2.4 《绝对值与相反数》课件 苏科版 (4)

合集下载

《绝对值与相反数》课件

《绝对值与相反数》课件

实例演示
举例:|-3| 等于 3,|7| 等于 7。
绝对值的性质
1 非负性
绝对值始终大于等于零,即 |a| ≥ 0。
2 反对称性
如果 a ≠ 0,则有 |-a| = |a|。
3 三角不等式
对于任意两个数 a 和 b,有 |a + b| ≤ |a| + |b|。
绝对值的运算法则
绝对值加法法则
绝对值之和的绝对值等于原数 的绝对值之和,即 |a + b| = |a| + |b|。
重点回顾及解答疑问
回顾本课程的重点内容,并对学习者提出的问题进 行解答。
参考资料
书籍及文献
- 《数学家的艺术》 - J.E. 尼尔斯特伦德 - 《解读数学》 - I. 斯图尔特
课外拓展阅读推荐
- 《绝对值和相反数的应用》 - 数学世界杂志
网络资源
- 绝对值和相反数 - MathIsFun
《绝对值与相反数》PPT 课件
欢迎大家来到本次课程《绝对值与相反数》的PPT课件。通过本课程,我们将 深入探讨绝对值和相反数的概念、性质和运算法则,并展示它们在数学和实 际生活中的应用。
什么是绝对值
定义
绝对值是一个数离零点的距离,不论这个数是正数、负数还是零。
符号表示
用竖杠“|”括起来表示,例如 |5| 等于 5。
用,例如在财务管理、物流规划和工程
建设等领域。
3
数学公式和问题
通过理解绝对值和相反数的概念和运算 法则,我们可以解决各种数学公式和问 题。
更多应用
想要了解更多关于绝对值和相反数的应 用,请参考本课程提供的参考资料。
总结
绝对值和相反数的关系
绝对值和相反数是数学中重要的概念,它们互为补 充,相辅相成。

苏科版七年级上2.4绝对值与相反数(1)课件ppt

苏科版七年级上2.4绝对值与相反数(1)课件ppt
小 明 家A -3 -2 -1
学 校 小 丽 家 B
0
1
2
3
A
2
B
-3Βιβλιοθήκη -2-101
2
上图中点A与原点的距离是2,点B与原点的 距离是3.关于数轴上点与原点的距离我们 有一种专门的称呼----绝对值
学.科.网
你能说出什么是绝对值?
如图,你能说出数轴上A、B、C、D、E、F各点所 表示的数的绝对值吗?
2.4绝对值与相反数(1)
1、你能描述出你家与学校的位置和距离吗?
2、你能用正负数来说明你与你同桌家 和学校的位置吗?
小明的家在学校西边3㎞处,小李的家在学校东边 2km处。他们上学所花的时间与各家到学校的距离 有什么关系?
学.科.网
如果学校门前的大街看成一条数轴,把学校看作原点,那 么你能把小明和小丽家的相对位置在数轴上表示出来吗?
解:在数轴上分别画出表示-3、-6的点A、点B
6
3 B
-6 -5 -4
A
-3 -2 -1 0 1 2 3 4 5 6
因为∣-3 ∣=3, ∣ -6∣=6,并且3<6,
所以∣-3∣ <∣ -6∣,即-3的绝对值小于-6的绝对值 .
求-3、-0.4、-2的绝对值,并用“〈” 号把这些绝对值连接起来。
5 例3.已知一个数的绝对值是 ,求这个数。 2
从上面的问题中你能找到求一个数的绝对值 的方法吗?
学.科.网
(1)先画出数轴,在数轴上找出需要的点; (2)观察这个点与原点的距离,这个距离就是我们 要求的绝对值。
求4、-3.5的绝对值。
解:在数轴上分别画出表示4、-3.5的点A、点B
3.5
4
B

2-4 绝对值与相反数(教师版)2021-2022学年七年级数学上册讲义(苏科版)

2-4 绝对值与相反数(教师版)2021-2022学年七年级数学上册讲义(苏科版)

第2章 有理数2.4 绝对值与相反数 课程标准 课标解读 1.借助数轴理解绝对值和相反数的概念;2.知道|a|的绝对值的含义以及互为相反数的两个数在数轴上的位置关系;3.会求一个数的绝对值和相反数,并会用绝对值比较两个负有理数的大小;4.通过应用绝对值解决实际问题,体会绝对值的意义和作用. 1、相反数和绝对值的表示方法 2、数轴的几何意义表示,在数轴上分析绝对值和相反数性质知识点01 相反数 1.定义:如果两个数只有符号不同,那么称其中一个数为另一个数的相反数.特别地,0的相反数是0.2.性质:(1)互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等(这两个点关于原点对称).(2)互为相反数的两数和为0.【微点拨】(1)“只”字是说仅仅是符号不同,其它部分完全相同.(2)“0的相反数是0”是相反数定义的一部分,不能漏掉.(3)相反数是成对出现的,单独一个数不能说是相反数.(4)求一个数的相反数,只要在它的前面添上“-”号即可.【即学即练1】1.3-的相反数是( )A .13-B .13C .3D .3-【答案】C【分析】目标导航知识精讲依据相反数的定义求解即可.【详解】解:-3的相反数是3.故选:C.知识点02 多重符号的化简多重符号的化简,由数字前面“-”号的个数来确定,若有偶数个时,化简结果为正,如-{-[-(-4)]}=4 ;若有奇数个时,化简结果为负,如-{+[-(-4)]}=-4 .【微点拨】(1)在一个数的前面添上一个“+”,仍然与原数相同,如+5=5,+(-5)=-5.(2)在一个数的前面添上一个“-”,就成为原数的相反数.如-(-3)就是-3的相反数,因此,-(-3)=3.【即学即练2】2.在下列各数:13⎛⎫--⎪⎝⎭,36-,227,0,-(+3),-|-2015|中,负数的个数是()A.1个B.2个C.3个D.4个【答案】C【分析】先化简各数,再与0比较即可.【详解】解::11=033⎛⎫-->⎪⎝⎭,-(+3)=-3<0,-|-2015|=-2015<0,负数有36-,-(+3),-|-2015|,负数的个数是3.故选择:C.知识点03 绝对值1.定义:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值,例如+2的绝对值等于2,记作|+2|=2;-3的绝对值等于3,记作|-3|=3.2.性质:(1)0除外,绝对值为一正数的数有两个,它们互为相反数.(2)互为相反数的两个数(0除外)的绝对值相等.(3)绝对值具有非负性,即任何一个数的绝对值总是正数或0.【微点拨】(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a 都有:(2)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小.(3)一个有理数是由符号和绝对值两个方面来确定的.【即学即练3】3.已知关于x 的方程mx |m |+1=0是一元一次方程,则m 的取值是( )A .±1B .﹣1C .1D .以上答案都不对【答案】A【分析】根据一元一次方程的定义得出m≠0且|m|=1,求出m 即可.【详解】解:∵关于x 的方程mx |m|+1=0是一元一次方程,∵m≠0且|m|=1,解得:m =±1,故选:A . 知识点04 有理数的大小比较1.数轴法:在数轴上表示出这两个有理数,左边的数总比右边的数小. 如:a 与b 在数轴上的位置如图所示,则a <b .2.法则比较法:两个数比较大小,按数的性质符号分类,情况如下:(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩-数为0 正数与0:正数大于0负数与0:负数小于03. 作差法:设a 、b 为任意数,若a-b >0,则a >b ;若a-b =0,则a =b ;若a-b <0,a <b ;反之成立.4. 求商法:设a 、b 为任意正数,若1a b >,则a b >;若1a b =,则a b =;若1a b<,则a b <;反之也成立.若a 、b 为任意负数,则与上述结论相反.5. 倒数比较法:如果两个数都大于零,那么倒数大的反而小.【微点拨】利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2)比较绝对值的大小:(3)判定两数的大小.【即学即练4】4.下列四个数中,最小的数是( )A .2-B .4-C .(1)--D .0【答案】A【分析】根据有理数的大小比较及绝对值可直接进行排除选项.【详解】解:∵()44,11-=--=,∵()4102->-->>-,∵最小的数是-2;故选A .考法01 化简绝对值1、根据题设条件只要知道绝对值将合内的代数式是正是负或是零,就能根据绝对值意义顺利去掉绝对值符号,这是解答这类问题的常规思路.2、借助数轴 能力拓展①零点的左边都是负数,右边都是正数.②右边点表示的数总大于左边点表示的数.③离原点远的点的绝对值较大,牢记这几个要点就能从容自如地解决问题了.3、采用零点分段讨论法①求零点:分别令各绝对值符号内的代数式为零,求出零点(不一定是两个).②分段:根据第一步求出的零点,将数轴上的点划分为若干个区段,使在各区段内每个绝对值符号内的部分的正负能够确定.③在各区段内分别考察问题.④将各区段内的情形综合起来,得到问题的答案.误区点拨 千万不要想当然地把 等都当成正数或无根据地增加一些附加条件,以免得出错误的结果.【典例1】a 、b 、c 三个数在数轴上的位置如图所示,则下列各式中正确的个数有( )∵0ab >; ∵c a b -<<-; ∵11a b >; ∵b b =-. A .4个B .3个C .2个D .1个 【答案】B【分析】根据有理数大小的比较可得数轴上的右边的数总大于左边的数得出b <c <0<a ,b a c >>,再分别判断各式.【详解】解:结合图形,根据数轴上的右边的数总大于左边的数,可得b <c <0<a ,b a c >>.∵∵0ab <,故错误;∵c a b -<<-,故正确; ∵11a b>,故正确; ∵b b =-,故正确;考法02 绝对值的意义一.绝对值的实质:正实数与零的绝对值是其自身,负实数的绝对值是它的相反数,即也就是说,|x|表示数轴上坐标为x的点与原点的距离。

苏科版数学七年级上册2.4.3《绝对值与相反数》说课稿

苏科版数学七年级上册2.4.3《绝对值与相反数》说课稿

苏科版数学七年级上册2.4.3《绝对值与相反数》说课稿一. 教材分析《苏科版数学七年级上册》2.4.3《绝对值与相反数》这一节主要介绍了绝对值和相反数的概念及其性质。

绝对值是数轴上表示一个数的点到原点的距离,相反数是在数轴上与原数相对的数。

这一节内容是初中数学的基础,对于学生理解实数的概念,以及后续学习代数和几何有着重要的意义。

二. 学情分析七年级的学生已经初步接触了实数的概念,对于数轴也有了一定的了解。

但是,他们对于绝对值和相反数的定义及性质可能还不是很清楚,需要通过具体例子和练习来加深理解。

同时,学生可能对于数轴上的距离和相对概念有一定的困惑,需要教师进行详细的解释和引导。

三. 说教学目标1.理解绝对值和相反数的概念,掌握它们的性质。

2.能够运用绝对值和相反数的性质解决一些实际问题。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 说教学重难点1.绝对值和相反数的定义及性质。

2.如何运用绝对值和相反数的性质解决实际问题。

五. 说教学方法与手段1.采用讲授法,教师详细讲解绝对值和相反数的定义及性质,引导学生进行思考。

2.使用举例法,通过具体例子让学生理解绝对值和相反数的概念,加深记忆。

3.利用练习法,让学生通过做练习题,巩固所学知识,提高解决问题的能力。

4.采用小组讨论法,让学生分组讨论,培养学生的合作意识和沟通能力。

六. 说教学过程1.引入:通过数轴引导学生回顾实数的概念,然后提出绝对值和相反数的定义,让学生初步了解。

2.讲解:详细讲解绝对值和相反数的定义及性质,让学生理解并能够运用。

3.举例:给出具体例子,让学生理解绝对值和相反数的概念,加深记忆。

4.练习:让学生做练习题,巩固所学知识,提高解决问题的能力。

5.讨论:让学生分组讨论,分享解题心得,培养学生的合作意识和沟通能力。

6.小结:对本节课的内容进行总结,强调绝对值和相反数的重要性。

七. 说板书设计板书设计如下:绝对值与相反数1.绝对值:数轴上表示一个数的点到原点的距离。

2.3 绝对值与相反数(第1课时 绝对值)(课件)七年级数学上册(苏科版2024)

2.3 绝对值与相反数(第1课时 绝对值)(课件)七年级数学上册(苏科版2024)

的两点间的距离为4,则这两个数为(
A. 4和-4
B. 0和4
C. 0和-4
D. 2和-2
D
)
分层练习-基础
4. 下列说法中,正确的是(
D
)
A. 绝对值等于3的数是-3
1
3
B. 绝对值小于1 的整数是1和-1
C. 绝对值最小的有理数是1
D. 3的绝对值是3
分层练习-基础
5. (1)符号是“+”号,绝对值是5的数是

分层练习-基础
8. 画出数轴,再用数轴上的点表示下列各数,并写出它们的绝对值.
1
2
3
5
0,-2,7.3, ,-3 .
解:如图所示.
|0|=0,|-2|=2,|7.3|=7.3,
1
2
1
2
= , −3
3
5
3
5
=3 .
分层练习-基础
9. 计算:
(1)|-2|+|3.2|-|-2.5|;
解:原式=2+3.2-2.5
=2.7.
(2)|-7.25|×|-4|+|-32|÷|-8|.
解:原式=7.25×4+32÷8
=29+4
=33.
分层练习-巩固
10. 【情境题·生活应用 2024 ·威海】一批食品,标准质量为每袋
454 g.现随机抽取4个样品进行检测,把超过标准质量的克数
用正数表示,不足的克数用负数表示.那么最接近标准质量的
点之间的距离.
这个结论可以推广为| x1- x2|表示数轴上的数 x1与数 x2对应的点之间的距离.
例:已知| x -1|=2,求 x 的值.
解:在数轴上与1对应的点的距离为2的点表示的数为3或-1,

苏科版数学七年级上册2.4《绝对值与相反数》说课稿

苏科版数学七年级上册2.4《绝对值与相反数》说课稿

苏科版数学七年级上册2.4《绝对值与相反数》说课稿一. 教材分析《苏科版数学七年级上册2.4《绝对值与相反数》》这一节的内容是在学生已经学习了有理数的基础上,进一步引导学生理解绝对值和相反数的概念,并掌握它们的性质和运用。

教材通过例题和练习,让学生在实际问题中运用绝对值和相反数的知识,提高解决问题的能力。

二. 学情分析七年级的学生已经初步掌握了有理数的概念,对数学有了一定的认识。

但是,对于绝对值和相反数的概念和性质,他们可能还比较模糊,需要通过具体的例子和实际问题来加深理解。

此外,学生的学习习惯和思维方式也有所不同,需要教师在教学中进行引导和调整。

三. 说教学目标1.知识与技能:学生能够理解绝对值和相反数的概念,掌握它们的性质和运用。

2.过程与方法:学生能够通过观察、实验、推理等方法,探索绝对值和相反数的性质。

3.情感态度与价值观:学生能够培养对数学的兴趣,提高解决实际问题的能力。

四. 说教学重难点1.重点:绝对值和相反数的概念及其性质。

2.难点:绝对值和相反数在实际问题中的应用。

五.说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等,引导学生主动探究,培养学生的数学思维能力。

2.教学手段:利用多媒体课件、实物模型、数学软件等,辅助教学,提高教学效果。

六. 说教学过程1.导入:通过一个实际问题,引导学生思考绝对值和相反数的概念。

2.新课讲解:讲解绝对值和相反数的概念,并通过例题演示它们的性质。

3.学生练习:让学生通过练习题,巩固对绝对值和相反数的理解。

4.应用拓展:引导学生运用绝对值和相反数的知识解决实际问题。

5.课堂小结:总结本节课的主要内容,强调重点和难点。

6.作业布置:布置适量的作业,巩固所学知识。

七. 说板书设计板书设计要清晰、简洁,能够突出重点内容。

可以设计一些图表、公式等,帮助学生理解和记忆。

八. 说教学评价教学评价可以从学生的课堂表现、作业完成情况、练习题的正确率等方面进行。

苏科版七年级上册数学 第2章 绝对值与相反数 绝对值——绝对值的定义和性质 授课课件

b-1=0. 解:根据题意可知:a-2=0,b-1=0 ,
所以:a=2 ,b=1.
感悟新知
总结
知3-讲
若几个非负数的和为0,则这几个数都为0.
感悟新知
知3-练
1 绝对值最小的数是____0____;绝对值最小的负整数 2 是___-__1___.
2如果+|b-a-11|=0,那么a+b=( )
C
感悟新知
知1-练
1 (中考·连云港)数轴上表示-2的点与原点的距离是 _______2_.
感悟新知
知识点 2 绝对值的求法
知2-讲
1.几何定义:一般地,数轴上表示数a的点与原点的距
离叫做数a的绝对值,记作
a.
2.代数定义:一个正数的绝对值是它本身;一个负数
的绝对值是它的相反数;0的绝对值是0;任意一个
2
A.B.-C.1D.1 1
3
2
2
2
感悟新知
3 写出下列各式的值,并回答问题.
知3-练
1
15
=
__1_5___,2.5
=
__2_.5__,2 3
=
2 __3___;2-15=___1_5__
,-2.5
=
_2__.5__,-
2
=
2 ___3__

3
3由以上可以看出:当a 是正数时,a ___>___ 0 ;
作业2
1
5
5
2 (中考·东营) 的-相1反数是(
A. B.-1 C.3D.-331
3
3
)B
知2-练
感悟新知
知识点 3 绝对值的性质
想一想: 互为相反数的两个数的绝对值有什么关系?

苏科版数学七年级上册课件:2.4《绝对值与相反数》

1.(1)在数轴上画出表示下列各数的点:
5, 3 ,0.4,0,5,2.
(2)填空: 2
3
5 ___5____,
3 ___2____,
2
0.4 __0_._4___,
0 __0_____,
5 ___5____,
2 __2_____.
2.已知一个数的绝对值是2,求这个数.
绝对值与相反数
绝对值与相反数
两个正数中,绝对值大的那个数一定大吗? 两个负数呢?
两个正数,绝对值大的正数大; 两个负数,绝对值大的负数小.
绝对值与相反数
例6 比较-9.5与-1.75的大小.
解:因为|-9.5|=9.5,|-1.75|=1.75, 且9.5>1.75,所以-9.5<-1.75.
绝对值与相反数
绝对值
例1 求4、-3.5的绝对值.
解:在数轴上分别画出表示4、-3.5的点A、点B.
3.5
4
B
A
·
5 4 3 2 1 0
1
2
3
4
5
因为点A与原点的距离是4,所以4的绝对值是4; 因为点B与原点的距离是3.5,所以-3.5的绝对值是3.5.
绝对值
通常,我们将数a的绝对值记为|a| . 例如: 4的绝对值记为|4|, -3.5的绝对值记为 |-3.5|.
5 ____5__,-5的相反数是______5_;
(2)10.5 __1_0._5_,-10.5的相反数是 __1_0_._5;
7 4
7 ___4____,_____4__;
(3)0 ____0___.
绝对值与相反数
一个数的绝对值与这个数本身或它的相反 数有什么关系?
正数的绝对值是它本身; 负数的绝对值是它的相反数; 0的绝对值是0.

苏教版七年级数学上册《绝对值和相反数》课件


解:3的相反数是-3,
-4.5 的相反数是 4.5 ,
-4(的 -4相 .5)反 = 4数 .54是.
7
7
例2 化 ( 简 2 ) ,( 2 .7 ) ,( 3 ) ,( 3 ).
4
解: 因 2为 的相反数 2, 是 所以 ( 2)2.
例2 化 ( 简 2 ) ,( 2 .7 ) ,( 3 ) ,( 3 ).
AB
FC D
E
- 5 - 4 - 3 - 2 - 1 0 1 2 34 5
点 A 表示 -5 ,点 A 与原点的距 离是 5 ,所以 -5 的绝对值是 5 .记为 |-5| = 5.
说一说:
你能说出数轴上点 A、B、C、D、 E、F 各点所表示的数的绝对值吗?
AB
FC D
E
- 5 - 4 - 3 - 2 - 1 0 1 2 34 5
解:(4)因为4 4, 4 4, 并且44,
所以4 4 .
动脑筋 有一天,甲、乙两个数在比谁
大.甲抢着说:“在数轴上我表示 的点到原点的距离比你表示的点到 原点的距离要大,看来我比你大”, 乙不甘示弱,紧接着说,“我是正 数,我大于零,也大于一切负数, 当然是我比你大”.你们说到底谁 大呢?
4
解 : 因 2为 .的 7 相反数 2., 7是
所 (以 2.7) 2.7.
例2 化 ( 简 2 ) ,( 2 .7 ) ,( 3 ) ,( 3 ).
4
解 : 因3为 的 相 反 数 3,是 所(以 3) 3.
例2 化 ( 简 2 ) ,( 2 .7 ) ,( 3 ) ,( 3 ).
•8、普通的教师告诉学生做什么,称职的教师向学生解释怎么做,出色的教师示范给学生,最优秀的教师激励学生。

苏教版数学七年级上册说课稿《2-4绝对值与相反数》第2课时

苏教版数学七年级上册说课稿《2-4 绝对值与相反数》第2课时一. 教材分析苏教版数学七年级上册第2-4节绝对值与相反数,是学生在学习有理数之后,进一步理解数学概念的重要内容。

绝对值与相反数是数学中的基础概念,不仅在初中阶段的学习中占据重要地位,而且在高中乃至大学数学中也有广泛的应用。

本节课的内容对于培养学生的逻辑思维能力、抽象思维能力以及解决实际问题的能力具有重要意义。

二. 学情分析七年级的学生已经掌握了有理数的基本概念,对正数、负数、整数、分数等有了初步的认识。

但是,对于绝对值与相反数这两个概念,学生可能还比较陌生,理解起来可能会有一定的难度。

因此,在教学过程中,我需要从学生的实际出发,用通俗易懂的语言和生动形象的例子,帮助学生理解和掌握这两个概念。

三. 说教学目标1.知识与技能目标:使学生理解绝对值与相反数的概念,掌握它们的性质和运算法则。

2.过程与方法目标:通过自主学习、合作交流,培养学生探究问题的能力和解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的抽象思维能力,使学生体验到数学学习的乐趣。

四. 说教学重难点1.教学重点:绝对值与相反数的概念,性质和运算法则。

2.教学难点:绝对值与相反数的内在联系和应用。

五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、教师讲解相结合的方法,引导学生探究问题,解决问题。

2.教学手段:利用多媒体课件,生动形象地展示绝对值与相反数的概念和性质,提高学生的学习兴趣。

六. 说教学过程1.导入新课:通过复习有理数的概念,引出绝对值与相反数的概念。

2.讲解与演示:利用多媒体课件,生动形象地讲解绝对值与相反数的概念、性质和运算法则。

3.练习与讨论:学生自主练习,合作交流,解决练习题,加深对绝对值与相反数概念的理解。

4.应用拓展:通过解决实际问题,让学生体验到绝对值与相反数在生活中的应用。

5.总结与反思:教师引导学生总结本节课的学习内容,学生分享自己的学习心得。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ZX X K
2.5 与2.5
π 与 π
符号不同、绝对值相同的两个数互为相反数, 其中一个是另一个的相反数. 例如5与-5互为相反数,其中5是-5的相反
数,-5是5的相反数,π的相反数是 -π.
0的相反数是0.
4 求3、 4.5 、 的相反数. 7
4 解:3、 4.5 、 的相反数分别是Biblioteka 7 4 -3 、4.5 、 . 7
2.4 绝对值与相反数
1.观察数轴上点A、B的位置及其到原点的 距离,你有什么发现?
A B
5 4 3 2 1 0
1
2
3
4
5
(1)点A、B在原点两侧,分别表示-5和5; (2)点A、B与原点的距离都是5.
2.观察下列各对有理数,你发现了什么?
请与同学交流. 5 5与
2 2 与 3 3
因为-3的相反数是3,所以-(-3)=3.

类似地, ( 3 ) 3 .
4
4
课堂小结:
谈谈你这一节课有哪些收获.
Z X XK
表示一个数的相反数,可以在这个数的前面添
一个“-”号.如-5 的相反数可以表示为 -
(-5),我们知道-5 的相反数是5,所以- (-5)=5.即a的相反数是-a,-a的相反 数是a.
4
3 化简: (2), (2.7), (3), ( ). 4
解:因为+2的相反数是-2, 所以-(+2)=-2. 类似地,-(+2.7)= -2.7.
相关文档
最新文档