基坑监测方案完整版最新
基坑监测方案

基坑监测方案一、引言基坑工程是现代建设中常见的一项工程活动,其施工会涉及到土壤力学、结构力学、水文地质等多个学科。
为了确保基坑工程的安全施工和后期使用,需要进行基坑监测。
本文将就基坑监测方案进行详细介绍。
二、监测目标基坑监测的目标是为了掌握基坑施工过程中的变形、位移、应力等信息,以及周边环境的变化情况,以提供监测数据支持,为工程提供安全、稳定的施工条件。
监测目标包括以下几个方面:1. 基坑变形监测:通过监测基坑周边地表的沉降、侧移等变形情况,掌握基坑结构的变形状态,及时发现可能存在的安全隐患。
2. 基坑地下水位监测:监测基坑附近地下水位的变化情况,了解地下水对基坑的影响,并根据监测数据进行相应的水文调节。
3. 基坑支护结构监测:对基坑支护结构的应力、位移等进行监测,以确保支护结构的稳定性和安全性。
4. 周边建筑物监测:对接近基坑的周边建筑物进行监测,防止基坑施工对周边建筑物造成不可逆的影响。
三、监测方法与方案基坑监测应综合运用现场监测和远程监测两种方法,以确保监测数据准确可靠。
本方案提出以下监测方法与方案:1. 现场监测(1)地表变形监测:通过布设测点,使用测量仪器(如全站仪、水准仪等),定期监测地表的沉降、侧移等变形情况。
(2)支护结构监测:在基坑支护结构上设置应变计、位移计等传感器,实时检测支护结构的应力、位移等变化。
(3)地下水位监测:设置水位监测井,并配备合适的水位传感器,进行地下水位的定期监测。
(4)周边建筑物监测:通过定点振动传感器、应变计等监测周边建筑物的位移、应力等参数。
2. 远程监测(1)数据采集与传输:将现场监测获得的数据通过数据采集终端进行采集,并通过无线信号、有线传输等方式传输到远程监测中心。
(2)数据处理与分析:在远程监测中心对采集到的数据进行处理与分析,并生成监测报告,及时反馈给相关监理单位和工程管理人员。
四、监测频率与报告基坑监测应根据工程的实际情况,结合监测目标和监测指标的要求,确定监测频率。
基坑变形监测方案

基坑变形监测方案一、工程概况1.1 工程名称:XX项目基坑工程1.2 工程地点:XX项目现场1.3 工程简介:XX项目基坑工程是该项目的重要组成部分,主要包括基坑开挖、支护、排水等工程。
二、基坑变形监测目标2.1 总体目标:确保基坑施工过程中周边环境及基坑本身的稳定,及时发现并处理变形异常情况。
2.2 具体目标:(1)监测基坑的横向、纵向和斜向变形;(2)评估基坑支护结构的稳定性;(3)预警基坑周边建筑和道路的沉降情况。
三、基坑变形监测原则3.1 安全性:确保监测方案能有效反映基坑变形的真实情况,为施工安全提供保障。
3.2 准确性:监测数据应准确可靠,监测方法应科学合理。
3.3 及时性:监测工作应迅速响应,及时反馈变形信息。
四、基坑变形监测内容4.1 监测项目:包括基坑顶部、侧壁的横向、纵向和斜向变形,以及周边建筑和道路的沉降。
4.2 监测方法:采用变形杆、倾斜仪、水准仪、激光测距仪等监测设备。
4.3 监测频率:根据基坑开挖进度和支护结构稳定性,确定监测频率。
五、基坑变形监测实施与调整5.1 监测方案应在基坑施工前编制完成,并经相关部门审批。
5.2 监测工作应在基坑开挖过程中同步进行,确保监测数据的实时性。
5.3 监测数据应及时反馈至项目管理部门,对异常变形情况应迅速采取措施进行处理。
六、基坑变形监测总结6.1 工程结束后,对基坑变形监测数据进行整理分析,评估监测方案的有效性。
6.2 撰写基坑变形监测总结报告,为今后类似工程提供借鉴和改进方向。
本基坑变形监测方案旨在确保基坑施工过程中周边环境及基坑本身的稳定,及时发现并处理变形异常情况。
在实际运行过程中,应根据实际情况及时调整和优化基坑变形监测策略,以实现设计目标。
基坑监测监控方案

基坑监测监控方案土方开挖施工期间,应对基坑支护结构受力和变形、周边建筑物、重要道路及地下管线等保护对象进行系统的监测。
通过监测,可以及时掌握基坑开挖过程中支护结构的实际状态及周边环境的变化情况,做到及时预报,为基坑边坡和周边环境的安全与稳定提供监控数据,防患于未然;通过监测数据与设计参数的对比,可以分析设计的正确性与合理性,科学合理地安排下一步工序,必要时及时修改设计,使设计更加合理,施工更加安全。
一、监测频率1坡顶水平位移监测:基坑开挖前3步深度在5m以内,可每2d观测一次,基坑开挖至5m以下及基坑开挖完成后一周内,每天观测一次。
基坑开挖至基底后一周后无明显位移时,可适当延长观测周期,每5~IOd 观测一次。
2、坡顶垂直位移及建筑物沉降观测:在基坑降水时和在基坑土开挖过程中应每天观测一次。
混凝土底板浇完IOd以后,可每2~3d观测一次,直至地下室顶板完工和水位恢复。
此后可每周观测一次至回填土完工。
3、当出现下列情况之一时,应进一步加强监测,缩短监测时间间隔,加密观测次数,并及时向施工、监理和设计人员报告监测结果:(1)监测项目的监测值达到报警标准;(2)基坑及周围环境中大量积水、长时间连续降雨、市政管线出现泄漏;(3)基坑附近地面荷载突然加大;(4)临近的建筑物或地面突然出现大量沉降、不均匀沉降或严重开裂。
4、当有危险事故征兆时,应连续监测。
二.监控报警1基坑及支护结构监控报警值以累计变化量和变化速率两个值控制,累计变化量的报警指标不应超过设计限制。
2、本基坑坡顶水平位移报警值设为25mm,水平位移速率报警值设为连续三日大于2mm∕d o3、周围建筑物报警值以累计变形量、变形速率、差异变形量并结合裂缝观测确定。
4、本基坑周围建筑物沉降报警值设为15mm,倾斜报警值设为IOmm,倾斜速率报警值设为连续三日大于Imm/55、当出现下列情况时,应立即报警:6、周围建筑物砌体部分出现宽度大于1.5mm的变形裂缝;7、附近地面出现宽度大于IOmm的裂缝;三、紧急预案1、基坑开挖和喷锚支护施工过程中,由于破坏了土层中的原有的应力平衡,坡面肯定会发生变形,直到达到新的平衡。
基坑工程监测方案完整版

基坑工程监测方案完整版一:(详细版)基坑工程监测方案完整版一、前言本旨在规划基坑工程的监测方案,确保施工过程中的安全和质量。
本方案详细介绍了监测的目的、内容、方法及具体实施步骤,以供参考。
二、监测目的基坑工程的监测目的是为了及时掌握基坑工程施工过程中的变形和破坏情况,预测和评估可能带来的风险,并采取相应的措施以确保工程的顺利进行。
三、监测内容1. 地面沉降监测地面沉降监测旨在记录基坑周围地面的垂直位移情况,以评估基坑开挖对周边建造物和地下管线的影响。
2. 基坑顶部水平位移监测基坑顶部水平位移监测旨在记录基坑各个部位的水平位移情况,以评估基坑结构的稳定性。
3. 地下水位监测地下水位监测旨在记录基坑周围地下水位的变化情况,以评估基坑排水系统的效果。
4. 基坑支护结构变形监测基坑支护结构变形监测旨在记录基坑支护结构的变形情况,以评估支护结构的稳定性。
五、实施步骤1. 建立监测点根据监测内容确定监测点的位置,并进行标记和记录。
2. 部署监测仪器根据监测内容选择合适的监测仪器,并按照要求进行部署和安装。
3. 数据采集和处理定期对监测仪器进行数据采集,并对数据进行处理和分析,监测报告。
4. 监测报告及时反馈及时将监测报告反馈给相关责任方,并提供相应的建议和措施。
六、附件本所涉及附件如下:1. 基坑工程监测点位置图2. 基坑工程监测仪器说明书3. 基坑工程监测数据报告样本七、法律名词及注释1.《建造法》:指中华人民共和国建造领域的专门法律法规。
2.《施工安全管理条例》:指中华人民共和国施工领域的专门法律法规。
二:(简洁版)基坑工程监测方案完整版一、前言本为基坑工程监测方案,旨在确保工程施工过程的安全和质量。
详细介绍了监测的目的、内容、方法及实施步骤。
二、监测目的基坑工程监测的目的是为了及时掌握工程变形和破坏情况,预测风险并采取措施,确保工程顺利进行。
三、监测内容1. 地面沉降监测2. 基坑顶部水平位移监测3. 地下水位监测4. 基坑支护结构变形监测五、实施步骤1. 建立监测点2. 部署监测仪器3. 数据采集和处理4. 监测报告及时反馈六、附件1. 基坑工程监测点位置图2. 基坑工程监测仪器说明书3. 基坑工程监测数据报告样本七、法律名词及注释1.《建造法》2.《施工安全管理条例》。
施工单位基坑监测方案

施工单位基坑监测方案1. 介绍基坑监测是施工单位在进行基坑工程时,为了督促和确保施工质量和安全而进行的一项重要工作。
本文档旨在为施工单位提供一套基坑监测方案,以确保基坑施工的安全可靠。
2. 监测目标基坑施工的监测目标主要包括以下几个方面:•地面沉降监测:监测地表在基坑施工过程中的沉降情况,以及是否存在沉降异常的地区。
•地下水位监测:监测施工过程中地下水的位移和涨落情况,以评估基坑排水工程的效果。
•周边建筑物变形监测:监测周边建筑物的变形情况,确保基坑施工对周边建筑物的影响控制在合理范围内。
•施工工艺监测:监测施工过程中各项工艺参数的变化,以及施工设备的运行情况,确保施工过程的正常进行。
3. 监测方法基坑施工的监测主要包括以下几个方法:3.1 地面沉降监测地面沉降监测主要采用地面沉降仪进行,监测点应根据基坑及周边环境设置,并按照工程要求进行布点。
监测仪器应定期检查校准,并在施工过程中进行实时监测。
监测数据应及时上传至监测系统,以提供实时的沉降情况。
3.2 地下水位监测地下水位监测主要采用水位计和水位传感器进行,监测点应选择位于基坑边缘,或与基坑相邻的井点进行设置。
监测仪器应定期检查校准,并在施工过程中进行实时监测。
监测数据应及时上传至监测系统,以评估基坑排水工程的效果。
3.3 周边建筑物变形监测周边建筑物变形监测主要采用全站仪和测斜仪进行,监测点应选择位于基坑边缘,或与基坑相邻的建筑物上,并按照工程要求进行布点。
监测仪器应定期检查校准,并在施工过程中进行实时监测。
监测数据应及时上传至监测系统,以确保基坑施工对周边建筑物的影响控制在合理范围内。
3.4 施工工艺监测施工工艺监测主要采用振动传感器、温湿度传感器和测量仪器等进行。
振动传感器用于监测施工过程中的机械振动情况,温湿度传感器用于监测施工现场的环境温湿度,测量仪器用于监测施工过程中的各项工艺参数。
监测仪器应定期检查校准,并在施工过程中进行实时监测。
深基坑施工监测方案

深基坑施工监测方案为确保深基坑施工的安全性和可靠性,本文提出了一份深基坑施工监测方案。
该方案包括监测目标、监测内容、监测方法和监测频率等方面。
通过合理的监测手段和措施,能够及时发现并解决施工过程中的问题,保障工程质量,并最大程度地降低施工风险。
1. 监测目标深基坑施工监测的目标是全面掌握工程施工过程中的变形、沉降、应力等情况,确保基坑的稳定和周边环境的安全。
具体目标包括:1.1 基坑变形监测:监测基坑的水平位移、垂直位移和旋转位移等变形情况,及时了解基坑的形变趋势,判断基坑结构的稳定性。
1.2 周边建筑物变形监测:对周边建筑物进行水平位移和沉降监测,以判断基坑施工对周边建筑物的影响,并及时采取相应措施。
1.3 周边地面沉降监测:监测周边地面沉降情况,评估施工对地下水位及地基的影响,保证周边环境的稳定。
1.4 轴力监测:监测基坑支护结构的轴力情况,判断结构的受力状态,及时调整支护结构的施工方案。
2. 监测内容深基坑施工监测的内容涵盖了各个方面的参数和指标。
具体监测内容包括:2.1 基坑变形监测:每隔一定时间对基坑内部和周边地表进行变形监测,使用全站仪或测斜仪进行测量,记录基坑的水平位移、垂直位移和旋转位移等变形数据。
2.2 周边建筑物变形监测:对周边建筑物进行水平位移和沉降监测,使用测点标志和测斜仪等设备定期进行测量,记录建筑物的变形数据。
2.3 周边地面沉降监测:在不同位置设置监测点,使用水准仪或激光水准仪等设备进行地面沉降监测,记录地面沉降情况。
2.4 轴力监测:在基坑支护结构上设置应变片或应变计,监测支护结构的轴力情况,记录轴力数据。
3. 监测方法为了确保监测数据的准确性和可靠性,深基坑施工监测采用了多种监测方法。
具体监测方法包括:3.1 全站仪测量法:通过使用全站仪对基坑内部的参考点和周边地表的监测点进行测量,获取基坑的变形数据。
3.2 测斜仪测量法:在基坑内部和周边地表设置测斜仪,并定期对其进行测量,监测基坑和周边建筑物的变形情况。
基坑监测方案完整版最新

基坑监测方案完整版最新1.工程概况本工程为长江国际花园1.1期住宅小区(凯迪大酒店)酒店二期项目,位于泰兴市虹桥镇虹桥大道北侧,飞虹路东侧。
建设单位为XXX。
2.监测目的及编制依据2.1 监测目的本监测方案的目的是为了对工程基坑施工过程中的变形和沉降进行实时监测,及时发现和解决问题,确保工程施工的安全和顺利进行。
2.2 编制依据本监测方案的编制依据是《建筑工程监测规范》(GB -2015)、《地基与基础工程监测规范》(GB -2015)、《建筑工程施工质量验收规范》(GB -2018)等相关规范和标准。
3.监测内容3.1 监测时间本监测方案的监测时间为基坑开挖阶段、基础施工阶段、建筑施工阶段、竣工验收阶段等关键阶段。
3.2 监测内容本监测方案的监测内容包括基坑内外的变形和沉降、地下水位变化、周边建筑物的变形和沉降等。
4.监测方案4.1 监测方法本监测方案采用自动化监测和手动监测相结合的方式进行监测。
4.2 监测设备本监测方案所使用的监测设备包括自动化监测仪器、手动监测仪器等。
4.3 监测点设置本监测方案设置了基坑内外共计20个监测点,其中包括基坑内部、基坑周边建筑物、地下水位等。
4.4 监测频次本监测方案的监测频次为每天一次,对于重要节点的监测频次可适当增加。
4.5 监测数据处理和分析本监测方案的监测数据将进行实时处理和分析,及时发现和解决问题。
4.6 监测报告本监测方案的监测报告将每月一次提交建设单位,并在工程竣工时提交监理单位。
4.7 监测责任人本监测方案的监测责任人为XXX。
4.8 监测记录保存本监测方案的监测记录将保存至少5年。
4.9 监测方案的修订本监测方案如有需要,将根据实际情况进行修订。
修订后的监测方案应重新报批。
基准点的布设在进行监测之前,需要先进行基准点的布设。
基准点的布设是监测工作的基础,也是保证监测数据准确性的关键。
在布设基准点时,需要考虑地形地貌、地质条件、周围环境等因素,并严格按照监测要求进行设置。
基坑监测方案

基坑监测方案基坑监测是在建筑施工阶段对基坑周边土体和工程结构进行实时监测和评估的重要工作。
本文将介绍一个基坑监测方案,其中包括监测目的、监测内容、监测方法和监测频率等方面的内容。
一、监测目的基坑监测的主要目的是确保施工过程中的安全性和稳定性,及时发现并预防潜在的安全风险。
具体的目的如下:1. 评估基坑围护结构的稳定性,判断是否存在下沉或倾斜等问题;2. 监测基坑周边土体的变形情况,了解土体的工程性质和变化趋势;3. 检测地下水位的变化,控制水位对基坑的影响;4. 监测基坑开挖工序中的土方量,确保施工进度的正常进行。
二、监测内容基坑监测的内容主要包括以下几个方面:1. 基坑围护结构的变形监测:通过安装位移传感器等监测设备,实时监测基坑围护结构的下沉、倾斜和变形情况。
2. 基坑周边土体的变形监测:通过土壤应变计、浸润计等监测设备,监测土体的应变、变形和稳定性。
3. 地下水位的监测:通过水位监测井和水位传感器等设备,监测地下水位的变化情况,及时采取控制措施。
4. 土方量的测量:通过挖掘机上的土重计等设备,实时测量基坑开挖工序中的土方量,掌握施工进度。
三、监测方法基坑监测可以利用传统的实地测量与现代化的自动化监测相结合的方式进行。
具体的监测方法如下:1. 传统实地测量:包括使用测量仪器进行位移测量、水位测量和土方量测量等。
2. 自动化监测:采用自动化仪器和传感器进行监测,通过数据采集和传输系统实现远程实时监测。
四、监测频率基坑监测的频率需要根据具体施工情况和工程要求来确定。
一般情况下,应进行定期监测和临时监测相结合的方式,根据实际情况进行调整。
1. 定期监测:按照工程进度和要求,每隔一定时间进行监测,如每周、每月或每季度进行一次。
2. 临时监测:在施工过程中,发现异常情况或关键节点时,及时进行监测,以确保施工的安全进行。
总结:基坑监测方案是基坑工程的重要组成部分,能够帮助工程人员及时了解工程的安全状况和土体变化情况,为施工过程提供科学的依据和指导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
扬州大学工程设计研究院长江国际花园1.1期住宅小区(凯迪大酒店)酒店二期项目基坑工程监测方案扬州大学工程设计研究院二○一九年一月扬州大学工程设计研究院监测方案工程名称:长江国际花园1.1期住宅小区(凯迪大酒店)酒店二期工程地点:泰兴市虹桥镇虹桥大道北侧,飞虹路东侧建设单位:江苏凯地置业有限公司编写:校对:审核:扬州大学工程设计研究院2019年01月25日扬州大学工程设计研究院目录1. 工程概况 (4)2. 监测目的及编制依据 (4)2.1. 监测目的 (4)2.2. 编制依据 (4)3. 监测内容及布点方法 (5)3.1. 本工程主要监测项目 (5)3.2. 基准点布设 (5)3.3. 监测点布设 (6)4. 监测方法及精度 (9)4.1. 平面控制网及水准基准网 (11)4.2. 观测注意事项 (11)4.3. 数据处理及分析 (11)4.4. 围护桩(坡)顶面位移及沉降 (12)4.5. 围护结构外围地下水位观测 (13)4.6. 周围道路及建筑沉降 (14)4.7. 深层土体水平位移 (14)4.8. 锚杆内力 (14)4.9. 巡视检查 (15)5. 仪器设备和人员组成 (15)6. 监测频率 (16)7. 预警值和预警制度 (17)7.1. 监测报警 (17)7.2. 监测报警措施 (17)8. 监测数据的处理及信息反馈 (17)8.1. 监测数据的分级管理 (17)8.2. 监测数据的分析和预测 (18)8.3. 监测数据的反馈 (18)9. 技术保证措施 (18)9.1. 测试方法 (19)9.2. 测试仪器 (19)9.3. 监测点的保护 (19)9.4. 数据处理 (19)10. 服务承诺 (19)11. 合理化建议 (20)扬州大学工程设计研究院1.工程概况长江国际花园1.1期住宅小区(凯迪大酒店)酒店二期。
受业主委托,拟对此基坑进行坡顶的位移及沉降监测、圈梁的位移及沉降监测、围护结构外围地下水位监测、深层土体水平位移监测、支撑轴力、周围道路及建筑沉降监测。
2.监测目的及编制依据2.1. 监测目的1)为确保围护结构和邻近建筑物的安全,必须加强结构监测和环境监测。
2)将监测数据与设计预测值相比较,从而分析判断前一步施工工艺和施工参数是否符合预期要求,以确定和优化下一步的施工参数,做到信息化施工;3)将现场监测结果反馈设计单位,使设计能根据现场工况发展,及时对开挖方案进行调整,优化设计,使支护结构的设计既安全可靠又经济合理,达到信息化施工。
2.2. 编制依据1)《建筑变形测量规范》JGJ8-2016;2)《建筑基坑工程监测技术规范》GB50497-2009;3)《建筑基坑支护技术规程》JGJ120-2012;4)《建筑深基坑工程施工安全技术规范》JGJ311-20135)《建筑地基基础设计规范》GB50007-2011;6)《工程测量规范》GB50026-2007;7)《国家一、二等水准测量规范》GB/T 12897-2006;8)本项目设计图纸要求3.监测内容及监测点布设方法3.1.本工程的主要监测项目有:扬州大学工程设计研究院表3.1 监测项目表序号监测项目测试仪器测点符号测点个数坡顶水平位移全站仪PD 151坡顶竖向位移水准仪PD 15圈梁水平位移全站仪QL 142圈梁竖向位移水准仪QL 143 围护结构外围地下水位观测钢尺水位计SW 74 周围道路水准仪DL 35 支撑轴力应力计ZC 26 深层土体水平位移测斜仪CX 27 周围建筑水准仪JZ 44置图”。
3.2. 基准点的布设1、布设目的主要是为了测定基础施工期间,各变形体(建筑物)的平面位置或高程随施工阶段的变化而产生的位移大小、位移方向;当位移量超过警戒线时及时报警,以便施工单位采取有效措施进行技术处理,确保施工安全有序的进行。
通过进行整体变形分析,有效验证设计参数。
为保证所有监测对象在同系统中比较和监测成果的可靠性而布设监测控制网,主要用于建(构)筑物、地下管线等方面的监测。
2、控制点布设水准控制点计划布设3个。
控制点埋设位置在3倍与桩长的范围外,建立水准测量闭合环,定期检校其稳定性。
控制点具体布设情况将在进场后根据现场条件进行布设。
水平位移控制点计划布设3个。
因本工程面积大,基坑边比较长,利用深埋扬州大学工程设计研究院基准点做起算点,用二级导线在场内加密基准点,形成控制网。
水平位移拟采用准直线法进行观测,利用加密点间形成的准直线观测基坑边某一测点的位移量。
即将全站仪架设在其中一个基准点上,后视另一点,两点之间形成一条基准线,观测时在每个监测点设置带有刻度的占牌,正倒镜两测回测得每个监测点的位移值,观测误差≤±1mm。
各监测点的初始值取3次观测值的平均值。
导线测量具体操作方法,在地面上选择一条适宜的路线,在其中的一些点上设置测站,采取测边和测角方式来测定这些点的水平位置。
它应当尽可能直伸,由于地形限制,导线一般成一条折线。
导线上设置测站的点称为导线点。
测量每相邻两点间的距离,并在每一点上观测相邻两边之间的夹角,从一起始点坐标和方位角出发,利用测量的距离和角度,便可依次推算各导线点的水平位置。
1、选点。
在测区内选定由4-5个导线点组成的闭合导线,在各导线点打上标记,绘出导线略图;2、测角。
采用全站仪测回法观测导线各转折角(内角),每角测一个测回;3、量距。
用全站仪测距往、返测量各导线边的边长;计算相对误差,若在容许范围内,则取平均值作为最后结果(至mm位);4、计算角度闭合差fβ=Σβ-(n-2)²180°(其中n为内角数),以及导线全长相对闭合差。
外业成果合格后,内业计算各导线点坐标。
在基准网建成后,在工程施工后每个月进行第一次复测,工作基点的复测周期原则上应为每月至少两次。
实施过程中根据控制点的稳定性调整复测周期,也可根据实际需要仅进行局部复测,而非全面复测,以便减小复测的工作量。
3.3. 监测点的布设1、布设目的由于基坑开挖期间大量土方卸载加之周边地下水的不断降水,造成基坑周边土压力向坑内增压,围护结构将产生纵、横向的位移变形,同时也影响到周边建筑物及公共设施将发生纵、横向的位移变形。
为保证基坑施工期间的安全,对基坑围护结构的纵、横向变形的信息和基坑周边建筑物及公共设施发生的纵、横变形的信息,都将成为基坑施工过程中必不可少的监测内容。
2、布设方法扬州大学工程设计研究院1)坡顶位移及沉降测点按监测设计图纸布点位置在基坑四周围护结构坡顶上设置,布置的原则为:①测点应尽量布设在基坑圈梁、围护桩或地下连续墙的顶部等较为固定的地方,以设置方便,不易损坏,且能真实反映基坑围护结坡顶部的侧向变形为原则。
②测点沿基坑四周坡顶每10m~15m布置1点;③沉降监测点同水平位移监测点共用。
1)圈梁位移及沉降测点按监测设计图纸布点位置在基坑四周围护结构桩(墙)顶上设置,布置的原则为:①测点应尽量布设在基坑圈梁、围护桩或地下连续墙的顶部等较为固定的地方,以设置方便,不易损坏,且能真实反映基坑围护结构圈梁顶部的侧向变形为原则。
②测点沿基坑四周围圈梁顶每10m~15m布置1点;③沉降监测点同水平位移监测点共用。
3)围护结构外围地下水位观测水位管采用65mmPVC塑料管。
水位管下部留出1m沉淀段,中部管壁钻出6~8扬州大学工程设计研究院列6mm滤水孔,管壁用网纱包扎作为过滤层。
在设计位置处用30型钻机钻孔,冲孔后放入PVC水位管。
钻孔空隙处用净砂回填过滤头,再用粘土填封,顶盖封口,以免地表水流入。
水位孔打到黏土层,该基坑布设深度一般为该段基坑开挖深度的1.5倍。
电源报警器地下水4)周围道路沉降由于基坑周边环境较为复杂,基坑在沉桩、围护、降水、开挖施工过程中会对周边土体带来变化,通对对周边道路地面沉降的控制,保证周边道路、管线及建筑物的安全,确保基坑顺利施工。
周边道路地面竖向位移监测点采用专用测钉按剖面垂直于基坑边布设,在沿道路每隔30m,将监测标志打在道路上,并用混凝土稳固。
扬州大学工程设计研究院5) 邻近建(构)筑物沉降布设目的通过对周边建(构)筑物的沉降实施连续监测,了解施工对其影响程度,便于分析产生原因,控制沉降及变形量发展,确保施工安全顺利进行。
测点布设直接用电锤在建(构)筑物外侧墙体上打洞,并将膨胀螺栓或测绘钉打入墙体,并用水泥敷牢,或用沉降贴布置在墙体的设计位置处。
沉降标志点示意图6)深层土体水平位移先将测斜管连接起来,连接时在接头套管内涂上PVC胶水,将两节管对节紧密后,拧紧固定螺丝,再用胶布接头缝隙包扎严密。
在预定位置钻孔埋设测斜管,管周用砂浆填充,测斜管内壁有两组互成90°的纵向导槽控制测试方位。
埋设时应保证让一组导槽垂直于基坑边,另一组平行于基坑(附布设示意图)。
本基坑最深开挖处为5米左右,测斜孔的埋设深度一般为该段基坑开挖深度的 1.5倍(10米左右)。
扬州大学工程设计研究院7)支撑轴力本系统需测量的内力分为两大类型,分别为预应力锚索锚头和钢筋锚杆应力的拉力。
选择5%锚杆进行内力测量,具体位置可根据实际情况调整。
1、传感器的安装钢筋锚杆可选用钢筋应力传感器。
对于预应力锚索,测力计的安装与锚索的预应力的施加与锁定同时进行,安装于锚头承力平台与锚具之间。
2、量测利用振弦频率读数仪量测,并根据传感器的标定曲线求得相应的荷载。
3、传感器及测量仪器(1)振弦式钢筋应力计,振弦式测力计(2)XP02型振弦频率读数仪。
4、测量精度专用测力计、钢筋计和应变计的量程宜为设计最大拉力值的1.2倍,量测精度不宜低于0.5%F·S,分辩率不宜低0.2%F·S。
4.监测方法及精度4.1. 平面控制网及水准基准网水平位移控制点观测采用导线测量方法,使用2秒全站仪大地DTM2A进行观测。
高程基准网采用几何水准测量方法,使用全自动记录程序的拓普康电子水准仪DL-502(或DS05精密水准仪)进行观测,DL-502采用最先进的RAB随机双向编码技术和最优化的数字处理算法,即使是在多变的环境下,也可以快速获取稳扬州大学工程设计研究院定可靠的观测值和杰出的观测精度,机载的水准测量程序,符合国家水准测量规范要求,可以完成各种水准测量和计算。
内存中的观测数据可以直接下载到计算机进行计算处理,消除了数据记录过程中的人为错误。
徕卡TS30全站仪 DL-502电子水准仪 DS05精密水准仪水平位移控制网观测按《工程测量规范》GB50026-2007二等水平位移监测网技术要求观测,其主要技术要求见下表。
主要技术指标及要求序号项目指标或限差1 水平角观测测回数 62 测角中误差 1.0秒3 测边相对中误差≤1/1000004 每边测回数往返各4测回5 距离一测回读数较差1毫米6 距离单程各测回较差 1.5毫米7 气象数据测定的最小读数温度0.2摄氏度,气压50帕根据施工场地的条件,我单位认为基准点观测采用导线法比较容易操作,使用高精度的测量仪器,按相应技术规程作业,容易达到监测精度要求。