初中数学教师基本功大赛试题

合集下载

初中数学青年教师基本功大赛笔试试卷(含答案)

初中数学青年教师基本功大赛笔试试卷(含答案)
你能帮小明在地图上画出藏宝地的位置吗?请你设计出找出藏宝地的方案。(设计找出 藏宝地的简要步骤,画出示意图)
A B
5. (本小题 12 分) 从甲地到乙地有 A1、A2 两条路线,从乙地到丙地有 B1、B2、B3 三条路 线,从丙地到丁地有 C1、C2 两条路线.一个人任意先了一条从甲地到丁地的路线.求 他恰好选到 B2 路线的概率是多少?
22ຫໍສະໝຸດ 要 t 最小,即 CT+TQ 最小,而 CT+TQ 是点 C 到直线 C
′B 的折线长,只有当 CT+TQ 成为点 C 到直线 C′B 的
y C
OK
T
x
B
Q H
垂线段时才最小,故作 CH⊥BC′交 OB 于点 K,则点
C′
K 就是使运动时间最短的点。
∵△CBC′为正三角形,∴∠C′CH=30°∴OK=OC·tan30°=2
P138—139) 5. (本小题 12 分)
A1


A2
如图:从甲到丁有 2×3×2=12 种走
9
A
M
B1
C1
B2

C2

B3
N
D
C
B
E
法,而经过线路
B2
共有
2×1×2=4
种走法,故
P=
4 12

1 3
6. (本 小 题 12 分 ) 如 图 : 裁 剪 线 AB 与 CD 长 恰 好 为 三 棱 柱 底 面 周 长 30cm, 故
BM AB 2 AM 2 30 2 182 24
由△CEB∽△AMB 可知: CB BE ,故 CB 60
AB BM
30 24

初中数学教师基本功大赛试题

初中数学教师基本功大赛试题

第二届初中数学教师基本功大赛试题一、选择题(2×10=20分)1.某次考试,班长算出了全班40人数学成绩的平均分M ,如果把M 当成一个同学的成绩与原来的40个分数加在一起,算出这41个分数的平均值为N ,那么M :N 为( ).A .40:41B .41:40C .2D .12.若一个正三棱柱的三视图如下图所示,则这个正三棱柱的高和底面边长分别为( ).A. 2,B.,2 C. 4,2 D. 2,43.某企业产品的成本前两年每年递增20%,引进先进的技术设备之后,后两年产品的成本每年递减20%,那么该企业产品的成本现在的与原来的比较( )A.不增不减 B.约增加8% C.约减少8% D.约减少5% 4.函数y=x|x|的图象大致是( )5.已知m >2,点(m -1,y 1),(m ,y 2),(m +1,y 3)都在二次函数y =x 2-2x 的图像上,则( ).A. y 1<y 2<y 3B. y 3<y 2<y 1C. y 1<y 3<y 2D. y 2<y 1<y 36.数学课程的总目标中有:培养学生具有适应未来社会生活和继续学习所必需的数学基本知识和技能以及基本的( )A .应用能力B .生活能力C .学习方法D .数学思想方法7.台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B 在A 的正东40千米处,B 城市处于危险区内的时间为( ). A .0.5小时 B .1小时 C .1.5小时 D .2小时8.一个盒子中装有标号为1,2,3,4,5的5张标签,随机地选取两张标签,标签的选取是无放回的,两张标签上的数字为相邻整数的概率( ).主视图俯视图左视图A.25 B. 35 C. 825 9259.如图,垂直于x 轴的直线EF 经坐标原点O 向右移动. 若E 是EF 与x 轴的交点,设OE =x (0x a ≤≤),EF 在移动过程中扫过平行四边形OABC 的面积为y (图中阴影部分),则函数()y f x =的图象大致是( ).10.水平地面上有一个球,现用如下方法测量球的大小,用锐角45°的等腰直角三角板的斜边紧靠球面,P 为切点,一条直角边AC 紧靠地面,并使三角板与地面垂直,如果测得P A =5cm ,则球的半径等于( ) A .5cm B. C.1)cm D .6cm 二、填空题(2×10=20分)11.一幅美丽的图象,在某顶点处有四个边长相等的正多边形镶嵌而成,其中的三个分别为正三角形、正四边形、正六边形,那么另外一个为____________.12.若函数y =x 2+bx +c 的图象的顶点在第四象限,则函数y=2x+b 的图象不经过第_______象限.13.A 、B 是x 轴上两点,点P 的横坐标为2,且|PA |=|PB |,若直线PA 的方程为 x -y +1=0,则直线PB 的方程为 .14.如图,水平地面上有一面积为30π ㎝2的灰色扇形OAB ,其中OA 的长度为6㎝,且与地面垂直.若在没有滑动的情况下,将图(1)的扇形向右滚动至示,则O 点移动了 ㎝.15.若不等式组112x x a -≤≤⎧⎨<⎩有解,那么a 必须满足 .16.把直线l :y=3x+2平移后得直线l 1:y=3x-5.有下列说法:①是把l 向下平移7个单位;②是把l 向右平移37个单位;③是把l 向上平移5个单位;④是把l 向左平移5个单位.其中正确序号有____________.(把你认为正确的全写上)第9题图BC17.规定记号“⊗”表示一种运算,即2(,)a b ab a b a b ⊗=++为正实数,若13k ⊗=,则k 的值为 .18.用一根长为12m 的铝合金条做成一个“目”字形窗户的框架(不计损耗),要使这个窗户通过的阳光最充足,则框架的长与宽之比应为 .19.将一张坐标纸折叠一次,使得点M (0,4)与点N (1,3)重合,则与点P (2004,2010)重合的点的坐标是 .20.计算机是将信息转换成二进制进行处理的,二进制即“逢2进1”,如(1101)2表示二进制数,将它转换成十进制形式是1×23+1×22+0×21+1×20=13,那么将二进制数2转换成十进制形式是___________. 三、解答题(60分)21.已知方程0632=--x x 的根分别为a,b(a>b),方程0232=--x x 的根分别为c,d(c>d ),求(a-c)(b-d)(b-c)(a-d)的值.22.△ABC 中,BC=a ,AC=b .(1)以AB 为边向△ABC 外作等边△ABD ,当∠ACB 为多少度时,C 、D 两点之间的距离最大,最大值是多少?(2)以AB 为边向△ABC 外作正方形ABDE ,当∠ACB 为多少度时,点C 到正方形ABDE 的中心O 的距离最大,最大值是多少?BB23.小华与小红用5张同样规格的硬纸片做拼图游戏,正面如图1所示,背面完全一样,将它们背面朝上搅匀后,同时抽出两张,规则如下:当两张硬纸片上的图形可拼成电灯或小人时,小华得1分,当两张硬纸片上的图形可拼出房子或小山时,小红得1分(如图2),问题:(1)游戏规则对双方公平吗?请说明理由;(2)若你认为不公平,如何修改游戏规则才能使游戏对双方公平?24.如图,在平面直角坐标系中,以坐标原点O为圆心,2为半径画⊙O,P是⊙O上一动点,且P在第一象限内,过点P作⊙O的切线与x轴相交于点A,与y轴相交于点B.(1)点P在运动时,线段AB的长度也在发生变化,请写出线段AB长度的最小值,并说明理由;(2)在⊙O上是否存在一点Q,使得以Q、O、A、P为顶点的四边形是平行四边形?若存在,请求出Q点的坐标;若不存在,请说明理由.25.案例分析Array案例1:教师讲完一元一次方程解题方法后,讲解方程x+1/3=(1/3)x+1时,学生甲:老师我已看出x=1,教师加以表扬,问能否解出来,学生甲上台演算完.学生乙:老师,我可以只移项不合并,x-1+1/3-(1/3)x=0,(x-1)+1/3(1-x)=0,老师又加以表扬.案例2:课堂上当老师一宣布小组讨论、交流,前排的学生唰地回头,满教室都是嗡嗡的声音,四人小组里,每个人都在张嘴,谁也听不清谁在说什么,一分钟后,老师一喊“停”,学生立即安静下来.26.问题现象(1).来自中考信息的反馈2007年中考,我们从试卷中随机抽取了100份进行分析:最低分3分,最高分119分,平均分79.01分,合格率为74%,优秀率为26.3%.学生的得分率与人数分布表如下:由上表可知,学生的高分者居多,低分者不少,中间层面的学生数少,平均成绩不高,可见学生两极分化严重.(2).来自教师的信息反馈在实施新课程中,教师们普遍反映,学生在新的学习方式的学习中,两极分化越来越大,好学生越来越好,后进的学生越来越后进.一份练习,优秀生5分钟可以完成,而后进生15分钟都难以完成.两极分化越来越严重.请你结合自己的教学实际和上面的问题现象,谈一谈造成两极分化的原因是什么?拟采取什么措施缩小两极分化?(注:文档可能无法思考全面,请浏览后下载,供参考。

初中数学教师教学基本功比赛测试卷

初中数学教师教学基本功比赛测试卷

初中数学教师教学基本功比赛测试卷一、新课程标准(每空2分,共20分) 填空1数学是人们对客观世界定性把握和 、逐渐 、形成方法和理论,并进行广泛应用的过程。

2 教师的主要任务是激发学生的 ,向学生提供充分从事数学活动的机会,帮助学生成为学习的 。

3、初中阶段的数学内容分为数与代数、 、统计与概率和 四个领域。

4、动手操作、 、 是学生学习数学的重要方式。

5、不同的人在数学上得到不同的发展的意思是:教学要面向全体,必须适应每一位学生的 ;人的发展不可能整齐划一,必须 ,尊重差异。

二、专业知识(共70分)(一)填空题(每小题2分,共8分)1、如图,己知⊙O 的半径为5,弦AB=8,P 是弦AB 上的任意一点,则OP 的取值范围是 。

2、已知关于x 的不等式组⎩⎨⎧--0x 230a x >>的整数解共有6个,则a 的取值范围是 。

3、若ABC ∆的三边a 、b 、c 满足条件:222338102426a b c a b c +++=++,则这个三角形最长边上的高为 。

4、抛物线()2226y x =--的顶点为C ,已知3y kx =-+的图象经过点C ,则这个一次函数图象与两坐标轴所围成的三角形面积为 。

(二)选择题(每小题3分,共12分)5.如图,由几个小正方体组成的立体图形的左视图是6.有5张写有数字的卡片(如图1),它们的背面都相同,现将它们背面朝上(如图2),从中翻开任意一张是数字2的概率是OPBA羽毛球 25% 体操40%A .15 B .25C .23D .127.正方形网格中,AOB ∠如图放置,则tan ∠AOB 的值为A.5B.5C.12D.28. 已知甲、乙两组数据的平均数都是5,甲组数据的方差2112S =甲,乙组数据的方差2110S =乙,则以下说法正确的是 A.甲组数据比乙组数据的波动大B.乙组数据比甲组数据的波动大 C.甲组数据与乙组数据的波动一样大D.甲、乙两组数据的波动大小不能比较(三)解答题(共50分) 9.(本题满分6分)0112tan 30()2--+-;10.(本题满分6分)因式分解:a 2x 2-4+a 2y 2-2a 2xy ;11.(本题满分6分)某学校为了学生的身体健康,每天开展体育活动一小时,开设排球、篮球、羽毛球、体操课.学生可根据自己的爱好任选其中一项,老师根据学生报名情况进行了统计,并绘制了下边尚未完成的扇形统计图和频数分布直方图,请你结合图中的信息,解答下列问题:ABO(1)该校学生报名总人数有多少人?(2)选羽毛球的学生有多少人?选排球和篮球的人数分别占报名总人数的百分之几? (3)将两个统计图补充完整 12.(本题满分10分)如图,点A ,B ,C ,D 是直径为AB 的⊙O 上四个点,C 是劣弧 BD的中点,AC 交BD 于点E , AE =2, EC =1.(1)求证:DEC △∽ADC △;(2)连结DO ,试探究四边形OBCD 是否是菱形?若是,请你给予证明并求出它的面积;若不是,请说明理由.(3)延长AB 到H ,使BH =OB ,求证:CH 是⊙O 的切线.13,(本题满分10分)某污水处理公司为学校建一座三级污水处理池,平面图形为矩形,面积为200平方米(平面图如图22所示的ABCD).已知池的外围墙建造单价为每米400元.中间两条隔墙建造单价每米300元,池底建造的单价为每平方米80元(池墙的厚度不考虑)(1)如果矩形水池恰好被隔墙分成三个正方形,试计算此项工程的总造价(精确到100元)(2)如果矩形水池的形状不受(1)中长、宽的限制,问预算45600元总造价,能否完成此项工程?试通过计算说明理由.A D(3)请给出此项工程的最低造价(多出部分只要不超过100元就有效).隔隔墙墙B C图2214,(本题满分12分)已知抛物线C1:y=-x2+2mx+n(m,n为常数,且m≠0,n>0)的顶点为A,与y轴交于点C,抛物线C2与抛物线C1关于y轴对称,其顶点为B,连结AC、BC、AB.(1)写出抛物线C2的解析式;(2)当m=1时,判定△ABC的形状,并说明理由;(3)抛物线C1是否存在点P,使得四边形ABCP为菱形?如果存在,请求出m的值;如果不存在,请说明理由.答案一、新课标(20分)1、定量刻画、抽象概括2学习积极性、主人3空间与图形、课题学习4自主探究、合作交流5发展需要、承认差异二、专业知识(共70分)(一)填空题(共8分)1、3≤OP≤52、-5≤a<-43、60134、1(二)选择题(共12分))5、 A6、 B7、 D8、B(三)解答题(共70分)9.原式22+-……..……….2分1)2-………………4分12-=-3 ………………6分10.a2x2-4+a2y2-2a2xy=(a2x2-2a2xy+a2y2)-4 …………………2分= a2(x2-2xy+y2)-4= a2(x-y)2-22 ………………4分=( a x-ay+2)( a x–ay-2)………………6分11.解:(1)设该校报名总人数为x人,则由两个统计图可得40%160x=.∴x=16016040040%0.4==(人). ······································································1分(2)设选羽毛球的人数为y,则由两个统计图可得y=40025%100⨯=(人). ·····································2分因为选排球的人数是100人,所以10025%400=, ··········································3分因为选篮球的人数是40人,所以4010%400=,···············································4分即选排球.篮球的人数占报名的总人数分别是25%和10%.(3)如图 ·················································································································· 6分12.(共10分)(1)证明:∵C 是劣弧 BD的中点, ∴ DAC CDB ∠=∠. 而ACD ∠公共,∴ DEC △∽ADC △. ································· 1分 (2)证明:由⑴得DC ECAC DC=, ∵ 1.213CE AC AE EC ==+=+=,∴2313DC AC EC ==⨯= .∴DC .(2分)由 已知BC DC ==AB 是⊙O 的直径,∴90ACB ∠=︒.∴ 22222312AB AC CB =+=+=. ∴AB =∴ OD OB BC DC ====. ∴ 四边形OBCD 是菱形. ····························································································· 5分过C 作CF 垂直AB 于F ,连结OC ,则OB BC OC === ∴ 60OBC ∠=︒.∴ sin 60CF BC ︒=,3sin 6022CF BC =︒== ,∴ 322BCD S OB CF =⨯==菱形O . ································································· 7分 (3)证明:连结OC 交BD 于G ,∵ 四边形OBCD 是菱形, ∴OC BD ⊥且OG GC =.又 已知OB =BH ,∴ BG CH ∥. ∴90OCH OGB ∠=∠=︒,∴CH 是⊙O 的切线.···················································································· 10分13,(共10分)(1)设AB =x ,则AD =3x ,依题意3x 2=200,x ≈8.165.设总造价W 元. W =8x ×400+2x ×300+200×80=3800x +16000=47000(元).(2)设AB =x ,则AD =200x.所以(2x +200x×2)×400+2x ×300+80×200=45600.整理,得7x 2-148x +800=0.此时求根公式中的被开方式=-496<0,所以此方程无实数解,即预算45600元不能完成此项工程.(3)估算:造价45800元. (2x +400x)×400+600x +16000=45800.整理,得7x 2-149x +800=0.此时求根公式中的被开方式=-199<0,仍不够.造价46000元,同法可得7x 2-150x +800=0.此时求根公式中的被开方式=100>0,够了.造价45900元,可得求根公式中的被开方式=-49.75<0,不够.最低造价为46000元.14(共12分),(1)y =-x 2-2mx +n .(2)当m =1时,△ABC 为等腰直角三角形.理由如下:因为点A 与点B 关于y 轴对称,点C 又在y 轴上, AC =BC ,过点A 作抛物线C 的对称轴交x 轴于D .过点C 作CE ⊥AD 于E .当m =1时,顶点A 的坐标为A (1,1+n ),CE =1,又点C 的坐标为(0,n ),AE =1+n -n =1,所以AE =CE ,∠ECA =45°,∠ACy =45°,由对称性知∠BCy =45°,∠ACB =90°,所以△ABC 为等腰直角三角形.(3)假设抛物线C ,上存在点P ,使得四边形ABCP 为菱形,则PC =AB =BC ,由(2)知,AC =BC ,AB =BC =AC ,从而△ABC 为等边三角形,所以∠ACy =∠BCy =30°.又四边形ABCP 为菱形,且点P 在C 1上,点P 与点C 关于AD 对称,PC 与AD 的交点也为E ,∠ACE =90°-30°=60°,点A 、C 的坐标分别为A (m ,m 2+n ),C (0,n ),AE 2=m 2+n -n =m 2,CE =│m │,在Rt •△ACE 中,tan60°=2||AE m CE m =│m │所以m抛物线C 上存在点P ,使得四边形ABCP 为菱形.此时m。

泰州市初中数学青年教师基本功大赛笔试试卷

泰州市初中数学青年教师基本功大赛笔试试卷

专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边分别为8cm和10cm,且这两边的夹角为60°,则这个三角形的周长为多少cm?A. 16cmB. 26cmC. 28cmD. 无法确定2. 下列函数中,哪一个函数是增函数?A. y = 2x + 3B. y = x^2 4x + 4C. y = x^3D. x = 13. 已知一组数据2,3,5,7,x,若这组数据的平均数为5,则x 的值为多少?A. 1B. 4C. 6D. 84. 下列命题中,真命题是?A. 对顶角相等B. 对顶角互补C. 对顶角互余D. 对顶角都是直角5. 若一个正方形的对角线长为10cm,则这个正方形的面积为多少cm^2?A. 50cm^2B. 100cm^2C. 200cm^2D. 250cm^2二、判断题(每题1分,共5分)1. 若一个四边形的对角线互相平分,则这个四边形是矩形。

()2. 任何两个奇数之和都是偶数。

()3. 两个函数如果它们的图像关于y轴对称,那么这两个函数是相等的。

()4. 若一组数据的方差为0,则这组数据中的每个数都相等。

()5. 在直角坐标系中,两点之间的距离公式是d = √((x2 x1)^2 + (y2 y1)^2)。

()三、填空题(每题1分,共5分)1. 若一个等差数列的首项为3,公差为2,则第10项为______。

2. 若一个等边三角形的边长为6cm,则这个三角形的面积为______cm^2。

3. 若一个正方形的边长为8cm,则这个正方形的对角线长为______cm。

4. 若一个函数的图像关于x轴对称,则这个函数是______函数。

5. 在直角坐标系中,点(3, 4)关于原点对称的点为______。

四、简答题(每题2分,共10分)1. 简述等差数列的定义及通项公式。

2. 简述等边三角形的性质。

3. 简述正方形的性质。

4. 简述一次函数的性质。

5. 简述两点之间的距离公式。

数学教师教学基本功比赛测试卷(一)初级中学教师基本功大赛试题附答案

数学教师教学基本功比赛测试卷(一)初级中学教师基本功大赛试题附答案

初级中学数学教师教学基本功比赛测试卷(一)一.新课程标准,填空。

(每空2分,共20分)1数学是人们对客观世界定性把握和________________ 、逐渐____________ .形成方法和理论,并进行广泛应用的过程。

2教师的主要任务是激发学生的________________________ ,向学生提供充分从事数学活动的机会,帮助学生成为学习的__________________ 33、初中阶段的数学内容分为数与代数、 _______________ .统计与概率和 ______________ 四个领域。

4、动手操作、________________ 、_______________ 是学生学习数学的重要方式。

5、不同的人在数学上得到不同的发展的意思是:教学要面向全体,必须适应每一位学生的_________________ :人的发展不可能整齐划一,必须____________________ ,尊重差异。

二、专业知识(共70分)(-)填空题(每小题2分,共8分)1、如图,己知C)O的半径为5,弦AB=8, P是弦AB上的任意一点,则OP的取值范围是 _________ o■2、已知关于X的不等式组Fi的整数解共有6个,则“的取值3— 2x>0范围是_______________3、若ΔABC 的三边"、b、C 满足条件:a2 + b2 + c2 + 338 = 1 Oa + 24Z? + 26c,则这个三角形最长边上的髙为_________ 。

4、抛物线y = 2(x-2)2-6的顶点为(7,已知),= -也+ 3的图象经过点C ,则这个一次函数图象与两坐标轴所囤成的三角形面积为____________ o(二)选择题(每小题3分,共12分)5、如图,由几个小正方体组成的立体图形的左视图是⅛⅛⅛⅛6.有5张写有数字的卡片(如图1),它们的背面都相同,现将它们背面朝上(如图2),从中翻开任意一张是数字2的概率是()图2(三)解答题(共50分)9. (本题满分6分)计算:4 l +2tan30υ- 10. (本题满分6分)因式分解:a :x : — 4+a c y 3—2a :xy: 11・(本题满分6分)某学校为了学生的身体健康,每天开展体冇活动一小时,开设排球、篮球、羽毛球、体操课•学生可根拯自己的爱好任选其中一项,老师根据学生报划情况进 行了统讣,并绘制了下边尚未完成的扇形统汁图和频数分布直方图,请你结合图中的信 息,解答下列问题:A. 15C. ~3 B.- 5 D. 1 27.正方形网格中, B.琴1C.-2 D. 2&已知甲、乙两组数据的平均数都是◎存则以下说法正确的是( A. 甲组数据比乙组数据的波动大 B. 乙组数据比甲组数据的波动大C. 甲组数据与乙组数据的波动一样大D •甲、乙两组数据的波动大小不能比较 2√3-IZAOB 如图放置,)(1) 该校学生报名总人数有多少人?(2) 选羽毛球的学生有多少人?选排球和篮球的人数分别占报轲总人数的百分之几?(3) 将两个统计图补充完整12.(本题满分10分)如图,点A ∙ B, G D 是直径为AB 的(Do 上四个点,C 是劣弧BD 的中点,AC 交BD 于点 E, AE=2, EC = 1.(1) 求证:ADEC AADC :(2)连结DO,试探究四边形OBCD 是否是菱形?若是,请你给予证明并求岀它的而积: 若不是,请说明理由.(3)延长AB 到乩 使BH =OB,求证:CH 是OO 的切线・13,(本题满分10分)某污水处理公司为学校建一座三级污水处理池,平面图形为矩形, 而积为200平方米(平面图如图22所示的ABCD ).已知池的外围墙建造单价为每米400元. 中间两条隔墙建造单价每米300元,池底建造的单价为每平方米80元(池墙的厚度不考虑)(1) 如果矩形水池恰好被隔墙分成三个正方形,试计算此项工程的总造价(精确到100 元)(2) 如果矩形水池的形状不受(1)中长、宽的限制,问预算45600元总造价,能否 完A 0 B成此项工程?试通过计算说明理由.(3)请给出此项工程的最低造价(多岀部分只展不超过100元就有效). D14,(本题满分12分)已知抛物线C1:y= -χ2+2πιx+n (In t"为常数,且m≠0,∕ι>0)的顶点为A,与y轴交于点C,抛物线C?与抛物线Cl关于y轴对称,英顶点为B,连结AU BC、AB.(1)写出抛物线C?的解析式:(2)当〃?=1时,判⅛∆ABC的形状,并说明理由:(3)抛物线G是否存在点P,使得四边形ABCP为菱形?如果存在,请求岀〃?的值;如果不存在,请说明理由.答案一. 新课标(20分)K 定量刻画.抽象概括2学习积极性.主人3空间与图形、课题学习4自主探 究、合作交流5发展需要、承认差异二、 专业知识(共70分)(-)填空题(共8分)1、3≤(9P≤52、-5≤67<-4 3. — 4. 113(-)选择题(共12分))5、 A6、 B7、 D 8. B(三)解答题(共70分)9. 原式出+ 2x 逅—严学一2 •…. 3 3 (√3-l )(√3+l) = √3-(√3 + l)-2 = √3-√3-l-2二-310. a :x c — 4+aV - 2a :xy =(a :x :—2a 2∑3r ÷a 2y 2) —4 ......... 2 分=a' (X2xy+j r ) —4=a' (χ-y ) 2~22 =(a X -ay+2) ( a x - ay-2) 11・解:(1)设该校报需总人数为X 人,则由两个统讣图可得 40%x = 160.(2)设选羽毛球的人数为y,则由两个统计图可蒔y= 400×25% = 100 (人)・ ...................IOO因为选排球的人数是K )。

初中数学教师教学基本功比赛试卷

初中数学教师教学基本功比赛试卷

方式相同”可以证明一类含有线段的等式,这种解决问题的方法我们称之为
面.积.法..
学有所用: 在等腰三角形 ABC中, AB=AC,其一腰上的高为 h , M 是底边 BC 上的任意一点, M 到

校 学
腰 AB、AC的距离分别为 h1 、 h2 . ( 1)请你结合图形 1 来证明: h1 + h2 = h .
D A
P
A
D
H
G
B 图一
C
M
N
图二
三、解答题(共 50 分)
21、(本题 8 分)某商品的进价为每件 40 元,售价为每件 50 元,每个月可卖出 210 件;如果每
件商品的售价每上涨 1 元,则每个月少卖 10 件(每件售价不能高于 65 元).设每件商品的
售价上涨 x 元( x 为正整数),每个月的销售利润为 y 元.
+ b= ___________.
12. 已知 a、 b 实数且满足( a2+b 2) 2- (a2+b2)- 6=0,则 a2+b2 的值为
.
13. 如图, 将半径为 1、圆心角为 60°的扇形纸片 AOB,在直线 l 上向右作无滑动的滚动至扇形 A′
O′B′处,则顶点 O经过的路线总长为

14. 在直角坐标系中, 0 为坐标原点, A(1 , 1) ,在坐标轴上确定一点 P,使△ AOP为等腰三
B
.3 C .4 D .5
6.如图, A, B 的坐标为( 2 , 0),( 0, 1)若将线段 AB 平移至 A1B1 ,则 a b 的值为(

A.2
B .3
C .4
D .5
y
B1 ( a,2)

初中数学教师解题基本功比赛试卷

初中数学教师解题基本功比赛试卷
O B (第 1 题图)
D 2.如图,⊙O 的圆心在梯形 ABCD 的C 底边 AB 上, 并与其它
三边均相切,若 AB=10,AD=6,则 CB 长为( Δ )
A、4
B、5
A
O
C、6
D、无法确定 B
3.如图所示:边长分别为1和 2 的两个正方形(,第其
一边在同一水平线上,小正方形沿2该题水图平) 线自左
率-速算扣除数.
注:适用率指相应级数的税率.
月工资薪金个人所得税率表:
级 全月应纳税所

得额
税 速算扣除
率 数(元)

1 不超过 500 元 5
超过 500 元至
2
10 25
2000 元的部分
超过 2000 元至
3
15 125
5000 元的部分


……
某 高 级 工 程 师 2006 年 5 月 份 工 资介 于 3700 ~
6.将四个完全相同的矩形(长是宽的3倍),用不
同的方式拼成一个大矩形,设拼得的大矩形面
积是四个小矩形的面积和,则大矩形周长的值
只可能是( Δ ).
A、1种 B、2种 C、3种 D、4种
7. 如果从一卷粗细均匀的电线上截取 1 米长的电
线, 称得它的质量为a克,再称得剩余电线的
质量为b克, 那么原来这卷电线的总长度是
分)
11.已知 1 1 4,则 a 2ab b 的值等于
ab
2a 2b 7ab
△.
12.已知 x2+4x-2=0,那么 3x2+12x+2000 的值
为△.
13.同时抛掷两枚正方体骰子,所得点数之和为7
的概率是 △ .

(典型)初中数学学科青年教师基本功大赛试题(附答案详解)

(典型)初中数学学科青年教师基本功大赛试题(附答案详解)

(典型)初中数学学科青年教师基本功大赛试题(附答案详解)一、选择题(10×2=20分,单选或多选) 1.现实中传递着大量的数学信息,如反映人民生活水平的“恩格尔系数”、预测天气情况的“降雨概率”、表示空气污染程度的“空气指数”、表示儿童智能状况的“智商”等,这表明数学术语日趋( )(A )人本化 (B )生活化 (C )科学化 (D )社会化 2. 导入新课应遵循( )(A )导入新课的方法应能激发学生的学习兴趣、学习动机,造成悬念,达到激发情感,提出疑问的作用(B )要以生动的语言、有趣的问题或已学过的知识,引入新知识、新概念 (C )导入时间应掌握得当,安排紧凑 (D )要尽快呈现新的教学内容3.下列关于课堂教学的改进,理念正确的是 ( ) (A )把学生看作教育的主体,学习内容和学习方法由学生作主 (B )促进学生的自主学习,激发学生的学习动机 (C )教学方法的选用改为完全由教学目标来决定(D )尽可能多的提供学生有效参与的机会,让学生自己去发现规律,进而认识规律 4.为了了解某地区初一年级7000名学生的体重情况,从中抽取了500名学生的体重,就这个问题来说,下面说法中正确的是( )(A )7000名学生是总体 (B ) 每个学生是个体(C )500名学生是所抽取的一个样本 (D ) 样本容量是500 5. 一个几何体的三视图如图2所示,则这个几何体是( )6.如图1,点A(m,n)是一次函数y=2x 的图象上的任意一点,AB 垂直于x 轴,垂足为B ,那么三角形ABO 的面积S关于m 的函数关系的图象大致为( )7.有三条绳子穿过一片木板,姊妹两人分别站在木板的左、右两边,各选该边的一条绳子。

若每边每条绳子被选中的机会相等,则两人选到同一条绳子的概率为( )(A)21 (B) 31 (C) 61(D) 91主视图左视图俯视图图2 (A ) (B ) (C ) (D )8.一次数学课上,老师让大家在一张长12cm 、宽5cm 的矩形纸片内,折出一个菱形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二届初中数学教师基本功大赛试题
一、选择题(2×10=20分)
1.某次考试,班长算出了全班40人数学成绩的平均分M,如果把M当成一个同学的成绩与原来的40个分数加在一起,算出这41个分数的平均值为N,那么M:N为().
A.40:41 B.41:40 C.2 D.1
2.若一个正三棱柱的三视图如下图所示,则这个正三棱柱的高和底面边长分别为().
A. 2,
,2 C. 4,2 D. 2,4
3.某企业产品的成本前两年每年递增20%,引进先进的技术设备之后,后两年产品的成本每年递减20%,那么该企业产品的成本现在的与原来的比较()
A.不增不减B.约增加8%C.约减少8%D.约减少5%4.函数y=x|x|的图象大致是()
5.已知m>2,点(m-1,y
1),(m,y
2
),(m+1,y
3
)都在二次函数y=x2-2x的图像上,
则().
A. y
1<y
2
<y
3
B. y
3
<y
2
<y
1
C. y
1
<y
3
<y
2
D. y
2
<y
1
<y
3
6.数学课程的总目标中有:培养学生具有适应未来社会生活和继续学习所必需的数学基本知识和技能以及基本的()
A.应用能力 B.生活能力 C.学习方法 D.数学思想方法7.台风中心从A地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B在A的正东40千米处,B城市处于危险区内的时间为().
A.0.5小时B.1小时C.1.5小时D.2小时8.一个盒子中装有标号为1,2,3,4,5的5张标签,随机地选取两张标签,标签的选取是无放回的,两张标签上的数字为相邻整数的概率().
A.2
5
B.
3
5
C.
8
25
9
25
主视图
俯视图
左视图
A
B
O
图 1
A
B
O
图2 9.如图,垂直于x 轴的直线EF 经坐标原点O 向右移动. 若E 是EF 与x 轴的交点,设
OE =x (0x a ≤≤),EF 在移动过程中扫过平行四边形OABC 的面积为y (图中阴影部分),则函
数()y f x =的图象大致是( ).
10.水平地面上有一个球,现用如下方法测量球的大小,用锐角45°的等腰直角三角板的斜边紧靠球面,P 为切点,一条直角边AC 紧靠地面,并使三角板与地面垂直,如果测得
PA =5cm ,则球的半径等于( )
A .5cm
B .52cm
C .5(21)cm +
D .6cm 二、填空题(2×10=20分)
11.一幅美丽的图象,在某顶点处有四个边长相等的正多边形镶嵌而成,其中的三个分别为正三角形、正四边形、正六边形,那么另外一个为____________.
12.若函数y =x 2
+bx +c 的图象的顶点在第四象限,则函数y=2x+b 的图象不经过第_______象限.
13.A 、B 是x 轴上两点,点P 的横坐标为2,且|PA |=|PB |,若直线PA 的方程为
x -y +1=0,则直线PB 的方程为 .
14.如图,水平地面上有一面积为30 ㎝2的灰色扇形OAB ,其中OA 的长度为6㎝,且与地
面垂直.若在没有滑动的情况下,将图(1)的扇形向右滚动至OB 垂直地面为止,如图(2)所示,则O 点移动了 ㎝.
15.若不等式组11
2x x a -≤≤⎧⎨<⎩
有解,那么a 必须满足 .
16.把直线l :y=3x+2平移后得直线l 1:y=3x-5.有下列说法:①是把l 向下平移7个单位;②是把l 向右平移3
7
个单位;③是把l 向上平移5个单位;④
是把l 向左平移5个单位.其中正确序号有____________.(把你认为正确的全写上)
17.规定记号“⊗”表示一种运算,即2(,)a b ab a b a b ⊗=++为正实数,若13k ⊗=,则k 的值为 .
18.用一根长为12m 的铝合金条做成一个“目”字形窗户的框架(不计损耗),要使这个
P A C
x
C
第9题图
O
y
F A
B
a E
y
y
y
x O
x O
x O
x O
y
a a a a
窗户通过的阳光最充足,则框架的长与宽之比应为 .
19.将一张坐标纸折叠一次,使得点M (0,4)与点N (1,3)重合,则与点P (2004,2010)重合的点的坐标是 .
20.计算机是将信息转换成二进制进行处理的,二进制即“逢2进1”,如(1101)2表示二进制数,将它转换成十进制形式是1×23
+1×22
+0×21
+1×20
=13,
111)2转换成十进制形式是___________. 三、解答题(60分)
21.已知方程
0632=--x x 的根分别为a,b(a>b),方程0232=--x x 的根分别为
c,d(c>d ),求(a-c)(b-d)(b-c)(a-d)的值.
22.△ABC 中,BC=a ,AC=b .(1)以AB 为边向△ABC 外作等边△ABD,当∠ACB 为多少度时,C 、D 两点之间的距离最大,最大值是多少?(2)以AB 为边向△ABC 外作正方形ABDE ,当∠ACB 为多少度时,点C 到正方形ABDE 的中心O 的距离最大,最大值是多少?
B
23.小华与小红用5张同样规格的硬纸片做拼图游戏,正面如图1所示,背面完全一样,将它们背面朝上搅匀后,同时抽出两张,规则如下:当两张硬纸片上的图形可拼成电灯或小人时,小华得1分,当两张硬纸片上的图形可拼出房子或小山时,小红得1分(如图2),问题:(1)游戏规则对双方公平吗?请说明理由;(2)若你认为不公平,如何修改游戏规则才能使游戏对双方公平?
24.如图,在平面直角坐标系中,以坐标原点O为圆心,2为半径画⊙O,P是⊙O上一动点,且P在第一象限内,过点P作⊙O的切线与x轴相交于点A,与y轴相交于点B.
(1)点P在运动时,线段AB的长度也在发生变化,请写出线段AB长度的最小值,并说明理由;
(2)在⊙O上是否存在一点Q,使得以Q、O、A、P为顶点的四边形是平行四边形?若存在,请求出Q点的坐标;若不存在,请说明理由.
25.案例分析Array案例1:教师讲完一元一次方程解题方法后,讲解方程x+1/3=(1/3)x+1时,学生甲:老师我已看出x=1,教师加以表扬,问能否解出来,学生甲上台演算完.学生乙:老师,我可以只移项不合并,x-1+1/3-(1/3)x=0,(x-1)+1/3(1-x)=0,老师又加以表扬.
案例2:课堂上当老师一宣布小组讨论、交流,前排的学生唰地回头,满教室都是嗡嗡的声音,四人小组里,每个人都在张嘴,谁也听不清谁在说什么,一分钟后,老师一喊“停”,
学生立即安静下来.
26.问题现象
(1).来自中考信息的反馈
2007年中考,我们从试卷中随机抽取了100份进行分析:最低分3分,最高分119分,平均分79.01分,合格率为74%,优秀率为26.3%.学生的得分率与人数分布表如下:
由上表可知,学生的高分者居多,低分者不少,中间层面的学生数少,平均成绩不高,可见学生两极分化严重.
(2).来自教师的信息反馈
在实施新课程中,教师们普遍反映,学生在新的学习方式的学习中,两极分化越来越大,好学生越来越好,后进的学生越来越后进.一份练习,优秀生5分钟可以完成,而后进生15分钟都难以完成.两极分化越来越严重.
请你结合自己的教学实际和上面的问题现象,谈一谈造成两极分化的原因是什么?拟采取什么措施缩小两极分化?。

相关文档
最新文档