电力变压器故障诊断方法

合集下载

变压器故障的诊断与修复

变压器故障的诊断与修复

变压器故障的诊断与修复在电力系统中,变压器作为一种重要的电气设备,承担着电能的传递和转换的任务。

然而,由于工作环境、设备老化等原因,变压器故障是难以避免的。

为了确保电力系统的安全稳定运行,及时准确地对变压器故障进行诊断与修复至关重要。

本文将介绍变压器常见的故障类型以及相应的诊断与修复方法。

1. 短路故障短路故障是变压器中最常见的故障之一。

它通常是由于绝缘材料受损或绝缘击穿引起的。

当变压器出现短路故障时,首先需要进行外观检查,检查绝缘子是否破裂、线圈是否有明显的烧损迹象。

接下来,可以采用绝缘电阻测试仪对绝缘材料进行测试。

如果绝缘电阻值较低,说明存在绝缘材料损坏的可能性。

修复短路故障时,需要更换损坏的绝缘材料,并进行必要的绝缘处理。

2. 渗漏故障渗漏故障是指变压器绕组之间或绕组与地之间发生的电气连接中断,导致电流“渗漏”到其他部分。

渗漏故障的产生可能是因为绝缘材料老化、绝缘子损坏等原因。

对于渗漏故障的诊断,可以通过红外热像仪对变压器进行扫描,检测具有异常温度的部位,进而确定渗漏故障的位置。

修复渗漏故障时,应根据具体情况进行线圈绝缘修复或绝缘子更换。

3. 过载故障当变压器长时间工作在超过额定容量的载荷下时,可能会导致过载故障。

过载故障主要表现为变压器温升过高、绕组电流异常等。

对于过载故障的诊断,首先需测量变压器的温度和电流,判断是否超过额定值。

另外,还可以对变压器油进行化验分析,检测油中是否存在异常物质。

修复过载故障的方法包括降低负载、增加冷却措施以及维护液压油等。

4. 绕组接地故障变压器绕组接地故障是指绕组中的线圈或导线与地之间发生不正常的电气连接。

这种故障可能会引起变压器的工作异常和安全隐患。

对于绕组接地故障的诊断,可以使用交流电阻测试仪进行测量,找出接地点的位置。

修复绕组接地故障时,需要清除接地点的外部污垢,并进行绝缘处理或更换线圈。

总结:变压器故障的诊断与修复是保证电力系统安全稳定运行的关键。

电力变压器故障诊断及处理方法

电力变压器故障诊断及处理方法

电力变压器故障诊断及处理方法第一章变压器故障油浸电力变压器的故障常被分为内部故障和外部故障两种。

内部故障为变压器油箱内发生的各种故障,其主要类型有:各相绕组之间发生的相问短路、绕组的线匝之间发生的匝问短路、绕组或引出线通过外壳发生的接地故障等。

外部故障为变压器油箱外部绝缘套管及其引出线上发生的各种故障,其主要类型有:绝缘套管闪络或破碎而发生的接地<通过外壳)短路,引出线之间发生相问故障等而引起变压器内部故障或绕组变形等。

变压器的内部故障从性质上一般又分为热故障和电故障两大类。

热故障通常为变压器内部局部过热、温度升高。

根据其严重程度,热性故障常被分为轻度过热(一般低于150℃)、低温过热(150—300℃)、中温过热(300~700℃)、高温过热(一般高于700℃)四种故障隋况。

电故障通常指变压器内部在高电场强度的作用下,造成绝缘性能下降或劣化的故障。

根据放电的能量密度不同,电故障又分为局部放电、火花放电和高能电弧放电三种故障类型。

由于变压器故障涉及面较广,具体类型的划分方式较多,如从回路划分主要有电路故障、磁路故障和油路故障。

若从变压器的主体结构划分,可分为绕组故障、铁心故障、油质故障和附件故障。

同时习惯上对变压器故障的类型一般是根据常见的故障易发区位划分,如绝缘故障、铁心故障、分接开关故障等。

而对变压器本身影响最严重、目前发生机率最高的又是变压器出口短路故障,同时还存在变压器渗漏故障、油流带电故障、保护误动故障等等。

所有这些不同类型的故障,有的可能反映的是热故障,有的可能反映的是电故障,有的可能既反映过热故障同时又存在放电故障,而变压器渗漏故障在一般情况下可能不存在热或电故障的特征。

因此,很难以某一范畴规范划分变压器故障的类型,本书采用了比较普遍和常见的变压器短路故障、放电故障、绝缘故障、铁心故障、分接开关故障、渗漏油气故障、油流带电故障、保护误动故障等八个方面,按各自故障的成因、影响、判断方法及应采取的相应技术措施等,分别进行描述。

浅谈电力变压器故障的诊断与事故处理

浅谈电力变压器故障的诊断与事故处理

不 良或长期 过载, 绕组 内有杂 物落入 , 使温度过 高绝缘老 化 。 ③制造 工艺不 良,
压制 不紧, 机械强度 不 能经受短 路冲击, 使绕组 变形绝 缘损坏 。 ④绕组 受潮, 绝 缘膨胀 堵塞油 道, 引起局 部过热 。⑤绝缘 油 内混 入水分 而劣化, 或与 空气接触 面积过 大, 使油的 酸价过 高绝缘水 平 F 降或油 面太 低, 部分绕组 露在空 气中未
能及 时处理 。
防爆 管渗油 。 防爆 管是变压器 内部发生故障 导致变压 器 内部压 力过大, 避
免变 压器油 箱破裂 的安全措 施 。但 防爆管 的玻璃膜在 变压器运 行 中由于振动 容易破 裂, 又无法及 时更换 玻璃, 潮气 因此 进入油 箱, 使绝缘油 受潮, 绝缘 水平 降低, 危及设备 的安全 。为此 , 把防爆 管拆 除, 改装压力 释放 阀即可 。 12 铁心 多点接地
由T } 种种 原因, -: 述 在运行 中一经发 生绝缘 击穿, 会造成 绕组的短路 或 就
变压 器铁心 有且只 能有一 点接 地, 出现 两点及 以上 的接地, 为多 点接地 。 变压器铁 心多点接 地运行将 导致 铁心 出现 故障, 危及变压 器 的安全运行 , 应及
时进行 处理 。
障分述 如下 : 2 1绕组 故障
高压 将密封 胶注入 法兰 间隙, 至各法 兰螺丝 帽有胶 挤 出为 止。 直
低压侧 套管渗 漏。 其原 因是受母 线拉伸 和低压侧 引线 引出偏短, 珠压在 胶 螺纹上 。 母线拉伸 时, 受 可按规 定对母线 用伸缩节 连接 ; 引线偏 短, 如 可重新 调
于这样 的渗点 可加用铁板 进行 补焊, 两面连接 处, 町将铁板 裁成纺锤状 进行 补 焊: 三面连接 处可根据 实际位 置将铁板 裁成三 角形进行 补焊 : 该法也适 用于套 管 电流互 感器 二次 引线 盒拐 角焊缝 渗漏 焊接 。

电力变压器的常见故障诊断及检修

电力变压器的常见故障诊断及检修

电力变压器的常见故障诊断及检修摘要:电力变压器是电力系统中最重要的电气设备之一。

随着中国电力工业的发展,电网容量的不断增加以及用户对电源可靠性要求的不断提高,电力变压器的维护和管理重要性日益凸显。

本文首先介绍了电力变压器的故障,然后分析了电力变压器的故障诊断方法,最后研究了电力变压器的维修策略,对电力变压器的安全合理使用具有现实意义。

关键词:电力变压器;诊断方法;维修策略1电力变压器故障简介在变压器的工作过程中,其元件和材料长时间受电、热、机械和化学应力的作用,并且会不断磨损,如图1.1所示。

图1.1变压器运行过程中应力分析从图1.1中可以看出,对于油浸式电力变压器,故障可能涉及的领域非常广泛,只要有任何部件,或其绝缘系统发生故障,都可能造成未知事故,并在此基础上,失效如果根据人体结构的分类,具有内部断层和外部断层,物种类型也很多。

顾名思义,前者是各种故障内的变压器油箱,后者是变压器油箱外的各种故障。

2电力变压器故障诊断方法2.1电力变压器内部故障类型电力变压器的组成是由输出装置、保护装置、冷却装置、调压装置以及油箱装置组成的。

只有当这些部件协调和一起操作时,才能实现不同等级的电压转换。

但是,由于运行环境复杂,在运行时很容易失败。

(1)发生异常声音或振动。

当变压器工作时,磁力将在交流电的转换中产生,因为电磁力与磁力相互影响,使铁屑运动而发声。

(2)部件颜色异常。

如果发现部件的颜色和气味在操作过程中发生了变化,则表明变压器可能有故障,因为部件过热会导致颜色和味道发生变化。

(3)油温异常。

在监测期间,技术人员将根据变压器上半部分的油温监测仪对油温进行监测,一般油温会处于平稳状态。

(4)油位异常。

油位也可以作为判断变压器故障的因素之一,一般可以分为两种状况。

首先是数值正常,油位在正常之外;二是油位过低,两者均表明变压器出现故障,严重时还会损坏设备。

2.2电力变压器常见故障诊断(1)常见的故障类型除以循环电路故障是常见的变压器故障之一,根据变压器电路的不同,电力变压器的常见电路故障主要分为油路、电路、磁路三种故障类型。

电力变压器故障诊断方法分析

电力变压器故障诊断方法分析

电力变压器故障诊断方法分析中国矿业大学张建文摘要对电力变压器故障的常用诊断方法,如油中溶解气体分析、绝缘试验、油务试验及其它预防性试验等,进行了全面论述,重点分析和评价了这些故障诊断方法的有效性,并对其未来发展方向,提出了建议。

关键词电力变压器故障诊断方法分析1概述预防性试验是变压器故障最主要的诊断方法,其有效性对诊断结果的准确性有着确定性影响,通过各种有效的试验,获取可靠、准确的试验结果是正确诊断变压器故障的基本前提。

根据最新颁布的《电力设备预防性试验规程》[1]规定,电力变压器试验项目共有32项。

试验项目次序基本上是按照项目的重要性排列的。

在总共32个试验项目中,有些是在变压器解体后才能进行的,有些是与其它项目同时进行或附带进行的,有些是变压器投运前或投运后的例行检查、试验项目,有些项目在特殊情况下进行,而交流耐压试验是一种破坏性试验,对试验设备的要求很高,现场条件一般很难满足,所以是变压器绝缘水平的一种考核项目。

根据变压器运行现场的实际情况,在下列三种情况下需要对变压器进行故障诊断:正常停电状态下进行的交接、检修验收或预防性试验中一项或几项指标超过标准。

运行中出现异常而被迫停电进行检修和试验。

运行中出现其他异常(如:出口短路)或发生事故造成停电,但尚未解体(吊芯或吊罩)。

当出现上述任何一种情况时,要迅速进行有关试验,对变压器的状况进行诊断,确定有无故障,若有故障,要进一步明确故障原因或类型、故障的严重程度,以及能否带故障短期运行等;如果没有故障,则要分析出现试验结果异常或其他异常现象的原因。

如果变压器已经解体、吊罩或吊芯,这时候进行试验的目的一般情况下不是为了故障诊断,而是属于故障排除的问题。

2绝缘试验和油务试验绕组直流电阻的测量是一个很重要的试验项目,次序排在变压器试验项目的第二位。

在变压器的所有试验项目中,这是一项方便而有效的考核绕组纵绝缘和电流回路连接状况的试验,它能够反映绕组匝间短路、绕组断股、分接开关以及导线接头接触不良等故障;实际上也是判断各相绕组电压比是否平衡、调压开关档位是否正确的有效手段。

变压器故障原因检查方法

变压器故障原因检查方法

变压器故障原因检查方法变压器是电力系统中常见的电力设备,但在使用过程中有时会出现故障,影响电力系统的正常运行。

为了保证变压器的正常运转,需要定期检查并排除故障。

下面将介绍一些常见的变压器故障原因检查方法。

1. 外部因素检查:首先,检查变压器周围环境是否存在污染物、腐蚀性气体、潮湿等。

如果存在这些外部因素,可能会引起变压器绝缘水平降低,导致故障。

通过检查变压器周围环境是否干净、干燥,可以初步排除这些因素对变压器故障的影响。

2. 绝缘检查:绝缘是变压器正常运行的重要保证。

通过检查变压器的绝缘电阻、绝缘材料是否受潮、受热等情况,可以判断绝缘是否正常。

常用的检测方法包括绝缘电阻测量、局部放电检测等。

如果发现绝缘电阻异常低或局部放电现象,可能表示绝缘已经受损,需要进行绝缘处理或更换绝缘材料。

3. 线圈检查:变压器的线圈是关键部件,如果出现线圈接触不良、绕组短路等情况,将严重影响变压器的工作稳定性和安全性。

检查变压器线圈的接触情况、绕组间的绝缘状况,可以排除这些故障。

常用的线圈检查方法包括观察线圈外观是否受损、使用热红外热像仪检测线圈热点等。

4. 冷却系统检查:变压器冷却系统的正常运行对保证变压器性能和寿命具有重要影响。

检查冷却系统的冷却剂供应、冷却器是否通畅、风扇是否正常工作等情况,可以判断冷却系统的运行状态。

异常的冷却系统可能导致变压器过热,进而引发其他故障。

5. 油质检查:变压器的绝缘油是绝缘和冷却的重要介质,检查变压器绝缘油的质量和含水率,可以判断绝缘油是否需要更换。

通常需要进行油样抽取和实验室测试。

若发现绝缘油中含有杂质、水分过高等,可能会影响绝缘油的绝缘性能,需要及时更换。

综上所述,变压器故障原因的检查方法主要从外部因素、绝缘、线圈、冷却系统和油质几个方面进行。

通过定期检查并排除故障,可以确保变压器的正常运行,提高电力系统的可靠性和稳定性。

电力变压器故障诊断及检修

电力变压器故障诊断及检修

电力变压器故障诊断及检修电力变压器作为电力系统中重要的设备,其故障对系统运行会产生严重的影响,甚至可能造成设备损坏和停电事故。

电力变压器的故障诊断及检修工作显得尤为重要。

本文将重点介绍电力变压器故障的诊断方法和检修流程,以便广大电力工程师和电气维修人员能够更好地了解和处理变压器故障。

一、变压器故障的识别电力变压器故障主要有绝缘击穿、绕组短路、接地故障、油泄漏等,这些故障在实际运行中可能表现为温度升高、噪音增大、油温异常等现象。

变压器故障的识别需要依靠仪器设备和操作经验相结合,下面分别介绍几种常见的诊断方法:1. 热感诊断变压器故障的热感诊断是通过测量变压器的温度来判断其工作是否正常。

在实际运行中,变压器的各部分都会有一定程度的温升,如果某个部分的温升明显高于其他部分,就可能存在故障。

这时可以通过红外热像仪对变压器进行扫描,观察是否有异常的热点,从而判断可能存在的故障。

2. 声频诊断变压器故障常常会伴随有异常的声音,例如绕组短路时会出现较大的短路电流和噪音。

此时可以通过超声波探测仪对变压器进行测试,检测是否有异常的声音,从而判断变压器是否存在故障。

3. 油质检测变压器内部的油质也可以反映出变压器的运行状况。

通过对变压器油质的采样检测,可以了解油质的电气性能、化学性能是否正常,从而判断变压器是否存在故障。

4. 电气参数监测当变压器出现故障时,需要及时进行检修,以避免进一步损坏或事故发生。

检修变压器需要严格按照相关规程和标准进行,下面给出一般的变压器故障检修流程:1. 停电与验电在进行变压器检修之前,首先需要对变压器进行停电操作,并且进行验电工作,确保变压器已经从电力系统中隔离,并且不存在残余电荷。

2. 拆卸与清洁拆卸变压器外罩,对变压器进行清洗和清理,清除表面的杂物和油渍等。

清洁后需要对变压器进行检查,观察是否有明显的损坏或异常。

3. 绝缘测量对变压器的绝缘进行测量,检查绝缘电阻和介损因数等参数,以判断绝缘是否正常。

电力变压器状态评估及故障诊断方法

电力变压器状态评估及故障诊断方法

电力变压器状态评估及故障诊断方法电力变压器是电力系统中不可缺少的一部分,对人们的日常用电起着关键性的作用。

但在电力变压器的运行过程中,受到运行负荷以及环境因素的影响,却存在着发生故障的隐患。

本文以我国电力变压器的发展为背景,分析了进行变压器运行状态评估的相关方法,并探讨了变压器若干故障诊断的相应措施,为我国供电系统的良好运行发展提供了非常有利的条件。

关键字:电力变压器状态评估故障诊断随着我国电力工程的逐步发展,人们对电能的需求量逐渐提升,电力变压器的运行负荷相比于以往也有了很大程度的提升。

在此背景下,电力变压器更容易出现运行上的故障,从而对正常的供电造成严重的影响。

因此,在目前变压器的运行过程中,进行变压器状态的评估以及对故障的及时准确诊断非常重要。

而我国电网的覆盖面积非常广,电力变压器更是往往会在条件较为恶劣的地区工作运行,增加了发生变压器故障的几率,更需要在日常运行中加大状态评估的力度,并对每一类故障进行分类的针对性诊断。

一、电力变压器状态评估方法在一般情况下,电力变压器的运行处于较为正常的工作状态,但如果变压器长期处在高负荷运行状态下,或者运行时间教久,或者外界环境较为不利于变压器的正常工作,就需要尤为注意进行变压器的状态评估。

经过多年的工作经验总结发现,要准确、可靠地分析电力变压器的运行状态,可以将实验数据作为评估核心,运用多种评估方法,在综合各项数据之后得到最终的评估结果。

(一)气体色谱分析法对气体色谱的分析,目前主要针对于变压器中的油分,进行的一种评估措施。

如果变压器的运行存在着局部放电或者局部过热等现象,那么油中的气体色谱就会呈现出异常现象,非常容易区分。

但如果变压器的绕组发生了形变,那么在这种情况下出现的局部放电以及局部过热现象就不能够通过对油中的色谱进行分析的方法来得到准确的结果。

(二)放电电量实验法进行放电电量实验,在变压器出现了局部放电现象的时候非常实用,是一种准确有效的变压器状态评估方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力变压器故障诊断方法概述
传统的电力变压器故障诊断方法存在各自的局限性:中性点电流法所依据的参数模型理论是一种理想情况,实际试验中,冲击电压发生器放电离散性(导致冲击波波形和持续时间差异性)、变压器复杂的内部结构(表现为绕组间的局部放电)、电磁和噪声强干扰都严重影响示伤电流波形;传递函数法虽然解决了上述问题,但其单一的频域判断技术在很大程度依赖试验人员的经验,对于细微的差别,是变压器内部绕组的局部放电还是击穿会有不同解释,更无法实现故障的识别。

本文提出了一种新的基于联合时频分析的故障判别方法,其判别步骤是:
1)根据试验数据,计算在50%冲击电压下变压器的传递函数,即建立该被试变压器在冲击电压下的输入输出模型;
2)基于该模型计算100%冲击电压下基准示伤电流,这是一个理论值;
3)计算基准示伤电流与实测示伤电流的差异示伤电流信号;
4)应用联合时频理论分析差异示伤电流信号,得到与故障类型对应的三维时频分布图,试验人员可查询时频分布图对故障类型作识别或者由计算机自动识别。

图1反映了上述三种方法的不同框架。

2 基于联合时频技术的电力变压器诊断方法理论分析
传统的信号分析方法一般从时域或频域分析中确定或随机信号的参数,这些参数没有充分的描述信号的物理情况,如信号的频谱含量在时间上的演变。

联合时频分析正是这种描述并研究信号的时变频谱的分析理论,可以从信号对应的时频分布图中捕获常规分析方法中不能发现的特征。

联合时频分析算法的任务是对信号ε(t)构造一个联合时频函数,能够同时在时域和频域上描述信号的各类密度,如能量密度。

为了实现上述目标,首先寻找一个联合密度函数P(t,f)来表示信号在时间t和频率f上的强度,在理想的情况下它应该满足时间与频率的边缘条件:
上式表明把某一特定时间的所有频率的能量分布加起来,可以得到瞬时能量;如果把某一特定频率的能量分布在全部时间加起来,得到能量密度频谱。

由此可以满足总能量要求:
1960年建立的一种新的分布(即采用核函数表征时频分布)的特性是通过对核的简单约束来反映,并通过考察核来确定这个分布的特性。

人们能够通过挑选核来产生所希望的分布特性,而核可以用特征函数方法得到。

特征函数是构造和研究密度的一种强有力的工具,数学上表示:
其中<tnfm>表示tnfm的矩(即平均值)。

目前可以采用多种分布的算法对信号进行分析,如:短时傅立叶变换(STFT)、魏格纳分布(WVD)、伽波尔分布(Gabor)、科恩分布(Cohen)等。

3 基于联合时频技术的电力变压器诊断方法结果分析
根据理论依据,编写的部分基于联合时频分析法的电力变压器故障判断方法的软件程序如图2所示。

根据试验中得到冲击试验信号,运行缩编程序得到的差异示伤电流信号和其联合时频分布图分别如图3、图4所示。

观察图3和图4可知,由于差异示伤电流基本为零,反映在联合时频分布图中就是各突起的部分幅值很小,表现为较低的能量分布。

考虑到试验环境中存在的外界干扰,可以认为试验电力变压器不存在故障。

4 结论
中性点电流法一般都是依据示伤波形的变化来判断被试品有无故障,其所依据的参数模型理论是一种理想情况。

实际试验中,冲击电压发生器放电离散性(导致冲击波波形和持续时间差异性)、变压器复杂的内部结构(表现为绕组间的局部放电)、电磁和噪声强干扰都严重影响示伤电流波形,这就给故障的判断增加了困难。

正因为如此,试验中如果发现了示伤波形畸变,往往不能确认被试品是否发生了故障。

变压器传递函数法由于是在中性点电流法的基础上在频域中进行故障诊断,一般能克服中性点电流法带来的不足。

但是传递函数法灵敏度较低,很难发现微小的绝缘故障,而且传递函数只与频率相关,不能反映故障发生的时间,从而不能确定故障在变压器中的位置。

联合时频分析是一种先进的数字信号处理技术,是一种研究频谱在时间上的变化的物理和数学思想。

由于完全是靠计算机操作,因此使得故障诊断的准确性得到很大的提高,克服了上述两种方法存在的缺陷,相比传统的方法,有更大的应用前景。

相关文档
最新文档