2005-2006(一)高等数学期末考试试题A卷
2005-2006(2)期末考试试卷(A)(高等数学)

2、计算积分值 u(s,t) (s,t) xdx ydy 。
(1,0) x2 y2
第 1 页(共 1 页)
zdxdydz ,其中 由曲面 z x2 y2 及平面 z 4 所围成的闭区域。
5、(1) 求变力 F (2x 3y x 2 y, x 2 y xy 2) 将圆周 L : x2 y2 2 上的质点沿顺时针方
向移动一周所做的功。(6 分)
(2) 利 用 高 斯 公 式 计 算 (x 2 y)dydz (3y z)dzdx (3x 2z)dxdy , 其 中 是 由 x 0, y 0, z 0 及 x y z 1在第一卦限所围成的立体的表面外侧。(6 分) 123
。
5、设 L 为连接(3, 0) 和(0,3) 两点的直线段,则 (x y)ds =
。
L
6、lim sin(xy) =
。
x y3
x
7、函数 u x2 y2 z2 在点 (1,1,1) 处沿方向 l 的方向导数是
度
。(其中l 的方向角为60o , 45o , 6
设
f
(x,
y)
( x 2
y2 ) sin
x2
1
y2
0
x2 y2 0 x2 y2 0
,试讨论在点(0, 0) 处:
1、 f (x, y) 是否连续? 2、 f (x, y) 的偏导数是否存在? 3、 f (x, y) 是否可微?
五、证明题(5 分×2=10 分)
1、证明曲线积分 xdx ydy 与路径无关,其中 L 为不通过原点的任一曲线。
一、填空题(2 分 7=14 分)
1、以 a {2, 1,1} 和b {1, 2, 3} 为边的平行四边形的面积等于
高数期末考试题

往届高等数学期终考题汇编2021-01-12一.解答以下各题(6*10分): 1.求极限)1ln(lim10xx e x ++→.⎪⎭⎫ ⎝⎛++++=22222ln a x x a a x x y ,求y d .3.设⎪⎩⎪⎨⎧-=-=3232tt y tt x ,求22d d xy .4.判定级数()()0!12≥-∑∞=λλλn nn n n e 的敛散性.7.⎰-π03d sin sin x x x .⎪⎩⎪⎨⎧≤≤<=πππx x x x f 2,02,)(在[]ππ,-上展为以π2为周期的付里叶级数,并指出收敛于()x f 的区间.0d )4(d 2=-+y x x x y 的解.1=xy 与直线0,2,1===y x x 所围平面图形绕y 轴旋转一周所得旋转体的体积.二.(8分)将()()54ln -=x x f 展开为2-x 的幂级数,并指出其收敛域.三.(9分)在曲线()10sin 2≤≤=x x y 上取点()()10,sin ,2≤≤a a a A ,过点A 作平行于ox 轴的直线L ,由直线L ,oy 轴与曲线()a x x y ≤≤=0sin 2所围成的图形记为1S ,由直线L ,直线1=x 与曲线()1sin 2≤≤=x a x y 所围成的图形面积记为2S ,问a 为何值时,21S S S +=取得最小值.四.(9分)冷却定律指出,物体在空气中冷却的速度与物体与空气温度之差成正比,空气温度为30℃时,物体由100℃经15分钟冷却至70℃,问该物体冷却至40℃需要多少时间 五.(8分)(学习工科数学分析的做〔1〕,其余的做〔2〕)〔1〕证明级数∑∞=-02n nx e x 在[),0+∞上一致收敛.〔2〕求幂级数()∑∞=-----122121212)1(n n n n x n 的收敛域与与函数.六.(6分)设()[]b a C x f ,2∈,试证存在[]b a ,∈ξ,使()()()()⎰''-+⎪⎭⎫ ⎝⎛+-=b af a b b a f a b dx x f ξ324122021.1.15一.解答以下各题(6*10分): 1.计算极限 ()xx x e x x 30sin 22lim++-→.2.设,5arctan log 22π+-=x x e y x 求y d .3.设,20;cos sin ,cos ln ⎪⎭⎫ ⎝⎛<<⎩⎨⎧-==πt t t t y t x 求322d d π=t x y .4.判定级数∑∞=123n n nn 的敛散性.8.求函数()⎩⎨⎧<<≤≤=21,210,1x x x f 在[]2,0上展成以4为周期的正弦级数.()()0d d 132=++++y y y x x y 的通解.72+=x y 与532+=x y 所围成的图形绕ox 轴旋转一周而成的旋转体的体积.二.(9分)证明:当0≥x 时,有三.(9分) 设抛物线()02<+=a bx ax y 通过点()3,1M ,为了使此抛物线与直线x y 2=所围成的平面图形的面积最小,试确定a 与b 的值.四.(8分)设一车间空间容积为10000立方米,空气中含有0.12%的二氧化碳(以容积计算),现将含二氧化碳0.04%的新鲜空气以1000立方米每分钟的流量输入该车间,同时按1000立方米的流量抽出混合气体,问输入新鲜空气10分钟后,车间内二氧化碳的浓度降到多少?五.〔8分〕求幂级数nn nx n n ∑∞=+0!21的收敛域与其与函数. 六.(6分)设函数()x f 在0=x 的邻域内有连续的一阶导数,且()a xx f x =→0lim()0>a ,证明:()⎪⎭⎫⎝⎛-∑∞=-n f n n 1111条件收敛.2007年1月一. 计算以下各题(6*10分):1.计算极限()xx x e x x arctan 11ln lim 0---+→.2. 设21arcsin x y -=, 求y d .3. 设⎪⎩⎪⎨⎧=+-=⎰-.01sin .d 02y t e u e x y t u 求0d d =x x y . 4. 判定级数∑∞=+134n nn的敛散性. 5. 计算反常积分()⎰∞+11d xx x.6设()21ln x x ++为()x f 的原函数, 求()⎰'x x f x d .7. 将()⎪⎪⎩⎪⎪⎨⎧≤<≤≤=.2 ,0;20 ,1πππx x x f 展开成以π2为周期的傅立叶正弦级数, 并求此级数分别在π23=x 与π25=x 两点的收敛值.8. 将函数()x x f ln =展开为2-x 的幂级数,并指出其收敛域.9求微分方程()()27121+=-'+x y y x 的通解.10. 求抛物线25y x =与21y x +=所围图形的面积.二. (9分) 假设函数()⎪⎩⎪⎨⎧=≠=⎰.0,;0 ,d 1cos 2x a x xte xf x t 在0=x 点可导. 求a 与()0f '.三. (9分) 在曲线()0≥=-x e y x 上求一点()0,0x e x -,使得过该点的切线与两个坐标轴所围平面图形的面积最大, 并求出此最大面积. 四(8分)半径为R 的半球形水池充满水,将水从池中抽出, 当抽出的水所作的功为将水全部抽出所作的功的一半时, 试问此时水面下降的深度H 为多少五.(8分)求幂级数()∑∞=+11n nx n n 的与函数并求出级数()∑∞=+1211n nn n 的与.六. (6分) 函数()x f 在[)+∞,0上可导, 且()10=f 并满足等式()()()0d 110=+-+'⎰xt t f x x f x f , 求()x f '并证明()().0 1≥≤≤-x x f e x 2006年1月一. 计算以下各题(6*10分):1. 30sin tan lim xxx x -→ ⎪⎭⎫ ⎝⎛=2tan 21arctan x y , 求y d .()⎪⎩⎪⎨⎧<+≥=-0,10,2x x x e x f x , 求()x x f d 121⎰--. 4. 判定级数212121n n n n n ⎪⎭⎫⎝⎛+∑∞=的敛散性.5. 设()x y y =由方程()y x y +=tan 所确定,求y '.7. 将()x x f +=2, []ππ,-∈x 展成以π2为周期的傅立叶级数. 8. 将函数()2312++=x x x f 展成()4+x 的幂级数, 并指出收敛区间.9. 求微分方程x e x y y x 43=-'的通解.10. 设曲线2ax y =()0,0≥>x a 与21x y -=交于点A, 过坐标原点O 与点A 的直线与曲线2ax y =围成一个平面图形. 问: 当a 为何值时,该图形绕x 轴旋转一周所产生的旋转体体积最大二. (8分) 证明不等式: 当0>x 时, ααα-≤-1x x , ()10<<α.三. (9分). 设()⎰-=221d x t t ex f , 求()⎰1d x x xf .四. (9分). 一物体在某一介质中按3ct x =作直线运动,介质的阻力与物体速度的平方成正比, 计算物体由0=x 移动到a x =时克制阻力所作的功.五. (9分) 求级数()∑∞=+0311n nn 的与.六. (5分). 设()0>''x f , []b a x ,∈, 证明:2005年1月15日一. 解答以下各题〔6×10分〕1. 计算极限()xx x x x e x x sin 1sin lim 0-+-→ 2. 设()1ln 211222++++=x x x x y ,求y d .3. 设()⎩⎨⎧>+≤=02 , ,x x b ax x x x x f 在0x 处可导,求常数a 与b .4. 判定级数()∑∞=--1131n nn n 的敛散性. 假设收敛,是条件收敛还是绝对收敛5. 设()x y y =由方程ye y x y ++-=)ln(1所确定,求y '.6. 设()x f 连续,且满足()x t t f x =⎰-13d .求()?26=f .7. 求()1123223+--=x x x x f 的极值. 8. 计算不定积分⎰-xxx 2ln 4d .9. 计算定积分x x d arctan1⎰.10. 求由曲线12+=x y , 直线,0=y 0=x , 1=x 所围成的平面图形绕y 轴旋转一周所产生的旋转体的体积.二. (8分). 试证明不等式⎪⎭⎫⎝⎛∈2,0πx 时, 3tan 3x x x +>.三. (9分) 将函数()3212-+=x x x f 展成3-x 的幂级数,并指出收敛区间.四. (9分) ()x f 在12=x 的邻域内可导, 且()0lim 12=→x f x ,()22005lim 12='→x f x . 求极限()()312121212d d lim x t u u f t xt x -⎥⎦⎤⎢⎣⎡⎰⎰→→. 五.(8分) 求幂级数nn x n n ∑∞=+0!1的收敛域与与函数. 六. (6分) 设()x f 在[]1,0上连续, 在()1,0内可导, 且()10≤'<x f , ()00=f .证明 ()()x x f dx x f d 103210⎰⎰≥⎥⎦⎤⎢⎣⎡ 2004年1月一、解以下各题1、10lim ,(0,0)2xxxx a b a b →⎛⎫+>>⎪⎝⎭其中2、设22(sin )x x y x e x -=+,求y '3、求不定积分arctan x xdx ⎰4、求不定积分21(1)dx x x +⎰5、求定积分4⎰6、求由曲线1|ln |,,y x x x e e===与x 轴围成的图形的面积。
高数历年考题(第一学期)

历年高等数学(A)Ⅰ期末考试卷1998级一. 试解下列各题(24分)1. 讨论极限112lim 21-+-→x x x x 2.求x dt e e xt t x cos 1)(lim 0 0--⎰-→ 3.求⎰xdx arccos4.求dx x x ⎰-2cos sin π二. 试解下列各题(35分)1. 若函数⎪⎩⎪⎨⎧>-=<=1,11,01,1)(x x x x f 及x e x g =)(,确定)]([x g f 与)]([x f g 的间断点,指出其类型2. 设)(x y y =由方程y x x arctg y +=所确定,求y ' 3. 求⎰+41x x dx 4.求⎰+42sin 1πθθd 5.设)(x y y =由方程组⎩⎨⎧+=+=tt y arctgtt x 63所确定,求)(x y '' 三. 求圆域222)(a c y x ≤-+ )0(c a <<绕x 轴旋转而成的旋转体的体积(10分)四. 设有底面为等边三角形的一个直柱体,其体积为常量V (0>V ),若要使其表面积达到最小,底面的边长应是多少?(10分)五. 设函数f (x ) 在[0,1]上可导且0< f (x )<1,在(0,1)上有1)(' ≠x f ,证明在(0,1)内有且仅有一个x ,使f (x )=x .(8分)六. 连接两点M (3, 10, -5)和N (0, 12, z )的线段平行平面0147=-++z y x ,确定N 点的未知坐标(6分)七、自点P (2, 3, -5)分别向各坐标面作垂线,求过三个垂足的平面方程(7分)1999级一. 试解下列各题(30分) 1. 求)12(lim +-+∞→n n n n2.验证罗尔定理对32)(2--=x x x f 在[-1,3]上的正确性3.x arctgx x x 30sin lim -→ 4.求⎰++dx x x 1322 5.设)(x y y =由方程1=++y xy x 确定,求y ' 二.试解下列各题(28分)1.设⎩⎨⎧+=+=t t y t t x 2222,求22dx y d 2.求⎰-πθθ 0 3)sin 1( d 3.求⎰1 0 dx e x4.试求空间直线⎩⎨⎧-=+=7652z y z x 的对称式方程三.求由y = ln x , y =0和 x = 2所围图形的面积及该平面图形绕y 轴旋转所得旋转体的体积(12分)四. 求函数⎰+=xtdt t y 0arctan )1(的极小值(12分)五. 设j i a +=,k j b +-=2,求以向量b a,为边的平行四边形的对角线的长度(8分)六. 证明:当0≠x 时,有不等式x e x +>1(10分)一、试解下列各题(30分)1. 求x x x )3l n (2lim+∞→ ; 2. 求dx x x⎰-31 ; 3. 设x x e e y -+=,求y '' ;4. 求曲线)2()1(2-+=x x y 的凹凸区间;5. 求过球面9)4()1()3(222=++++-z y x 上一点2)- 0, ,1(p 的切平面方程。
大一高数期末题(附答案)

2001级高等数学(上)期末试卷(部分摘抄)一、填空题(每小题3分、共24分)8、函数, 0(), 0x x f x x x ≥⎧=⎨-<⎩在点0=x 处的导数为 不存在 ; 二、计算下列各题(每小题5分,共25分).),arcsin(ln ,2y x x y '=求[解]:xx x x xx y 22ln 11)arcsin(ln 1ln 11)arcsin(ln -+=-+=' .)sin cos (2)sin cos (2cos cos (2cos 2sin 2sin 5C x x x t t t tdt t t t td tdt t dx x tx +--=--=--=-==⎰⎰⎰⎰=三、计算下列各题(每小题5分,共25分)1、122)1(111=-=-⎰⎰-xdx dx x五、(7分)求过点P(2,0,-3)且与直线⎩⎨⎧=+-+=-+-012530742:z y x z y x L 垂直的平面方程.解:平面,0742:1=-+-z y x π法向量{}4,2,11-=n ,平面,01253:2=+-+z y x π法向量{}2,5,32-=n ,取所求平面的法向量},11,14,24{25342121-=--=⨯==kj i n n s n由点法式方程可得所求平面方程为 ,0)3(11)0(14)2(24=++-+--z y x 即,081111424=-+-z y x 六、(6分)求由曲线b y x y ln ,ln ==及)0(0>=b x 所围图形的面积. 解:曲线b y x y ln ,ln ==及)0(0>=b x 所围图形为无界区域,其面积为b b x x b b dx x b S b b=+-=-=+⎰0ln ln )ln (ln2002级高等数学(上)期末试题(部分摘抄)一、填空题(3分×10=30分)3、设⎰=Φ,sin )(2dt t t x b x 则.sin 2x x dxd -=Φ6、设x cos 是)(x f 的一个原函数,则x x f cos )('-=.7、⎰=--dx xx 221211arcsin 0 。
2005—2006学年度第一学期期末考试

2005—2006学年度第一学期期末考试高一数学试卷一、选择题:(本大题共10个小题,每小题4分,共40分。
其中每小题只有一个正确选项,请把正确选项的序号填在题后括号内) 1、函数x y +=2的定义域是( )(A )]2,(-∞ (B )]2,(--∞ (C )]2,3[- (D )),2[+∞-2、命题p :0)2)(1(=--y x ,命题q :0)2()1(22=-+-y x ,命题p 是命题q 成立的( )(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件 3、命题“a ,b 都是奇数,则a+b 是偶数”的逆否命题是( )(A )a ,b 都不是奇数,则a+b 不是偶数(B )a+b 是偶数,则a ,b 都是奇数(C )a+b 不是偶数,则a ,b 都不是奇数(D )a+b 不是偶数,则a ,b 不都是奇数 4、若lg2=0.3010,则81lg4lg +的值为( ) (A )0.3010 (B )0.6020 (C )-0.3010 (D )-0.6020 5、已知函数)(x f y =的反函数为121-=x y ,则)2(f 的值为( ) (A )6 (B )5 (C )3 (D )2 6、把集合}66{N xNx M ∈-∈=用列举法表示出来的集合为( ) (A ){0,1,2,3,4,5} (B ){0,3,4} (C ){0,4,5} (D ){0,3,4,5}7、已知函数)(x f y =是一次函数,且23)1(+=+x x f ,则)(x f 的解析式为( ) (A ))2(3-x (B )13-x (C )x 3 (D )13+x 8、已知数列}{a 的前n 项和12-=n S ,则其第四项a 的值为( )(A ) 8 (B ) 4 (C ) 2 (D ) 19、给定映射33:2--→x x x f ,在映射f 下,象1所有可能的原象的集合为( ) (A ){1,4} (B ){1,-4} (C ){-1,4} (D ){-1,-4}10、若甲、乙两个工厂88年至2003年年产值的变化如图所示,则下列结论中,错误的是( )(A )两厂的年产值有三年相同 (B )甲厂年产值仅有两年超过乙厂 (C )1991年前,甲厂年产值低于乙厂(D )1998年至2003年底,甲厂年产值比乙厂增长的快二、填空题:(每小题5分,共20分)11、已知集合U={0,1,2,3,4,5,6,7,8,9},集合A={1,2,4,8,9},集合B={0,3,5,6,9},则=⋂B A C u )(12、已知两实数a 、b 的等差中项为2,那么a3与b3的等比中项为 13、定义在R 上的函数满足1)(2)1(-=+x f x f ,且2)1(=f ,则=)4(f 14、已知等差数列}{n a 的公差为2,若1a ,3a ,4a 成等比数列,则2a =三、解答题:(本大题共有6个小题,共60分) 15、(8分)已知数列}{n a 是等差数列且32=a ,1910=a(1)求数列}{n a 的公差d ; (2)求数列}{n a 的通项公式; (3)求数列}{n a 的前n 项和。
2005-2006高数下(8学分)期末试题A及解答

华东理工大学2005-2006学年高等数学下(8学分)期末考试试卷A 2006.6一. 填空题(每小题4分, 共36分) 1.一阶微分方程0)21(22=-+'y x y x 的通解是y =____________.2.微分方程052=+'+''y y y 满足初始条件3)0(,1)0(='=y y 的特解为y =___________.3.已知ABC ∆的三个顶点为)2,3,4(),4,3,2(),1,1,1(C B A =, 则ABC ∆的面积S =_______.4.已知)0,2,2(),1,,0(-=ππB A , 则函数)sin(2yz e u x =在点A 处沿方向B A方向 导数A lu |∂∂=_______.5.空间曲线)(),(z g y y f x ==(其中g f ,是可微函数)上对应于0z z =点的切线方程是_____________________6.设函数)(⋅f 具有二阶连续导数, ),(⋅⋅g 具有二阶连续偏导数, ),()(z xyz g z xy f u ++=,则zx u ∂∂∂2=_____________.7.二次积分dy e dx xy ⎰⎰-2222的值等于______________.8.某公司生产产品A , 当生产到第x 个单位的边际成本是34)(+='x x c (万元/单位), 其固定成本是100万元, 则生产量为10单位时的平均成本等于_______(万元/单位). 9.设22224|),,{(y x z y x z y x --≤≤+=Ω, 则Ω的体积V =________. 10.函数)1ln(),,(2z x ye z y x f z ++=在点)0,1,1(P 处的梯度)(P gradf ________.二. 选择题(每小题4分, 共32分)1. 微分方程1+=-''x e y y 的一个特解应具有形式(式中b a ,为常数), ( ) (A)b ae x +; (B)b axe x +; (C)bx ae x +; (D)bx axe x +.2.函数),(y x f y =在点),(00y x 处具有偏导数),(00y x f x , ),(00y x f y 是该函数在点),(00y x 可微的()(A)充要条件; (B)必要条件; (C)充分条件; (D)既非充分条件也非必要条件.3.已知非零向量b a,满足||||b a b a +=-,则必成立的是 ( )(A)b a b a +=-; (B)b a =; (C)0=⨯b a ; (D)0=⋅b a.4.下列广义积分中收敛的是( ) (A)dx xx e⎰1ln 1; (B)dx xx e⎰+∞ln 1; (C)dxxx e⎰+∞ln 1; (D)dxxx e⎰12ln 1.5*.二元函数⎪⎩⎪⎨⎧=≠+=)0,0(),(,0)0,0(),(,),(22y x y x y x xyy x f 在)0,0(点处( )(A)连续且偏导数存在; (B)连续, 偏导数不存在;(C)不连续, 偏导数存在; (D)不连续, 偏导数不存在三. (本题8分) 设函数yz e x u =, 而)(x z z =与)(y z z =分别是由方程1=-xz e z 与2sin =-y z e z所确定,计算yux u ∂∂∂∂,. 四. (本题6分)曲线过点)1,1(, 其上任一点与原点的距离平方等于该点横坐标与该点的法线在x 轴上截距的乘积的两倍, 求曲线方程.五. (本题6分) 计算数列极限2)1tan511(lim 2nn nn-+∞→.六. (本题8分)在曲面1:=++∑z y x 上作一切平面, 使它与三个坐标面所围成的四面体体积最大, 求切平面方程.七、(本题8分)设1D 是由抛物线22x y =和直线2,==x a x 及0=y 所围成的平面区域,2D 是由抛物线22x y =和直线a x y ==,0所围成的平面区域, 其中20<<a .(1)求1D 绕x 轴旋转而生成的旋转体体积)(1a V , 求2D 绕x 轴旋转而生成的旋转体体积)(1a V ; (2)当a 取何值时, )()(21a V a V +取得最大值? 并求此最大值. 八、设函数)(x f 在]1,0[上连续, 2)(1=⎰dx x f , 证明:3)(1)(11)(≥⋅⎰⎰dx x f dx ex f x f .华东理工大学2005-2006学年第二学期《高等数学(下)》课程期终考试试卷参考答案与评分标准一.填空题(每小题4分,共40分)1.cx x +-2||ln 1 2.)2si n (cos x x e y x +=- 3. 62 4.32π+5.1)()()()]([)]([000000z z z g z g y z g z g f z g f x -='-='⋅'- 6. 22321221g zx g zy g zf y -+-''7. 41--e 8. 33 9.二.选择题(每小题4分,共32分):5.C;A ; 4.D; 3.;B 2.;1.B三.xz xyeexu yzyz∂∂+=∂∂,yz xyexze yu yzyz∂∂+=∂∂而xe z xz z-=∂∂,ye z z yz zsin cos -=∂∂, ------------------------------------------------(2分xe xyzeex z zyzyz-+=∂∂, ------------------------------------------------(2分)ye xyzexzeyz zyzyzsin -+=∂∂, -----------------------------------------(2分)四.曲线在点),(y x 处的法线方程为: )(1x X y y Y -'-=-,令0=Y , 得曲线在x 轴上截距为: y y x X '+=,根据题意得: )(222y y x x y x '+=+或 x y xy y -=-'212, 1)1(=y , -------------( 2分)令2y z =,x z xdxdz -=-1 ------------(3分))())(()1()1(2c x x c dx ex ez y dxxdxx+-=+-==⎰⎰-⎰--, -------------------------------------(3分)由1)1(=y , 得2=c ,所求曲线为)2(2x x y -=或.222x y x =+ ----------------------------(1分)六.(本题8分)曲面∑在点),,(000z y x 处的切平面方程为:0)(1)(1)(1000000=-+-+-z z z y y y x x x , -------------------------------(2分),100=++z z y y x x ,截距分别为000,,z y x ,问题为求xyz V 61=在条件1000=++z y x 下的最大值, ---------(2分)令 )1(6100-+++=z y x xyz L λ,⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-++==+==+==+=010212102121,02121z y x L zzxy L yy xz L xx yz L zy yxλλλ, 解得: 91===z y x ,-----------------------------------------(3分)因为问题的最大值存在,故91===z y x 就是最大值点,此时截距为31000===z y x ,所求切平面为: 31=++z y x . --------------------------(1分)七、)32(54)2()(52221a dx x a V a-==⎰ππ, -------------------------(2分)422222)(a dx x x a V aππ=⋅=⎰, -------------------------(2分)设)()()(21a V a V a V +=, 令 0)1(4)(3=-='a a a V π, 得唯一驻点: 1=a , ----(2分)当10<<a 时, 0)(>'a V ; 当21<<a 时, 0)(<'a V ;故当1=a 时, )()()(21a V a V a V +=取到最大值π5129)1(=V . --------------------(2分) 八、dx x f dx e x f x f ⎰⎰⋅110)()(1)(dy y f dx ex f x f ⎰⎰⋅=11)()(1)(⎰⎰=Dx f dxdy ey f x f )()()(,其中}10,10|),{(≤≤≤≤=y x y x D , --------------------(2)又dx x f dy ey f y f ⎰⎰⋅=11)()(1)(⎰⎰=Dy f dxdy ex f y f )()()(,所以dx x f dx ex f x f ⎰⎰⋅11)()(1)(⎰⎰+=Dy f x f dxdy ex f y f ey f x f ])()()()([21)()(⎰⎰+≥Dy f x f dxdye)]()([21--------------------(2)⎰⎰++≥Ddxdy y f x f ]2)()(1[3)(21)(2111111=++≥⎰⎰⎰⎰dy y f dx dy dx x f . ----------(2)填空题解答:1. 0)21(22=-+'y x y x , 是可分离变量微分方程,分离变量得: dx xx dy y )12(2-=, 积分得: c x x y--=-||ln 12,化简为:cx x +-2||ln 1.2. 特征方程: 0522=++λλ, 解得: i 212542222,1±-=⨯-±-=λ,故通解为: )2si n (co s x x e y x +=-. 3.|}1,2,3{}3,2,1{|21||21⨯=⨯=AB AC S 6216641621|}4,8,4{|21=++=--=.4.}1,2,2{--=B A , 32cos =α,32cos -=β, 31cos -=γ ,0|)sin(2|2==∂∂A xA exy x xu ,1|)cos(|2-==∂∂A xA eyz z yu ,π-==∂∂A xeyz y zu |)cos(2,γβαcos |cos |cos |A A A zu yu xu lu ∂∂+∂∂+∂∂=∂∂=323132)1(320ππ+=-⨯+-⨯-+⨯.。
广州大学2005-2006(1)高等数学试题(A卷)
广州大学2005-2006一.填空题(每空2分,本大题满分20分)1.设⎪⎩⎪⎨⎧≥<+=-0,0,)1()(11x e x ax x f x x ,则=+→)(lim 0x f x ______. 当常数=a ______时,)(x f 在0x =处连续.2.曲线xx x y 1sin 322-=有水平渐近线=y ______和铅直渐近线=x ______. 3.设2x y =,当2=x ,01.0=∆x 时,=∆y ________,=dy ________. 4.曲线23x x y -=的拐点横坐标为=x ______,凸区间为__________.5.设C x dt t f x+-=⎰90)1()(,则常数=C ______,=)(x f ____________.二.选择题 (每小题2分, 本大题满分10分)1. 当0→x 时, x x -tan 是x ( )无穷小.(A) 高阶; (B) 低阶; (C) 同阶; (D) 等价.2. 函数3x y =在点0=x 处 ( ).(A) 不连续; (B) 连续但不可导; (C) 可导; (D) 可微. 3.3x y =在闭区间]1,0[上满足拉格朗日中值定理,则定理中的=ξ( ). (A) 3; (B) 3-; (C) 33; (D) 33-. 4. 若函数)(x f 在点0x x =处取得极小值, 则必有 ( ) .(A) 0)(0='x f ; (B) 0)(0='x f 或)(0x f '不存在;(C) 0)(0>''x f ; (D) 0)(0='x f 且0)(0>''x f .5. 设x cos 为)(x f 的一个原函数, 则=')(x f ( ).(A) x sin ; (B) x cos ; (C) x sin -; (D) x cos -.三.解答下列各题(每小题6分,本大题满分12分) 1.=y )11(sin 2x-,求y '. 2.xx x y )1ln(arctan 22+-=,求dy . 四.解答下列各题(每小题6分,本大题满分18分)1.求曲线⎩⎨⎧++=+-=1135t t y t t x 上与参数1=t 相应的点处的切线方程.2.)1cos(11lim 231--+--→x x x x x . 3.设⎪⎩⎪⎨⎧=≠=-0,00,)(21x x e x f x ,求()x f '.五.计算下列积分(每小题6分,本大题满分18分)1.⎜⎠⎛+-dx x x x 123. 2.⎜⎠⎛++2021dx x x . 3.⎰∞+-0dx xe x .六.(本题满分10分)设平面图形是由曲线x y sin =(π≤≤x 0)与x 轴所围成.1) 求此平面图形的面积S ;2) 求此平面图形绕y 轴旋转而成的旋转体的体积V .七.(本题满分5分)证明: 当1>x 时, 1ln ->x x x .八.(本题满分7分)1)设)(x f 在]1,0[上连续,证明⎜⎠⎛+-+=⎜⎠⎛+102102)11(111)(dx xx f x dx x x f ; 2)计算定积分⎜⎠⎛++=1021)1ln(dx x x I .。
2005-2006第一学期工商学院高数期末试卷A(8学分)答案
2 x 1 2
](1
2 2 ) e 2x 1
1
(cot x) ln x . 2.求极限 lim
x 0 1 ln x
(cot x) 解: lim
x 0
e = lim
x 0
1 ln cot x ln x
e 1
1 ( csc 2 x) ln cot x x cot x 其中 lim lim lim ( ) 1 . x 0 x 0 x 0 1 ln x sin x cos x x
Q
50 Q 10Q 200 2
1 Q 2 15Q 200 2
L(Q) Q 15 ,所以,当 Q 15 时, L(Q) 0 .
当 Q 15 时,工厂日总利润 L 最大.
6
九、(7分)某工厂生产某产品,日总成本为 C 元, 其中固定成本为 200 元, 每多生产一单位产品, 成本增加 10 元. 该商品的需求函数为 Q 50 2 P ,求 Q 为多少时工厂日总利润 L 最大?
得分
解: L(Q) R(Q) C (Q)
Q P (10Q 200)
1 1 ( , ) ,下凸区间为 ( ,1), (1, ) ,极小值为 f (0) 1 . 2 2
x 2 , x 1 七、 (5分)确定常数 a 、 b 的值,使函数 f ( x) 在其定义域内可导. ax b , x 1
得分
解:显然函数 f ( x) 在 x 1 及 x 1 时是可导的, x 1 处,
得分
五、证明题(每题5分,共 10分)
得分
1.函数 f ( x) 和 g ( x) 都在 [0, 1] 上连续,在 (0, 1) 内可导, f (1) g (1) ,且对所有 x (0, 1) 有
2005-2006学年度第一学期高一数学期考试卷(2)
2005——2006学年度第一学期期末考试试卷高 一 数 学一、选择题( 5*12=60分)1. 若U={1,2,3,4},M={1,2}, N={2,3}, 则C U (M ∪N)=( )(A){1,2,3}(B) {4}(C) {1,3,4}(D) {2}2、下列根式中,分数指数幂的互化,正确的是 ( ) A.12()(0)x x =-> B13(0)y y =<C.340)xx -=> D.130)x x -=≠3.函数()2log 1y x =+ ( )(A )()0,2(B )[]0,2(C )()1,2-(D )(]1,2-4、正方体ABCD-A 1B 1C 1D 1各面上的对角线与正方体的对角线AC1垂直的条数是 ( )A、4条 B、6条 C、10条 D、12条5.一个水平放置的三角形的斜二侧直观图是等腰直角三角形'''A B O ,若''1O B =,那么原∆ABO 的面积是(A .12B .2CD .6、若A(-2,3),B(3,-2),C(21,m)三点共线,则m的值为( ) A、21 B、21- C、-2 D、27、以A(1,3)和B(-5,1)为端点线段AB的中垂线方程是 ( )A、3x-y+8=0 B、3x+y+4=0 C、2x-y-6=0 D、3x+y+8=08、方程022=++-+m y x y x 表示一个圆,则m 的取值范围是 ( )A 、2≤mB 、m < 2C 、 m <21 D 、21≤m9、圆1622=+y x 上的点到直线03=--y x 的距离的最大值是--------------( )A .223 B .2234- C .2234+ D .010、直线过点P (0,2),且截圆224x y +=所得的弦长为2,则直线的斜率为( )A 、32±B 、C 、3±D 、11.下图代表未折叠正方体的展开图,将其折叠起来,变成正方体后的图形是( )A .B .C .D .12、 直线l :b x y +=与曲线c :21x y -=有两个公共点,则b 的取值范围是( ) A. 22<<-b B. 21≤≤b C. 21<≤b D. 21<<b二、填空题(4*4=16分)13、函数2()23f x x mx =-+,当[)2,x ∈-+∞时是增函数,则m 的取值范围是14.一个正四棱柱的侧面展开图是一个边长为4的正方形,则它的体积为___________.15、已知A(-2,3,4),在y轴上求一点B,使AB =,则点B的坐标为 。
2005-2006第一学期高数期末A卷
2
x
2. 求极限
lim[(1 x)e
x
1 x
x]
第 2 页 共 5 页
2
对外经济贸易大学信息学院
高等数学(上)
期末考试试卷 A
f x) 二阶可导,求 y 。 3. 设 y f ln 1 x ,其中 (
4. 设参数方程
x ln(1 t 2 ) y t arctgt
B D
f '(0) f (1) f (0) f '(1) f '(0) f '(1) f (1) f (0)
第 1 页 共 6 页
1
对外经济贸易大学经贸学院
高等数学(上)
期末考试试卷 A
5 3.函数 y ln sin x 在 , 上满足罗尔定理的 = ( 6 6
(1) f x 在 , 上连续; (2) f x 在 , 上可导。 解: (1)显然 f x 除了 x 0 外必连续, 而 f 0 0 lim ln ax b ln b f 0 , f 0 0 lim sin x 0 ,
D
) 。
(B) ( x x0 )[ f ( x) f ( x0 )] 0 ; (D) lim
t x0
f (t ) f ( x) 0 ( x x0 ) ; (t x) 2
2
t x0
f (t ) f ( x) 0 (t x) 2
( x x0 ) 。
得分
三、计算题: (每题 6 分,共 42 分) 1. 求极限 lim(1 x ) tan
2
5. 设 f ( x) 为可导函数,且 lim 切线斜率是_________.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2005-2006(一)高等数学期末考试试题A 卷 2006/01/11 (注意:本试题共有九道大题,满分100分,考试时间100分钟)
一.填空题(本题共有5道小题,每小题3分,满分15分。
)
1.1=x 是函数()⎩
⎨⎧>-≤-=.1,3,1,1x x x x x f 的第 类间断点。
2.函数()x
x x f ln =在区间 上单调增加。
3.函数x y 2sin =的微分()=x d 2sin 。
4.()22
cos x x x dx π
π-+=⎰ 。
5.曲线3y x =的拐点为 。
二.选择题(本题共有5道小题,每小题3分,满分15分。
) 1.=⎪⎭⎫ ⎝⎛--∞+→x x x 11lim 。
(A ) e ; (B ) 1-e ; (C ) 1; (D )0
2. 若函数()x f 在点0x 不连续,则()x f 在0x 。
(A )必定可导; (B ) 必不可导;
(C )不一定可导; (D ) 必无定义
3.若()()x f x F =',则 ()=⎰x F d 。
(A ) ()x f ; (B ) ()x F ; (C ) ()C x f +; (D )()C x F + 4.下列积分中,值等于零的是 。
(A )dx x 211
⎰
-; (B ) dx x 321⎰-; (C )dx ⎰-11; (D )
dx x x sin 211⎰- 5.反常积分2111dx x +∞
=+⎰。
(A ) 4π
-; (B ) 0; (C ) 4
π; (D )发散 三.求极限(本题共有2道小题,每小题6分,满分12分。
)
1. 21cos 02lim x dt e x t x ⎰-→;
2. 11lim sin sin x x x x x →∞⎛⎫+ ⎪⎝⎭。
四.求导数(本题共有2道小题,每小题6分,满分12分。
)
1.设函数y =y 的导数y '。
2.设函数()x y y =由方程组⎩⎨⎧=+-+=0
1sin 232y t e t t x y 所确定,求 0t dy dx =
五.计算下列积分(本题共有2道小题,每小题6分,满分12分。
)
1.()11dx x x -⎰; 2.2
0sin 1cos x x dx x π++⎰。
六.(本题满分10分) 证明不等式 y x y x -≤-sin sin
七. (本题满分10分)设函数2x y =定义在]1,0[上,t 为]1,0[上任意一点。
问当t 为何值时,图中两阴影部分(如图)的面积1A 与2A 之和具有最小值?
八.(本题满分8分)设函数()x f 在[]1,0上有二阶连续导数,则
()()()()()dx x f x x f f dx x f ''--+=⎰⎰12121010
1
0。
九.(本题满分6分) 设函数()x f 在[]1,0上连续,在()1,0内可导,且
()()121,010=⎪⎭
⎫ ⎝⎛==f f f ,试证至少存在一点()1,0∈ξ,使得()1=ξ'f 。