高中数学选修系列2选修2-2《微积分学基本定理定积分计算》教案
2019-2020学年北师大版选修2-2 定积分与微积分基本定理 教案

2019-2020学年北师大版选修2-2 定积分与微积分基本定理 教案1.定积分的定义一般地,如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b ,将区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式i =1n f (ξi )Δx =i =1nb -a nf (ξi ),当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作⎠⎛ab f (x )d x 。
2.定积分的相关概念在⎠⎛ab f (x )d x 中,a 与b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式。
3.定积分的性质(1)⎠⎛a b kf (x )d x =k ⎠⎛ab f (x )d x (k 为常数)。
(2)⎠⎛a b [f 1(x )±f 2(x )]d x =⎠⎛a b f 1(x )d x ±⎠⎛ab f 2(x )d x 。
(3)⎠⎛ab f (x )d x =⎠⎛ac f (x )d x +⎠⎛cb f (x )d x (其中a <c <b )。
4.定积分的几何意义 如图:设阴影部分面积为S 。
(1)S =⎠⎛ab f (x )d x 。
(2)S =-⎠⎛ab f (x )d x 。
(3)S =⎠⎛a c f (x )d x -⎠⎛c b f (x )d x 。
(4)S =⎠⎛ab f (x )d x -⎠⎛ab g (x )d x =⎠⎛ab [f (x )-g (x )]d x 。
5.微积分基本定理如果F ′(x )=f (x ),且f (x )在[a ,b ]上可积,则⎠⎛ab f (x )d x =F (b )-F (a )。
人教版高中数学选修2-21.6微积分基本定理教案

【优化设计】 2015-2016学年高中数学1.6 微积分基本定理教课设计新人教 A教课建议版选修 2-21.教材剖析本节采纳从局部到整体 ,从详细到一般的思想 ,先利用物理意义和导数的几何意义,并依据定积分的观点 ,研究变速直线运动物体在某段时间内的速度与位移的关系,经过追求导数和定积分之间的内在联系 ,获得微积分基本定理的雏形,再利用一般化而得出微积分基本定理.本节的要点是直观认识微积分基本定理的含义 ,并能用定理计算简单的定积分,难点是认识微积分基本定理的含义,应用微积分基本定理解决简单的综合问题 .2.主要问题及教课建议(1)微积分基本定理的研究过程 .建议教师充足利用学生所熟知的变速直线运动物体在某段时间内的速度与位移的关系,并联合图形 ,让学生直观地看出物体在时间段[a,b]上位移的近似值 .(2)微积分基本定理的重要意义 ..同时 ,建议教师能够联合数学史、数学文化的学习向学生适合介绍微积分基本定理的相关内容还可指引学生对“定义法”和用定理求定积分进行对照,使学生领会利用微积分基本定理求定积分的优胜性 .备选习题1.求定积分dx 的值 .解:dx= dx=dx=1dx-dx=1-2dx=1-2ln( x+2)= 1-2ln 2.2.已知f( x)= (12 t+ 4a)dt,F(a)= [f(x )+ 3a2]dx,求函数F(a)的最小值.解: 由于 f(x)= (12t + 4a)dt=(6t2+ 4at)=6x2+ 4ax- (6a2-4a2)= 6x2+ 4ax-2a2,222F(a)= [f(x)+ 3a ]d x=(6x + 4ax+a )dx3222= (2x + 2ax +a x)= 2+ 2a+a=a 2+ 2a+ 22= (a+ 1) + 1≥ 1.因此当 a=- 1 时 , F( a)的最小值为 1.3.已知f( x)=求k的值,使f(x)dx=.解: 分 2<k ≤ 3 和 -2≤k≤ 2 两种状况议论:2当 2<k ≤ 3 时 ,f(x)d x=(1+x )dx== (3+ 9)-.整理 ,得 k3 +3k+ 4= 0,即 k3+k 2-k2+ 3k+4= 0.∴(k+ 1)(k2-k+ 4)= 0.∴k=- 1.又∵2<k ≤ 3,∴k=- 1(舍去 ).当 -2≤ k≤ 2 时,f(x)dx=(2x+1)dx+ (1+x 2)dx2=(x +x )=(4+ 2) -(k2+k )+ (3+ 9)- =- (k2+k )= ,∴k2+k= 0,即 k= 0 或 k=- 1,知足条件 .综上所述 ,k= 0 或 k=- 1 时 ,可使 f(x)dx=.。
选修2-2教案定积分

§1.5.1曲边梯形的面积一、教学目标:理解求曲边图形面积的过程:分割、以直代曲、逼近,感受在其过程中渗透的思想方法. 二、教学重难点重点: 掌握过程步骤:分割、以直代曲、求和、逼近(取极限). 难点: 对过程中所包含的基本的微积分 “以直代曲”的思想的理解. 三、教学过程: 1、创设情景我们学过如何求正方形、长方形、三角形等的面积,这些图形都是由直线段围成的。
那么,如何求曲线围成的平面图形的面积呢?这就是定积分要解决的问题。
定积分在科学研究和实际生活中都有非常广泛的应用。
本节我们将学习定积分的基本概念以及定积分的简单应用,初步体会定积分的思想及其应用价值。
一个概念:如果函数()y f x =在某一区间I 上的图像是一条连续不断的曲线,那么就把函数()y f x =称为区间I 上的连续函数.(不加说明,下面研究的都是连续函数) 2、新课讲授问题:如图,阴影部分类似于一个梯形,但有一边是曲线()y f x =的一段,我们把由直线,(),0x a x b a b y ==≠=和曲线()y f x =所围成的图形称为曲边梯形.如何计算这个曲边梯形的面积?例1:求图中阴影部分是由抛物线2y x =,直线1=x 以及x 轴所围成的平面图形的面积S 。
思考:(1)曲边梯形与“直边图形”的区别?(2)能否将求这个曲边梯形面积S 的问题转化为求“直边图形”面积的问题? 分析:曲边梯形与“直边图形”的主要区别:曲边梯形有一边是曲线段,“直边图形”的所有边都是直线段.“以直代曲”的思想的应用.0.1把区间[]0,1分成许多个小区间,进而把区边梯形拆为一些小曲边梯形,对每个小曲边梯形“以直代取”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值,对这些近似值求和,就得到曲边梯形面积的近似值.分割越细,面积的近似值就越精确。
当分割无限变细时,这个近似值就无限逼近所求曲边梯形的面积S .也即:用划归为计算矩形面积和逼近的思想方法求出曲边梯形的面积. 解: (1).分割 在区间[]0,1上等间隔地插入1n -个点,将区间[]0,1等分成n 个小区间: 10,n ⎡⎤⎢⎥⎣⎦,12,n n ⎡⎤⎢⎥⎣⎦,…,1,1n n -⎡⎤⎢⎥⎣⎦记第i 个区间为1,(1,2,,)i i i n n n -⎡⎤=⎢⎥⎣⎦L ,其长度为 11i i x n n n-∆=-= 分别过上述1n -个分点作x 轴的垂线,从而得到n 个小曲边梯形,他们的面积分别记作:1S ∆,2S ∆,…,n S ∆ 显然,1nii S S ==∆∑(2)近似代替记()2f x x =,如图所示,当n 很大,即x ∆很小时,在区间1,i i n n -⎡⎤⎢⎥⎣⎦上,可以认为函数()2f x x =的值变化很小,近似的等于一个常数,不妨认为它近似的等于左端点1i n-处的函数值1i f n -⎛⎫ ⎪⎝⎭,从图形上看,就是用平行于x 轴的直线段近似的代替小曲边梯形的曲边(如图).这样,在区间1,i i n n -⎡⎤⎢⎥⎣⎦上,用小矩形的面积i S '∆近似的代替i S ∆,即在局部范围内“以直代取”,则有 211i i i i S S f x x n n --⎛⎫⎛⎫'∆≈∆=∆=∆ ⎪ ⎪⎝⎭⎝⎭g g 211(1,2,,)i i n n n-⎛⎫== ⎪⎝⎭g L ①(3)求和由①,上图中阴影部分的面积n S 为2111111nnnn i i i i i i S S f x n n n ===--⎛⎫⎛⎫'∆=∆=∆= ⎪ ⎪⎝⎭⎝⎭∑∑∑g g=22111110n n n n n n-⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭g g L g=()22231121n n⎡⎤+++-⎣⎦L =()()312116n n n n -- =1111132n n ⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭从而得到S 的近似值 1111132n S S n n ⎛⎫⎛⎫≈=-- ⎪⎪⎝⎭⎝⎭(4)取极限分别将区间[]0,1等分8,16,20,…等份(如图),可以看到,当n 趋向于无穷大时,即x ∆趋向于0时,1111132n S n n ⎛⎫⎛⎫=-- ⎪⎪⎝⎭⎝⎭趋向于S ,从而有 1111111lim lim lim 11323nn n n n i i S S f n n n n →∞→∞→∞=-⎛⎫⎛⎫⎛⎫===--= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭∑g 从数值上的变化趋势:3、求曲边梯形面积的四个步骤:第一步:分割.在区间[],a b 中任意插入1n -各分点,将它们等分成n 个小区间[]1,i i x x -()1,2,,i n =L ,区间[]1,i i x x -的长度1i i i x x x -∆=-,第二步:近似代替,“以直代取”。
人教版高中数学选修2-2第一章定积分 同步教案

9. 已知函数bx ax x x f ++=2
3
)(在x=1处有极值-2 (1)求常数a 、b ;
(2)求曲线()y f x =与x 轴所包围的面积.
10. 如图所示,直线kx y =分抛物线2
x x y -=与x 轴所围成图形为面积相等的两部分,求k 的值。
11. 物体A 以速度2
31v t =+在一直线上运动,在此直线上与物体A 出发的同时,物体B 在物体A 的正前方5m 处以10v t =的速度与A 同向运动,问当两物体何时相遇?相遇时物体A 的走过的路程是多少?(时间单位为:s ,速度单位为:m/s )
教案解读
本次课的内容较为灵活多变,高考考纲对定积分的要求不高;教学过程中,重点突出微积分基本定理求定积分的值,以及定积分的简单应用的内容;在课后作业的布置,1-7题较基础简单,适合大部分学生;而后面的题难度较高,灵活性较强,适合基础较好的学生,活跃学生的思维能力。
最新166-高中数学选修系列2选修2-2《微积分基本定理与定积分计算》教案2汇总

166-高中数学选修系列2选修2-2《微积分基本定理与定积分计算》教案2§3 微积分基本定理与定积分计算一、目标预览1.理解并能熟练运用微积分基本定理.2.掌握定积分的常用计算方法.3.了解定积分与不等式的常用证明方法.4.了解定积分相关知识的综合应用.二、概念入门设«Skip Record If...»,称函数«Skip Record If...»«Skip Record If...»为函数«Skip Record If...»在«Skip Record If...»上的变上限定积分;类似地可定义变下限定积分:«Skip Record If...».注(i)由«Skip Record If...»积分的性质,«Skip Record If...»的定义有意义.(ii)由«Skip Record If...»积分的性质易证«Skip Record If...».三、主要事实1.微积分基本定理若«Skip Record If...»,则«Skip RecordIf...»«Skip Record If...»,即«Skip Record If...»,«Skip Record If...».注(i)证明由导数的定义及第一积分中值定理即得.(ii)通过微分中值定理(推论),可获得微积分基本定理如下的等价表述:仅供学习与交流,如有侵权请联系网站删除谢谢41仅供学习与交流,如有侵权请联系网站删除 谢谢42⎰'-'=)( )( )())(()())(())((x x x x f x x f dt t f dx d ψϕϕϕψψ⎰⎰=ξ )()()()(a b a dx x f a g dx x g x f ⎰=b dx x g b f )()(ξ若«Skip Record If...»,而且«Skip RecordIf...»«Skip Record If...»,则«Skip Record If...»«Skip Record If...».(iii)微积分基本定理及其等价表述沟通了不定积分与定积分、微分与积分的内在联系.(iv )利用微积分基本定理及复合函数微分法可得下述的变限积分求导公式:若«Skip Record If...»,«Skip Record If...»、«Skip Record If...»在«Skip Record If...»上可微而且«Skip Record If...»、«Skip Record If...»,则2.第二积分中值定理(1)(旁内(Bonnet ,1819-1892[法])型第二积分中值定理)若«Skip Record If...»,而且«Skip Record If...»是«Skip Record If...»上非负递减(相应地递增)函数,则存在«Skip Record If...»使得(相应地)(2)(Werierstrass型第二积分中值定理)若«Skip Record If...»,«Skip Record If...»是«Skip Record If...»上的单调函数,则存在«Skip Record If...»使得«Skip Record If...».证(1)令«Skip Record If...»«Skip Record If...»,利用«Skip Record If...»的可积性得«Skip Record If...»«Skip Record If...»再由«Skip Record If...»«Skip Record If...»及«Skip Record If...»的单调减小性,可得«Skip Record If...»再由连续函数的介值性即得.(2)当«Skip Record If...»为单调递减(增)时,对«Skip Record If...»«Skip Record If...»«Skip Record If...»应用(1)即得.3.定积分的计算(1)(牛顿——莱布尼兹公式)若«Skip Record If...»,«Skip Record If...»而且除有限个点外有«Skip Record If...»,那么有仅供学习与交流,如有侵权请联系网站删除谢谢43«Skip Record If...».注(i)牛顿——莱布屁兹公式简称«Skip Record If...»—公式,它是微积分的核心定理,最初分别由牛顿与莱布尼兹在17世纪下半叶独立得到,柯西在19世纪初给出精确叙述与证明,黎曼在19世纪中叶给予完善,达布在1875年给出现在这种形式.(ii)证明可由«Skip Record If...»积分的定义(分点包括例外点)及微分中值定理(作用在«Skip Record If...»上)可推得.(2)(定积分换元积分法)如果«Skip Record If...»在«Skip Record If...»上有连续导数,«Skip Record If...»,«Skip Record If...»,«Skip Record If...»,«Skip Record If...»,那么有«Skip Record If...»注(i)定积分换元积分公式由复合函数微分法及«Skip Record If...»公式可得,而且«Skip Record If...»可减弱为«Skip Record If...».进一步,定积分换元积分公式中的«Skip Record If...»可减弱为«Skip Record If...»,但«Skip Record If...»的条件稍许加强(证明较为复杂),即有以下的命题成立:若«Skip Record If...»,«Skip Record If...»是一一映射而且还满足«Skip Record If...»,«Skip Record If...»,«Skip Record If...»,那么有仅供学习与交流,如有侵权请联系网站删除谢谢44«Skip Record If...».(ii)定积分换元积分法实际上是不定积分第二换元积分法的直接应用.但使用时有较大差别,在这里换元之后变量不需回代,但积分限要跟着更换(在去掉根号的情形下须注意函数的符号).(iii)对应于不定积分中的第一换元法(即凑微分法),在这里可以不加变动地直接应用,而且积分限也不须作更改(即仍然采用原来的积分变量).(3)(分部积分法)如果«Skip Record If...»、«Skip Record If...»具有连续的导数,那么有«Skip Record If...»«Skip Record If...».注(i)分部积分可由乘积微分法则及«Skip Record If...»公式直接证之.(ii)分部积分公式可连续使用«Skip Record If...»次,即利用数学归纳法及分部积分公式可得下面的命题:若«Skip Record If...»、«Skip Record If...»具有«Skip Record If...»阶连续导数,那么有«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...».4.定积分计算中常用的几个公式仅供学习与交流,如有侵权请联系网站删除谢谢45(1)若«Skip Record If...»,则«Skip Record If...»«Skip Record If...».(2)若«Skip Record If...»,则«Skip Record If...»«Skip Record If...»(3)若«Skip Record If...»是以«Skip Record If...»为周期的周期函数,则«Skip Record If...»有«Skip Record If...»(4)若«Skip Record If...»,则«Skip Record If...».(5)若«Skip Record If...»,则«Skip Record If...».证(1)令«Skip Record If...»可得.(2)令«Skip Record If...»得«Skip Record If...».(3)令«Skip Record If...»得«Ski p Record If...»,仅供学习与交流,如有侵权请联系网站删除谢谢46于是有«Skip Record If...»,再令«Skip Record If...»得«Skip Record If...».(4)令«Skip Record If...»可得.(5)令«Skip Record If...»可得«Skip Record If...»及«Skip Record If...».5.带积分余项的泰勒公式若«Skip Record If...»在«Skip Record If...»上具有«Skip Record If...»阶连续导数,那么«Skip Record If...»有«Skip Record If...»,即«Skip Record If...»,称此为泰勒公式的积分余项.注(i)令«Skip Record If...»(常数变易法),对«Skip Record If...»分别应用«Skip Record If...»公式及分部积分公式即获得积分余项公式的证明.(ii)对积分余项应用第一积分中值定理(«Skip Record If...»在积分区间«Skip Record If...»(或仅供学习与交流,如有侵权请联系网站删除谢谢47«Skip Record If...»上不变号)可得泰勒公式的拉格朗日余项:«Skip Record If...»(其中«Skip Record If...»).(iii)对积分余项应用积分平均值定理泰勒公式的柯西余项:«Skip Record If...»«Skip Record If...»四、例题选讲1.定积分计算例题选.例1求下列定积分(1)«Skip Record If...»(2)«Ski p Record If...»(3)«Skip Record If...»(4)«Skip Record If...»(5)«Skip Record If...»(6)«Skip Record If...»(7)«Skip Record If...»(8)«Skip Record If...»(9)«Skip Record If...»仅供学习与交流,如有侵权请联系网站删除谢谢48解(1)«Skip Record If...».(2)«Skip Record If...».(3)令«Skip Record If...»,(3)«Skip Record I f...»(4)令«Skip Record If...»,(4)«Skip Record If...»«Skip Record If...».令«Skip Record If...»得«Skip Record If...»,于是有(4)«Skip Record If...».(5)«Skip Record If...»«Skip Record If...»(6)«Skip Record If...»«Skip Record If...»(7)利用«Skip Record If...»得仅供学习与交流,如有侵权请联系网站删除谢谢49(7)«Skip Record If...»(8)利用«Skip Record If...»得(8)«Skip Record If...»(9)«Skip Record If...».例2(1)求«Skip Record If...»(2)证明Wallis公式:«Skip Record If...».解(1)«Skip Record If...»«Skip Record If...»,«Skip Record If...»证(2)由«Skip Record If...»得«Skip Record If...»,由此可得«Skip Record If...»«Skip Record If...»,«Skip Record If...»,50因此«Skip Record If...».例3利用定积分求下列极限(1)«Skip Record If...»(2)«Skip Record If...»(3)«Skip Record If...»(4)«Skip Record If...»(5)«Skip Record If...»解(1)«Skip Record If...»(2)«Skip Record If...».(3)由«Skip Record If...»可得(3)«Skip Record If...»(4)由«Skip Record If...»可得«Skip Record If...».因此«Skip Record If...».(5)令«Skip Record If...»51«Skip Record If...»«Skip Record If...»«Skip Record If...».因此«Skip Record If...».2.微积分基本定理应用例题选例4 设«Skip Record If...»,试求«Skip Record If...».解应用微积分基本定理两次可得«Skip Record If...».例5确定常数«Skip Record If...»、«SkipRecord If...»、«Skip Record If...»使得«Skip Record If...».解由«Skip Record If...»可推得«Skip Record If...»,由罗比塔法则及«Skip Record If...»可推得«Skip Record If...»,接着易求得«Skip Record If...».例6 若«Skip Record If...»存在,«Skip Record If...»,«Skip Record If...»,试求«Skip Record If...».52解令«Skip Record If...»,则«Skip Record If...»,«Skip Record If...».例7设«Skip Record If...»连续,«Skip Record If...»,«Skip Record If...».试求:«Skip Record If...».解令«Skip Record If...»,则«Skip Record If...»于是有«Skip Record If...».两边关于«Skip Record If...»求导得«Skip Record If...»再令«Skip Record If...»可得«Skip Record If...».例8试求可微函数«Skip Record If...»使得«Skip Record If...».解先关于«Skip Record If...»求导得«Skip Record If...»令«Skip Record If...»得«Skip Record If...»再关于«Skip Record If...»求导得53«Skip Record If...».因而«Skip Record If...»,因而«Skip Record If...».3.积分中值定理应用例题选例9 设«Skip Record If...»在«Skip Record If...»上可微,而且«Skip Record If...»,«Skip Record If...»(«Skip Record If...»).证明:«Skip Record If...».证令«Skip Record If...»,则由条件可得«Skip Record If...»,由«Skip Record If...»得«Skip Record If...»«Skip Record If...»,于是有«Ski p Record If...».例10设«Skip Record If...»在«Skip Record If...»上连续,而且«Skip Record If...»,«Skip Record If...».证明:«Skip Record If...».证«Skip Record If...»,«Skip Record If...»,«Skip Record If...»,«Skip Record If...»在«Skip Record If...»处取最大值,因而有«Skip Record If...»«Skip Record If...».证«Skip Record If...»54«Skip Record If...»例11 设«Skip Record If...».证明:«Skip Record If...»,«Skip Record If...»例12设«Skip Record If...»在«Skip Record If...»上二阶可导,而且«Skip Record If...».证明:(i)«Skip Record If...»;(ii)又若«Skip Record If...»«Skip Record If...»,则«Skip Record If...».证(i)由«Skip Record If...»及«Skip Record If...»得«Skip Record If...»,再由«Skip Record If...»得«Skip Record If...».(ii)«Skip Record If...»,«Skip Record If...»,积分后得«Skip Record If...»«Skip Record If...».55例13设«Skip Record If...»在«Skip Record If...»上具有二阶连续函数,证明;存在«Skip Record If...»使得«Skip Record If...».证令«Skip Record If...»,分别求得«Skip Record If...»,«Skip Record If...»,在«Skip Record If...»处的二阶泰勒展开式,两式相减再用微积分基本定理及连续函数的介值定理即得.例14设«Skip Record If...»而且«Skip Record If...»,«Skip Record If...».证明:«Skip Record If...»证由条件«Skip Record If...»,若«Skip Record If...»,则由«Skip Record If...»导出«Skip Record If...»矛盾!例15设«Skip Record If...»,«Skip Record If...»在«Skip Record If...»上单调而且可微.证明:存在«Skip Record If...»使得«Skip Record If...».56证令«Skip Record If...»,由微积分基本定理及第一积分中值定理可得«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...».例16证明下列极限(1)若«Skip Record If...»,则«Skip Record If...».(2)若«Skip Record If...»,则«Skip RecordIf...».(3)«Skip Record If...»(4)若«Skip Record If...»,则«Skip Record If...».(5)若«Skip Record If...»是以«Skip Record If...»为周期的连续函数,则«Skip Record If...»«Skip Record If...».57(6)若«Skip Record If...»而且«Skip Record If...»,则«Skip Record If...»有«Skip Record If...».证(1)«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...».(2)由«Skip Record If...»«Skip Record If...»«Skip Record If...»(其中«Skip Record If...»)及«Skip Record If...»可积的第二充要条件可得.(3)由第二积分中值定理得,存在«Skip Record If...»使得«Skip Record If...»,再令«Skip Record If...»即得.(4)«Skip Record If...»«Skip Record If...»58«Skip Record If...».(5)«Skip Record If...»是以«Skip Record If...»为周期的连续函数,从而有界,由此即得.(6)由第一积分中值存在«Skip Record If...»使得«Skip Record If...».令«Skip Record If...»即得.例17设«Skip Record If...»在«Skip Record If...»上单调递增,而且«Skip Record If...»,«Skip Record If...»«Skip Record If...».若«Skip Record If...»,则«Skip Record If...».证若不然,«Skip Record If...»,«Skip RecordIf...»,«Skip Record If...»使得«Skip RecordIf...»,此时分两种情形:(i)若存在«Skip Record If...»使得«Skip Record If...»,则«Skip Record If...»«Skip Record If...».59(ii)«Skip Record If...»,«Skip Re cord If...»,则«Skip Record If...»有«Skip Record If...»«Skip Record If...»,于是«Skip Record If...».上述的(i)、(ii)与«Skip Record If...»矛盾.例18 设«Skip Record If...»,令«Skip Record If...»,«Skip Record If...».证明:«Skip Record If...».证令«Skip Record If...»,«Skip Record If...»,则由«Skip Record If...»«Skip Record If...»于是有«Skip Record If...».五、思考与讨论1.若«Skip Record If...»在区间«Skip Record If...»上有原函数,是否必有«Skip Record If...»公式成立?提示:考虑«Skip Record If...»602.若«Skip Record If...»,«Skip Record If...»是否必有原函数?3.若«Skip Record If...»,而且«Skip Record If...»是否必有«Skip Record If...»?4.若«Skip Record If...»在«Skip Record If...»上不«Skip Record If...»可积,«Skip Record If...»的原函数在«Skip Record If...»上是否必不存在?5.奇函数的原函数是否必为偶函数?偶函数的原函数是否必为奇函数?六、基础题训练1.计算下列定积分(1)«Skip Record If...»(2)«Skip Record If...»(3)«Skip Record If...»(4)«Skip Re cord If...»(5)«Skip Record If...»(6)«Skip Record If...»(7)«Skip Record If...»(8)«SkipRecord If...»61(9)«Skip Record If...»(10)«Skip Record If...»(11)«Skip Record If...»(«Skip Record If...»为实数)(12)«Skip Record If...»2.设«Skip Record If...».试求«Skip Record If...».3.设«Skip Record If...»,试求«Skip RecordIf...».4.设«Skip Record If...»,试求«Skip Record If...».5.«Skip Record If...».试求«Skip Record If...».6.设«Skip Record If...»,«Skip Record If...».试求:«Skip Record If...».7.求下列极限62(1)«Skip Record If...»(2)«SkipRecord If...»(3)«Skip Record If...»(4)«SkipRecord If...»8.设«Skip Record If...»,«Skip Record If...».试求«Skip Record If...»(答案:«Skip Record If...»).9.设«Skip Record If...»连续而且«Skip Record If...»,«Skip Record If...».求«Skip Record If...»使得«Skip Record If...».(答案:«Skip Record If...»)10.证明:«Skip Record If...»(提示:分段,换元).11.设«Skip Record If...»在«Skip Record If...»上连续,而且«Skip Record If...».证明:63«Skip Record If...»,«Skip Record If...».12.设«Skip Record If...»在«Skip Record If...»上单调增加.证明:«Skip Record If...».(提示:«Skip Record If...»).七、提高性习题13.求下列积分(«Skip Record If...»为正整数)(1)«Skip Record If...»(2)«Skip Record If...»(3)«Skip Record If...»(4)«Skip Record If...»14.求下列极限(1)«Skip Record If...»(2)«Skip Record If...»(3)«Skip Record If...»(4)«Skip Record If...»64(5)«Skip Record If...»(6)«Skip Record If...»(答案:(1).«Skip Record If...»;(2).«Skip Record If...»;(3)«Skip Record If...»;(4).(2);(5).«Skip Record If...»;(6)«Skip Reco rd If...»)15.设«Skip Record If...»而且«Skip Record If...»,令«Skip Record If...».证明:(1)«Skip Record If...»(2)«Skip Record If...»(3)«Skip Record If...».16.求下列极限(1)«Skip Record If...»(2)«SkipRecord If...»(3)«Skip Record If...».(答案:(1).«Skip Record If...»;(2).«Skip Record If...»;(3).«Skip Record If...»).6517.证明下列极限:(1)若«Skip Record If...»在«Skip Record If...»上连续,则«Skip Record If...».(2)若«Skip Record If...»不变号,则«Skip Record If...»(3)若«Skip Record If...»,则«Skip Record If...»(4)若«Skip Record If...»而且«Skip Record If...»,则«Skip Record If...».(提示:(1)利用分部积分;(2)令«Skip Record If...»,再用第一积分中值定理;(3)令«Skip Record If...»,再利用积分中值定理;(4)分段估计).18.设«Skip Record If...»,«Skip Record If...».证明:«Skip Record If...».19.设«Skip Record If...»在«Skip Record If...»上无穷次可微,«Skip Record If...»为自然数,«Skip Record If...».证明:«Skip Record If...».6620.设«Skip Record If...»,«Skip Record If...»为偶数且对于«Skip Record If...»,有«Skip Record If...».证明:«Skip Record If...»,并由此计算«Skip Record If...»(答案:«Skip Record If...»).21.设«Skip Record If...»为连续函数.证明下述等式:(1)«Skip Record If...»(2)«Skip Record If...».(提示:(1)令«Skip Record If...»,再令«Skip Record If...»(分段);(2)令«Skip Record If...»).22.设«Skip Record If...»,«Skip Record If...».试求«Skip Record If...».(答案:«Skip Record If...»).23.试求函数«Skip Record If...»在«Skip Record If...»上的最大值.(答案:«Skip Record If...»).6724.设«Skip Record If...»连续,而且«Sk ip Record If...».试求«Skip Record If...»(答案:«Skip Record If...»).25.设«Skip Record If...»在«Skip Record If...»上存在,«Skip Record If...»,«Skip Record If...»为«Skip Record If...»的反函数而且«Skip Record If...».试求:«Skip Record If...»(答案:«Skip Record If...»).26.设«Skip Record If...»而且«Skip Record If...»(«Skip Record If...»).试求«Skip Record If...»(答案:«Skip Record If...»).27.设«Skip Record If...»而且«Skip Reco rd If...»,«Skip Record If...».证明:«Skip Record If...»在«Skip Record If...»中至少有两个零点.(提示:令«Skip Record If...»,利用分部积分).28.设«Skip Record If...»而且不恒为常数,而且«Skip Record If...».68证明:存在«Skip Record If...»使得«Skip Record If...».(提示:令«Skip Record If...»,«Skip Record If...»,则«Skip Record If...»,«Skip Record If...»).29.设«Skip Record If...»,«Skip Record If...»存在而且非负.证明:«Skip Record If...».(提示:利用«Skip Record If...»在«Skip Record If...»处的一阶泰展开式).30.设«Skip Record If...».证明:«Skip Record If...».(提示:分«Skip Record If...»变号与不变号两种情形考虑).31.设«Skip Record If...».证明«Skip Record If...».6932.设«Skip Record If...»而且«Skip Record If...»,«Skip Record If...».证明:«Skip Record If...».(提示:利用«Skip Record If...»)33.设«Skip Record If...»在«Skip Record If...»上二阶可导,«Skip Record If...»(«Skip Record If...»)而且«Skip Record If...».证明:«Skip Record If...».(提示:利用«Skip Record If...»在«Skip Record If...»处的泰勒展开式).34.设«Skip Record If...»且«Skip RecordIf...»,«Skip Record If...».证明:«Skip Record If...».(提示:利用«Skip Record If...»在«Skip Record If...»处的一阶泰展开式).35.设«Skip Record If...»,«Skip Record If...».证明:«Skip Record If...».(提示:«Skip Record If...»在«Skip Record If...»处取最大值).7036.设«Skip Record If...»而且非负,«Skip Record If...».证明:«Skip Record If...».(提示:令«Skip Record If...»).37.设«Skip Record If...»而且«Skip Record If...»,«Skip Record If...»«Skip Record If...».证明:«Skip Record If...».(提示:令«Skip Record If...»,再利用分部积分公式及换元公式).38.设«Skip Record If...»不恒为零而且满足«Skip Record If...».证明:«Skip Record If...».(提示:利用函数单调性).39.设«Skip Record If...»而且«Skip Record If...».证明:«Skip Record If...».(提示:令«Skip Record If...»,则«Skip Record If...»).7140.设«Skip Record If...»连续,«Skip Record If...»而且«Skip Record If...»(常数).试求«Skip Record If...»,并讨论«Skip Record If...»在«Skip Record If...»处的连续性.(答案:«Skip Record If...»,«Skip RecordIf...»«Skip Record If...»).41.设«Skip Record If...»而且«Skip Record If...».证明:«Skip Record If...».(提示:令«Skip Record If...»,则«Skip RecordIf...»,再由«Skip Record If...»及积分中值定理可得).72。
高中数学新湘教版选修2-2 定积分与微积分基本定理

4.5定积分与微积分基本定理[读教材·填要点]1.曲边梯形的面积(1)曲边梯形:位于曲线y =f (x )(a ≤x ≤b )和x 轴之间的图形,叫作函数y =f (x )在区间[a ,b ]上的“曲边梯形”.(2)曲边梯形面积的计算方法:化整为零、以直代曲,即把一个曲边梯形分成多个小曲边梯形,再用矩形代替小曲边梯形.2.计算变力所做的功的方法 化整为零,以直代曲. 3.定积分的概念设f (x )是在区间[a ,b ]上有定义的函数,在a ,b 之间取若干分点a =x 0<x 1<x 2<…<x n =b .记小区间[x k -1,x k ]为Δk ,其长度x k -x k -1记作Δx k ,Δx k 中最大的记作d ,再在每个小区间Δk z k ,作和式:∑k =1nf (z k )Δx k . ①如果(不论如何取分点x k 和代表点z k )当d 趋于0时和式①以S 为极限,就说函数f (x )在[a ,b ]上可积,并且说S 是f (x )在[a ,b ]上的定积分,记作S =⎠⎛a bf (x )d x .4.微积分基本定理如果f (x )是在[a ,b ]上有定义的连续函数,F (x )在[a ,b ]上可导并且F ′(x )=f (x ), 则⎠⎛a bf (t )d t =F (b )-F (a ).[小问题·大思维]1.求曲边梯形面积时,对曲边梯形进行“以直代曲”,怎样才能尽量减小求得的曲边梯形面积的误差?提示:为了减小近似代替的误差,需要先分割再分别对每个小曲边梯形“以直代曲”,而且分割的曲边梯形数目越多,得到的面积的误差越小.2.求曲边梯形的面积与计算变速直线运动的路程有哪些相同点?提示:(1)求曲边梯形的面积与求变速直线运动的路程的共同本质是“以直代曲”“以不变代变”的思想方法.(2)求解的方法步骤相同.3.由定积分的定义可知,⎠⎛a b f (x )d x 是一个常数还是一个变量?⎠⎛a bf (x )d x 的值与哪些量有关?提示:由定义可得定积分⎠⎛a bf (x )d x 是一个常数,它的值仅取决于被积函数与积分上、下限,而与积分变量没有关系,即⎠⎛a bf (x )d x =⎠⎛a bf (t )d t =⎠⎛a bf (u )d u .4.如图所示,如何用阴影面积S 1,S 2,S 3表示定积分⎠⎛a bf (x )d x 的值?提示:⎠⎛a bf (x )d x =S 1-S 2+S 3.计算下列定积分:(1) ⎠⎛-13(4x -x 2)d x; (2)⎠⎛12(x -1)5 d x ; (3)⎠⎛12(t +2)d x; (4)⎠⎛121x (x +1)d x . [自主解答] (1)取F (x )=2x 2-x 33,因为F ′(x )=4x -x 2,所以⎠⎛-13(4x -x 2)d x =F (3)-F (-1)=⎝⎛⎭⎫2×32-333-⎣⎡⎦⎤2×(-1)2-(-1)33=203. (2)因为⎣⎡⎦⎤16(x -1)6′=(x -1)5, 所以⎠⎛12(x -1)5d x =F (2)-F (1)=16×(2-1)6-16×(1-1)6=16. (3)取F (x )=(t +2)x ,因为F ′(x )=t +2, 所以⎠⎛12(t +2)d x =F (2)-F (1) =2(t +2)-(t +2)=t +2.(4)f (x )=1x (x +1)=1x -1x +1,取F (x )=ln x -ln(x +1)=ln x x +1, 则F ′(x )=1x -1x +1.所以⎠⎛121x (x +1)d x =⎠⎛12⎝⎛⎭⎫1x -1x +1d x =F (2)-F (1)=ln 43.运用微积分基本定理求定积分时的4个注意点(1)对被积函数要先化简,再求积分;(2)求被积函数为分段函数的定积分,依据定积分“对区间的可加性”,分段积分再求和;(3)对于含有绝对值符号的被积函数,要先去掉绝对值号再求积分; (4)注意用“F ′(x )=f (x )”检验积分的对错.1.计算下列定积分:(1)⎠⎛-13(3x 2-2x +1)d x ; (2) ⎠⎛12⎝⎛⎭⎫x -1x d x ; (3) ⎠⎛0π (sin x -cos x )d x ; (4) ⎠⎛02|1-x |d x . 解:(1)取F (x )=x 3-x 2+x , 则F ′(x )=3x 2-2x +1.∴⎠⎛-13(3x 2-2x +1)d x =F (3)-F (-1)=24.(2)取F (x )=12x 2-ln x ,则F ′(x )=x -1x .∴⎠⎛12⎝⎛⎭⎫x -1x d x =F (2)-F (1)=32-ln 2. (3)取F (x )=-cos x -sin x , 则F ′(x )=sin x -cos x .∴⎠⎛0π(sin x -cos x )d x =F (π)-F (0)=2.(4)∵|1-x |=⎩⎪⎨⎪⎧1-x ,0<x <1,x -1,1<x <2,∴取F 1(x )=x -12x 2,0<x <1,F 2(x )=12x 2-x,1<x <2,则F 1′(x )=1-x ,F 2′(x )=x -1.∴⎠⎛02|1-x |d x =F 1(1)-F 1(0)+F 2(2)-F 2(1)=1.已知函数f (x )=ax 2+c (a ≠0),若⎠⎛01f (x )d x =f (x 0),0≤x 0≤1,求x 0的值.[自主解答] 因为f (x )=ax 2+c (a ≠0), 取F (x )=a3x 3+cx ,则F ′(x )=ax 2+c ,所以⎠⎛01f (x )d x =⎠⎛01(ax 2+c )d x =F (1)-F (0)=a 3+c =ax 20+c . 解得x 0=33或x 0=-33(舍去). 即x 0=33.利用定积分求参数时,注意方程思想的应用.一般地,首先要弄清楚积分变量和被积函数.当被积函数中含有参数时,必须分清常数和变量,再进行计算;其次要注意积分下限不大于积分上限.2.已知f (x )是一次函数,且⎠⎛01f (x )d x =5,⎠⎛01xf (x )d x =176,求f (x )的解析式. 解:设f (x )=ax +b (a ≠0), 取F 1(x )=12ax 2+bx ,∴F 1′(x )=f (x ).则⎠⎛01(ax +b )d x =F 1(1)-F 1(0)=12a +b , ⎠⎛01x (ax +b )d x =⎠⎛01(ax 2+bx )d x , 取F 2(x )=13ax 3+12bx 2且F 2′(x )=ax 2+bx ,则⎠⎛01x (ax +b )d x =F 2(1)-F 2(0)=13a +12b ,由⎩⎨⎧12a +b =5,13a +12b =176.解得a =4,b =3,故f (x )=4x +3.求由抛物线y =x 2-4与直线y =-x +2所围成图形的面积.[自主解答] 由⎩⎪⎨⎪⎧y =x 2-4,y =-x +2,得⎩⎪⎨⎪⎧ x =-3,y =5或⎩⎪⎨⎪⎧x =2,y =0.所以直线y =-x +2与抛物线 y =x 2-4的交点为(-3,5)和(2,0), 设所求图形面积为S ,根据图形可得S =⎠⎛-32[(-x +2)-(x 2-4)]d x =⎠⎛-32(6-x -x 2)d x ,取F (x )=6x -12x 2-13x 3,则F ′(x )=6-x -x 2, ∴S =F (2)-F (-3)=1256.若将本例中“直线y =-x +2”换为“抛物线y =3-34x 2”,如何求解?解:如图所示,设所求图形面积为S ,S =⎠⎛-22⎣⎡⎦⎤⎝⎛⎭⎫3-34x 2-()x 2-4d x =⎠⎛-22⎝⎛⎭⎫7-74x 2d x , 取F (x )=7x -712x 3,则F ′(x )=7-74x 2,∴S =F (2)-F (-2)=563.利用定积分求由两条曲线围成的平面图形的面积的解题步骤 (1)画出图形.(2)确定图形范围,通过方程组求出交点的横坐标,确定积分上限和积分下限. (3)确定被积函数及积分变量,确定时可以综合考察下列因素:①被积函数的原函数易求;②较少的分割区域;③积分上限和积分下限比较简单. (4)写出平面图形的面积的定积分表达式.(5)运用微积分基本定理计算定积分,求出平面图形的面积.3.求曲线y =e x ,y =e-x及直线x =1所围成的图形的面积.解:由图可知,积分区间为[0,1],面积S =⎠⎛10()e x -e -x d x ,取F (x )=e x +e -x , 则F ′(x )=e x -e -x , ∴S =F (1)-F (0)=e +1e-2.变速直线运动的物体的速度为v (t )=1-t 2,初始位置为x 0=1,求它在前2秒内所走的路程及2秒末所在的位置.[自主解答] 当0≤t ≤1时,v (t )≥0, 当1≤t ≤2时,v (t )<0. 所以前2秒钟内所走的路程 S =⎠⎛01v (t )d t +⎠⎛12[-v (t )]d t=⎠⎛01(1-t 2)d t +⎠⎛12(t 2-1)d t取F 1(t )=t -13t 3,F 2(t )=13t 3-t ,S =F 1(1)-F 1(0)+F 2(2)-F 2(1)=2.2秒末所在的位置:x 1=x 0+⎠⎛02v (t )d t =1+⎠⎛02(1-t 2)d t =13. 即它在前2秒内所走的路程为2,2秒末所在位置为x 1=13.1.有关路程、位移计算公式路程是位移的绝对值之和,从时刻t =a 到时刻t =b 所经过的路程s 和位移s 1分别为 (1)若v (t )≥0(a ≤t ≤b ),则s =⎠⎛a bv (t )d t ;s 1=⎠⎛a bv (t )d t . (2)若v (t )≤0(a ≤t ≤b ), 则s =-⎠⎛a bv (t )d t ;s 1=⎠⎛a bv (t )d t .(3)在区间[a ,c ]上,v (t )≥0,在区间[c ,b ]上,v (t )<0, 则s =⎠⎛a cv (t )d t -⎠⎛c bv (t )d t ;s 1=⎠⎛a bv (t )d t . 2.求变力做功的方法步骤(1)要明确变力的函数式F (x ),确定物体在力的方向上的位移. (2)利用变力做功的公式W =⎠⎛ab F (x )d x 计算.[注意] 将力与位移的单位换算为牛顿(N)与米(m),功的单位才为焦耳(J).4.一物体在变力F (x )=5-x 2(力单位:N ,位移单位:m)作用下,沿与F (x )成30°角的方向做直线运动,则由x =1运动到x =2时F (x )做的功为( )A. 3 JB.233 JC.433JD .2 3 J解析:W =⎠⎛12F (x )cos 30°d x =⎠⎛1232(5-x 2)d x =32⎝⎛⎭⎫5x -13x 3⎪⎪⎪21=433(J). 答案:C求抛物线y 2=2x 与直线y =4-x 围成的平面图形的面积.[解] 由方程组⎩⎪⎨⎪⎧y 2=2x ,y =4-x ,解出抛物线和直线的交点为(2,2)及(8,-4).法一:选x 作为积分变量,由图可看出S =A 1+A 2.在A 1部分:由于抛物线的上半支方程为y =2x ,下半支方程为y =-2x ,所以S A 1=⎠⎛02[2x -(-2x )]d x =22⎠⎛02x 12d x .取F 1(x )=23x 32,∴S A 1=22[F 1(2)-F 1(0)]=163. S A 2=⎠⎛28[4-x -(-2x )]d x , 取F 2(x )=4x -12x 2+223x 32.∴S A 2=F 2(8)-F 2(2)=383. ∴S =163+383=18.法二:选y 作积分变量, 将曲线方程写为x =y 22及x =4-y .S =2-4⎰⎣⎡⎦⎤(4-y )-y 22d y . 取F (y )=4y -y 22-y 36,∴S =F (2)-F (-4)=30-12=18.1.定积分⎠⎛01(2x +e x)d x 的值为( )A .e +2B .e +1C .eD .e -1解析:取F (x )=x 2+e x,则F ′(x )=2x +e x,⎠⎛01(2x +e x )d x =F (1)-F (0)=(1+e)-(0+e 0)=e.答案:C2.从空中自由下落的一物体,在第一秒末恰经过电视塔顶,在第二秒末物体落地,已知自由落体的运动速度为v =gt (g 为常数),则电视塔高为( )A.12g B .g C.32g D .2g解析:取F (x )=12gt 2,则F ′(x )=gt ,所以电视塔高为⎠⎛12gt d t =F (2)-F (1)=2g -12g =32g . 答案:C3.s 1=⎠⎛01x d x ,s 2=⎠⎛01x 2d x 的大小关系是( )A .s 1=s 2B .s 21=s 2C .s 1>s 2D .s 1<s 2解析:⎠⎛01x d x 表示由直线x =0,x =1,y =x 及x 轴所围成的图形的面积,而⎠⎛01x 2d x 表示的是由曲线y =x 2与直线x =0,x =1及x 轴所围成的图形的面积,因为在x ∈[0,1]内直线y =x 在曲线y =x 2的上方,所以s 1>s 2.答案:C4.⎠⎛-12x 4d x =________.解析:∵⎝⎛⎭⎫15x 5′=x 4,取F (x )=15x 5, ∴⎠⎛-12x 4d x =F (2)-F (-1)=15[25-(-1)5]=335. 答案:3355.若⎠⎛01(2x +k )d x =2,则k =________. 解析:取F (x )=x 2+kx ,则F ′(x )=2x +k , ∴⎠⎛01(2x +k )d x =F (1)-F (0)=1+k =2,∴k =1. 答案:16.求由曲线xy =1及直线x =y ,y =3所围成平面图形的面积.解:作出曲线xy =1,直线x =y ,y =3的草图,所求面积为图中阴影部分的面积.求交点坐标:由⎩⎪⎨⎪⎧xy =1,y =3,得⎩⎪⎨⎪⎧x =13,y =3,故A ⎝⎛⎭⎫13,3;由⎩⎪⎨⎪⎧ xy =1,y =x ,得⎩⎪⎨⎪⎧ x =1,y =1或⎩⎪⎨⎪⎧x =-1,y =-1(舍去), 故B (1,1);由⎩⎪⎨⎪⎧ y =x ,y =3得⎩⎪⎨⎪⎧x =3,y =3,故C (3,3),故所求面积S =S 1+S 2=⎠⎜⎛131⎝⎛⎭⎫3-1x d x +⎠⎛13(3-x )d x =4-ln 3.一、选择题1.⎠⎛241x d x 等于( ) A .-2ln 2 B .2ln 2 C .-ln 2D .ln 2解析:⎠⎛241x d x =ln 4-ln 2=ln 2. 答案:D2.一物体沿直线运动,其速度v (t )=t ,这个物体在t =0到t =1这段时间内所走的路程为( )A.13B.12C. 1D.32解析:曲线v (t )=t 与直线t =0,t =1,横轴围成的三角形面积S =12即为这段时间内物体所走的路程.答案:B3.如图所示,阴影部分的面积是( ) A .2 3 B .2- 3 C.323D.353解析:S =⎠⎛-31 (3-x 2-2x )d x ,即F (x )=3x -13x 3-x 2, 则F (1)=3-13-1=53,F (-3)=-9+9-9=-9. ∴S =F (1)-F (-3)=53+9=323.答案:C4.定积分⎠⎛-22|x 2-2x |d x =( )A .5B .6C .7D .8解析:|x 2-2x |=⎩⎪⎨⎪⎧x 2-2x ,-2≤x <0,-x 2+2x ,0≤x ≤2, 取F 1(x )=13x 3-x 2,F 2(x )=-13x 3+x 2, 则F 1′(x )=x 2-2x ,F 2′(x )=-x 2+2x .∴⎠⎛-22|x 2-2x |d x =⎠⎛-20 (x 2-2x )d x +⎠⎛02(-x 2+2x )d x =F 1(0)-F 1(-2)+F 2(2)-F 2(0)=8.答案:D二、填空题5.函数y =x -x 2的图象与x 轴所围成的封闭图形的面积等于________.解析:由x -x 2=0,得x =0或x =1.因此所围成的封闭图形的面积为⎠⎛01(x -x 2)d x . 取F (x )=12x 2-13x 3, 则F ′(x )=x -x 2,∴面积S =F (1)-F (0)=16. 答案:166.设函数f (x )=(x -1)x (x +1),则满足∫a 0f ′(x )d x =0的实数a =________.解析:⎠⎛0af ′(x )d x =f (a )=0,得a =0或1或-1,又由积分性质知a >0,故a =1.答案:17.计算⎠⎛02(2x -e x )d x =________. 解析:取F (x )=x 2-e x ,则F ′(x )=2x -e x ,所以⎠⎛02(2x -e x )d x =F (2)-F (0)=5-e 2. 答案:5-e 28.曲线y =1x +2x +2e 2x ,直线x =1,x =e 和x 轴所围成的区域的面积是________.解析:由题意得,所求面积为⎠⎛1e⎝⎛⎭⎫1x +2x +2e 2x d x . 取F (x )=ln x +x 2+e 2x ,则F ′(x )=1x +2x +2e 2x ,所以⎠⎛1e⎝⎛⎭⎫1x +2x +2e 2x d x =F (e)-F (1)=e 2e . 答案:e 2e三、解答题9.计算下列定积分.(1)⎠⎛14⎝⎛⎭⎫2x -1x d x ; (2)⎠⎛01x 1+x 2d x .解:(1)取F (x )=2xln 2-2x , 则F ′(x )=2x -1x . ∴原式=F (4)-F (1)=⎝⎛⎭⎫16ln 2-2ln 2-(24-2)=14ln 2-2. (2)取F (x )=12ln(1+x 2),则F ′(x )=x 1+x 2. ∴⎠⎛01x 1+x 2d x =F (1)-F (0)=12ln 2.10.已知函数f (x )=x 3-x 2+x +1,求其在点(1,2)处的切线与函数g (x )=x 2围成的图形的面积.解:f ′(x )=3x 2-2x +1,∵(1,2)为曲线f (x )=x 3-x 2+x +1上的点,设过点(1,2)处的切线的斜率为k ,则k =f ′(1)=2,∴过点(1,2)处的切线方程为y -2=2(x -1),即y =2x .y =2x 与函数g (x )=x 2围成的图形如图:由⎩⎪⎨⎪⎧y =x 2,y =2x 可得交点A (2,4). ∴y =2x 与函数g (x )=x 2围成的图形的面积S =⎠⎛02(2x -x 2). 取F (x )=x 2-13x 3,则F ′(x )=2x -x 2, ∴S =F (2)-F (0)=43.。
(完整)高中数学选修2-2微积分基本定理

[学习目标] 1.了解导数和微积分的关系.2.掌握微积分基本定理.3.会用微积分基本定理求一些函数的定积分.知识点一 导数与定积分的关系f (x )d x 等于函数f (x )的任意一个原函数F (x )(F ′(x )=f (x ))在积分区间[a ,b ]上的改变量F (b )-F (a ).以路程和速度之间的关系为例解释如下:如果物体运动的速度函数为v =v (t ),那么在时间区间[a ,b ]内物体的位移s 可以用定积分表示为s =v (t )d t .另一方面,如果已知该变速直线运动的路程函数为s =s (t ),那么在时间区间[a ,b ]内物体的位移为s (b )-s (a ),所以有v (t )d t =s (b )-s (a ).由于s ′(t )=v (t ),即s (t )为v (t )的原函数,这就是说,定积分v (t )d t 等于被积函数v (t )的原函数s (t )在区间[a ,b ]上的增量s (b )-s (a ).思考 函数f (x )与其一个原函数的关系: (1)若f (x )=c (c 为常数),则F (x )=cx ; (2)若f (x )=x n (n ≠-1),则F (x )=1n +1·x n +1;(3)若f (x )=1x ,则F (x )=ln x (x >0);(4)若f (x )=e x ,则F (x )=e x ;(5)若f (x )=a x,则F (x )=a xln a(a >0且a ≠1);(6)若f (x )=sin x ,则F (x )=-cos x ; (7)若f (x )=cos x ,则F (x )=sin x . 知识点二 微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么f (x )d x =F (b )-F (a ). 思考 (1)函数f (x )的原函数F (x )是否唯一?(2)用微积分基本定理计算简单定积分的步骤是什么? 答案 (1)不唯一.(2)①把被积函数f (x )变为幂函数、正弦函数、余弦函数、指数函数等初等函数与常数的和或差;②用求导公式找到F (x ),使得F ′(x )=f (x ); ③利用微积分基本定理求出定积分的值.题型一 求简单函数的定积分 例1 计算下列定积分. (1)3d x ;(2)(2x +3)d x ; (3) (4x -x 2)d x ;(4)(x -1)5d x . 解 (1)因为(3x )′=3,所以3d x =(3x )⎪⎪⎪21=3×2-3×1=3. (2)因为(x 2+3x )′=2x +3, 所以(2x +3)d x =(x 2+3x )⎪⎪⎪2=22+3×2-(02+3×0)=10. (3)因为⎝⎛⎭⎫2x 2-x33′=4x -x 2, 所以(4x -x 2)d x =⎝⎛⎭⎫2x 2-x 33⎪⎪⎪3-1=⎝⎛⎭⎫2×32-333-⎣⎡⎦⎤2×(-1)2-(-1)33=203.(4)因为⎣⎡⎦⎤16(x -1)6′=(x -1)5, 所以 (x -1)5d x =16(x -1)6⎪⎪⎪21=16(2-1)6-16(1-1)6=16. 反思与感悟 (1)用微积分基本定理求定积分的步骤: ①求f (x )的一个原函数F (x ); ②计算F (b )-F (a ). (2)注意事项:①有时需先化简,再求积分;②若F (x )是f (x )的原函数,则F (x )+C (C 为常数)也是f (x )的原函数.随着常数C 的变化,f (x )有无穷多个原函数,这是因为F ′(x )=f (x ),则[F (x )+C ]′=F ′(x )=f (x )的缘故.因为⎠⎛ab f (x )d x=[F (x )+C ]|b a =[F (b )+C ]-[F (a )+C ]=F (b )-F (a )=F (x )|b a ,所以利用f (x )的原函数计算定积分时,一般只写一个最简单的原函数,不用再加任意常数C 了. 跟踪训练1 求下列函数的定积分: (1)⎝⎛⎭⎫x +1x 2d x ;(2)x (1+x )d x . 解 (1)⎝⎛⎭⎫x +1x 2d x =⎠⎛12⎝⎛⎭⎫x 2+2+1x 2d x =⎠⎛12x 2d x +⎠⎛122d x +⎠⎛121x2d x =13x 3⎪⎪⎪ 21+2 x ⎪⎪⎪ 21 +⎝⎛⎭⎫-12⎪⎪⎪21=13×(23-13)+2×(2-1)-⎝⎛⎭⎫12-1 =296. (2)⎠⎛49x (1+x )d x=⎠⎛49(x +x )d x=⎝⎛⎭⎫23x x +12x 2⎪⎪⎪94=⎝⎛⎭⎫23×9×3+12×92-⎝⎛⎭⎫23×4×2+12×42 =2716. 题型二 求分段函数的定积分 例2 求函数f (x )=⎩⎪⎨⎪⎧x 3,x ∈[0,1),x 2,x ∈[1,2),2x ,x ∈[2,3]在区间[0,3]上的定积分.解 由定积分的性质知:⎠⎛03f (x )d x =⎠⎛01f (x )d x +⎠⎛12f (x )d x +⎠⎛23f (x )d x =⎠⎛01x 3d x +⎠⎛12x 2d x +⎠⎛232x d x=x 44⎪⎪⎪10+x 33⎪⎪⎪21+2x ln 2⎪⎪⎪32=14+83-13+8ln 2-4ln 2 =3112+4ln 2. 反思与感悟 (1)分段函数在区间[a ,b ]上的定积分可分成几个定积分的和的形式.(2)分段的标准是确定每一段上的函数表达式,即按照原函数分段的情况分就可以. 跟踪训练2 求下列定积分: (1)⎠⎛02|x 2-1|d x ;(2) ⎠⎜⎛0π21-sin 2x d x .解 (1)∵y =|x 2-1|=⎩⎪⎨⎪⎧1-x 2,0≤x <1,x 2-1,1≤x ≤2,∴⎠⎛02|x 2-1|d x =⎠⎛01(1-x 2)d x +⎠⎛12(x 2-1)d x=⎝⎛⎭⎫x -x 33⎪⎪⎪10+⎝⎛⎭⎫x 33-x ⎪⎪⎪21=⎝⎛⎭⎫1-13+⎝⎛⎭⎫83-2-⎝⎛⎭⎫13-1 =2.(2) ⎠⎜⎛0π21-sin 2x d x=⎠⎜⎛0π2|sin x -cos x |d x=⎠⎜⎛0π4 (cos x -sin x )d x +⎠⎜⎜⎛π4π2 (sin x -cos x )d x =(sin x +cos x )⎪⎪⎪π4+(-cos x -sin x )⎪⎪⎪⎪π2π4=⎝⎛⎭⎫22+22-1+(-1)-⎝⎛⎭⎫-22-22 =22-2.题型三 定积分的简单应用例3 已知f (a )=⎠⎛01 (2ax 2-a 2x )d x ,求f (a )的最大值.解 ∵⎝⎛⎭⎫23ax 3-12a 2x 2′=2ax 2-a 2x ,∴⎠⎛01 (2ax 2-a 2x )d x =⎝⎛⎭⎫23ax 3-12a 2x 2⎪⎪⎪10 =23a -12a 2, 即f (a )=23a -12a 2=-12⎝⎛⎭⎫a 2-43a +49+29 =-12⎝⎛⎭⎫a -232+29, ∴当a =23时,f (a )有最大值29.反思与感悟 定积分的应用体现了积分与函数的内在联系,可以通过积分构造新的函数,进而对这一函数进行性质、最值等方面的考查,解题过程中注意体会转化思想的应用. 跟踪训练3 已知f (x )=ax 2+bx +c (a ≠0),且f (-1)=2,f ′(0)=0,⎠⎛01f (x )d x =-2,求a 、b 、c 的值.解 由f (-1)=2,得a -b +c =2.① 又f ′(x )=2ax +b ,∴f ′(0)=b =0,② 而⎠⎛01f (x )d x =⎠⎛01 (ax 2+bx +c )d x=⎝⎛⎭⎫13ax 3+12bx 2+cx ⎪⎪⎪10 =13a +12b +c , ∴13a +12b +c =-2,③ 由①②③式得a =6,b =0,c =-4.1.⎠⎜⎛0π4cos 2xcos x +sin x d x 等于( )A.2(2-1)B.2+1C.2-1D.2-2答案 C解析 结合微积分基本定理,得⎠⎜⎛0π4cos 2x -sin 2xcos x +sin x d x =⎠⎜⎛0π4 (cos x -sin x )d x =(sin x +cos x )⎪⎪⎪π40=2-1. 2.下列定积分的值等于1的是( )A.⎠⎛01x d xB.⎠⎛01(x +1)d xC.⎠⎛011d xD.⎠⎛0112d x 答案 C解析 ⎠⎛01x d x =12x 2⎪⎪⎪ 10=12,⎠⎛01(x +1)d x =⎝⎛⎭⎫12x 2+x ⎪⎪⎪ 10=12+1=32,⎠⎛011d x =x ⎪⎪⎪10=1,⎠⎛0112d x=12x ⎪⎪⎪10=12.故选C.3.⎠⎛02⎝⎛⎭⎫x 2-23x d x = . 答案 43解析 ⎠⎛02⎝⎛⎭⎫x 2-23x d x =⎠⎛02x 2d x -⎠⎛0223x d x =x 33⎪⎪⎪20-x 23⎪⎪⎪20=83-43=43. 4.设函数f (x )=⎩⎪⎨⎪⎧x 2+1,0≤x <1,3-x ,1≤x ≤2,则⎠⎛02f (x )d x = .答案176解析 ⎠⎛02f (x )d x =⎠⎛01(x 2+1)d x +⎠⎛12(3-x )d x=⎝⎛⎭⎫x 33+x ⎪⎪⎪10+⎝⎛⎭⎫3x -x 22⎪⎪⎪21=176.5.已知函数f (x )为偶函数,且⎠⎛06f (x )d x =8,则⎠⎛-66 f (x )d x = .答案 16解析 因为函数f (x )为偶函数, 且⎠⎛06f (x )d x =8,所以⎠⎛-66f (x )d x =2⎠⎛06f (x )d x =16.1.求定积分的一些常用技巧(1)对被积函数,要先化简,再求积分.(2)若被积函数是分段函数,依据定积分“对区间的可加性”,分段积分再求和. (3)对于含有绝对值符号的被积函数,要去掉绝对值符号才能积分.2.由于定积分的值可取正值,也可取负值,还可以取0,而面积是正值,因此不要把面积理解为被积函数对应图形在某几个区间上的定积分之和,而是在x 轴下方的图形面积要取定积分的相反数.一、选择题1.函数y =⎠⎛0x cos x d x 的导数是( )A.cos xB.-sin xC.cos x -1D.sin x 答案 A解析 (sin x )′=cos x ,⎠⎛0x cos x d x =sin x ⎪⎪⎪x0=sin x ,故选A. 2.若F ′(x )=x 2,则F (x )的解析式不正确的是( ) A.F (x )=13x 3B.F (x )=x 3C.F (x )=13x 3+1D.F (x )=13x 3+c (c 为常数)答案 B解析 若F (x )=x 3,则F ′(x )=3x 2,这与F ′(x )=x 2不一致,故选B. 3. ⎠⎛-40|x +2|d x 等于( )A. ⎠⎛-40 (x +2)d xB. ⎠⎛-40 (-x -2)d xC.⎠⎛-4-2(x +2)d x +⎠⎛-202(-x -2)d xD.⎠⎛-4-2(-x -2)d x +⎠⎛-20 (x +2)d x答案 D解析 ∵|x +2|=⎩⎪⎨⎪⎧x +2,-2≤x ≤0,-x -2,-4≤x <-2,∴⎠⎛-40|x +2|d x =⎠⎛-4-2(-x -2)d x +⎠⎛-20 (x +2)d x .故选D.4.已知f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤0,1,0<x ≤1,则⎠⎛1-1f (x )d x 的值为( )A.32B.43C.23D.-23 答案 B解析 ⎠⎛-11f (x )d x =⎠⎛-1x 2d x +⎠⎛011d x =⎪⎪x 330-1+x |10=13+1=43,故选B. 5.⎠⎜⎛0π2sin 2x2d x 等于( )A.π4 B.π2-1 C.2 D.π-24答案 D解析 ⎠⎜⎛0π2sin 2x 2d x =⎠⎜⎛0π21-cos x 2d x =⎪⎪12(x -sin x )π20=π-24,故选D. 6.若S 1=⎠⎛12x 2d x ,S 2=⎠⎛121x d x ,S 3=⎠⎛12e x d x ,则S 1,S 2,S 3的大小关系为( )A.S 1<S 2<S 3B.S 2<S 1<S 3C.S 2<S 3<S 1D. S 3<S 2<S 1答案 B 解析 S 1=⎠⎛12x 2d x =13x 3⎪⎪21=73,S 2=⎪⎪⎪⎠⎛121x d x =ln x 21=ln 2<1,S 3=⎠⎛12e x d x =e x ⎪⎪⎪21=e 2-e =e(e -1)>73,所以S 2<S 1<S 3,选B.二、填空题7.⎠⎛-11 (1-x 2+x )d x = .答案 π2解析 ⎠⎛-11 (1-x 2+x )d x =⎠⎛-111-x 2d x +⎠⎛-11x d x ,根据定积分的几何意义可知⎠⎛-111-x 2d x 等于半径为1的半圆的面积, 即⎠⎛-111-x 2d x =π2,⎠⎛-11x d x =12x 2|1-1=0,∴⎠⎛-11 (1-x 2+x )d x =π2.8.若⎠⎛0T x 2d x =9,则常数T 的值为 .答案 3解析 ⎠⎛0T x 2d x = 13x 3⎪⎪⎪t 0=13T 3=9,即T 3=27,解得T =3. 9.设函数f (x )=ax 2+c (a ≠0),⎠⎛01f (x )d x =f (x 0),0≤x 0≤1,则x 0= .答案33解析 由⎠⎛01f (x )d x =f (x 0),得⎠⎛1(ax 2+c )d x =⎝⎛⎭⎫13ax 3+cx ⎪⎪⎪10=13a +c =ax 20+c ,∴a 3=ax 20,∵a ≠0,∴x 20=13,又0≤x 0≤1,∴x 0=33.故填33. 10.设f (x )=⎩⎪⎨⎪⎧lg x ,x >0,x +⎠⎛0a 3t 2d t ,x ≤0.若f [f (1)]=1,则a = .答案 1解析 因为x =1>0,所以f (1)=lg 1=0.又x ≤0时,f (x )=x +⎠⎛0a 3t 2d t =x +t 3⎪⎪⎪a=x +a 3,所以f (0)=a 3.因为f [f (1)]=1,所以a 3=1,解得a =1. 三、解答题11.设f (x )是一次函数,且⎠⎛01f (x )d x =5,⎠⎛01xf (x )d x =176,求f (x )的解析式. 解 ∵f (x )是一次函数,设f (x )=ax +b (a ≠0),则 ⎠⎛01f (x )d x =⎠⎛01(ax +b )d x =⎠⎛01ax d x +⎠⎛01b d x =12a +b =5, ⎠⎛01xf (x )d x =⎠⎛01x (ax +b )d x =⎠⎛01(ax 2)d x +⎠⎛01bx d x =13a +12b =176. 由⎩⎨⎧12a +b =5,13a +12b =176,得⎩⎪⎨⎪⎧a =4,b =3.即f (x )=4x +3. 12.若函数f (x )=⎩⎪⎨⎪⎧x 3,x ∈[0,1],x ,x ∈(1,2],2x ,x ∈(2,3].求⎠⎛03f (x )d x 的值.解 由积分的性质,知:⎠⎛03f (x )d x =⎠⎛01f (x )d x +⎠⎛12f (x )d x +⎠⎛23f (x )d x=⎠⎛01x 3d x +⎠⎛12x d x +⎠⎛232x d x=x 44⎪⎪⎪⎪10+23x 3221⎪⎪+2x ln 232 =14+432-23+8ln 2-4ln 2 =-512+432+4ln 2.13.求定积分⎠⎛-43|x +a |d x .解 (1)当-a ≤-4即a ≥4时,原式=⎠⎛-43(x +a )d x =⎪⎪⎝⎛⎭⎫x 22+ax 3-4=7a -72. (2)当-4<-a <3即-3<a <4时, 原式=⎠⎛-4-a [-(x +a )]d x +⎠⎛-a3 (x +a )d x=⎝⎛⎭⎫-x 22-ax ⎪⎪-a-4+⎪⎪⎝⎛⎭⎫x 22+ax 3-a =a 22-4a +8+⎝⎛⎭⎫a 22+3a +92 =a 2-a +252.(3)当-a ≥3即a ≤-3时,原式=⎠⎛-43[-(x +a )]d x =⎝⎛⎭⎫-x 22-ax ⎪⎪⎪3-4=-7a +72. 综上,得⎠⎛-43|x +a |d x =⎩⎪⎨⎪⎧7a -72(a ≥4),a 2-a +252(-3<a <4),-7a +72(a ≤-3).。
高二年级新课程教案数学选修2-2:16微积分基本定理第2课时

的代数和,在 x 轴上方的面积取正号;在 x 轴下方的 面积取负号.
布置 作业
1. P62 习题 1. 6 B 组第 1 题(2)(4) 2. P62 习题 1. 6 B 组第 2 题(2)(4) 3. P62 习题 1. 6 B 组第 3 题
1
xdx
2 x2dx 11.
2
0
1
2
aT
T
6.设 f (x) 为 R 上以 T 为周期的连续函数,证明对任何实数 a ,有 a f (x)dx 0 f (x)dx
证明:∵ f (x) 为 R 上以 T 为周期的连续函数
∴ f (x T ) f (x), x R
设 F '(x) f (x) ,则有 F '(x T ) f (x T )
容易误为 F(x) F(x)
∴ F(x) F(x)
∴
a a
f
(x)dx
F ( x)
a a
F (a)
F (a)
F(a)
F (a)
0
∴原式得证
师:本题从几何直观上是非常容易理解的,但是要使
用微积分基本定理证明,关键是证明奇函数的原函数
是偶函数这个性质.
再次强调运用微积分基本 定理求定积分的关键是求 出原函数 F(x)
f (x) dx
c
f (x)dx
d f (x)dx
b
f (x)dx
a
a
c
d
c
d
b
f (x)dx f (x)dx f (x)dx
a
c
d
例 题 3: 已 知 f (x) 在 a,a 上 连 续 , 若 f (x) 是 奇 函 数 ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§5 微积分学基本定理∙定积分计算(续)教学目的:熟练掌握微积分学基本定理及定积分的换元与分部积分法。
重点难点:重点为微积分基本定理,难点为泰勒公式的积分型余项。
教学方法:讲练结合。
本节要在定积分形式下证明连续函数必定存在原函数. 一 变限积分与原函数的存在性设f 在[]b a ,上可积,根据定积分的性质4,对任何[]b a x ,∈,f 在[]x a ,上也可积.于是,由 ()(),dt t f x xa⎰=Φ[]b a x ,∈ (1)定义了一个以积分上限为自变量的函数,称为变上限的定积分.类似可定义变下限的定积分: ()(),dt t f x bx⎰=ψ[]b a x ,∈. (2)Φ与ψ统称为变限积分.注意,在变限积分(1)与(2)中,不可再把积分变量x 写成()dx x f xa⎰,以免与积分上、下限的x 相混淆.变限积分所定义的函数有着重要的性质.由于()(),dt t f dt t f bxbx⎰⎰-=因此下面只讨论变上限积分的情形.定理9.9 若f 在[]b a ,上可积,则由(1)式所定义的函数Φ在[]b a ,上连续. 证 对[]b a ,上任一确定的点x ,只要[]b a x x ,∈∆+,按定义式(1)有 ()()().dt t f dt t f dt t f xx xx axx a⎰⎰⎰∆+∆+=-=∆Φ因f 在[]b a ,上有界,可设()[]b a t M t f ,,∈≤.于是,当0>∆x 时有 ()();x M dt t f dt t f xx xxx x∆≤≤=∆Φ⎰⎰∆+∆+当0<∆x 时则有x M ∆≤∆Φ.由此得到 ,0lim 0=∆Φ→∆x即证得Φ在点x 连续.由x 的任意性,Φ在[]b a ,上处处连续. 口定理9.10 (原函数存在定理) 若f 在[]b a ,上连续,则由(1)式所定义的函数Φ在[]b a ,上处处可导,且()()()[].,,b a x x f dt t f dx d x xa∈==Φ'⎰ (3) 证 对[]b a ,上任一确定的x ,当0≠∆x 且[]b a x x ,∈∆+时,按定义式(1)和积分第一中值定理,有()().10,1≤≤∆+=∆=∆∆Φ⎰∆+θθx x f dt t f xx xx x 由于f 在点x 连续,故有 ()()().lim lim0x f x x f x x x x =∆+=∆∆Φ=Φ'→∆→∆θ由x 在[]b a ,上的任意性,证得Φ是f 在[]b a ,上的一个原函数. 口本定理沟通了导数和定积分这两个从表面看去似不相干的概念之间的内在联系;同时也证明了“连续函数必有原函数”这一基本结论,并以积分形式给出了f 的一个原函数.正因为定理9.10的重要作用而被誉为微积分学基本定理.此外,又因f 的任意两个原函数只能相差一个常数,所以当f 为连续函数时,它的任一原函数F 必满足 ()().C dt t f x F xa+=⎰若在此式中令a x =,得到()a F C =,从而有()).()(a F x F dt t f xa-=⎰再令b x =,有()).()(a F x F dt t f ba-=⎰这是牛顿-莱布尼茨公式的又一证明.定理9.11 (积分第二中值定理) 设函数f 在[]b a ,上可积. (ⅰ)若函数g 在[]b a ,上减,且()0≥x g ,则存在 []b a ,∈ξ,使()()()()dx x f a g dx x g x f ab a⎰⎰=ξ(ⅱ)若函数g 在[]b a ,上增,且()0≥x g ,则存在 []b a ,∈η,使()()()()dx x f b g dx x g x f bba⎰⎰=η推论 设函数f 在[]b a ,上可积, 若函数g 为单调函数,则存在[]b a ,∈ξ,使()()=⎰dx x g x f ba()()()()dx x f b g x f a g ba⎰⎰+ξξ积分第二中值定理以及它的推论是今后建立反常积分收敛判别法的工具.二 换元积分法与分部积分法定理9.12 (定积分换元积分法) 若函数f 在[]b a ,上连续,ϕ在[]βα,上连续可微,且满足 ()()()[]βαϕϕϕ,,,,∈≤≤==t b t a b b a a ,则有定积分换元公式:()()()()dt t t f dx x f b aϕϕβα'=⎰⎰ (9)证 由于(9)式两边的被积函数都是连续函数,因此它们的原函数都存在.设F 是f 在[]b a ,上的一个原函数,由复合函数微分法()()()()()()()()t t f t t F t F dtdϕϕϕϕϕ'=''= 可见()()t F ϕ是()()()t t f ϕϕ'的一个原函数.根据牛顿一莱布尼茨公式,证得()()()()()()()a F F dt t t f ϕβϕϕϕβα-='⎰()()()dx x f a F b F ba⎰=-=从以上证明看到,在用换元法计算定积分时,一旦得到了用新变量表示的原函数后,不必作变量还原,而只要用新的积分限代人并求其差值就可以了.这就是定积分换元积分法与不定积分换元积分法的区别,这一区别的原因在于不定积分所求的是被积函数的原函数,理应保留与原来相同的自变量;而定积分的计算结果是一个确定的数,如果(9)式一边的定积分计算出来了,那么另一边的定积分自然也求得了.注 如果在定理9.12的条件中只假定f 为可积函数,但还要求ϕ是单调的,那么(9)式仍然成立.(本节习题第14题)例 计算.112dx x ⎰-解 令t x sin =,当t 由0变到2π时,x 由0增到1,故取[].2,0,⎥⎦⎤⎢⎣⎡=πβα应用公式(9),并注意到在第一象限中0cos ≥t ,则有tdt tdt t dx x ⎰⎰⎰=-=-20220212cos cos sin 11ππ()2202sin 21212cos 121ππ⎪⎭⎫ ⎝⎛+=+=⎰t t dt t.4π=例2 计算⎰202.cos sin πtdt t解 逆向使用公式(9),令,sin ,cos tdt dx t x -==当t 由0变到2π时,x 由1减到0,则有.31cos sin 102200122⎰⎰⎰==-=dx x dx x tdt t π例3计算().11ln 102dx x x J ⎰++=解 令t x tan =,当t 从0变到4π时,x 从0增到1.于是由公式(9)及21x dx dt +=得到()dt ttt dt t J ⎰⎰+=+=404cos sin cos lntan 1ln ππdt tt ⎰⎪⎭⎫ ⎝⎛-=40cos 4cos 2lnππ.cos ln 4cos ln 2ln 404040dt t dt t dt ⎰⎰⎰-⎪⎭⎫⎝⎛-+=ππππ对最末第二个定积分作变换t u -=4π,有dt t ⎰⎪⎭⎫⎝⎛-404cos ln ππ()⎰⎰=-=4004,cos ln cos ln ππudu du u它与上面第三个定积分相消.故得.2ln 82ln 40ππ==⎰dt J事实上,例3中的被积函数的原函数虽然存在,但难以用初等函数来表示,因此无法直接使用牛顿一莱布尼茨公式.可是像上面那样,利用定积分的性质和换元公式(9),消去了其中无法求出原函数的部分,最终得出这个定积分的值.换元积分法还可用来证明一些特殊的积分性质,如本节习题中的第5,6,7等题. 定理9.13 (定积分分部积分法)若()()x v x u ,为[]b a ,上的连续可微函数,则有定积分分部积分公式:()()()()()().dx x v x u x v x u dx x v x u baba ba⎰⎰'-=' (10)证 因为uv 是v u v u '+'在[]b a ,上的一个原函数,所以有()()dx x v x u ba'⎰+()()dx x v x u b a⎰'()()()()[]dx x v x u x v x u ba⎰'+'==()()ba x v x u . 移项后即为(10)式.为方便起见,公式(10)允许写成()()=⎰x dv x u b a=()()bax v x u ()().x du x v ba⎰- (01')例4 计算.ln 12xdx x e⎰解()⎪⎭⎫ ⎝⎛-==⎰⎰⎰dx x x x x xd xdx x e e e e12131312ln 31ln 31ln ().129131313133+=⎪⎪⎭⎫ ⎝⎛-=e x e e例5 计算dx x n⎰2sin π和.,2,1,cos 20=⎰n xdx n π解 当2≥n 时,用分部积分求得()⎰⎰---+-==202220120cos sin 1cos sinsin πππxdx x n xx xdx J n n n n()()xdx n xdx n n n ⎰⎰---=-20202sin 1sin1ππ()().112n n J n J n ---=-移项整理后得到递推公式:.2,12≥-=-n J nn J n n 由于,1sin ,2201200=⎰==⎰=xdx J dx J πππ重复应用递推式(11)便得()()()()⎪⎪⎭⎪⎪⎬⎫+=⋅--⋅+=⋅-=⋅--⋅-=+.!!12!!21321222122,2!!2!!122212232212122m m m m m m J m m m m m m J m m ππ ()12 令t x -=2π,可得.sin 2cos cos 200220xdx dt t xdx n nnππππ⎰=⎪⎭⎫⎝⎛-⎰-=⎰因而这两个定积分是等值的.由例5结论(12)可导出著名的沃利斯(Wallis)公式:()().121!!12!!2lim 22+⋅⎥⎦⎤⎢⎣⎡-=∞→m m m m π()13 事实上,由,sin 2cos sin 1220021220xdx dt t xdx m n n -+⎰=⎪⎭⎫ ⎝⎛-⎰<⎰ππππ 把(12)代人,得到()()()()()(),!!12!!222!!2!!12!!12!!2--<⋅-<-m m m m m m π由此又得()()()().21!!12!!22121!!12!!222m m B m m m m m m A =⎥⎦⎤⎢⎣⎡-<<+⎥⎦⎤⎢⎣⎡+=π因为()()()(),02211221!!12!!22∞→→⋅<+⎥⎦⎤⎢⎣⎡-=-<m m m m m m A B o m m π所以().0lim =-∞→m m m A B 而,2m m m A B A -<-π故得2lim π=∞→m m A (即()13式).三 泰勒公式的积分型余项若在[]b a ,上()x u 、()x v 有1+n 阶连续导函数,则有()()()()()()()()() +'-=⎰-+x v x u x v x u dx x vx u n n n b a 11[ ()()()()()()()()dx x v x u x v x u n ban b a n n111]1++⎰-+-+().,2,1 =n ()14 这是推广的分部积分公式,读者不难用数学归纳法加以证明.下面应用公式()14 导出泰勒公式的积分型余项.设函数f 在点0x 的某邻域()0x U 内有1+n 阶连续导函数.令∈x ()0x U ,()()nt x t u -=,()()t f t v =,[]x x t ,0∈(或[]0,,x x ).利用(14)式得 ()()()()()()()()() +-+-=-⎰--+t f t x n t f t x dt t ft x n n n nn nx x 111[0()()dt t f t f n xx xx ⋅⎰++0]!00()()()() +-'+-=000[!!x x x f x f n x f n()()()]!00n n x x n x f -+()x R n n !=,其中()x R n 即为泰勒公式的n 阶余项.由此求得()()()()dt t x t f n x R n n x x n -⎰=+10!1, ()15这就是泰勒公式的积分型余项. 由于()()t fn 1+连续,()n t x -在[][]()00,,x x x x 或上保持同号,因此由推广的积分第一中值定理,可将()15式写作()()()()dt t x f n x R n x x n n -⎰=+01!1ξ()()()()101!11++-+=n n x x f n ξ,其中()10,00≤≤-+=θθξx x x .这就是以前所熟悉的拉格朗日型余项. 如果直接用积分第一中值定理于(15),则得()()()()()01!1x x x fn x R n n n --=+ξξ, ()10,00≤≤-+=θθξx x x .由于()()()[]()0000x x x x x x x x x n n ----=--θξ()()101+--=n n x x θ因此又可进一步把()x R n 改写为()x R n ()()()()(),1!110001++---+=n n n x x x x x fn θθ .10≤≤θ (16)特别当00=x 时,又有 ()x R n ()()().10,1!111≤≤-=++θθθn n n x x fn (17) 公式(16)、(17)称为泰勒公式的柯西型余项.各种形式的泰勒公式余项,将在第十四章里显示它们的功用.作业:2,3,4(1),(6)(9)。