基坑工程监测方案
基坑监测方案

基坑监测方案一、背景介绍随着城市建设的不断推进,基坑工程在城市发展中扮演着重要的角色。
然而,由于基坑工程施工所涉及的土地开挖、地下水位变动、邻近建筑物的安全等问题,必须对基坑进行监测和控制。
因此,制定一套行之有效、科学合理的基坑监测方案,对于确保基坑施工的安全和顺利进行至关重要。
二、监测内容1. 土体变形监测土体在开挖过程中会发生变形,因此需要监测基坑周边土体的变形情况。
监测内容包括土体的沉降、侧向位移和倾斜度等指标。
2. 地下水位监测基坑开挖过程中会涉及地下水位的变动,为了控制沉降和保证施工安全,需要对地下水位进行监测。
监测点布设应覆盖到基坑的各个不同位置。
3. 周边建筑物安全监测开挖基坑可能对周边建筑物的安全造成影响,因此需要对周边建筑物进行安全监测。
包括建筑物的沉降、裂缝情况等指标。
三、监测方法1. 土体变形监测方法(1)GPS监测:通过设置GPS监测站点,实时记录土体沉降、侧向位移和倾斜度等参数。
(2)倾斜仪监测:通过安装倾斜仪监测土体的倾斜变化情况,提供准确的变形数据。
2. 地下水位监测方法(1)水位计监测:在合适的位置安装水位计,实时监测地下水位的变化情况。
(2)井眼监测:通过设置监测井,在井眼内安装水位计,对地下水位进行定期监测和记录。
3. 周边建筑物安全监测方法(1)应力应变测量:通过安装应力应变测试设备,监测建筑物的变形情况,预警可能出现的安全风险。
(2)形变监测:通过安装形变传感器,监测建筑物的形变情况,及时发现问题并采取应对措施。
四、监测频率和数据处理1. 监测频率监测频率应根据基坑的工程特点和土体变化情况而定,一般为每日监测或定期监测。
2. 数据处理监测数据应及时进行整理和分析,通过对数据的处理和比对,判断基坑施工过程中的变化趋势和是否存在安全隐患,并及时采取相应的措施。
五、应对措施1. 对于土体变形问题,根据监测数据确定是否需要进行加固措施,如土钉墙、加固支护结构等。
2. 对于地下水位变动引起的安全问题,可采取降低地下水位的方法,如抽水排水等。
基坑监测方案

基坑监测方案一、引言基坑工程是现代建设中常见的一项工程活动,其施工会涉及到土壤力学、结构力学、水文地质等多个学科。
为了确保基坑工程的安全施工和后期使用,需要进行基坑监测。
本文将就基坑监测方案进行详细介绍。
二、监测目标基坑监测的目标是为了掌握基坑施工过程中的变形、位移、应力等信息,以及周边环境的变化情况,以提供监测数据支持,为工程提供安全、稳定的施工条件。
监测目标包括以下几个方面:1. 基坑变形监测:通过监测基坑周边地表的沉降、侧移等变形情况,掌握基坑结构的变形状态,及时发现可能存在的安全隐患。
2. 基坑地下水位监测:监测基坑附近地下水位的变化情况,了解地下水对基坑的影响,并根据监测数据进行相应的水文调节。
3. 基坑支护结构监测:对基坑支护结构的应力、位移等进行监测,以确保支护结构的稳定性和安全性。
4. 周边建筑物监测:对接近基坑的周边建筑物进行监测,防止基坑施工对周边建筑物造成不可逆的影响。
三、监测方法与方案基坑监测应综合运用现场监测和远程监测两种方法,以确保监测数据准确可靠。
本方案提出以下监测方法与方案:1. 现场监测(1)地表变形监测:通过布设测点,使用测量仪器(如全站仪、水准仪等),定期监测地表的沉降、侧移等变形情况。
(2)支护结构监测:在基坑支护结构上设置应变计、位移计等传感器,实时检测支护结构的应力、位移等变化。
(3)地下水位监测:设置水位监测井,并配备合适的水位传感器,进行地下水位的定期监测。
(4)周边建筑物监测:通过定点振动传感器、应变计等监测周边建筑物的位移、应力等参数。
2. 远程监测(1)数据采集与传输:将现场监测获得的数据通过数据采集终端进行采集,并通过无线信号、有线传输等方式传输到远程监测中心。
(2)数据处理与分析:在远程监测中心对采集到的数据进行处理与分析,并生成监测报告,及时反馈给相关监理单位和工程管理人员。
四、监测频率与报告基坑监测应根据工程的实际情况,结合监测目标和监测指标的要求,确定监测频率。
基坑工程现场监测方案

基坑工程现场监测方案一、前言基坑工程是指在承载土体的工程基础体系周围凿挖一定的深度和宽度,以满足地下空间利用要求的一种工程。
其施工过程中可能存在土体塑性变形、地下水位变化、地下管线和建筑物变形等多种风险,因此需要对其现场进行全面的监测,及时掌握施工情况,保障工程顺利进行。
二、监测目标基坑工程的监测目标主要包括以下几个方面:1、土体变形监测:监测基坑周边土体的沉降变形情况,及时发现并控制土体的变形,防止地质灾害发生。
2、地下水位监测:监测基坑周边地下水位的变化情况,控制基坑内的地下水位在合理范围内,避免基坑水灾发生。
3、地下管线监测:监测基坑周边地下管线的变形情况,控制地下管线的变形,防止对施工安全造成影响。
4、建筑物变形监测:监测基坑周边建筑物的倾斜、裂缝等变形情况,确保周边建筑物的安全。
5、施工工艺参数监测:监测基坑支护结构的变形、应力、变形等参数,保障支护结构的稳定性。
三、监测方案1、土体变形监测:采用全站仪、GPS、精度水准仪等仪器对基坑周边土体进行定点观测,记录土体的沉降、水平位移、倾斜等信息,检测变形情况。
对于变形较大的地点,可采用测量点云技术,实时监测土体的三维形变情况。
2、地下水位监测:利用水位计、压力计对基坑周边的不同深度和位置进行地下水位的监测,并且建立水位监测井,实时监测地下水位的变化情况。
同时,采用地下水位自动监测系统,可以实时监测并记录地下水位的变化。
3、地下管线监测:采用地下管线监测仪器对基坑周边的地下管线进行监测,记录管线的变形、位移等信息,及时发现问题并采取相应的措施。
4、建筑物变形监测:采用倾斜仪、位移监测仪等仪器对基坑周边的建筑物进行倾斜、位移等变形情况的监测,确保建筑物的安全。
5、施工工艺参数监测:采用应力应变计、变形仪器、位移传感器等仪器对基坑支护结构进行监测,记录支护结构的变形、位移、应力等参数,及时掌握支护结构的稳定性。
四、监测频次1、土体变形监测:根据基坑的深度和地质条件,制定不同监测频次,一般情况下,每日至少监测一次,夜间施工时,应加强监测频次。
基坑工程监测检测方案

基坑工程监测检测方案一、前言基坑工程是城市建设中的重要组成部分,其安全施工和监测检测工作至关重要。
在建设过程中,需要对基坑工程进行监测检测,以确保施工过程中的安全以及结构稳定。
本文将针对基坑工程的监测检测方案进行详细的介绍。
二、监测检测的目的基坑工程监测检测的主要目的是为了掌握工程施工过程中的变形和变化规律,对施工现场的安全进行有效监控和控制;同时也是为了对基坑支护结构的受力进行实时监测,保证基坑支护结构的稳定性和安全性;对基坑周边环境进行监测,以保护周边建筑和地下管线的安全。
三、监测检测的内容1. 地表沉降监测:通过设置地表沉降监测点,进行实时监测,了解地表变形情况。
可以采用测量仪器,如沉降仪、倾斜仪等进行监测,并采用自动化数据采集系统进行数据存储和分析。
2. 基坑轴线监测:针对基坑的变形情况进行监测,了解基坑结构的稳定性。
可以采用全站仪、GPS等工具进行轴线监测,实时记录基坑的变形情况。
3. 支护结构受力监测:对基坑支护结构的受力情况进行监测,确保支护结构的安全性。
可以采用应变计、位移计等仪器进行实时监测。
4. 地下水位监测:对基坑附近地下水位进行监测,了解地下水位的变化情况。
可以通过长期监测和数据分析,掌握地下水位的变化规律。
5. 基坑周边环境监测:对基坑周边建筑和地下管线进行监测,确保工程施工过程中的安全。
可以采用地质雷达、声波检测等技术进行监测,确保基坑工程对周边环境的影响最小化。
四、监测检测方法1. 传统监测方法:采用常规测量仪器进行监测,如全站仪、GPS、沉降仪、倾斜仪、应变计等。
这些仪器可以准确监测基坑工程的变形情况,并且数据可以实时采集分析。
2. 自动化监测系统:采用自动化监测系统进行监测,实现数据实时采集和存储。
可以采用传感器、数据采集器、数据传输设备等进行布设,实现对基坑工程的全方位监测。
3. 遥感监测技术:利用遥感技术进行基坑工程的监测,减少人工操作和提高监测效率。
可以采用卫星遥感、无人机等技术进行监测,实现对基坑工程的大范围监测。
基坑工程监测技术方案

基坑工程监测技术方案一、前言基坑工程是指为了建设地下结构或地下工程而在地面上开挖出的深坑,如地下车库、地下商场、地下室等。
在基坑工程施工过程中,要保证施工过程稳定安全,必须对基坑周边的地下水位、基坑变形、邻近建筑物或地下管线等进行严密监测。
基坑工程中的监测技术在施工和使用阶段起到至关重要的作用。
本文就基坑工程监测技术方案进行讨论。
二、基坑工程监测内容基坑工程监测内容主要包括以下几个方面:1. 地下水位监测:考虑到基坑周围地下水的波动对基坑稳定性的影响,需对周边地下水位进行监测,掌握地下水位的变化范围和趋势。
2. 基坑变形监测:基坑挖掘深度增加时,土体受到变形应力的影响,从而引起土体变形。
因此,需要监测基坑边坡的位移和变形情况。
3. 周边建筑物和地下管线监测:基坑开挖对周边建筑物和地下管线会产生影响,需监测周边建筑物和地下管线变化情况。
以上监测内容对基坑工程的施工和使用阶段都至关重要。
三、基坑工程监测技术方案1. 地下水位监测技术方案地下水位监测一般采用水位计或压力传感器进行监测。
监测点分布需覆盖基坑周边,监测频率一般为每日至每周。
监测数据通过无线传输至监测中心,并及时进行分析与处理。
在发现异常情况时,及时采取相应措施。
2. 基坑变形监测技术方案基坑变形监测可采用全站仪、测斜仪等设备进行监测。
设立监测点布设需均匀,以获取较为准确的数据。
监测频率根据施工情况和地质条件而定,一般监测频率为每日至每周。
监测数据传输至监测中心,并进行实时监测和分析。
3. 周边建筑物和地下管线监测技术方案周边建筑物和地下管线监测可采用全站仪、测斜仪等设备进行监测。
设立监测点分布需合理,监测频率一般为每周至每月。
监测数据传输至监测中心,并进行分析和处理。
四、基坑工程监测数据分析与应用监测数据的分析和应用是基坑工程的关键环节。
监测数据的实时分析可以预警和预防基坑工程中可能出现的安全隐患,从而采取相应的控制措施。
1. 地下水位监测数据分析与应用地下水位监测数据的分析可以帮助预测地下水位的变化趋势,及时发现地下水位异常变动的可能性。
基坑工程监测方案完整版

基坑工程监测方案完整版一:(详细版)基坑工程监测方案完整版一、前言本旨在规划基坑工程的监测方案,确保施工过程中的安全和质量。
本方案详细介绍了监测的目的、内容、方法及具体实施步骤,以供参考。
二、监测目的基坑工程的监测目的是为了及时掌握基坑工程施工过程中的变形和破坏情况,预测和评估可能带来的风险,并采取相应的措施以确保工程的顺利进行。
三、监测内容1. 地面沉降监测地面沉降监测旨在记录基坑周围地面的垂直位移情况,以评估基坑开挖对周边建造物和地下管线的影响。
2. 基坑顶部水平位移监测基坑顶部水平位移监测旨在记录基坑各个部位的水平位移情况,以评估基坑结构的稳定性。
3. 地下水位监测地下水位监测旨在记录基坑周围地下水位的变化情况,以评估基坑排水系统的效果。
4. 基坑支护结构变形监测基坑支护结构变形监测旨在记录基坑支护结构的变形情况,以评估支护结构的稳定性。
五、实施步骤1. 建立监测点根据监测内容确定监测点的位置,并进行标记和记录。
2. 部署监测仪器根据监测内容选择合适的监测仪器,并按照要求进行部署和安装。
3. 数据采集和处理定期对监测仪器进行数据采集,并对数据进行处理和分析,监测报告。
4. 监测报告及时反馈及时将监测报告反馈给相关责任方,并提供相应的建议和措施。
六、附件本所涉及附件如下:1. 基坑工程监测点位置图2. 基坑工程监测仪器说明书3. 基坑工程监测数据报告样本七、法律名词及注释1.《建造法》:指中华人民共和国建造领域的专门法律法规。
2.《施工安全管理条例》:指中华人民共和国施工领域的专门法律法规。
二:(简洁版)基坑工程监测方案完整版一、前言本为基坑工程监测方案,旨在确保工程施工过程的安全和质量。
详细介绍了监测的目的、内容、方法及实施步骤。
二、监测目的基坑工程监测的目的是为了及时掌握工程变形和破坏情况,预测风险并采取措施,确保工程顺利进行。
三、监测内容1. 地面沉降监测2. 基坑顶部水平位移监测3. 地下水位监测4. 基坑支护结构变形监测五、实施步骤1. 建立监测点2. 部署监测仪器3. 数据采集和处理4. 监测报告及时反馈六、附件1. 基坑工程监测点位置图2. 基坑工程监测仪器说明书3. 基坑工程监测数据报告样本七、法律名词及注释1.《建造法》2.《施工安全管理条例》。
基坑监测方案

基坑监测方案基坑监测是在建筑施工阶段对基坑周边土体和工程结构进行实时监测和评估的重要工作。
本文将介绍一个基坑监测方案,其中包括监测目的、监测内容、监测方法和监测频率等方面的内容。
一、监测目的基坑监测的主要目的是确保施工过程中的安全性和稳定性,及时发现并预防潜在的安全风险。
具体的目的如下:1. 评估基坑围护结构的稳定性,判断是否存在下沉或倾斜等问题;2. 监测基坑周边土体的变形情况,了解土体的工程性质和变化趋势;3. 检测地下水位的变化,控制水位对基坑的影响;4. 监测基坑开挖工序中的土方量,确保施工进度的正常进行。
二、监测内容基坑监测的内容主要包括以下几个方面:1. 基坑围护结构的变形监测:通过安装位移传感器等监测设备,实时监测基坑围护结构的下沉、倾斜和变形情况。
2. 基坑周边土体的变形监测:通过土壤应变计、浸润计等监测设备,监测土体的应变、变形和稳定性。
3. 地下水位的监测:通过水位监测井和水位传感器等设备,监测地下水位的变化情况,及时采取控制措施。
4. 土方量的测量:通过挖掘机上的土重计等设备,实时测量基坑开挖工序中的土方量,掌握施工进度。
三、监测方法基坑监测可以利用传统的实地测量与现代化的自动化监测相结合的方式进行。
具体的监测方法如下:1. 传统实地测量:包括使用测量仪器进行位移测量、水位测量和土方量测量等。
2. 自动化监测:采用自动化仪器和传感器进行监测,通过数据采集和传输系统实现远程实时监测。
四、监测频率基坑监测的频率需要根据具体施工情况和工程要求来确定。
一般情况下,应进行定期监测和临时监测相结合的方式,根据实际情况进行调整。
1. 定期监测:按照工程进度和要求,每隔一定时间进行监测,如每周、每月或每季度进行一次。
2. 临时监测:在施工过程中,发现异常情况或关键节点时,及时进行监测,以确保施工的安全进行。
总结:基坑监测方案是基坑工程的重要组成部分,能够帮助工程人员及时了解工程的安全状况和土体变化情况,为施工过程提供科学的依据和指导。
基坑工程监测方案流程

基坑工程监测方案流程一、基坑工程监测方案流程1、工程前期调研在制定基坑工程监测方案之前,需要开展工程前期调研工作,对工程的地质情况、施工方案、周边环境和建筑物结构等进行全面的了解和分析。
调研内容包括施工区域的地质构造和地下水情况、附近建筑物的结构情况和使用情况、施工方案及支护设计等,通过调研得到的数据为制定监测方案提供依据。
2、制定监测方案基于前期调研的数据和工程特点,制定基坑工程监测方案,包括监测内容、监测点位、监测周期、监测方法和仪器设备的选择等。
监测内容主要包括基坑变形、地下水位、地下水压力、建筑物结构变形和周边道路、管线等影响因素的监测。
监测点位应根据实际情况设置在基坑周边建筑物、管线和地下水位变化较大的地方,并密集设置在基坑边缘和潜在变形区域。
监测周期要根据工程的具体情况确定,可以根据施工进度和地质变化进行调整。
监测方法主要包括实测法、仪器观测法、遥感技术和数学模型等。
在选择监测仪器设备时,应考虑其精度、稳定性、性能价格比和自动化程度等因素,以满足监测要求。
3、实施监测方案在基坑工程施工过程中,按照监测方案的要求,对基坑周边地表变形、地下水位变化、建筑物结构变形等指标进行实时监测。
监测具体操作包括布设监测点位、安装监测仪器设备、定期观测和记录监测数据、进行数据处理和分析等环节。
监测数据及时反馈给施工单位和监理单位,以供施工管理和工程决策参考。
同时,应加强现场巡查和监测设备的保养维护,确保监测数据的准确性和可靠性。
4、数据处理和分析监测数据的处理和分析是基坑工程监测方案的关键环节。
通过对监测数据的处理和分析,可以评估基坑工程的安全状况,及时发现存在的问题和隐患,并制定相应的应对措施,以确保基坑工程的安全顺利进行。
数据处理和分析中需要运用现代化的数据处理软件和数学模型,通过数据处理和分析得出工程变形趋势和变化规律,进行安全评价和预警预测。
5、做好监测报告定期编制监测报告,总结分析监测数据,评估工程风险,提出改进建议,随时向相关单位汇报工作进展和安全预警情况,保持沟通、监测数据共享。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基坑工程监测方案启东市名仕豪庭基坑围护工程监测方案南通星辰测绘咨询有限公司二00七年三月东方银座大厦基坑工程监测方案彭东海 2019年3月10日1 工程概况1.1 工程特点1.2 地理状况本地区属长江三角洲冲击平原,施工场地位于启东市和平路和人民路交叉口,地势较平坦,为民房或工业厂房拆迁后整平地面,广泛分布块石。
场地地面高程为1.1-2.1m,最大高差1m左右。
施工现场水电已引到现场,临时道路已修筑,三通一平工作已完成。
根据地质资料,地下水位较高,约在地面下0.8-1.0m。
基坑围护面积狭长,基底土为粉土或粉砂层,东侧紧邻住宅小区,对基坑的开挖有一定的难度。
3.施工准备与施工部署3.1工程定位测量根据上海市测绘院提供的平面坐标控制点和高程控制点TP1及启东市建筑设计研究院提供的总平面图,定位建筑物,做好控制轴线,并将高程引测至施工现场,做好高程控制点,对轴线控制桩及高程控制点加以保护。
挖土前根据测量定位放出挖土灰线。
3.2围护桩及冠梁锚杆施工基坑开挖前围护桩施工完毕,圈梁强度达到80%,锚杆施工完成,基础支护结构全部完成,具备开挖条件。
6.技术措施6.1基坑监测由于本工程围护基坑开挖深度相对较大,形状狭长,且东侧紧临住宅小区,基坑开挖对周围道路、建筑物及地下管线等影响较大,若有疏忽,就会带来巨大的经济损失。
为确保基坑安全,委托有资质的单位对基坑进行监测跟踪,及时了解基坑安全相关的情况,准备好应急措施。
根据基坑开挖深度、支护的特点及周边所处环境的条件,监测的主要内容包括下列内容:支护结构的水平位移、周边道路及建筑物的沉降监测、深层土体的水平位移、支护结构内外侧的地下水位监测。
各种监测措施的布置与具体的监测方法等见基坑监测方案。
1.2 建设地点及环境特征该工程位于河南路和公园路路口交界处,东邻河南路,南邻公园路,北侧距离坑边4.5~6.5m处有已使用的新建住宅2栋,西侧距离坑边5.5m处有两栋正在使用的商住楼。
该工程位于城市繁华闹市区,开挖基坑造成的地层位移影响范围内(1~3倍基坑深度)有重要的城市主干道(埋设有煤、电、水等管线)和需保护的建筑物,且施工场地狭窄,环境特征复杂。
1.3 工程地质及水文地质条件场区地层自上而下为:杂填土、粉质粘土、中砂、粉质粘土、粗砂,地下水埋深12.31m(资料见岩土工程勘察报告)。
1.4 基坑工程安全等级评价依据现行的《建筑地基基础工程施工质量验收规范》GB50202-2002、《建筑基坑支护技术规程》JGJ120-99、《建筑基坑监测技术规范》DBJ14-024-2019有关规定,该基坑工程安全等级属于二级基坑工程,应按二级基坑工程实施监测。
2 监测目的、任务、依据和程序2.1 监测目的为基坑工程优化设计、指导基坑工程施工,确保基坑稳定和保护周边环境安全提供科学依据。
2.2 监测任务(1)基坑支护结构监测:包括挡土墙顶部水平位移和沉降观测、土体深部水平位移观测等;(2)周边环境监测:周围建筑物变形观测、周围地面沉降观测、地下水变化观测等。
2.3 监测依据1. 《建筑基坑监测技术规范》DBJ14-0242. 《建筑地基基础工程施工质量验收规范》GB502023. 《建筑基坑支护技术规程》JGJ1204. 《建筑地基基础设计规范》GB500075. 《工程测量规范》GB500266. 《建筑变形测量规程》JGJ/T87. 《民用建筑可靠性鉴定标准》GB502922.4 监测程序1. 接受委托;2. 现场踏勘,收集资料;3. 制定监测方案,并报设计、监理和业主认可;4. 展开前期准备工作,设置观测点、校验设备、仪器;5. 观测点和设备、仪器、元件验收;6. 现场监测;7. 监测数据的计算、整理、分析及报表反馈;8. 提交阶段性监测结果和报告;9.现场监测工作结束,提交完整的基坑工程监测总结报告。
3 监测项目3.1 仪器监测根据《建筑基坑监测技术规范》DBJ14-024-2019的规定,基坑工程现场仪器监测项目的选择应在充分考虑工程水文地质条件、基坑工程安全等级、支护结构的特点及变形控制要求的基础上,根据表1进行选择。
本工程基坑深度最深处5.8m且基坑开挖深度1-3倍内东侧有邻近的建筑物,依据规范,该基坑工程安全等级属于二级,应按照二级基坑确定监测项目。
考虑到该工程的特点,确定的监测项目见表2。
3.2 巡视检查基坑工程监测期内,每天应由有经验的监测人员,对基坑工程进行巡视检查并做好纪录。
3.2.1巡视检查内容1. 支护结构1)支护结构的成型质量;2)冠梁、围檩有无裂缝出现;4)锚索有无破坏;5)护面有无塌陷、裂缝及滑移;6)基坑有无涌土、流砂、管涌。
2 施工工况1)开挖后暴露的土质情况与岩土勘察报告有无差异;2)基坑开挖分层高度、开挖分段长度是否与设计工况一致,有无超深、超长开挖;3)基坑场地地表水、地下水排放状况是否正常,基坑降水设施是否正常运转;4)基坑周围地面堆载是否有超载情况。
3 周边环境1)地下管线有无泄漏,电缆有无破损;2)临近基坑及建(构)筑物施工工况;3)基坑周边建(构)筑物、地下设施、道路及地表有无裂缝出现。
4. 监测设施1)基准点、测点有无破坏现象;2)有无影响观测工作的障碍物;3)监测元件的保护情况。
3.2.2巡视检查方法和记录主要依靠目测,可辅以锤、钎、量尺、放大镜等工器具以及摄录像机进行。
每次巡视检查应对自然环境(雨水、气温、洪水的变化等)、基坑工程检查情况进行详细记录。
如发现异常,应及时通知施工和监理单位相关人员。
巡视检查记录应及时整理,并与当日监测数据综合分析,以便准确地评价基坑的工作状态。
4 测点布置4.1 一般要求1基坑工程监测点的布置应以满足监控要求为准,在满足监测对象结构安全控制的前提下,考虑监测工作量的大小及费用控制的要求。
2测点的位置应最大程度地反映监测对象的实际工作状态,且不应妨碍结构的正常受力或有损结构的变形刚度和强度特征。
3测点的位置在满足监控要求的前提下,尽量减少对施工作业产生的不利影响。
4在监测对象内力和变形变化剧烈的部位,观测点适当加密。
5位移观测基准点数量不少于三点,且设在基坑工程影响范围以外。
一般距离基坑边缘不小于5倍的开挖深度,也不小于30~50m。
位移观测基准点位置的选择尚应考虑到量测通视等便利,减小转站引点导致的误差。
6测点的位置应避开障碍物,便于观测。
7观测标志应稳固、明显、结构合理,不应影响建(构)筑物的美观和使用。
8加强对观测点的保护,必要时应设置测点的保护装置或保护设施。
4.2 挡墙顶部位移测点布置挡墙顶部的水平位移和垂直位移观测点沿围护结构的周边布置,一般每边的中部和端部均布置观测点,且观测点间距不宜大于20m。
观测点宜设置在与围护结构刚性连接的钢筋混凝土冠梁上。
4.3 挡墙深部水平位移观测点布置观测点设置在结构受力、变形较大的部位,观测点数量和间距视具体情况而定。
当用测斜仪观测围护结构水平位移时,设置在围护结构或土体里的测斜管,沿基坑每侧中心处布置。
设置在土体内的测斜管应保证有足够的入土深度,保证管端嵌入到稳定的土体中,一般大于围护结构埋深5m。
测斜管应保持垂直,并使一对测斜管的定向槽与基坑边线垂直。
4.4建筑物的沉降观测点按下列位置布设:1. 建筑物四角、沿外墙每10~15m处或每隔2~3根柱基上;2. 裂缝、沉降缝、伸缩缝的两侧;3. 新旧建筑物或高低建筑物以及纵横墙的交接处;4. 人工地基和天然地基的接壤处;5. 建筑物不同结构的分界处。
4.5建筑物的裂缝观测在裂缝两侧设置观测标志。
对于较大的裂缝,每条裂缝至少布设两组观测标志,一组在裂缝的最宽处,另一组在裂缝的末端。
4.6基坑外周围地表沉降观测点布设范围宜为基坑深度的2~3倍,并由密到疏布置测点;测点宜设在基坑纵横轴线或其他有代表性的部位。
4.7地下水位观测井(孔)位置和数量根据观测需要布置。
坑内降水观测井(孔)设置在基坑的每边中间和基坑中央,埋深一般与降水井点的埋深相同;坑外降水观测井(孔)沿基坑外周边布设。
5 监测方法和精度要求5.1 一般规定5.1.1现场监测的观测仪器和设备应符合下列要求:1. 应满足观测精度和量程的要求;2. 应有良好的稳定性和可靠度;3. 监测前应对仪器设备检查调试。
钢筋计、土压力计、孔隙水压力计等应在安装前进行重复标定。
标定资料和稳定性资料经现场监理审核后,监测元件方可埋设安装;4. 计量器具必须在计量检定周期的有效期内使用;5. 加强维护保养并定期检修。
5.1.2 基坑工程监测工作的准备工作应在基坑开挖前完成。
本工程由于特殊原因,基坑开挖深度以达10m,未能取得监测零点初始值。
为保证各监测项目的初读数准确,本工程开始监测时应在至少连续三次测得的数值基本一致后,才能将其确定为该项目的初始值。
5.1.3 同一观测项目每次观测时,宜符合下列要求:1. 采用相同的观测路线和观测方法;2. 使用同一监测仪器和设备;3. 固定观测人员;4. 在基本相同的环境和条件下工作。
5.1.4变形测量的等级划分及精度要求,应符合现行《建筑变形测量规程》JGJ/8的规定。
5.2 监测方法及精度要求5.2.1墙顶水平位移:用经纬仪和前视固定点形成测量基线,观测测点与基线距离变化。
若现场通视条件受限,可采用全站仪建立坐标系统,通过直接观测点位坐标值来确定水平位移。
观测点精度不宜低于2mm。
5.2.2墙顶垂直位移:用精密水准仪测定观测点高程变化,观测点精度不宜低于1mm。
5.2.3围护结构(坡体)深层水平位移:在围护结构附近的土体中预埋测斜管,用测斜仪观测各深度处侧向位移。
以测斜管下部管端为相对基准点时,应保证管端嵌入到稳定土体中。
观测点精度不宜低于1mm。
5.2.4周围建(构)筑物沉降和位移:用精密水准仪、全站仪观测。
观测等级及精度要求应符合现行《建筑变形测量规程》JGJ/T8的规定。
5.2.5地下水位变化:通过水位观测井(孔)用水位计观测。
水位计标尺最小读数值不大于10mm。
5.2.6基坑周围地表沉降:用精密水准仪观测。
观测方法与精度要求分别同第5.2.4条。
5.2.7裂缝的总体分布可采用目测;单个或典型裂缝宜采用裂缝观测仪测试,测试仪最小读数为0.1mm。
6监测频度6.1基坑工程监测应从基坑开挖前的准备工作开始,直至土方回填完毕为止。
6.2各项监测的监测频度应考虑基坑开挖及地下工程的施工进程、施工工况以及其他外部环境影响因素的变化。
基坑开挖期间应加强监测;当监测值相对稳定时,可适当降低监测频度。
在无数据异常和事故征兆的情况下,现场监测频度的确定可参照表3。
6.3当出现下列情况之一时,应进一步加强监测,缩短监测时间间隔、加密监测次数,并及时向施工、监理和设计人员报告监测结果。