同步热分析仪1
STA 基本原理

同步热分析仪(STA )基本原理1.DSC 基本原理热流型差示扫描量热仪DSC 为使样品处于一定的温度程序(升/降/恒温)控制下,观察样品和参比物之间的热流差随温度或时间的变化过程。
广泛应用于塑料、橡胶、纤维、涂料、粘合剂、医药、食品、生物有机体、无机材料、金属材料与复合材料等领域。
利用差示扫描量热仪,可以研究材料的熔融与结晶过程、结晶度、玻璃化转变、相转变、液晶转变、氧化稳定性(氧化诱导期O.I.T.)、反应温度与反应热焓,测定物质的比热、纯度,研究高分子共混物的相容性、热固性树脂的固化过程,进行反应动力学研究等。
热流型差示扫描量热仪的基本原理示意如下:在程序温度(线性升温、降温、恒温及其组合等)过程中,当样品发生热效应时,在样品端与参比端之间产生了与温差成正比的热流差,通过热电偶连续测定温差并经灵敏度校正转换为热流差,即可获得如下类型的图谱: / 温度 /℃0.40.200.20.40.60.81.0DSC /(mW/mg)比热变化DSCDS C 典型图谱 PET ,(图中所示为 P ET 聚酯材料的玻璃化转变、冷结晶峰与熔融峰) 放热峰吸热峰:面积: :峰值: :起始点: :终止点:39.36 J/g 248.8 .8 ℃234.0 .0 ℃254.9 .9 ℃:面积: :峰值: :起始点: :终止点:24.8 J/g 137.2 .2 ℃129.7 .7 ℃143.2 .2 ℃ :起始点: :中点: *:比热变化*:70.9 .9 ℃74.3 .3 ℃0.308 J/(g*K)[1.1]↓放热方向按照DIN标准,图中所示向上的为样品的吸热峰(较为典型的吸热效应有熔融、解吸等),向下的为放热峰(较为典型的放热效应有结晶、氧化、固化等),比热变化则体现为基线高度的变化,即曲线上的台阶状拐折(较为典型的比热变化效应为二级相变,包括玻璃化转变、铁磁性转变等)。
同步热分析(TGA-DSC)实验讲义

综合同步热分析(T G A-D S C)实验讲义一、实验目的:用热分析仪对进行TG和DSC分析,并对热分析谱图进行定性和定量分析。
二、预习要求1、了解热分析仪的工作原理和操作方法;2、了解TG和DSC分析的基本原理及热分析谱图的意义。
三、原理1、热分析的定义:热分析(thermal analysis):顾名思义,可以解释为以热进行分析的一种方法。
1977年在日本京都召开的国际热分析协会(ICTA)第七次会议上,给热分析下了如下定义:即热分析是在程序控制温度下,测量物质的物理、化学性质与温度的关系的一类技术。
通俗来说,热分析是通过测定物质加热或冷却过程中物理性质(目前主要是重量和能量)的变化来研究物质性质及其变化,或者对物质进行分析鉴别的一种技术。
程序控制温度:一般是指线性升温或线性降温,当然也包括恒温、循环或非线性升温、降温。
也就是把温度看作是时间的函数:T=φ(t); t:时间。
常见的物理变化:熔化、沸腾、升华、结晶转变等;常见的化学变化:脱水、降解、分解、氧化,还原、化合反应等。
这两类变化,常伴有焓变,质量、机械性能和力学性能等的变化。
2、热分析存在的客观物质基础在目前热分析可以达到的温度范围内,从-150℃到1500℃(或2400℃),任何两种物质的所有物理、化学性质是不会完全相同的。
因此,热分析的各种曲线具有物质“指纹图”的性质。
3、热分析的起源及发展1899 年英国罗伯特-奥斯汀(Roberts-Austen)第一次使用了差示热电偶和参比物,大大提高了测定的灵敏度,正式发明了差热分析(DTA)技术。
1915 年日本东北大学本多光太郎,在分析天平的基础上研制了“热天平”即热重法(TG),后来法国人也研制了热天平技术。
1964 年美国瓦特逊(Watson)和奥尼尔(O’Neill)在DTA技术的基础上发明了差示扫描量热法(DSC)。
美国P-E公司最先生产了差示扫描量热仪,为热分析热量的定量作出了贡献。
同步热分析仪STA基本原理

TG传感器 测量模式:TG 适合于大体积样品
TG传感器 测量模式:TG 适合于大体积样品或 气固反应研究,例如 吸附、氧化还原等
DSC 应用实例 – PET
Heat Flow mW / mg exo
255.5°C
冷结晶峰 面积: 40.29 J/g
玻璃化转变 起始点: 70.6°C 中点: 74.8°C 比热变化: 0.40 J/(g*K)
t
H K Tdt K = f (温度,热阻, 材料性质,…)
0
DSC vs DTA
• 传感器的结构差别 DSC 传感器
DTA/SDTA 传感器
DSC vs DTA
• 工作原理差别
DTA 只能测试△T信号,无法建立△H与△T之间的联系
DSC
测试△T信号,并建立△H与△T之间的联系
Q A△△XT
t
H K Tdt
0
SDTA(C-DTA) 计算得到△T信号
DSC 曲线示例
根据 DIN 定义的吸热与放热峰
DSC 信号
热重(TG)基本原理
在程序温度(升/降/恒温及其组合)过程中,观察样品的质量随 温度或时间的变化过程。
应用:
• 质量变化 • 热稳定性 • 分解温度 • 组分分析
• 脱水 • 腐蚀/氧化 • 还原 • 反应动力学
水浴:
在天平室周围循环 不经过炉体
垂直顶部装样:
支架坚固耐用 样品放置十分简便 吹扫气方向与产生气体方向一致
同步热分析仪的灵活性
• 可选择不同炉体
同步热分析仪的灵活性
• STA传感器多种选择
TG-DSC传感器 测量模式:TG-DSC-DTA 适合于绝大多数应用场合
TG-DTA传感器 测量模式:TG-DTA 适合于对防腐蚀有特殊要 求的场合
同步热分析仪STA基本原理

同步热分析仪STA基本原理同步热分析仪(Simultaneous Thermal Analyzer,STA)是一种同时测量样品的热重(Thermogravimetric analysis,TGA)和差热(Differential Scanning Calorimetry,DSC)信号的仪器。
STA 的基本原理是通过对样品同时施加一定的加热速率,并测量样品质量和温度的变化,来研究样品的热性质和热反应过程。
STA是联合使用TGA和DSC技术的仪器,它由一个热重仪和一个差热仪组成。
热重仪用来测量样品质量的变化,而差热仪则测量样品与参比样品之间的温度差(ΔT)。
通过同时监测这两个信号,我们可以得到样品的质量变化和相对应的热反应过程。
这种同时测量的方式可以提供更多的信息,以更全面地了解样品在加热过程中的热性质和热反应行为。
在STA实验中,首先将样品和参比样品置于对应的分析碟中,并使用高纯度气氛控制系统,例如氮气或空气等,以避免样品受到外界的干扰。
然后,将样品依照一定的加热速率加热,同时测量样品质量和温度的变化。
其中,热重仪通过计算样品质量的变化来分析样品的热分解、蒸发、燃烧等过程。
差热仪测量样品与参比样品之间的温度差并绘制出DSC曲线,该曲线可以显示样品在加热过程中发生的吸热或放热反应。
通过对STA曲线的分析,可以获得以下信息:1.热分解温度:STA可以确定样品在不同温度范围内的热分解温度,从而帮助确定样品的热稳定性和热分解路径。
2.吸放热性:差热曲线可以指示样品吸热或放热的峰值和峰面积,从而判断样品的热反应类型、反应活性以及热容量等。
3.变质温度:STA可以测定样品的玻璃化温度和熔融温度,这对材料的应用和加工具有重要意义。
4.变质热:通过差热曲线的峰面积可以确定样品在熔化或结晶过程中的变质热,这对材料的热性质和热稳定性的评估至关重要。
需要注意的是,在使用STA进行实验时,需要对仪器进行校准,例如通过使用已知热性质的参考样品来进行校准。
选择同步热分析仪时应该考虑哪些因素

选择同步热分析仪时应该考虑哪些因素选择一款合适的热分析仪可以帮助实验者更好地研究材料的热性质,并且在材料研究过程中起到重要的辅助作用。
同步热分析仪作为一种热分析仪器,由于其高精度、高分辨率、高灵敏度等优点,被广泛应用于材料科技领域。
但是在选择同步热分析仪时,需要考虑很多因素。
本文将从以下几个方面进行阐述。
1.温度范围温度范围是选择同步热分析仪的重要考虑因素之一。
同步热分析仪可进行多种热分析试验,包括差热分析、热重分析、热机械分析等。
每种试验的温度范围都不相同。
因此在选择同步热分析仪时,需要首先确定实验需要达到的温度范围。
这样才可以选择适合实验需要的同步热分析仪。
2.分析技术同步热分析仪的分析技术可以分为热量分析和重量分析两种。
热量分析是通过测量热量变化来研究材料性质的一种方法,其中常见的热量分析方法有差热分析和热流式分析。
重量分析则是通过测量材料在不同温度下的重量变化来研究材料性质的一种方法,其中常见的重量分析方法有热重分析和热机械分析。
在选择同步热分析仪时,需要对热量分析和重量分析的原理有一定的了解,以便选择适合自己的分析技术。
3.分辨率和灵敏度同步热分析仪在测量材料的热性质时,需要具备高分辨率和高灵敏度,以确保实验结果的准确度和可靠性。
分辨率决定了同步热分析仪在测量中可以分辨的最小的特征尺寸;灵敏度则可以反映同步热分析仪测量信号的强度。
在选择同步热分析仪时,需要对实验需求进行分析,并确定适合自己实验的分辨率和灵敏度要求。
4.数据分析和处理同步热分析仪在实验中所采集到的数据需要进行有效的处理,以便得到更加准确的实验结果。
通常,同步热分析仪配备有数据处理软件,以协助对实验数据进行分析。
因此,在选择同步热分析仪时,需要对数据分析软件进行考虑,并选用适合自己实验需求的数据处理软件。
5.耗材和维护成本在同步热分析仪的使用过程中,需要使用很多耗材,包括样品托盘、样品盖、样品杯等。
同时,同步热分析仪也需要固定的维护和保养,以维持其正常工作状态。
STA449C同步热分析仪介绍与原理

理
1、热重曲线(TG曲线)
——记录质量变化对温度的关系曲线
——纵坐标是质量,横坐标为温度或时间 ——微商热重曲线:纵坐标为dW/dt,
横坐标为温度或时间.
STA449C同步热分析仪介绍和原 理
• 1. 基本概念: • △m 质量变化 • dm/dt 质量变化/分解的速率 • DTG TG曲线对时间坐标作一
次微分计算得到的微分曲线 • DTG 峰 质量变化速率最大点,
作为质量变化/分解过程的特征温 度 • Tonset TG台阶的起始点,对 分解过程可作为热稳定性的表征
STA449C同步热分析仪介绍和原 理
• 针对高分子材料的应用领域,STA 449 C 选配 覆盖 -120℃ ~650℃温度范围的炉体。STA 449 C 配备带电磁补偿的的超微量称重系统, 具有高准确度、μg 级的分辨率与出色的稳定性, 并能测试重达 5g 的样品
STA449C同步热分析仪介绍和原 理
仪器简介
• STA 449 C 采用顶部装样结构。与其它结 构相比,顶部装样结构的特点在于操作简
T=() 其中是时间,则
F=f(T)或f()
STA449C同步热分析仪介绍和原 理
热分析概述
• 在不同温度下,物质有三态:固、液、气,固态物质又有 不同的结晶形式。
• 对热分析来说,最基本和主要的参数是焓(ΔH),热力 学的基本公式是: ΔG=ΔH-TΔS
• 存在三种情况:ΔG<0,ΔG=0,ΔG>0 • 常见的物理变化有:熔化、沸腾、升华、结晶转变等; • 常见的化学变化有:脱水、降解、分解、氧化,还原,化
STA6000同步热分析仪操作规程

STA6000同步热分析仪操作规程1.准备工作:a.确保电源插座与仪器电源线连接正常,并接通电源。
b.确保仪器所需的冷却水和氮气供应充足,并连接到相应接口。
c.打开仪器前排除周围干扰源,保持良好的工作环境。
2.仪器启动:a.打开仪器主机电源开关,待仪器系统自检完成后,仪器进入待机状态。
b.按下主机上的开机按钮,仪器进入工作状态。
c.检查主机上的指示灯,确保仪器正常工作。
3.仪器设定:a.打开仪器软件,并连接仪器和计算机。
b.在软件中设置测试参数,包括样品类型、样品重量、升温速率等。
c.在软件中选择热重分析或差示扫描量热分析模式。
4.样品准备:a.将待测试的样品制备成适当的形状和重量。
b.将样品放置在量热杯或测试盘中,并记录好样品信息。
5.样品安装:a.打开仪器的样品舱门,将样品舱底部的量热杯或测试盘放置于样品舱中。
b.关闭样品舱门,并确保舱门锁紧。
6.测试运行:a.在软件中点击“开始测试”按钮,启动样品测试。
b.仪器将按照设定的测试参数进行温度升降曲线的测量。
c.在测试过程中,可以随时监测仪器的参数,如温度、质量变化、热流等。
d.测试结束后,保存测试数据,并进行数据分析和报告生成。
7.仪器维护:a.每次使用结束后,及时清理仪器和样品舱,避免污染和损坏。
b.定期检查和维护仪器的冷却系统、供气系统等部件。
8.安全注意事项:a.在操作仪器时,应穿戴好防护手套和眼镜,避免样品溅出或碎片飞出伤及操作人员。
b.在使用仪器前,确保室内通风良好,避免有害气体积聚。
c.在使用液氮时,要注意防止皮肤直接接触,以免受到低温伤害。
以上是STA6000同步热分析仪的操作规程,通过正确操作和维护,可以确保仪器正常运行,并获得准确的测试结果。
同时,使用仪器时要注意安全,保护好自己和仪器设备。
STA6000同步热分析仪操作规程

STA6000同步热分析仪操作规程一、安全注意事项1.在操作热分析仪之前,必须戴上防护眼镜和手套,避免化学物质和高温对皮肤和眼睛的损害。
2.操作人员应具备相关的专业知识和技能,了解热分析仪的工作原理和操作方法。
3.在进行样品测试前,应确保热分析仪处于正常工作状态,避免故障和意外发生。
4.在打开热分析仪设备之前,需要确认仪器的电源已被切断。
5.在进行样品测试期间,避免触摸或靠近加热部件,以免烫伤。
6.根据仪器的规格和要求,选择合适的温度范围和加热速率,避免超过设定的参数。
7.对于易燃、易爆或有毒的样品,应注意使用专门的通风系统和安全设备。
8.对于热分析仪的维护和保养,应由专业人员负责,在设备停止运作时进行。
9.对于热分析仪设备的故障和问题,应立即报告给有关人员进行处理。
二、操作步骤1.打开电源:首先,确保热分析仪的电源开关在关闭状态,然后将电源插头插入合适的插座,打开电源开关,待设备启动后进入待机状态。
2.准备样品:根据实验的目的和要求,选择适当的样品,并根据样品的性质和要求进行均匀、准确的取样。
3.安装样品:打开热分析仪的样品舱门,将样品放置于样品台上,确保样品的稳定和水平。
4.设定实验参数:根据实验要求,设定温度范围、加热速率和保持时间等参数,并将参数输入热分析仪的控制面板上。
5.启动测试:关闭样品舱门,并按下控制面板上的启动按钮,热分析仪开始进行样品测试。
6.监测测试过程:在样品测试过程中,密切关注热分析仪的显示屏上的温度曲线和数据变化,确保测试结果的准确性。
7.结束测试:当测试完成时,按下控制面板上的停止按钮,热分析仪停止工作。
然后,打开样品舱门,取出样品。
8.关闭电源:在确认热分析仪已停止工作后,关闭电源开关,将电源插头拔出插座。
9.数据处理:根据测试结果,进行数据分析和处理,制作相应的实验报告。
三、设备维护1.定期清洁:根据需要,对热分析仪进行定期清洁,避免样品残留和污染对设备的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
操作步骤:
1.打开开关
3.开电脑 4.将机器升高,放压片
2.开机器
5.取下坩埚,放需要用 的坩埚,待稳定降下
6.打开软件 admin 7.点TG前的方块,run a Tare
8.点开Manual Programming
点Protective gas ,water flow ,变绿
9.开水开气
氩气(流量不能低于0.5):保护设备 氮气:保护样品
合金 AZ80 AZ80-2.0Ca
峰值11 430 456
峰值22 — 522
升温过程 峰值33 595 595
降温过程 峰值11 峰值22 417 — 425 500
峰值33 584 584
AZ80-2Ca
Endothermal
o 522 C
AZ80 430 C o heating up: 15 C/min
0 100 200 300 400
o o
AZ80-2Ca
425 C
o
500 C
o
合金相熔点,基体的溶解温度仍为595℃, 没有变化。图(b)中为降温过程热分析结果, 与升温过程曲线特征类似。
合金 ZK60 ZK60-0.5Er ZK60-1.0Er ZK60-2.0Er ZK60-3.0Er 峰值1 (℃)1 (℃) 618 619 620 622 622 峰值2 (℃)2 (℃) 416 510 510 510 510 峰值3 (℃)3 (℃) 326 416 416 — — 峰值4 (℃)4 (℃) — 326 326
DTA和DSC可用以研究聚合物的相变,测定结晶温度Tc、熔点Tm、结晶 相转变等物理变化,研究聚合物固化、交联、氧化、分解等反应,测定 聚合物玻璃化转变温度Tg,也可测定反应温度或反应温度区等反应动力 学参数。DSC是在程序温度下,测量物质与参比物的功率差值△W与温 度的函数关系。是和DTA在应用上相近而在原理上稍有改进的一种热分 析技术。 其改进之处是在试样和参比物下增加了两组补偿加热丝,当试样在加热 过程中由于热反应而和参比试样间出现温差 ΔT时,通过差热放大和差动 热量补偿使流入补偿丝的电流发生变化。当试样吸热时,补偿使试样一 边的电流立刻增大,反之,在试样放热时使参比物一边的电流增大,直 到两边达到热平衡,温差ΔT消失为止。换句话说,试样在热反应时发生 的热量变化,由于及时输入电功率而得到补偿。 DSC和DTA相比,在试 样发生热效应时 DTA中试样的实际温度已经不是程序升温时所控制的温 度(如试样在放热反应时会加速升温),而在DSC中试样的热量变化可 及时得到补偿,试样和参比物的温度始终保持一致,避免了参比物和试 样之间的热传递,因而仪器的热滞后现象小,出峰温度更接近实际温度, 且反应更灵敏,分辨率更高。
DSC –结晶温度与结晶热
430℃为AZ80镁合金中β- Mg17Al12相开
(a)
o 456 C
Exothermal
(b)
AZ80 417 C
o
584 C
o
始溶解的温度,595℃为合金基体的溶解 温度,而AZ80-2.0Ca镁合金比AZ80镁合 金多一个吸热峰,同时β- Mg17Al12相溶 解温度由430℃升至457℃,522℃为另一
unknown
595 C unknown
cooling: 15 C/min
100 200 300 400 500
o o
o
500
600
700
800
600
700
800
Temperature ( C)
Temperature ( C)
AZ80,AZ80-2.0Ca合金DSC曲线 (a) 升温过程 (b) 降温过程
0.15
0.14
622 C
0
Cooling rate: 3.0 C/min
o
0
0.13
0.12
618 C
0.11
0
ZK60-3Er 510 C 416 C
0 0
0.10
326 C
0
0.09
0.08 700 600 500
ZK60
400
0
300
200
Temperature, C
图 ZK60和ZK60-3.0 Er合金凝固过程的热分析曲线
10.升高机器,取下坩埚,放式样20mg左 右 待稳定,降下
11.读取TG第一格的质量,将此页面最小化 打开program experiments
12.打开上一个程序,出现的界面需要修改三个地方
名字(该组下的升温速率)、mass(11步中的质量)、升温速率
13.点开始,实验开始
关闭顺序:水→气→程序→设备开关→电脑→总开关
同步热分析仪
王冬晓
同 步 热 分 析 仪
主要功能:
DSC分析主要用于研究金属玻璃的显微结构中亚稳相的转变温度
以及转变动力学的特征分析
DAT常用来测定物质的熔化、金属与合金的相变、高聚物玻璃转 化的温度。
DMA主要应用于:玻璃化转变和熔化测试,二级转变的测试,频率
广泛应用于塑料、橡胶、涂料、药品、催化剂、无机材料、金属 材料与复合材料等各领域的研究开发、工艺优化与质量监控。 效应,转变过程的最佳化,弹性体非线性特性的表征,疲劳试验, 材料老化的表征,浸渍实验,长期蠕变预估等最佳的材料表征方案
DTA差热分析法(Differential Thermal Analysis)是以某种在一定实验温度下 不发生任何化学反应和物理变化的稳定物质(参比物)与等量的未知物在相同 环境中等速变温的情况下相比较,未知物的任何化学和物理上的变化,与 和它处于同一环境中的标准物的温度相比较,都要出现暂时的增高或降低。 降低表现为吸热反应,增高表现为放热反应。 在作差热鉴定时,是将与参比物等量、等粒级的粉末状样品,分放在两个 坩埚内,坩埚 的底部各与温差热电偶的两个焊接点接触,与两坩埚的等距 离等高处,装有测量加热炉 温度的测温热电偶,它们的各自两端都分别接 人记录仪的回路中 在等速升温过程中,温度和时间是线性关系,即升温的 速度变化比较稳定,便于准确地 确定样品反应变化时的温度。样品在某一 升温区没有任何变化,即也不吸热、也不放热 ,在温差热电偶的两个焊接 点上不产生温差,在差热记录图谱上是一条直线,已叫基线 。如果在某一 温度区间样品产生热效应,在温差热电偶的两个焊接点上就产生了温差, 从而在温差热电偶两端就产生热电势差,经过信号放大进入记录仪中推动 记录装置偏离基线而移动,反应完了又回到基线。吸热和放热效应所产生 的热电势的方向是相反的,所以反映在差热曲线图谱上分别在基线的两侧, 这个热电势的大小,除了正比于样品的数量外,还与物质本身的性质有关。
技术参数:
温度范围:-150℃ ~1750℃(可升级至2400℃) 程控升温速率:0 ~ 100K/min(全程) TG最大样品量:35/100g TG 分辨率:0.002 /0.02μg TG基线重复性:<10μg(室温~1750℃) DSC分辨率:1μW DTA分辨率:0.4μW 气路设计:3 路载气与 1 路辅助/反应气。配备电磁阀及MFC(质量流量 计),全部软件控制
许多物质在加热或冷却过程中会发生熔化、凝固、晶型转变、分解、化合、 吸附、脱附等物理化学变化。这些变化必将伴随体系焓的改变,因而产生 热效应。其表现为该物质与外界环境之间有温度差。选择一种对热稳定的 物质作为参比物,将其与样品一起置于可按设定速率升温的电炉中。分别 记录参比物的温度以及样品与参比物间的温度差。以温差对温度作图就可 以得到一条差热分析曲线,或称差热谱图。 如果参比物和被测物质的热容 大致相同,而被测物质又无热效应,两者的温度基本相同,此时测到的是 一条平滑的直线,该直线称为基线。一旦被测物质发生变化,因而产生了 热效应,在差热分析曲线上就会有峰出现。热效应越大,峰的面积也就越 大。在差热分析中通常还规定,峰顶向上的峰为放热峰,它表示被测物质 的焓变小于零,其温度将高于参比物。相反,峰顶向下的峰为吸收峰,则 表示试样的温度低于参比物。一般来说,物质的脱水、脱气、蒸发、升华、 分解、还原、相的转变等等表现为吸热,而物质的氧化、聚合、结晶、和 化学吸附等表现为放热。
物质的脱水、脱气、蒸发、 升华、分解、还原、相的 转变等等表现为吸热; 物质的氧化、聚合、结晶、 和化学吸附等表现为放热。
Temperature Difference, C/mg
图为ZK60和ZK60-3.0Er两种合金试样的 DTA曲线,α-Mg枝晶开始形成的温度分 别为622,621,620,619,618℃。随 着Er元素的含量增加,α-Mg枝晶数量增 加,促使合金晶粒细化,结合 Mg-Zn 二 元相图,图中放热峰值为 416 ℃ 为发生 共晶反应形成 Mg51Zn20 共晶相的温度, 该相为晶间化合物。在凝固过程中,当 温度降低至326℃时,Mg51Zn20相分解, MgZn2相形成,表中DTA结果可见,Er 的加入使共晶相凝固温度提升至 510 ℃ , 当Er含量超过1.0%(wt%.)时Mg51Zn20 相和MgZn2相的峰值消失。