD所成的角为30°,求二面角B-PC-D的余弦值.四边形ABCD是菱形,∴O为AC,BD的中点.又PA=PC,PB=PD,∴PO⊥AC,PO⊥BD.∵AC∩BD=O,且AC,BD⊂平面ABCD,∴PO⊥平面ABCD.ABCD的边长为2t(t>0).∵∠ABC=120°,∴∠BAD=60°,∴OA=√3t.由(1)知PO ⊥平面ABCD ,∴PA 与平面ABCD 所成的角为∠PAO=30°,得到PO=t ,建立如图所示的空间直角坐标系,则B (0,t ,0),C (-√3t ,0,0),P (0,0,t ),D (0,-t ,0),得到BP ⃗⃗⃗⃗⃗ =(0,-t ,t ),CP⃗⃗⃗⃗⃗ =(√3t ,0,t ). 设平面PBC 的法向量n 1=(x 1,y 1,z 1),平面PCD 的法向量n 2=(x 2,y 2,z 2).则{n 1·BP ⃗⃗⃗⃗⃗=0,n 1·CP ⃗⃗⃗⃗⃗=0,即{-ty 1+tz 1=0,√3tx 1+tz 1=0.令x=1,则y=z=-√3,得到n 1=(1,-√3,-√3). 同理可得n 2=(1,√3,-√3),所以|cos <n 1,n 2>|=|n 1·n 2||n 1||n 2|=17.因为二面角B-PC-D 为钝二面角,则余弦值为-17.21.(12分)在平面直角坐标系xOy 中,曲线Γ:y=x 2-mx+2m (m ∈R )与x 轴交于不同的两点A ,B ,曲线Γ与y 轴交于点C.(1)是否存在以AB 为直径的圆过点C ?若存在,求出该圆的方程;若不存在,请说明理由. (2)求证:过A ,B ,C 三点的圆过定点,并求出该定点的坐标.由曲线Γ:y=x 2-mx+2m (m ∈R ),令y=0,得x 2-mx+2m=0. 设A (x 1,0),B (x 2,0),则可得Δ=m 2-8m>0,x 1+x 2=m ,x 1x 2=2m. 令x=0,得y=2m ,即C (0,2m ).若存在以AB 为直径的圆过点C ,则AC⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =0,得x 1x 2+4m 2=0,即2m+4m 2=0, 所以m=0或m=-12.由Δ>0,得m<0或m>8,所以m=-12,此时C (0,-1),AB 的中点M (-14,0)即圆心,半径r=|CM|=√174.故所求圆的方程为(x +14)2+y 2=1716. (2)设过A ,B ,C 的圆P 的方程为(x-a )2+(y-b )2=r 2满足{(x 1-a )2+b 2=r 2,(x 2-a )2+b 2=r 2,a 2+(2m -b )2=r 2,x 1x 2=2m ,x 1+x 2=m⇒{ a =m2,r 2=5m 24-m +14,b =m +12,代入P 得(x -m 2)2+y-m-122=5m 24-m+14,展开得(-x-2y+2)m+x 2+y 2-y=0, 当{-x -2y +2=0,x 2+y 2-y =0,即{x =0,y =1或{x =25,y =45时方程恒成立, ∴圆P 方程恒过定点(0,1)或(25,45).22.(12分)某高速公路隧道设计为单向三车道,每条车道宽4米,要求通行车辆限高5米,隧道全长1.5千米,隧道的断面轮廓线近似地看成半个椭圆形状(如图所示).(1)若最大拱高h 为6米,则隧道设计的拱宽l 至少是多少米?(结果取整数)(2)如何设计拱高h 和拱宽l ,才能使半个椭圆形隧道的土方工程量最小?(结果取整数) 参考数据:√11≈3.3,椭圆的面积公式为S=πab ,其中a ,b 分别为椭圆的长半轴和短半轴长.建立直角坐标系xOy如图所示,则点P(6,5)在椭圆x2a2+y2b2=1上,将b=h=6与点P(6,5)代入椭圆方程,得a=√11,此时l=2a=√11≈21.8,因此隧道设计的拱宽l至少是22米.(2)由椭圆方程x2a2+y2b2=1,得36a2+25b2≤1,因为1≥36a2+25b2≥2×6×5ab,即ab≥60,S=πab2≥30π,当且仅当6a=5b时,等号成立.由于隧道长度为1.5千米,故隧道的土方工程量V=1.5S≥45π,当V取得最小值时,有6a =5b,且ab=60,得a=6√2,b=5√2,此时l=2a=12√2≈16.97,h=b≈7.07.①若h=b=8,此时l=2a=17,此时V1=3πab4=3×17×8π8=51π,②若h=b=7,此时l=2a=18,此时V2=3πab4=3×9×7π4=47.25π,因为V1>V2,故当拱高为7米、拱宽为18米时,土方工程量最小.。
(人教版A版2017课标)高中数学必修第一册 全册综合测试卷三(附答案)

(人教版A 版2017课标)高中数学必修第一册 全册综合测试卷三(附答案)第一章综合测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}21,0,1,2A =--,,{}|1B y y x x A ==-∈,,则下列关系正确的是( )A .AB =B .A B ⊆C .B A ⊆D .A B =∅∩2.已知集合{}2|320A x ax x =-+=中有且只有一个元素,那么实数a 的取值集合是( )A .98⎧⎫⎨⎬⎩⎭B .908⎧⎫⎨⎬⎩⎭,C .{}0D .203⎧⎫⎨⎬⎩⎭, 3.已知函数()()12232x x x f x f x x +⎧⎪-=⎨⎪+⎩,>,,≤,则()2f 的值等于( )A .4B .3C .2D .无意义4.已知函数()f x 的定义域为R ,则实数k 的取值范围是( )A .()()00-∞+∞,∪,B .[]04,C .[)04,D .()04,5.已知两个函数()f x 和()g x 的定义域和值域都是集合{}123,,,其定义如表所示,则()()f g x 对应的三个值依次为( )A .2,1,3B .1,2,3C .3,2,1D .1,3,26.已知函数()221x f x x =+,则()()()()1111234234f f f f f f f ⎛⎫⎛⎫⎛⎫++++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭( ) A .3B .4C .72D .927.设全集为R ,函数()01x f x +=定义域为M ,则M =R ð( )A .{}|2x x ≥B .{}|21x x x -<且≠C .{}|21x x x -≥或=D .{}|21x x x ->或=8.若函数()()221341x x x f x a x a x ⎧-+⎪=⎨-+⎪⎩,<,,≥满足对任意实数12x x ≠,都有()()12120f x f x x x -->成立,则实数a 的取值范围是( )A .()1+∞,B .[)13,C .233⎡⎫-⎪⎢⎣⎭, D .()3-∞,9.已知()f x 是奇函数,()g x 是偶函数,且()()112f g -+=,()()114f g +-=,则()1g 等于( ) A .4B .3C .2D .110.已知()22f x x ax =-+与()ag x x=在区间[]12,上都是减函数,则a 的取值范围为( )A .()01,B .(]01,C .()()1001-,∪, D .[)(]1001-,∪, 11.已知(){}2min 26f x x x x x =--,,,则()f x 的值域是( )A .(]2-∞,B .(]3-∞,C .[]02,D .[)2+∞,12.已知定义域为R 的函数()f x 在区间()4+∞,上为减函数,且函数()4y f x =+为偶函数,则( ) A .()()23f f >B .()()25f f >C .()()35f f >D .()()36f f >二、填空题:本大题共4小题,每小题5分,共20分.13.设集合{}24A t =-,,集合{}591B t t =--,,,若9A B ∈∩,则实数t =________.14.)13fx =+,则()f x =________.15.若函数y =的定义域为R ,则a 的取值范围为________. 16.已知函数()y f x =在()()00-∞+∞,∪,上为奇函数,且在()0+∞,上为增函数,()20f -=,则不等式()x f x ⋅<0的解集为________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知函数()mf x x x=+,且()13f =. (1)求m ;(2)判断函数()f x 的奇偶性.18.(本小题满分12分)设全集U =R ,{}|13A x x =≤≤,{}|23B x a x a =+<<. (1)当1a =时,求()U A B ∩ð;(2)若()U A B B =∩ð,求实数a 的取值范围.19.(本小题满分12分)设函数()()21f x ax bx a b =++,为实数,()()()00.f x x F x f x x ⎧⎪=⎨-⎪⎩,>,,<(1)若()10f -=,且对任意实数x 均有()0f x ≥成立,求()F x 的表达式;(2)在(1)的条件下,当[]22x ∈-,时,()()g x f x kx =-是单调函数,求实数k 的取值范围.20.(本小题满分12分)“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v (单位:千克/年)是养殖密度x (单位:尾/立方米)的函数.当04x <≤时,v 的值为2千克/年;当420x <≤时,v 是x 的一次函数;当20x >时,因缺氧等原因,v 的值为0千克/年. (1)当020x <≤时,求v 关于x 的函数表达式.(2)当养殖密度x 为多少时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.21.(本小题满分12分)定义在()11-,上的函数()f x 满足()()f x f x -=-,且()()1120f a f a -+-<.若()f x 是()11-,上的减函数,求实数a 的取值范围.22.(本小题满分12分)已知()f x 是二次函数,()()050f f ==,且()112f -=. (1)求()f x 的解析式;(2)求()f x 在[]0m ,上的最小值()g m ;(3)对(2)中的()g m ,求不等式()()21g t g t -<的解集.第一章综合测试答案解析一、 1.【答案】C【解析】由集合{}21,0,1,2A =--,,{}|1B y y x x A ==-∈,,得{}101B =-,,.又因为集合{}21,0,1,2A =--,,所以B A ⊆,故选C .2.【答案】B【解析】Q 集合{}2|320A x ax x =-+=中有且只有一个元素,0a ∴=或0980a a ⎧⎨∆=-=⎩≠,,解得0a =或98a =,∴实数a 的取值集合是908⎧⎫⎨⎬⎩⎭,. 3.【答案】C【解析】()()12232x x x f x f x x +⎧⎪-=⎨⎪+⎩Q ,>,,≤,()()5125252f f +∴===-.故选C .4.【答案】B【解析】()f x Q 的定义域为R ,∴不等式210kx kx ++≥的解集为R .①当0k =时,10≥恒成立,满足题意;②当0k ≠时,2040k k k ⎧⎨∆=-⎩>,≤,解得04k <≤.综上,04k ≤≤.故选B . 5.【答案】A【解析】当1x =时,()11g =,()()()112f g f ==;当2x =时,()23g =,()()()231f g f ==;当3x =时,()32g =,()()()323f g f ==,故选A . 6.【答案】C【解析】因为()221x f x x =+,所以222111111x f x x x ⎛⎫⎪⎛⎫⎝⎭== ⎪+⎝⎭⎛⎫+ ⎪⎝⎭,所以()11f x f x ⎛⎫+= ⎪⎝⎭, 故()()()()1111712343234112f f f f f f f ⎛⎫⎛⎫⎛⎫++++++=+= ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭.故选C . 7.【答案】C【解析】要使函数有意义,则120x x +⎧⎨-⎩≠0,>,得2x <且1x -≠,所以{}|21M x x x =<且≠-,所以{}|2M x x x ==R ≥或-1ð.故选C . 8.【答案】C【解析】Q 对任意实数12x x ≠,都有()()12120f x f x x x -->成立,()f x ∴在R 上是增函数,()230314121a a a -⎧⎪∴⎨-⨯+-+⨯⎪⎩>,≥,解得233a -≤<.故选C . 9.【答案】B【解析】()f x Q 是奇函数,()()11f f -=-. 又()g x Q 是偶函数,()()11g g ∴-=.()()()()112112f g g f -+=∴-=Q ,.① ()()()()114114f g f g +-=∴+=Q ,.②由①②,得()13g =. 10.【答案】B【解析】()()2222f x x ax x a a =-+=--+,其单调递减区间为()a ∞,+,()f x 在区间[]12,上是减函数,则1a ≤.又()ag x x=在区间[]12,上是减函数,则0a >.01a ∴<≤.11.【答案】B【解析】(){}2min 26f x x x x x =--Q ,,,的同一平面直角坐标系中分别作出22y x x =-,6y x =-,y x =的图像,并取其函数值较小的部分,如图所示.则由图像可知函数(){}2min 26f x x x x x =--,,的值域为(]3-∞,,故选B . 12.【答案】D【解析】()4y f x =+Q 为偶函数,()()44f x f x ∴-+=+.令2x =,得()()()()224246f f f f =-+=+=,同理,()()35f f =.又知()f x 在()4+∞,上为减函数,56Q <,()()56f f ∴>.()()23f f ∴<,()()()265f f f =<,()()()356f f f =>.故选D . 二、13.【答案】3-【解析】{}24A t =-Q ,,{}591B t t =--,,,且9A B ∈∩,29t ∴=,解得3t =或3t =-,当3t =时,根据集合元素互异性知不符合题意,舍去;当3t =-时,符合题意.14.【答案】()()2131x x -+≥【解析】由题设1t =,()21x t ∴=-,1t ≥,()()213f t t ∴=-+,()()()2131f x x x ∴=-+≥. 15.【答案】[]19,【解析】Q函数y =的定义域为R ,()()2221101a x a x a ∴-+-++≥恒成立. 当210a -=时,1a =±,当1a =时,不等式恒成立,当1a =-时,无意义;当210a -≠时,()()22210214101a a a a ⎧-⎪⎨∆=---⋅⎪+⎩>,≤,解得19a <≤.综上所述,a 的取值范围为[]19,. 16.【答案】()()2002-,∪, 【解析】根据题意画出()f x 的大致图像,如图所示.由图像可知当20x -<<或02x <<时,()0x f x ⋅<. 三、17.【答案】解(1)()13f =Q ,13m ∴+=,2m ∴=. (2)由(1)知,()2f x x x=+,其定义域是{}|0x x x ∈R ≠,,关于原点对称. 又()()22f x x x f x x x ⎛⎫-=--=-+=- ⎪⎝⎭Q ,∴函数()f x 是奇函数. 18.【答案】解(1)当1a =时,{}|24B x x =<<.{}|13A x x =Q ≤≤,{}|13U A xx x ∴=<或>ð,(){}|34U A B x x ∴=∩<<ð.(2)若()U A B B =∩ð,则U B A ⊆ð. ①B =∅时,23a a +≥,则3a ≥;②B ∅≠时,2331a a a +⎧⎨+⎩<,≤或2323a a a +⎧⎨⎩<,≥,则2a -≤或332a ≤<.综上,实数a 的取值范围是(]322⎡⎫-∞-+∞⎪⎢⎣⎭,∪,. 19.【答案】解(1)()10f -=Q ,1b a ∴=+,由()0f x ≥恒成立,知0a >且()()22241410b a a a a ∆=-=+-=-≤,1a ∴=,从而()221f x x x =++,()()()221010.x x F x x x ⎧+⎪∴=⎨-+⎪⎩,>,,< (2)由(1)可知()221f x x x =++,()()()221g x f x kx x k x ∴=-=+-+. ()g x Q 在[]22-,上是单调函数, 222k -∴--≤或222k--≥,解得2k -≤或6k ≥. 即实数k 的取值范围是(][)26-∞-+∞,∪,. 20.【答案】解(1)由题意得当04x <≤时,2v =. 设当420x <≤时,v ax b =+,由已知得20042a b a b +=⎧⎨+=⎩,,解得1852a b ⎧=-⎪⎪⎨⎪=⎪⎩,,所以1582v x =-+.故函数20415420.82x v x x ⎧⎪=⎨-+⎪⎩,<≤,,<≤ (2)设鱼的年生长量为()f x 千克/立方米,依题意,由(1)可得()220415420.82x x f x x x x ⎧⎪=⎨-+⎪⎩,<≤,,<≤当04x <≤时,()f x 为增函数,故()()max 4428f x f ==⨯=;当420x <≤时,()()2215125108282f x x x x =-+=--+,()()max 1012.5f x f ==.所以当020x <≤时,()f x 的最大值为12.5,即当养殖密度x 为10尾/立方米时,鱼的年生长量可以达到最大,最大值为12.5千克/立方米. 21.【答案】解:由()()1120f a f a -+-<, 得()()112f a f a ---<.()()f x f x -=-Q ,()11x ∈-,, ()()121f a f a ∴--<. 又()f x Q 是()11-,上的减函数, 1111211121,a a a a --⎧⎪∴--⎨⎪--⎩<<,<<,>解得203a <<. 故实数a 的取值范围是203⎛⎫⎪⎝⎭,.22.【答案】解(1)因为()f x 是二次函数,且()()050f f ==, 所以设()()()50f x ax x a =-≠. 又因为()1612f a -==,所以2a =,所以()()225210f x x x x x =-=-.(2)由(1)知()f x 的对称轴为52x =, 当502m <≤时,()f x 在区间[]0m ,上单调递减,所以()f x 的最小值为()2210f m m m =-;当52m >时,()f x 在区间502⎡⎤⎢⎥⎣⎦,上单调递减,在区间52m ⎡⎤⎢⎥⎣⎦,上单调递增,所以()f x 的最小值为52522f ⎛⎫=- ⎪⎝⎭.综上所述,()()2min521002255.22m m m f x g m m ⎧-⎪⎪==⎨⎪-⎪⎩,<≤,,>(3)因为()()21g t g t -<,所以210215212t t t t ⎧⎪-⎪-⎨⎪⎪-⎩>,<,<,解得112t <<,即不等式()()21g t g t -<的解集为1|12t t ⎧⎫⎨⎬⎩⎭<<.第二章综合测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列等式一定正确的是( ) A .()lg lg lg xy x y =+B .222m n m n ++=C .222m n m n +⋅=D .2ln 2ln x x =2.若函数()12122m y m m x -=+-是幂函数,则m =( )A .1B .3-C .3-或1D .23.下列函数既是增函数,图像又关于原点对称的是( ) A .y x x =B .x y e =C .1y x=-D .2log y x =4.函数()ln 3y x =- )A .[)23,B .[)2+∞,C .()3-∞,D .()23,5.下列各函数中,值域为()0∞,+的是( ) A .22xy -= B.y C .21y x x =++D .113x y +=6.已知()x f x a =,()()log 01a g x x a a =>,且≠,若()()330f g <,那么()f x 与()g x 在同一坐标系内的图像可能是( )ABCD7.已知0.2log 2.1a =, 2.10.2b =,0.22.1c =则( ) A .c b a <<B .c a b <<C .a b c <<D .a c b <<8.已知()()221122x a x x f x x ⎧-⎪=⎨⎛⎫-⎪ ⎪⎝⎭⎩,≥,,<是R 上的减函数,则实数a 的取值范围是( )A .()2-∞,B .138⎛⎤-∞ ⎥⎝⎦,C .()02,D .1328⎡⎫⎪⎢⎣⎭, 9.已知函数()y f x =是定义在R 上的偶函数,当0x ≥时,()2x f x e x =+,则()ln 2f -=( ) A .12ln 22- B .12ln 22+ C .22ln2-D .22ln2+10.已知函数()()()x xf x x e ae x -=+∈R ,若()f x 是偶函数,记a m =;若()f x 是奇函数,记a n =.则2m n +的值为( ) A .0B .1C .2D .1-11.已知实数a ,b 满足等式20172018a b =,则下列关系式不可能成立的是( ) A .0a b << B .0a b << C .0b a <<D .a b =12.已知函数()221222log x mx m x m f x x x m ⎧-++⎪=⎨⎪⎩,≤,,>,其中01m <<,若存在实数a ,使得关于x 的方程()f x a =恰有三个互异的实数解,则实数m 的取值范围是( )A .104⎛⎫ ⎪⎝⎭,B .102⎛⎫ ⎪⎝⎭,C .114⎛⎫ ⎪⎝⎭,D .112⎛⎫ ⎪⎝⎭, 二、填空题:本大题共4小题,每小题5分,共20分.13.满足31164x -⎛⎫⎪⎝⎭>的x 的取值范围是________.14.若函数()212log 35y x ax =-+在[)1-+∞,上是减函数,则实数a 的取值范围是________.15.如图,矩形ABCD 的三个顶点A ,B ,C分别在函数y x =,12y x =,xy =⎝⎭的图像上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为________.16.定义新运算⊗:当m n ≥时,m n m ⊗=;当m n <时,m n n ⊗=.设函数()()()2221log 2xx f x x ⎡⎤⊗-⊗⋅⎣⎦,则函数()f x 在()02,上的值域为________. 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)计算下列各式的值: (1)7015log 243210.06470.250.58--⎛⎫--++⨯ ⎪⎝⎭;(2)()2235lg5lg2lg5lg20log 25log 4log 9+⨯++⨯⨯.18.(本小题满分12分)已知定义域为R 的单调函数()f x 是奇函数,当0x >时,()23x xf x =-. (1)求()f x 的解析式;(2)若对任意的t ∈R ,不等式()()22220f t t f t k -+-<恒成立,求实数k 的取值范围.19.(本小题满分12分)已知实数x 满足9123270x x -⋅+≤,函数()2log 2xf x =⋅. (1)求实数x 的取值范围;(2)求函数()f x 的最值,并求此时x 的值.20.(本小题满分12分)已知函数()x f x a =,()2x g x a m =+,其中0m >,0a >且1a ≠.当[]11x ∈-,时,()y f x =的最大值与最小值之和为52. (1)求a 的值;(2)若1a >,记函数()()()2h x g x mf x =-,求当[]0x ∈,1时,()h x 的最小值()H m .21.(本小题满分12分)以德国数学家狄利克雷(l805-1859)命名的狄利克雷函数定义如下:对任意的x ∈R ,()10.x D x x ⎧=⎨⎩,为有理数,,为无理数研究这个函数,并回答如下问题:(1)写出函数()D x 的值域;(2)讨论函数()D x 的奇偶性;(3)若()()()212xx D x x f x D x x ⎧-⎪=⎨⎪⎩+,为有理数,+,为无理数,,求()f x 的值域.22.(本小题满分12分)若函数()f x 满足()()21log 011a a f x x a a a x ⎛⎫=⋅- ⎪-⎝⎭>,且≠. (1)求函数()f x 的解析式,并判断其奇偶性和单调性;(2)当()2x ∈-∞,时,()4f x -的值恒为负数,求a 的取值范围.第二章综合测试答案解析一、 1.【答案】C【解析】对于A ,D ,若x ,y 为非正数,则不正确;对于B ,C ,根据指数幂的运算性质知C 正确,B 错误.故选C . 2.【答案】B【解析】因为函数()12122m y m n x -=+-是幂函数,所以22211m m m +-=且≠,解得3m =-. 3.【答案】A【解析】2200x x y x x x x ⎧⎪==⎨-⎪⎩,≥,,<为奇函数且是R 上的增函数,图像关于原点对称;x y e =是R上的增函数,无奇偶性;1y x=-为奇函数且在()0-∞,和()0+∞,上单调递增,图像关于原点对称,但是函数在整个定义域上不是增函数;2log y x =在()0+∞,上为增函数,无奇偶性.故选A . 4.【答案】A【解析】函数()ln 3y x =-x 满足条件30240x x -⎧⎨-⎩>,≥,解得32x x ⎧⎨⎩<,≥,即23x ≤<,所以函数的定义域为[)23,,故选A . 5.【答案】A【解析】对于A,222xxy -⎛== ⎝⎭的值域为()0+∞,;对于B ,因为120x -≥,所以21x ≤,0x ≤,y (]0-∞,,所以021x <≤,所以0121x -≤<,所以y 的值域是[)01,;对于C ,2213124y x x x ⎛⎫=++=++ ⎪⎝⎭的值域是34⎡⎫+∞⎪⎢⎣⎭,;对于D ,因为()()1001x ∈-∞+∞+,∪,,所以113x y +=的值域是()()011+∞,∪,. 6.【答案】C【解析】由指数函数和对数函数的单调性知,函数()x f x a =与()()log 01a g x x a a =>,且≠在()0+∞,上的单调性相同,可排除B ,D .再由关系式()()330f g ⋅<可排除A ,故选C . 7.【答案】C【解析】 2.100.200.20.2log 2.1log 1000.20.21 2.1 2.1 1.a b c a b c ======∴Q <,<<,><<.故选C . 8.【答案】B【解析】由题意得,函数()()221122x a x x f x x ⎧-⎪=⎨⎛⎫-⎪ ⎪⎝⎭⎩,≥,,<是R 上的减函数,则()2201122,2a a -⎧⎪⎨⎛⎫--⨯⎪⎪⎝⎭⎩<,≥解得138a ≤,故选B .9.【答案】D【解析】Q 函数()y f x =是定义在R 上的偶函数,且当0x ≥时,()2x f x e x =+,()()ln 2ln 2ln 22ln 222ln 2f f e ∴-==+=+.故选D .10.【答案】B【解析】当()f x 是偶函数时,()()f x f x =-,即()()x x x x x e ae x e ae --+=-⋅+,即()()10x x a e e x -++=.因为上式对任意实数x 都成立,所以1a =-,即1m =-.当()f x 是奇函数时,()()f x f x =--,即()()x x x xx e ae x e ae --+=+,即()()10x x a e e x ---=.因为上式对任意实数x 都成立,所以1a =,即1n =.所以21m n +=.11.【答案】A【解析】分别画出2017x y =,2018x y =的图像如图所示,实数a ,b 满足等式20172018a b =,由图可得0a b >>或0a b <<或0a b ==,而0a b <<不成立.故选A .12.【答案】A【解析】当01m <<时,函数()221222log x mx m x m f x x x m ⎧-++⎪=≤⎨⎪⎩,≤,,>,的大致图像如图所示.Q 当x m ≤时,()()2222222f x x mx m x m =-++=-+≥,∴要使得关于x 的方程()f x a =有三个不同的根,则12log 2m >.又01m <<,解得104m <<.故选A .二、13.【答案】()1-∞,【解析】由题可得,321144x --⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭>,则32x --<,解得1x <.14.【答案】(]86--,【解析】令()235g x x ax =-+,其图像的对称轴为直线6a x =.依题意,有()1610ag ⎧-⎪⎨⎪-⎩≤,>,即68.a a -⎧⎨-⎩≤,>故(]86a ∈--,. 15.【答案】1124⎛⎫ ⎪⎝⎭,【解析】由图像可知,点()2A A x ,在函数y x =的图像上,所以2A x =,2122A x ⎛== ⎝⎭.点()2B B x ,在函数12y x =的图像上,所以122B x =,4B x =.点()4,C C y在函数2x y ⎛= ⎝⎭的图像上,所以4124C y ==⎝⎭.又因为12D A x x ==,14D C y y ==,所以点D 的坐标为1124⎛⎫ ⎪⎝⎭,. 16.【答案】()112,【解析】根据题意,当22x ≥,即1x ≥时,222x x ⊗=;当22x <,即1x <时,222x ⊗=.当2log 1x ≤,即02x <≤时,21log 1x ⊗=;当21log x <,即2x >时,221log log x x ⊗=. ()()2220122122log 2 2.x x x x xx f x x x x ⎧⎪⎪∴=-⎨⎪-⋅⎪⎩,<<,,≤≤,,> ∴①当01x <<时,()2x f x =是增函数,()12f x ∴<<; ②当12x ≤<,()221122224xxx f x ⎛⎫=-=-- ⎪⎝⎭,1222 4.x x ∴Q ≤<,≤<()221111242424f x ⎛⎫⎛⎫∴---- ⎪ ⎪⎝⎭⎝⎭≤<,即()212f x ≤<.综上,()f x 在()02,上的值域为()112,. 三、17.【答案】解(1)70515log 244321510.06470.250.51224822--⎛⎫⎛⎫--++⨯=-++⨯= ⎪ ⎪⎝⎭⎝⎭.(2)()()22352lg52lg 22lg3lg5lg 2lg5lg 20log 25log 4log 9lg5lg5lg 2lg 21lg 2lg3lg5+⨯++⨯⨯=++++⨯⨯11810=++=.18.【答案】解(1)Q 定义域为R 的函数()f x 是奇函数,()00f ∴=.Q 当0x <时,0x ->,()23x xf x --∴-=-. 又Q 函数()f x 是奇函数,()()f x f x ∴-=-,()23x xf x -∴=+. 综上所述,()2030020.3xx x x f x x xx -⎧-⎪⎪==⎨⎪⎪+⎩,>,,,,<(2)()()51003f f -==Q >,且()f x 为R 上的单调函数,()f x ∴在R 上单调递减.由()()22220f t t f t k -+-<得()()2222f t t f t k ---<. ()f x Q 是奇函数,()()2222f t t f k t ∴--<.又()f x Q 是减函数,2222t t k t ∴-->, 即2320t t k -->对任意t ∈R 恒成立,4120k ∴∆=+<,解得13k -<,即实数k 的取值范围为13⎛⎫-∞- ⎪⎝⎭,. 19.【答案】解(1)由9123270x x -⋅+≤,得()23123270xx -⋅+≤,即()()33390x x --≤,所以339x ≤≤,所以12x ≤≤,满足02x>0.所以实数x 的取值范围为[]12,.(2)()()()()2222222231log log 1log 2log 3log 2log 224x f x x x x x x ⎛⎫=⋅=--=-+=-- ⎪⎝⎭.因为12x ≤≤,所以20log 1x ≤≤.所以2log 1x =,即2x =时,()min 0f x =; 当2log 0x =,即1x =时,()max 2f x =.故函数()f x 的最小值为0,此时2x =,最大值为2,此时1x =.20.【答案】解(1)()f x Q 在[]11-,上为单调函数,()f x ∴的最大值与最小值之和为152a a -+=,2a ∴=或12a =. (2)1a Q >,2a ∴=.()2222x x h x m m =+-⋅,即()()2222xx h x m m =-⋅+.令2x t =,则()h x 可转化为()22k t t mt m =-+,其图像对称轴为直线t m =. []01x ∈Q ,,[]12t ∴∈,,∴当01m <<时,()()11H m k m ==-+;当12m ≤≤时,()()2H m k m m m ==-+; 当2m >时,()()234H m k m ==-+.综上所述,()21011234 2.m m H m m m m m m -+⎧⎪=-+⎨⎪-+⎩,<<,,≤≤,,>21.【答案】解(1)函数()D x 的值域为{}01,.(2)当x 为有理数时,则x -为无理数,则()()1D x D x -==; 当x 为无理数时,则为x -为无理数,则()()0D x D x -==. 故当x ∈R 时,()()D x D x -=,所以函数()D x 为偶函数.(3)由()D x 的定义知,()22xx x f x x ⎧⎪=⎨⎪⎩,为有理数,,为无理数.即当x ∈R 时,()2x f x =.故()f x 的值域为()0+∞,.22.【答案】解(1)令log a x t =,则t x a =,()()21t t af t a a a -∴=--. ()()()21x x af x a a x a -∴=-∈-R .()()()()2211x x x x a af x a a a a f x a a ---=-=--=---Q ,()f x ∴为奇函数.当1a >时,xy a =为增函数,xy a -=-为增函数,且2201a a ->,()f x ∴为增函数.当01a <<时,x y a =为减函数,xy a -=-为减函数,且2201a a -<,()f x ∴为增函数.()f x ∴在R 上为增函数.(2)()f x Q 是R 上的增函数,()4y f x ∴=-也是R 上的增函数.由2x <,得()()2f x f <,要使()4f x -在()2-∞,上恒为负数,只需()240f -≤,即()22241a a a a ---≤. 422141a a a a-∴⋅-≤,214a a ∴+≤,2410a a ∴-+≤,22a ∴≤.又1a Q ≠,a ∴的取值范围为)(21,2⎡⎣.第三章综合测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某同学用二分法求方程338=0x x +-在()12x ∈,内近似解的过程中,设()=338x f x x +-,且计算()10f <,()20f >,()1.50f >,则该同学在第二次应计算的函数值为( ) A .()0.5fB .()1.125fC .()1.25fD .()1.75f2.函数()22=log f x x x +的零点所在的区间为( )A .1142⎛⎫ ⎪⎝⎭,B .112⎛⎫ ⎪⎝⎭,C .(D .)3.有一组实验数据如表所示:下列所给函数模型较适合的是( ) A .()=log 1a y x a >B .()=1y ax b a +>C .()2=0y ax b a +>D .()=log 1a y x b a +>4.根据表中的数据,可以判定方程x 的一个根所在的区间为( )A .()10-,B .()01,C .()12,D .()23,5.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是( ) A .108元B .105元C .106元D .118元6.有一个盛水的容器,由悬在它上空的一根水管匀速向容器内注水,直至把容器注满.在注水过程中,时刻t 与水面高度y 的函数关系如图所示,图中PQ 为一线段,则与之对应的容器的形状是图中的( )AB CD7.已知()()()=2f x x a x b ---,并且α,β是函数()f x 的两个零点,则实数a ,b ,α,β的大小关系可能是( )A .a b αβ<<<B .a b αβ<<<C .a b αβ<<<D .a b αβ<<<8.函数()2230=2ln 0x x x f x x x ⎧+-⎨-+⎩,≤,,>的零点个数为( )A .0B .1C .2D .39.已知函数()231=24log f x x x x-+++,若()113x ∈,,()23x ∈+∞,,则( ) A.()10f x >,()20f x < B.()10f x <,()20f x > C.()10f x <,()20f x <D.()10f x >,()20f x >10.如图所示,ABC △为等腰直角三角形,直线l 与AB 相交且l AB ⊥,直线l 截这个三角形所得的位于直线右方的图形面积为y ,点A 到直线l 的距离为x ,则()=y f x 的图像大致为四个选项中的( )AB CD11.设某公司原有员工100人从事产品A 的生产,平均每人每年创造产值t 万元(t 为正常数).公司决定从原有员工中分流()0100x x <<人去进行新开发的产品B 的生产.分流后,继续从事产品A 生产的员工平均每人每年创造产值在原有的基础上增长了1.2x %.若要保证产品A 的年产值不减少,则最多能分流的人数是( )A .15 B .16 C .17 D .18 12.已知函数()2=e x xf x --(e 为自然对数的底数),则方程()21=0f x -的实数根的个数为( ) A .1B .2C .3D .4二、填空题:本大题共4小题,每小题5分,共20分.13.用二分法求图像连续不断的函数()f x 在区间[]15,上的近似解,验证()()150f f ⋅<,给定精确度=0.01ε,取区间()15,的中点115==32x +,计算得()()110f f x ⋅<,()()150f x f ⋅>,则此时零点0x ∈________.(填区间)14.已知函数()2=log 2x f x x m +-有唯一的零点,若它的零点在区间()12,内,则实数m 的取值范围是________.15.已知关于x 的方程210=x a -有两个不同的实根1x ,2x ,且21=2x x ,则实数=a ________. 16.某市出租车收费标准如下:起步价为8元,起步里程为3km (不超过3km 按起步价付费);超过3km 但不超过8km 时,超过部分按每千米2.15元收费;超过8km 时,超过部分按每千米2.85元收费.另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶的路程为________km .三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)某公司制定了一个激励销售人员的奖励方案:当销售利润不超过10万元时,按销售利润的16%进行奖励;当销售利润超过10万元时,若超出A 万元,则超出部分按()52log 1A +万元进行奖励.记奖金为y (单位:万元),销售利润为x (单位:万元).(1)写出该公司激励销售人员的奖励方案的函数模型.(2)如果业务员老张获得5.6万元的奖金,那么他的销售利润是多少万元?18.(本小题满分12分)已知函数()=211f x x x --+. (1)请在所给的平面直角坐标系中画出函数()f x 的图像.(2)根据函数()f x 的图像回答下列问题:(回答下述3个小题都只需直接写出结果,不需给出演算步骤)①求函数()f x 的单调区间;②求函数()f x 的值域;③求关于x 的方程()=2f x 在区间[]02,上解的个数.19.(本小题满分12分)已知函数()=e 1x f x -,()3=1exg x +.(1)求函数()g x 的值域;(2)求满足方程()()=0f x g x -的x 的值.20.(本小题满分12分)《污水综合排放标准》规定:污水排放企业进排污口的污水pH 值正常范围为[)69,.某化工企业对本单位污水出水口的pH 值进行全天24小时检测,根据统计资料发现pH 值的大小y 与检测时间点x 之间的函数图像如图所示,AB ,CD 为两条直线段,曲线BC 为函数y b 图像的一部分,其中()08A ,,()46B ,,()2010C ,,()248D ,.(1)请写出pH 值的大小y 与检测时间点x 之间的函数解析式;(2)试求该化工企业在一天内排放pH 值超标污水的时长.21.(本小题满分12分)已知函数()2=283f x x x m -++为R 上的连续函数.(1)若=4m -,试判断()=0f x 在()11-,上是否有根存在.若没有,请说明理由;若有,请在精确度为0.2(即根所在区间长度小于0.2)的条件下,用二分法求出使这个根0x 存在的区间.(2)若函数()f x 在区间[]11-,上存在零点,求实数m 的取值范围.22.(本小题满分12分)已知函数()()2=log 421x x f x a a +⋅++,x ∈R . (1)若=1a ,求方程()=3f x 的解集;(2)若方程()=f x x 有两个不同的实数根,求实数a 的取值范围.第三章综合测试答案解析一、 1.【答案】C【解析】()10f Q <,()20f >,()1.50f >,∴在区间()11.5,内函数()=338x f x x +-存在一个零点,因此在第二次应计算的函数值所对应的x 值为1 1.5=1.252+,故选C . 2.【答案】B【解析】Q 函数()22=log f x x x +在0x >时是连续单调递增函数,且()21=1log 1=10f +>,21113=log =02424f ⎛⎫+- ⎪⎝⎭<,()1102ff ⎛⎫∴⋅ ⎪⎝⎭<.∴函数()22=log f x x x +的零点所的在区间是112⎛⎫ ⎪⎝⎭,. 3.【答案】C【解析】由所给数据可知y 随x 的增大而增大,且增长速度越来越快,而A ,D 中的函数增长速度越来越慢,B 中的函数增长速度保持不变,故选C . 4.【答案】C【解析】设()()=2xf x e x -+,则由题设知()1=0.280f -<,()2=3.390f >,故方程2=0x e x --的一个根在区间()12,内.故选C . 5.【答案】A【解析】由题意,132元打9折,售价为()1320.9=118.8⨯元.因为这个价格相对进货价,获利10%,也就是说它是进货价的110%,所以进货价为()110118.8=108÷%元,故选A . 6.【答案】B【解析】由题中函数图像知,水面高度y 上升的速度先是由慢到快,后来速度保持不变,结合容器形状知选B . 7.【答案】C【解析】αQ ,β是函数()f x 的两个零点,()()==0f f αβ∴.又()()==20f a f b -Q <,结合二次函数的图像(如图所示)可知a ,b 必在α,β之间.故选C .8.【答案】C【解析】当0x ≤时,令223=0x x +-,得=3x -;当0x >时,令2ln =0x -+,得2=e x .所以函数有2个零点.故选C . 9.【答案】A【解析】()()23=15log f x x x --+-Q 在()1+∞,上单调递减,且()3=0f ,()10f x ∴>,()20f x <,故选A .10.【答案】C【解析】设=AB a ,则22221111==2222y a x x a --+,其图像为抛物线的一段,开口向下,顶点在y 轴上方.故选C . 11.【答案】B【解析】由题意,分流前产品A 的年产值为100t 万元,分流x 人后,产品A 的年产值为()()1001 1.2x x t -+%万元.由题意,得()()01001001 1.2100x x x x t t ∈⎧⎪⎨-+⎪⎩N <<,≥,,%解得5003x <≤,x ∈N ,所以x 的最大值为16.故选B . 12.【答案】B【解析】由函数()2=ex xf x --,可知方程()21=0f x -,即()1=2f x ,即21e =2x x --,整理可得2=ln2x x ---,即2ln 2=0x x -+或2ln 2=0x x --.在方程2ln 2=0x x -+中,1=14ln 20∆-<,方程无实数解;在方程2ln 2=0x x --中,2=14ln 20∆+>,方程有2个不等的实数解.综上可得,方程()21=0f x -的实数根的个数为2.故选B .二、13.【答案】()13,【解析】由()()150f f ⋅<,()()110f f x ⋅<及()()150f x f ⋅>可知()1f 与()1f x 异号,()1f x 与()5f 同号,则()011x x ∈,即()013x ∈,. 14.【答案】()25,【解析】由题意得()f x 在()0+∞,上单调递增,且()()120f f ⋅<,即()()250m m --<,解得25m <<. 15.【答案】6【解析】由210=x a -得2=10x a ±,由题设知12=10x a -,22=10x a +.因为21=2x x ,所以()211222=2=2x x x ,所以()210=10a a -+,解得=15a 或=6a .因为100a ->,所以=15a 不合题意,舍去,所以=6a . 16.【答案】9【解析】设乘客每次乘坐出租车需付费用为()f x 元,则由题意得()(]()(]()()8103=93 2.153895 2.158 2.858.x f x x x x x ⎧+∈⎪+-∈⎨⎪++-∈+∞⎩⨯⨯⨯,,,,,,,,令()=22.6f x ,显然()()95 2.158 2.85=22.68x x ⨯⨯++->,解得=9x . 三、17.【答案】(1)由题意得()50.16010=1.62log 910.x x y x x ⎧⎪⎨+-⎪⎩,<≤,,>(2)由(]010x ∈,,0.16 1.6x ≤,而=5.6y 可知,10x >. ()51.62log 9=5.6x ∴+-,解得=34x .∴老张的销售利润是34万元.18.【答案】(1)当10x -≥,即1x ≥时,()()=211=1f x x x x --+-; 当10x -<,即1x <时,()()=211=33f x x x x --+-.()f x 的图像如图所示.(2)①函数()f x 的单调递增区间为[)1+∞,; 函数()f x 的单调递减区间为(]1-∞,. ②函数()f x 的值域为[)0+∞,. ③方程()=2f x 在区间[]02,上解的个数为1. 19.【答案】(1)()31=1=31e e x x g x ⎛⎫++ ⎪⎝⎭,因为0x ≥,e 1x≥,所以101e x⎛⎫ ⎪⎝⎭<≤,1033e x⎛⎫⎪⎝⎭<≤,即()14g x <≤,故()g x 的值域是(]14,. (2)由()()=0f x g x -,得3e 2=0ex x--.当0x ≤时,方程无解; 当0x >时,3e 2=0ex x--,整理得()2e 2e 3=0x x --, 即()()e 1e 3=0x x+-.因为e 0x >,所以e =3x ,即=ln3x . 故满足方程()()=0f x g x -的x 的值为ln3.20.【答案】(1)()08A Q ,,()46B ,,∴线段AB 的方程是()1=8042y x x -+≤≤.将()46B ,,()2010C ,的坐标代入y b ,得b b ⎧⎪⎨⎪⎩,,解得=4=6.a b -⎧⎨⎩,故()6420y x +≤≤.()2010C Q ,,()248D ,,∴线段CD 的方程是()1=2020242y x x -+≤≤.综上,y 与x之间的函数解析式为18042=642012020242.x x y x x x ⎧-+⎪⎪-+⎪⎩,≤≤,,≤≤,,≤≤(2)由()08A ,,()46B ,知在AB 段排放污水的pH 值不超标; 在BC6=9,解得=13x ,故[)1320x ∈,时排放污水的pH 值超标, 时长是()2013=7-小时;在CD 段,令120=92x -+,解得=22x ,故[]2022x ∈,时排放污水的pH 值超标,时长是()2220=2-小时.因此该化工企业在一天内排放pH 值超标污水9小时.21.【答案】(1)当=4m -时,()=0f x ,即()2=281=0f x x x --. 可以求出()1=9f -,()1=7f -,则()()110f f -⋅<.又()f x 为R 上的连续函数,()=0f x ∴在()11-,上必有根存在.取中点0,计算得()0=10f -<,()()100f f -⋅<,∴根()010x ∈-,,取其中点12-,计算得17=022f ⎛⎫- ⎪⎝⎭>,∴根0102x ⎛⎫∈- ⎪⎝⎭,,取其中点14-,计算得19=048f ⎛⎫- ⎪⎝⎭>, ∴根0104x ⎛⎫∈- ⎪⎝⎭,,取其中点18-,计算得11=0832f ⎛⎫- ⎪⎝⎭>, ∴根0108x ⎛⎫∈- ⎪⎝⎭,,区间长度11=0.285<,符合要求.故符合要求的根0x 存在的区间为108⎛⎫- ⎪⎝⎭,.(2)()2=283f x x x m -++为开口向上的抛物线,对称轴为8==222x ⨯--, ∴在区间[]11-,上,函数()f x 单调递减.又()f x 在区间[]11-,上存在零点,只可能()()1010f f ⎧-⎪⎨⎪⎩≥,≤,即 28302830m m +++⎧⎨-++⎩≥,≤,解得133m -≤≤. 故所求实数m 的取值范围是133m -≤≤.22.【答案】(1)当=1a 时,()()2=log 422x xf x ++.由()=3f x ,得3422=2x x ++,所以426=0x x +-,因此()()2322=0x x +-,解得=1x .所以方程()=3f x 的解集为{}1.(2)方程()2log 421=x xa a x +⋅++有两个不同的实数根,即421=2x x x a a +⋅++有两个不同的实数根.设=2x t ,则()211=0t a t a +-++在()0+∞,上有两个不同的解.令()()2=11g t t a t a +-++,由已知可得()()()200102=1410g a a a ⎧⎪-⎪-⎨⎪⎪∆--+⎩>,>,>,解得13a --<<故实数a 的取值范围为(13--,.第四章综合测试一、单项选择题1.式子 )ABC .D .2.函数()lg 3f x x x =+-的零点所在区间为( ) A .(2,3)B .(3,4)C .(1,2)D .(0,1)3.设lg 2a =,lg3b =,则12log 5=( ) A .12aa b -+ B .12aa b-+ C .12aa b++ D .12aa b++ 4. 已知2log 0.1a =,0.12b =,110.2c =,则a ,b ,c 的大小关系是( ) A .a b c <<B .b c a <<C .c a b <<D .a cb <<5.函数1()(0,1)x f x a a a a=-≠>的图象可能是( )A .B .C .D .6.已知函数2,0()21,0x a x f x x x ⎧-≤=⎨->⎩,a R ∈,若函数()f x 在R 上有两个零点,则a 的取值范围是( ) A .(,1)-∞-B .(,1]-∞-C .[1,0)-D .(0,1]7.若()2()lg 21f x x ax a =-++在区间(,1]-∞上单调递减,则a 的取值范围为( )A .[1,2)B .[1,2]C .[1,)+∞D .[2,)+∞8.已知函数()|lg |f x x =。
高一数学(人教B版)必修4:第3章基本知能检测

阶段性测试题五(第三章基本知能检测)本试卷分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分,满分150分,时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,每小题有4个选项,其中有且仅有一个是正确的,把正确的选项填在答题卡中)1.(2009·福建)函数f (x )=sin x cos x 的最小值是( ) A .-1 B .-12C.12D .1[答案] B[解析] f (x )=sin x cos x =12sin2x ,∴f (x )min =-12.2.cos67°cos7°+sin67°sin7°等于( ) A.12B.22C.32D .1[答案] A[解析] cos67°cos7°+sin67°sin7° =cos(67°-7°)=cos60°=12.3.若x =π8,则sin 4x -cos 4x 的值为( )A.12B .-12C .-22D.22[答案] C[解析] sin 4x -cos 4x =(sin 2x +cos 2x )·(sin 2x -cos 2x )=sin 2x -cos 2x =-cos2x , ∴x =π8时,-cos2x =-cos π4=-22.4.若x ∈(-π2,0),cos x =45,则tan2x 等于( )A.724B .-724C.247D .-247[答案] D[解析] ∵x ∈(-π2,0),cos x =45,∴sin x =-35,∴tan x =-34,∴tan2x =2tan x 1-tan 2x =2×(-34)1-(-34)2=-321-916=-247.5.若sin θ<0,cos2θ<0,则在(0,2π)内θ的取值范围是( ) A .π<θ<3π2B.5π4<θ<7π4C.3π2<θ<2π D.π4θ<3π4[答案] B[解析] ∵cos2θ<0,得1-2sin 2θ<0, 即sin θ>22或sin θ<-22, 又已知sin θ<0,∴-1≤sin θ<-22, 由正弦曲线得满足条件的θ取值为5π4<θ<7π4.6.若0<α<β<π4sin α+cos α=a ,sin β+cos β=b ,则( )A .a <bB .a >bC .ab <1D .不确定[答案] A[解析] ∵a =2sin ⎝⎛⎭⎫α+π4,b =2sin ⎝⎛⎭⎫β+π4, 又0<α<β<π4,∴π4<α+π4<β+π4<π2且y =sin x 在⎣⎡⎦⎤0,π2上为增, ∴2sin ⎝⎛⎭⎫α+π4<2sin⎝⎛⎭⎫β+π4.7.(2009·山东)将函数y =sin2x 的图象向左平移π4个单位,再向上平移1个单位,所得图象的函数解析式是( )A .y =cos2xB .y =2cos 2xC .y =1+sin(2x +π4)D .y =2sin 2x [答案] B[解析] 将函数y =sin2x 的图象向左平移π4个单位,得到函数y =sin2⎝⎛⎭⎫x +π4,即y =sin ⎝⎛⎭⎫2x +π2=cos2x 的图象,再向上平移1个单位,所得图象的函数解析式为y =1+cos2x =2cos 2x .8.已知△ABC 中tan A =cos B -cos C sin C -sin B 成立,则△ABC 为( )A .等腰三角形B .等腰三角形或A =60°的三角形C .A =60°的三角形D .任意三角形 [答案] C[解析] sin A cos A =-2sinB +C 2sinB -C22cos B +C 2sinC -B2sin ⎝⎛⎭⎫π2-A 2cos ⎝⎛⎭⎫π2-A 2=cos A2sin A 2, 2sin A 2·cos A 2·sin A 2=cos A ·cos A 2,∵cos A 2≠0,∴2sin 2A2=cos A ,∴2sin 2A 2=1-2sin 2A 2.∴sin 2A 2=14,∵0<A <π,∴0<A 2<π2,∴sin A2>0,∴sin A 2=12,∴A =60°.9.函数f (x )=cos 4x 2+sin 4x2的最大值是( )A .0B .1 C.12D .2[答案] B[解析] f (x )=cos 4x 2+sin 4x2=⎝⎛⎭⎫cos 2x 2+sin 2x 22-2cos 2x 2sin 2x2 =1-12sin 2x=1-12·1-cos2x 2=34+14cos2x ∴f (x )max =34+14=1.10.若cot θ-12cot θ+1=1,则cos2θ1+sin2θ的值为( )A .3B .-3C .-2D .-12[答案] A[解析] 由cot θ-12cot θ+11得cot θ=-2,∴tan θ=-12,∴cos2θ1+sin2θ=cos 2θ-sin 2θ(sin θ+cos θ)2=cos θ-sin θcos θ+sin θ =1-tan θ1+tan θ=1+121-12=3 11.1+cos4θ+sin4θ1-cos4θ+sin4θ可化简为( )A .tan2θB .cot2θC .tan θD .cot θ[答案] B[解析] 原式=2cos 22θ+2sin2θ·cos2θ2sin 22θ+2sin2θ·cos2θ =2cos2θ(cos2θ+sin2θ)2sin2θ(sin2θ+cos2θ)=cot2θ12.已知函数f (x )=(1+cos2x )sin 2x ,x ∈R ,则f (x )是( )A .最小正周期为π的奇函数B .最小正周期为π2的奇函数C .最小正周期为π的偶函数D .最小正周期为π2的偶函数[答案] D[解析] f (x )=(1+cos2x )sin 2x =2cos 2x sin 2x =12sin 22x =14-14cos4x . ∴函数f (x )是最小正周期为π2的偶函数.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每空4分,共16分,把正确答案填在题中横线上) 13.tan13°+tan32°+tan13°tan32°的值为________. [答案] 1[解析] tan13°+tan32°+tan13°tan32°=tan(13°+32°)(1-tan13°tan32°)+tan13°tan32° =tan45°(1-tan13°tan32°)+tan13°tan32° =1-tan13°tan32°+tan13°tan32°=1.14.sin163°sin223°+sin253°sin313°=________. [答案] 12[解析] 原式=sin(180°-17°)sin(180°+43°)+sin(270°-17°)sin(270°+43°) =-sin17°sin43°+cos17°cos43° =cos60°=12.15.若α为锐角,且sin ⎝⎛⎭⎫α-π6=13,则sin α的值为________. [答案]3+226[解析] ∵0<α<π2,∴-π6<α-π6<π3.又∵sin ⎝⎛⎭⎫α-π6=13>0,∴0<α-π6<π3,∴cos ⎝⎛⎭⎫α-π6=1-sin 2⎝⎛⎭⎫α-π6=1-⎝⎛⎭⎫132=223∴sin α=sin ⎣⎡⎦⎤⎝⎛⎭⎫α-π6+π6 =32sin ⎝⎛⎭⎫α-π6+12⎝⎛⎭⎫α-π6 =32×13+12×223=3+226. 16.关于函数f (x )=cos ⎝⎛⎭⎫2x -π3+cos ⎝⎛⎭⎫2x +π6,有下列命题: ①y =f (x )的最大值为2;②y =f (x )是以π为最小正周期的周期函数; ③y =f (x )在区间⎝⎛⎭⎫π24,13π24上单调递减;④将函数y =2cos2x 的图像向左平移π24其中正确命题的序号是________.(注:把你认为正确的命题的序号都填上) [答案] ①②③[解析] 化简f (x )=cos ⎝⎛⎭⎫2x -π3+cos ⎝⎛⎭⎫2x +π2-π3 =cos ⎝⎛⎭⎫2x -π3-sin⎝⎛⎭⎫2x -π3=2cos ⎝⎛⎭⎫2x -π12 ∴f (x )max =2,即①正确. T =2π|ω|=2π2=π,即②正确. 由2k π≤2x -π12≤2k π+π,得k π+π24≤x ≤k π+13π24③正确.将函数y =2cos2x 向左平移π24个单位得y =2cos ⎣⎡⎦⎤2⎝⎛⎭⎫x +π24≠f (x ),∴④不正确. 三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)(2006·上海卷)已知α是第一象限的角,且cos α=513,求sin ⎝⎛α+π4cos (2α+4π)的值.[解析] ∵α是第一象限的角,cos α=513,∴sin α=1213,∴sin ⎝⎛⎭⎫α+π4cos (2α+4π)=22(sin α+cos α)cos2α=22(sin α+cos α)cos 2α-sin 2α=22cos α-sin α=22513-1213=-13214. 18.(本小题满分12分)化简(1+sin α+cos α)⎝⎛⎭⎫sin α2-cos α22+2cos α,其中π<α<2π.[解析] 原式=⎝⎛⎭⎫2cos 2α2+2sin α2cos α2⎝⎛⎭⎫sin α2-cos α22(1+cos α)=2cos α2⎝⎛cos α2+sin α2⎝⎛⎭⎫sin α2-cosα22⎪⎪⎪⎪cos α2∵π<α<2π,∴π2<α2<π,∴上式=-⎝⎛⎭⎫cos α2+sin α2⎝⎛⎭⎫sin α2-cos α2=cos 2α2-sin 2α2=cos α.19.(本小题满分12分)求函数y =12cos 2x +32sin x ·cos x +1,x ∈R 的最大值以及y 取最大值时自变量x 的集合.[解析] ∵y =12cos 2x +32sin x ·cos x +1=12·1+cos2x 2+34sin2x +1 =14cos2x +34sin2x +54 =12sin ⎝⎛⎭⎫2x +π6+54 ∴当2x +π6=π2+2k π,即x =k π+π6(k ∈Z )时,y max =74.∴函数取最大值时自变量x 和集合为⎩⎨⎧⎭⎬⎫x |x =k π+π6,k ∈Z . 20.(本小题满分12分)已知△ABC 的三个内角为A 、B 、C ,当A 为何值时,cos A +2cosB +C 2取得最大值?求出这个最大值.[解析] 由A +B +C =π,得B +C 2=π2-A2,所以有cos B +C 2=sin A2,所以cos A +2cos B +C 2=1-2sin 2A2+2sin A 2=-2⎝⎛⎭⎫sinA 2-122+32.当sin A 2=12,即A =π3cos A +2cos B +C 2取得最大值32.21.(本小题满分12分)已知函数f (x )=A sin 2(ωx +φ)⎝⎛⎭⎫A >0,ω>0,0<φ<π2,且y =f (x )的最大值为2,其图象相邻两对称轴间距离为2,并过点(1,2).(1)求φ;(2)计算f (1)+f (2)+…+f (2008)+f (2009)+f (2010). [解析] y =A sin 2(ωx +φ) =A 2-A2ωx +2φ). ∵y =f (x )的最大值为2,A >0, ∴A 2+A22,A =2. 又∵其图象相邻两对称轴间的距离为2,ω>0, ∴12⎝⎛⎭⎫2π2ω=2,ω=π4. ∴f (x )=1-cos ⎝⎛⎭⎫π2x +2φ.∵y =f (x )过(1,2)点,∴cos ⎝⎛⎭⎫π2+2φ=-1. ∴2φ=2k π+π2,k ∈Z .∴φ=k π+π4,k ∈Z .又∵0<φ<π2,∴φ=π4.(2)解法一:∵φ=π4,∴y =1-cos ⎝⎛⎭⎫π2x +π2=1+sin π2x .∴f (1)+f (2)+f (3)+f (4)=2+1+0+1=4. 又∵y =f (x )的周期为4,∴f (1)+f (2)+…+f (2008)+f (2009)+f (2010) =4×502+f (2009)+f (2010)=2008+f (1)+f (2)=2008+2+1=2011. 解法二:∵f (x )=2sin 2⎝⎛⎭⎫π4x +φ, ∴f (1)+f (3)=2sin 2⎝⎛⎭⎫π4+φ+2sin 2⎝⎛⎭⎫3π4+φ=2sin 2⎝⎛⎭⎫π4+φ+2cos 2⎝⎛⎭⎫π4+φ=2, f (2)+f (4)=2sin 2⎝⎛⎭⎫π2φ+2sin 2(π+φ)=2,∴f (1)+f (2)+f (3)+f (4)=4, 又y =f (x )的周期为4,2008=4×502, ∴f (1)+f (2)+…+f (2008)=4×502=2008.22.(本小题满分14分)设函数f (x )=a ·b ,其中向量a =(2cos x,1),b =(cos x ,3sin2x ),x ∈R .(1)若f (x )=1-3且x ∈⎣⎡⎦⎤-π3,π3,求x ;(2)若函数y =2sin2x 的图象平移向量c =(m ,n )⎝⎛⎭⎫|m |<π2得到函数y =f (x )的图象,求实数m 、n 的值.[解析] (1)∵f (x )=a ·b =2cos 2x +3sin2x =1+cos2x +3sin2x =2sin ⎝⎛⎭⎫2x +π6+1,又∵f (x )=1-3=2sin ⎝⎛⎭⎫2x +π6+1,∴sin ⎝⎛⎭⎫2x +π6=-32,∴2x +π6=2k π-π3或2x +π6=2k π-2π3,又∵x ∈⎣⎡⎦⎤-π3,π3,∴x =-π4; (2)f (x )=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π12+1, y =2sin2x 向左平移π12个单位可得y =2sin2⎝⎛⎭⎫x +π12,再向上平移1个单位,即得y =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π12+1=f (x ), ∴c =⎝⎛⎭⎫-π12,1,即m =-π12,n =1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学精品资料
2020.8
同步训练试题及答案
高一数学必修4模块训练3
一.选择题:
1.已知角α 的终边过点P (-4,3),则ααcos sin 2+的值为( C )
A .5
4-
B .53
C .52
D .2 2.若θθcos sin ⋅>0,则θ在( B ) A .第一、二象限 B .第一、三象限
C .第一、四象限
D .第二、四象限
3.在)2,0(π 内,使x x cos sin >成立的x 取值范围是( C )
A .)45,()2,4(
πππ
π⋃ B .),4
(ππ C .)45,4(ππ D . )2
3,45(),4(ππππ⋃ 4.设)2,0(πα∈,若53sin =α,则)4
cos(2πα+等于 ( A ) A .57 B . 51 C . 57- D . 51- 5.下列命题正确的个数是 ( ) ① 0·a =0;② a ·b =b ·a ;③ a 2=|a |2 ④ |a ·b |≤a ·b ( C ) A 1 B 2 C 3 D 4
6.已知2tan()5αβ+=, 1tan()44πβ-=, 则tan()4
πα+的值为( C ) A 16 B 2213 C 322 D 1318 7.cos 2cos
sin 2sin 55y x x ππ=+的单调递减区间是( B ) A 5,()1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ B 3,()105k k k Z ππππ⎡⎤++∈⎢⎥⎣
⎦ C 55,()126k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ D 52,()63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ 8. 如图, E F G H 、、、分别是四边形ABCD 的所在边的中点, 若()()0AB BC BC CD +⋅+=,则四边形EFGH 是 ( D ) A 平行四边形但不是矩形 B 正方形 C 菱形 D 矩形 二.填空题:
9.函数x x y sin 2sin 2
-=的值域是∈y [-1,3] ;
考查三角函数的值域,简单题。
B
1021==b a ,与的夹角为
3πb a b a -+= 。
21 三.解答题:
11. 已知tan 34πα⎛⎫+= ⎪⎝⎭
, 计算: (1) tan α; (2) 2sin cos 3cos 25cos 23sin 2ααααα
+- 解: (1)
tan tan 1tan 4tan()341tan 1tan tan 4
πα
πααπαα+++===-- 1tan 2
α∴= (2) 22tan 4tan 21tan 3ααα==- 原式= sin 23cos 23tan 2135cos 23sin 253tan 23αααααα++==-- 12.如图,三个同样大小的正方形并排一行。
(Ⅰ)求OA 与OB 夹角的余弦值; (Ⅱ)求∠BOD +∠COD ;
解:(Ⅰ)因为A (1,1),B (2,1)
所以=(1,1),=(2,1)cos ∠AOB =10103101
21411)
1,2()1,1(||||=+=+⋅+⋅=⋅OB OA .
(Ⅱ)因为C (3,1),D (3,0),所以tan ∠BOD =
21,tan ∠COD =31 所以 tan(∠BOD +∠COD)=COD BOD COD BOD ∠∠-∠+∠tan tan 1tan tan 1312113121=⋅-+= 又因为∠BOD 和∠COD 均为锐角,故∠BOD +∠COD =45°
精心整理资料,感谢使用!。