直流电机串电阻启动

合集下载

他励直流电动机串电阻启动的设计

他励直流电动机串电阻启动的设计

他励直流电动机串电阻启动的设计直流电动机串联电阻启动是一种常见的启动方式,主要应用于较小功率的直流电动机,例如家用电器、小型机械设备等。

本文将从设计角度详细介绍串联电阻启动的原理、设计步骤和注意事项等内容。

一、串联电阻启动的原理串联电阻启动是通过在直流电动机的励磁回路中串联一定阻值的电阻,来降低电动机的电流起动冲击,从而实现平稳起动。

具体原理如下:1.启动过程中,电阻串联在励磁回路中,减小了直流励磁电流,降低了电枢绕组的电流冲击。

2.随着直流电动机转速的提高,励磁电流逐渐减小,当直流电动机达到运行速度时,电阻完全从回路中剔除。

二、串联电阻启动的设计步骤1.确定电机参数:包括额定电压、额定功率、额定转速、励磁电流等。

这些参数将决定所需的电阻大小。

2.计算起动时的励磁电流:通常起动时的励磁电流取额定电流的1.5倍至2倍之间。

3. 根据励磁电流和直流电动机的励磁回路电压计算所需串联电阻的阻值:串联电阻的阻值需满足电阻起动后,励磁电流达到起动时的设定值,可通过Ohm定律计算。

4.选择适当的电阻:根据计算所得的阻值,选择匹配的电阻进行串联。

三、串联电阻启动设计的注意事项1.电阻选择:根据计算得到的阻值,选择合适的电阻器进行串联。

电阻的耐压需要满足直流电机励磁回路的额定电压要求,并具备较好的散热性能。

2.电阻功率:电阻器需要具备足够的功率承载能力,以避免过载引起烧毁。

功率大小可根据电阻阻值和电阻串联前后电流计算得到。

3.励磁回路的稳定性:在设计中要确保电阻串联后励磁回路的稳定性,过大的串联电阻可能引起回路的不稳定,可能导致起动失败。

4.启动时间:串联电阻启动的时间一般较长,需要根据具体场合和电动机的特性来确定合适的启动时间。

四、串联电阻启动的优缺点优点:1.降低了直流电动机起动时的冲击电流,减少了电网压压降和设备的损坏。

2.启动过程简单,成本较低。

3.过载能力较强,承受短时过负荷。

缺点:1.启动时间长,启动效率低,启动过程中耗能较大。

任务3.3 直流电动机的启动、反转、调速与制动

任务3.3 直流电动机的启动、反转、调速与制动

【任务实施】
1.任务实施的内容 直流电动机的启动、反转、调速与制动试验。 2.任务实施的要求 掌握直流电动机的启动、反转方法、调速和制动的方法。 3.设备器材 导轨、测速发电机及转速表,1套;校正直流测功机,1台;他 励直流电动机,1台;直流电压表,2块;直流电流表,3块;可调 电阻器,3只 。 4.任务实施的步骤 (1)他励直流电动机的启动 按图3-37接线。图中他励直流电动机M用DJ15,其额定功率PN =185W,额定电压UN=220V,额定电流IN=1.2A,额定转速nN= 1600r/min,额定励磁电流IfN<0.16A。校正直流测功机MG作为测 功机使用,TG为测速发电机。直流电流表A1、A2选用200mA挡, A3 、A4选用5A挡。直流电压表V1、V2 选用1000V挡。
3.他励直流电动机的回馈制动 图3-36(a)是电车下坡时正回馈制动机械特性,这时n>n0,是 电动状态,其机械特性延伸到第二象限的直线。图3-36(b)是带位 能负载下降时的回馈制动机械特性,直流电动机电动运行带动位 能性负载下降,在电磁转矩和负载转矩的共同驱动下,转速沿特 性曲线逐渐升高,进入回馈制动后将稳定运行在F点上。需要指出 的是,此时转子回路不允许串入电阻,否则将会稳定运行在很高 转速上。
(2)直流电动机的反转 将电枢串联启动变阻器R1的阻值调回到最大值,先切断控制屏 上的电枢电源开关,然后切断控制屏上的励磁电源开关,使他励电 动机停机。在断电情况下,将电枢的两端接线对调后,再按他励电 动机的启动步骤启动电动机,并观察电动机的转向及转速表指针偏 转的方向。 (3)调速特性 ①电枢回路串电阻(改变电枢电压Ua)调速。保持U=UN、If=IfN =常数,TL=常数,测取n=f(Ua)。 按图3-37接线。直流电动机M运行后,将电阻R1调至零,If2调 至校正值,再调节负载电阻R2、电枢电压及磁场电阻Rf1,使M的U =UN,Ia=0.5IN,If=IfN,记下此时MG的IF值。 保持此时的IF值(即T2值)和If=IfN不变,逐次增加R1的阻值,降 低电枢两端的电压Ua,使R1从零调至最大值,每次测取电动机的端 电压Ua,转速n和电枢电流Ia,记录于表3.6中。

直流电机串电阻起动

直流电机串电阻起动

目录
第 1 章 ...........................................................................................1 1.1 直流电机的基本工作原理与结构...........................................1
n0 UN
n01 U1
n
n01
1
n0
N
Te O
U=0
O
Te
图6-4 改变磁通的人为机械特性
-n0
-UN
图6-3 改变电枢电压的人为的机械特性
当降低励磁电压或在励磁回路串接电阻 Rc , 使励磁电流 I f 减小,由于
磁通与励磁电流在额定磁通以下时基本成正比,所以主极磁通减小了。根据机械
特性公式可知:
n
n0 A
nN
n
UN CeΦ
Ra CeCTΦN2
Te
(6-2)
O
TN
Tst
Te
图6-2 他励电动机固有机械特性
4
3.1.2 人为机械特性
由公式(6-1)可知,当改变电动机的参数电枢电压 Ua、励磁电流 I f 、电 枢外接电阻 R,可改变电动机的机械特性,这种人为改变参数引起的机械特性又 称人为机械特性。
n想空载转速 n0 升高,而斜率 增大, 使特性曲线倾斜 度增加,电动机的转速较原来有所提高,整个特性曲线均在固有机械特性之上, 如图 6-4 所示。
5
3、电枢回路串接电阻:
当保持电枢回路电压 Ua,励磁电流 If 不变,改变电枢回路的串接电阻 R, 电动机的理想空载转速 n0 不变,但机械特性的斜率 增大,特性曲线倾斜度 增加,且串入电阻越大,曲线越倾斜,其人为机械特性如下图所示。

直流电机串电阻启动

直流电机串电阻启动

指导教师评定成绩:审定成绩:重庆邮电大学移通学院课程设计报告设计题目:直流电机的串电阻启动过程设计学校:学生姓名:专业:班级:学号:指导教师:设计时间:年月重庆邮电大学移通学院目录一、直流电动机的综述 (4)1.1直流电动机的基本工作原理 (4)1.2直流电动机的分类 (5)1.3直流电动机的特点 (5)二、他励直流电动机 (5)2.1他励直流电动机的机械特性 (5)2.2固有机械特性与人为机械特性 (6)三、他励直流电动机的起动 (7)3.1直流电动机的启动过程分析 (8)3.2他励直流电动机起动电阻的计算 (9)四、设计内容 (10)五、结论 (11)六、心得体会 (12)七、参考文献 (12)一、直流电动机的综述1.1直流电动机的基本工作原理图1 是一台最简单的直流电动机的模型,N和S是一对固定的磁极(一般是电磁铁,也可以是永久磁铁)。

磁极之间有一个可以转动的铁质圆柱体,称为电枢铁心。

铁心表面固定一个用绝缘导体构成的电枢线圈abcd,线圈的两端分别接到相互绝缘的两个弧形铜片上,弧形铜片称为换向片,它们的组合体称为换向器。

在换向器上放置固定不动而与换向片滑动接触的电刷A和B,线圈abcd通过换向器和电刷接通外电路。

电枢铁心、电枢线圈和换向器构成的整体称为电枢。

如果将电源正负极分别接电刷A和B,则线圈abcd中流过电流。

在导体ab中,电流由a 流向b,在导体cd中,电流由c流向d,如图(a)所示。

载流导体ab和cd均处于N和S 极之间的磁场当中,受到的电磁力的作用。

用左手定则可知,载流导体ab受到的电磁力F 的方向是向左的,力图使电枢逆时针方向运动,载流导体cd受到的电磁力F的方向是向右的, 也是力图使电枢逆时针方向运动,这一对电磁力形成一个转矩, 即电磁转矩T,其方向为逆时针方向,使整个电枢沿逆时针方向转动。

当电枢转过180°, 导体cd转到N极下,ab转到S极上,如图(b)所示。

直流电动机电枢串电阻启动完

直流电动机电枢串电阻启动完

课程设计名称:《电机与拖动》课程设计题目:直流电动机电枢串电阻起动设计指导教师:专业:班级:姓名:学号:辽宁工程技术大学课程设计成绩评定表课程设计任务书一、设计题目直流电动机电枢串电阻起动设计二、设计任务某厂一台Z4系列他励直流电动机,参数如下:PN=200KWUaN=440VIaN=497AnN=1500r/minRL=0.076Ω欲采用电枢串电阻启动,试设计其起动级数和各级起动电阻。

三、设计计划电机与拖动课程设计共计一周内完成。

第1~2天查资料,熟悉题目;第3~5天方案分析,具体按步骤进行设计及整理设计说明书;第6天准备答辩;第7天答辩。

四、设计要求1、设计工作量为按要求完成设计说明书一份;2、设计必须根据进度计划按期完成;3、设计说明书必须经指导教师审查签字方可答辩。

指导教师:仲伟堂王继强王巍教研室主任:仲伟堂时间:2008 年 6 月 27 日目录一、直流电动机的基本结构 (5)二、直流电机的工作原理 (6)三、直流电机的额定值及励磁方式 (6)四、直流电机的铭牌数据和主要系列 (8)五、他励直流电动机 (9)六、他励直流电动机的起动 (12)七、具体电机启动设计 (14)八、结论 (15)九、体会 (18)十、致谢 (19)十一、主要参考文献 (20)直流电动机电枢串电阻起动直流电动机是人类最早发明和应用的一种电机。

与交流电动机相比,直流电动机有着不可比拟的优越性,但同时因结构复杂、维护困难、价格较贵等缺点制约了它的发展,使其应用不如交流电机广泛。

但直流电动机具有优良的起动、调速和制动性能,并且其供电的质量高、可靠性强,因此在化学工业中的电镀、电解等设备,直流电焊机和某些大型同步电机的励磁电源都使用直流发电机作为供电电源。

因此,直流电机也是当今时代不可或缺的。

一、直流电机的基本结构直流电机的结构示意图如图3-6所示。

它由定子(静止的)和转子(旋转的)两个基本部分组成。

(一)定子定子主要由(1)主磁极;(2)换向磁极;(3)机座、端盖和电刷装置等组成。

他励直流电动机降压启动与串电阻启动分析与设计毕业论文

他励直流电动机降压启动与串电阻启动分析与设计毕业论文

《电机与拖动》课程设计设计题目:他励直流电动机降压启动与串电阻启动分析与设计院(系、部):专业班级:姓名:学号:指导教师:日期:摘要通过降低电枢电压或在电枢回路上串电阻,减小了直流电动机的启动电流与启动转矩,避免了电刷及换向器的烧毁与机械运动机构的损坏。

分析他励直流电动机降压启动的启动原理,以及多级电压的计算方法;设计一个降电压的多级启动系统。

分析他励直流电动机串多级电阻启动的启动原理,以及多级电阻的计算方法;求切除电阻时的瞬时转速和电动势;设计一个串电阻的分级启动系统。

做出了机械特性图,对启动特性进行了分析。

通过降低电枢电压或在电枢回路串电阻,减小了启动电流与启动转矩,达到了平稳启动的目的。

关键词:他励直流电动机降压启动串电阻启动机械特性目录1他励直流电动机的启动方法 (1)2他励电动机降压启动 (1)2.1降压启动的原理 (1)2.2各级启动的电压 (2)2.3降压启动实例与机械特性 (3)3 他励直流电动机串电阻启动 (5)3.1串电阻启动原理 (5)3.2各级电阻的计算 (6)3.3 串电阻启动实例与机械特性 (7)4结论 (10)参考文献 (11)1 他励直流电动机的启动方法直流电动机接入电源后,转速从零达到稳态转速的过程,称为启动过程。

直流电动机启动时有两条要求:第一,应有足够大的启动转矩T st ,以缩短启动时间,提高生产效率;第二,启动电流不能过大,一般要小于二倍的额定电流。

第三,启动设备要简单、经济、可靠。

a a a U E I R =+⨯(1) 直接启动[1]时,他励直流电动机电枢加额定电压U aN ,电枢回路不串任何电阻,此时由于转速n =0,电动势E =0,根据式(1)得到式(2)。

a Nst aU I R =(2)显然直接启动时启动电流将达到很大的数值,将出现强烈的换向火花,造成换向困难,还可能引起过流保护装置的误动作或引起电网电压的下降,影响其他用户的正常用电;同时由(3)可知,启动转矩也很大,造成机械冲击,易使设备受损。

直流电动机串联电阻启动的matlab模型分析

直流电动机串联电阻启动的matlab模型分析

直流电动机串联电阻启动的模型(计算+仿真)电动 参数如下:17,220,3000/min N N N P kw U V n r ===,电枢回路电阻0.087a R =Ω,电感0.0032a L H =,励磁回路电阻0.087F R =Ω,电动机的转动惯量20.76.J Kg m = 构建电路模型参数设置:1、0.087a R =Ω,0.0032a L H =2、0.087F R =Ω,励磁电感在恒定磁场控制时取0,即0F L H =3、互感af L :首先电动势常数0.0708.min/N a N e NU R I C V r n -== 600.6762e e K C π== /0.676/1.210.56af e f L K I H ===(220/ 1.21f F I R A ==)4、20.76.J Kg m =采用ode45算法既可以得到仿真曲线从仿真图线上可以看出,直接启动时,启动电路达到2500A,这个值实在是太大了。

为了降低启动电流值,我们采用串联电阻的方式,而且,在这里要求启动过程中,电路要在100-200A之间变化。

1、启动时电路小于200A11 200NaUR R=-=Ω此时,我们在电路中先接入11 200NaUR R=-=Ω,看一下仿真曲线可以看到在3.5s的时候电流降到了100A,这时候转速达到了1500r/min2、这个时候需要降低电阻,降到多少呢,计算如下20.482200N e a U C n R R -=-=Ω。

这时候我们安排110.4820.518R =-=Ω,在0-3.5s 接入电路20.482R =Ω ,在0-10s 接入电路(暂定)可以看出大概在6s 的时候电路又来到了100A,转速2200r/min 计算: 30.32200N e a U C n R R -=-=Ω 这个时候我们安排110.4820.518R =-=Ω在0-3.5s 接入电路20.32R =Ω 在0-6s 接入电路30.4820.320.162R =-=Ω,在0-15s 接入电路大概在8s 的时候电流有到100A,转速2800r/min 这时候可以完全释放电阻了。

直流电机实验2-1认识实验--第7组

直流电机实验2-1认识实验--第7组

直流电机实验2-1 认识实验实验时间:2015.10.18 一、实验目的1、认真学习安全实验操作时应注意的相关事项。

2、学会实验台各种仪表、变阻器以及电源的连接方法。

3、掌握直流他励电动机的接线、起动、改变电机转向与调速的方法。

二、实验设备 序号 MEL-I 名称数量 1 G 校正直流测功机 1 2 M03 直流并励电动机 1 3 MEL-06 直流电压、毫安、安培表2 4 MEL-13 转速转矩测量装置 1 5MEL-09电机启动箱1三、实验步骤1、伏安法测直流电机的电枢绕组的冷态电阻 (1)连接线路,并将电阻调至最大。

(2)检查无误后接通电源,调至220V 。

调节R 使电枢电流达到0.2A ,测取电枢两端电压U 与电流I 。

将电机分别旋转三分之一周和三分之二周,同样测取电压电流。

(3)增大R 是电流分别达到0.15A 、0.1A ,用同样的方法测取数据。

(4)计算基准工作温度时电枢电阻。

表2-1序号 U(V) I(A) R(平均)(Ω)a R (Ω)arefR (Ω)18.23 0.20011a R =41.15 1a R =41.3041.4149.988.34 12a R =41.70 8.2713a R =41.352 6.18 0.15021a R =41.20 2a R =41.226.22 22a R =41.47 6.1523a R =41.003 4.21 0.10131a R =41.68 3a R =41.714.2532a R =42.074.1833a R =41.392、他励直流电动机的起动(1)选择合适的电压表、电流表、电机与变阻器。

(2)正常接线。

检查极性、量程、接线是否牢固。

电枢调节电阻调到最大,磁场调节电阻调至最小,转矩设定电位器逆时针调到底。

(3)开启电源,逐步调整电枢调节电阻、磁场调节电阻、转矩设定电位器,调节电机转速。

四、思考题1、画出直流他励电动机电枢串电阻起动时的接线图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

指导教师评定成绩:审定成绩:重庆邮电大学移通学院课程设计报告设计题目:直流电机的串电阻启动过程设计学校:学生姓名:专业:班级:学号:指导教师:设计时间:年月重庆邮电大学移通学院目录一、直流电动机的综述 (4)1.1直流电动机的基本工作原理 (4)1.2直流电动机的分类 (5)1.3直流电动机的特点 (5)二、他励直流电动机 (5)2.1他励直流电动机的机械特性 (5)2.2固有机械特性与人为机械特性 (6)三、他励直流电动机的起动 (7)3.1直流电动机的启动过程分析 (8)3.2他励直流电动机起动电阻的计算 (9)四、设计内容 (10)五、结论 (11)六、心得体会 (12)七、参考文献 (12)一、直流电动机的综述1.1直流电动机的基本工作原理图1 是一台最简单的直流电动机的模型,N和S是一对固定的磁极(一般是电磁铁,也可以是永久磁铁)。

磁极之间有一个可以转动的铁质圆柱体,称为电枢铁心。

铁心表面固定一个用绝缘导体构成的电枢线圈abcd,线圈的两端分别接到相互绝缘的两个弧形铜片上,弧形铜片称为换向片,它们的组合体称为换向器。

在换向器上放置固定不动而与换向片滑动接触的电刷A和B,线圈abcd通过换向器和电刷接通外电路。

电枢铁心、电枢线圈和换向器构成的整体称为电枢。

如果将电源正负极分别接电刷A和B,则线圈abcd中流过电流。

在导体ab中,电流由a 流向b,在导体cd中,电流由c流向d,如图(a)所示。

载流导体ab和cd均处于N和S 极之间的磁场当中,受到的电磁力的作用。

用左手定则可知,载流导体ab受到的电磁力F 的方向是向左的,力图使电枢逆时针方向运动,载流导体cd受到的电磁力F的方向是向右的, 也是力图使电枢逆时针方向运动,这一对电磁力形成一个转矩, 即电磁转矩T,其方向为逆时针方向,使整个电枢沿逆时针方向转动。

当电枢转过180°, 导体cd转到N极下,ab转到S极上,如图(b)所示。

由于电流仍从电刷A流入,使cd中的电流变为由d流向c,而ab中的电流由b流向a,再从电刷B流出。

用左手定则判别可知,导体cd受到的电磁力的方向是向左的,ab受到的电磁力的方向是向右的,因而电磁转矩的方向仍是逆时针方向,使电枢沿逆时针方向继续转动。

当电枢在转过180°,就又回到图(a)所示的情况。

这就是直流电动机的基本工作原理。

1.2直流电动机的分类直流电动机因其良好的调速性能而在电力拖动中得到广泛应用。

根据励磁方式的不同,直流电动机可分为他励直流电动机、并励直流电动机、串励直流电动机和复励直流电动机四类。

1.3直流电动机的特点(一)调速性能好。

所谓“调速性能”,是指电动机在一定负载的条件下,根据需要,人为地改变电动机的转速。

直流电动机可以在重负载条件下,实现均匀、平滑的无级调速,而且调速范围较宽。

(二)起动力矩大。

可以均匀而经济地实现转速调节。

因此,凡是在重负载下起动或要求均匀调节转速的机械,例如大型可逆轧钢机、卷扬机、电力机车、电车等,都用直流电动机拖动。

二、他励直流电动机他励直流电动机由励磁绕组和电枢绕组分别由两个独立的直流电源供电。

在励磁电压U f 的作用下,励磁绕组中通过励磁电流I f ,从而产生主磁极磁通φ。

在电枢电压Ua 的作用下,电枢绕组中通过电枢电流Ia 。

电枢电流与磁场相互作用产生机械以某一转速n 运转。

电枢旋转时,切割磁感线产生电动势E.电动势的方向与电枢电流的方向相反。

2.1他励直流电动机的机械特性他励直流电动机的机械特性定义为:直流电动机的电枢电压U 为常数,励磁电流I f 为常数,电枢回路电阻Ra+R Ω为常数时,电动机产生的电磁转矩T 与转速n 之间的函数关系,即n=f (T )。

他励直流电动机电路原理图如图2所示。

图 2. 他励直流电动机电路原理图 图 3. 他励直流电动机的机械特性机械特性方程式:电枢感应电动势 n C E e a Φ=电磁转矩 a T I C T Φ=电枢电路电压平衡方程:R I E U a a += 电动机转速特性方程:Φ-=e a C RI U n 由电磁转矩方程可得到Φ=T a C T I ,代入转速特性方程式中,就得到电动机机械特性方程式:T C C RC U n T e e 2Φ-Φ=式中:Ω+=R R R a 。

若U ,Φ,R 均为常数,机械特性是一条向下倾斜的直线,如图3所示。

T n n β0-= (1)或 n n n ∆-=0 由式(1)可知,β越大,n ∆越大,机械特性曲线越斜,称之为软特性;反之将β小、n ∆小的特性称硬特性。

2.2固有机械特性与人为机械特性当电枢上加额定电压、气隙每极磁通为额定磁通、电枢回路不串任何电阻时的机械特性称为他励直流电动机的固有机械特性。

人为地改变电动机的参数,如改变电压U 、改变磁电流I f (即改变磁通Φ)、电枢回路串电阻所得到的机械特性称为人为机械特性。

电枢回路串电阻使斜率β增大,特性曲线变软,但理想空载转速不变,所以人为机械特性为一簇经过理想空载转速点的放射性直线,如图变电压时的人为特性是一组平行直线,如上中图;弱磁时的人为特性如上右图。

图4 电枢串电阻时的人为特性 图5 变电压时的人为特性图6 弱磁时的人为特性三、他励直流电动机的起动(一)降低电枢电压起动起动时,加上励磁电压f U ,保持励磁电流f I 为额定值不变,电枢电压a U 从零逐渐升高到额定值。

优点是起动平稳,起动过程中能量损耗小,易于实现自动化。

缺点是初期投资大。

(二)增加电枢电阻起动 1.无级起动额定功率较小的电动机可采用在电枢电路内串联起动变阻器的无级起动方法起动。

起动前先把起动变阻器调到最大值,加上励磁电压f U ,保持励磁电流为额定值不变。

再接通电枢电源,电动机开始起动。

随着转速的升高,逐渐减小起动变阻器的电阻,直到全部切除。

2.有级起动额定功率较大的电动机一般采用有级起动的方法以保证起动过程中既有比较大的起动转矩,又使起动电流不会超过允许值。

起动前串联起动电阻stn 2st st1R R R ⋯⋯,,加上励磁电压f U ,保持励磁电流为额定值不变,然后加上电枢电压a U ,电动机开始起动。

之后当电磁转矩等于切换转矩时,依次切除起动电阻1st 2st stn R R R ,⋯⋯,直到电枢电路的总电阻变为电枢电路自身的电阻a R ,整个启动过程结束。

其中,要注意的就是起动转矩1T 对应的起动电流1I 不会超过所允许的最大电枢电流amax I ,所以aN 1 2.0)I ~(1.5I =,对应的起动转矩为N 1 2.0)T ~(1.5T =。

并且为保证一定的加速转矩,减少起动时间,一般选择切换转矩为L 2 1.2)T~(1.1T =,对应的起动电流为L 2 1.2)I~(1.1I =。

图4-1图4-23.1直流电动机的起动过程分析起动开始瞬间,电枢电路中接入全部起动电阻,起动电流达到最大值,即321a Nst R R R R U I +++=随着电动机转速的不断增加,电枢电流和电磁转矩将逐渐减小,电动机沿着曲线1的箭头所指的方向变化。

当转速升高至1n ,电流降至2st I (图中b 点)时,接触器KM1触头闭合,将电阻1R 短接,由于机械惯性转速不能突变,电动机将瞬间过渡到特性曲线2上的c 点(c 点的位置可由所串电阻的大小控制),电动机又沿曲线2的箭头继续加速。

当转速升高至2n 电流又降至2st I (图中d 点)时,接触器KM2触头闭合,将电阻2R 短接,由于机械惯性转速不能突变,电动机将瞬间过渡到特性曲线3上的e 点,电动机又沿曲线3的箭头继续加速。

当转速升高至3n 电流又降至2st I (图中f 点)时,接触器KM3触头闭合,将电阻3R 短接,由于机械惯性转速不能突变,电动机将瞬间过渡到固有特性曲线4上的g 点,电动机又沿曲线4的箭头继续加速,最后稳定运行在固有特性曲线上的h 点,起动过程结束。

3.2他励直流电机起动电阻的计算(一)选择启动电流I 1和切换电流I 2为保证与启动转矩1T 对应的启动电流1I 不会超过所允许的最大电枢电流amax I ,选择aN 1 2.0)I ~(1.5I =,对应的启动转矩N 1 2.0)T ~(1.5T =。

为保证有一定的加速转矩,减少启动时间,一般选择切换转矩为L 2 1.2)T ~(1.1T =对应的切换电流I2为L 2 1.2)I ~(1.1I =。

(二)求出起切电流比β21I I =β (三)求出电动机的电枢电路电阻a Ra R 可以根据实测或者铭牌上提供的额定值进行估算,由于在忽略T0的情况下,a e 2EI P P ==,因此,在额定状态下进行时,aNNI P E =,aNaNN aN a I I P U R -=。

(四)求出启动时电枢启动总电阻m R m 级启动时电枢启动总电阻为1I U R aNm =。

(五)求出启动级数mm 的计算公式为βlg R R lgam =m(六)重新计算β,校验2I 是否在规定范围之内。

若m 是取相近整数,则需重新计算β。

根据式mamR R =β重新计算,并根据21I I =β重新计算2I ,并校验2I 是否在所规定的范围之内。

若不在规定范围之内,需加大启动级数m ,重新计算β和2I ,直到满足要求为止。

(七)求出各级总电阻a 0R R =a 01R R R ββ==a 2R12R R ββ== ………………a m m R R β=(八)求出各级启动电阻a st R R R -=11 122R R R st -= ………………1--=m m stm R R R(九)若启动级数已定,计算步骤如下:选择电流1I ,计算出m R ,a R ,2I ,根据求出的2I 效验其是否在规定范围内,否则加大启动级数m 重新计算,最后求出各级总电阻和启动电阻。

四、设计内容直流电动机的额定数据如下:1)选择启动电流I 1和切换电流I 2I 1=(1.5~2.0)I a N =(1.5~2.0)×116.3A =(174.45~232.6)A I 2=(1.1 ~1.2)I a N =(1.1~1.2) ×116.3A =(127.93~139.56)A 选择I 1=210A ,I 2=131.25A 。

2)求出起切电流比ββ=21I I =1.6 3)求出电枢回路电阻R aR a =[(1/2~2/3)U N I N -P N ]/I 2N R a =0.133~0.177Ω 取R a =0.173Ω4)求出启动时电枢电路的总电阻R a m R am =1I U aN=1.048Ω 5)求出启动级数mm=βlg lg ⎪⎭⎫ ⎝⎛a am R R =3.83取m=46)重新计算β,校验I 2β=m aam R R =1.57I 2=β1I =133.75AI 2在规定范围之内。

相关文档
最新文档