2019-2020高中高二数学期中试卷(含答案)
2019-2020学年高二下学期期中考试数学试题(解析版)

2019-2020学年高二第二学期期中数学试卷一、选择题(共10小题).1.(x +1)n 的展开式共有11项,则n 等于( ) A .9B .10C .11D .82.已知函数f (x )=sin x ,其导函数为f '(x ),则f '(π3)=( )A .−12B .32C .12D .−323.从0,1,2,3这四个数中任取两个不同的数组成一个两位数,则这个两位数是偶数的概率为( ) A .13B .49C .12D .594.在(x +2)5的展开式中,二项式系数的最大值为( ) A .5B .15C .10D .205.已知正态密度曲线的函数关系式是f (x )=2πσe (x−μ)22σ2,设有一正态总体,它的概率密度曲线是函数f (x )的图象,且f (x )=18πe (x−10)28(x ∈R ),则这个正态总体的平均数μ与标准差σ分别是( ) A .10与8 B .10与2C .8与10D .2与106.设n ∈N*,则Cn01n 80+Cn11n ﹣181+C n21n ﹣282+C n31n ﹣383+……+C nn−1118n ﹣1+Cnn 108n 除以9的余数为( )A .0B .8C .7D .27.在比赛中,如果运动员甲胜运动员乙的概率是23,那么在五次比赛中,运动员甲恰有三次获胜的概率是( )A.40243B.80243C.110243D.202438.设(1+x)n=a0+a1x+a2x2+a3x3+……+a n x n,若a0+a1+a2+a3+……+a n=64,则展开式中系数最大的项是()A.15x2B.21x3C.20x3D.30x39.某旅游公司为了推出新的旅游产品项目,派出五名工作人员前往重庆的三个网红景点一“洪崖洞夜景、轻轨穿楼、长江索道”进行团队游的可行性调研.若每名工作人员只去一个景点,每个景点至少有一名工作人员前往,其中工作员甲、乙需要到同一景点调研,则不同的人员分配方案种数为()A.18 B.36 C.54 D.7210.设函数f(x)=ax+xx−1(x>1),若a是从1,2,3三数中任取一个,b是从2,3,4,5四数中任取一个,那么f(x)>b恒成立的概率为()A.16B.14C.34D.56二、多项选择题(本大题共2小题,每小题5分,共10分.全部选对得5分,部分选对得3分,有选错得0分)11.若随机变量X服从两点分布,其中P(X=0)=13,E(X)、D(X)分别为随机变量X均值与方差,则下列结论正确的是()A.P(X=1)=E(X)B.E(3X+2)=4C.D(3X+2)=4 D.D(X)=4912.已知函数f(x)=xlnx,若0<x1<x2,则下列结论正确的是()A.x2f(x1)<x1f(x2)B.x1+f(x1)<x2+f(x2)C .f(x 1)−f(x 2)x 1−x 2<0D .当lnx >﹣1时,x 1f (x 1)+x 2f (x 2)>2x 2f (x 1) 三、填空题(本大题共4小题,每小题5分,共20分) 13.函数在f (x )=﹣x +1x在[1,2]上的最大值是 .14.随机变量ξ服从正态分布N (1,σ2),已知P (ξ<0)=0.3,则P (ξ<2)= .15.设(1+ax )2020=a 0+a 1x +a 2x 2+……+a 2019x 2019+a 2020x 2020,若a 1+2a 2+3a 3+…+2019a 2019+2020a 2020=2020a ,则实数a = .16.在《爸爸去哪儿》第二季第四期中,村长给6位“萌娃”布置一项搜寻空投食物的任务.已知:①食物投掷地点有远、近两处;②由于Grace 年纪尚小,所以要么不参与该项任务,但此时另需一位小孩在大本营陪同,要么参与搜寻近处投掷点的食物;③所有参与搜寻任务的小孩须被均分成两组,一组去远处,一组去近处,那么不同的搜寻方案有 种.(以数字作答)四、解答题(本大题共6小题,共计70分) 17.有4名学生和2位老师站成一排合影. (1)若2位老师相邻,则排法种数为多少? (2)若2位老师不相邻,则排法种数为多少?18.甲、乙、丙三位学生各自独立地解同一道题,已知甲、乙做对该题的概率都为13,丙做对该题的概率为14,且三位学生能否做对相互独立,设随机变量X 表示这三位学生中做对该题的人数,其分布列为:X0123P13a b136(1)求a,b的值;(2)求X的数学期望.19.在(x+2)10的展开式中,求:(1)含x8项的系数;(2)如果第3r项和第r+2项的二项式系数相等,求r的值,20.在一次购物抽奖活动中,假设10张奖券中有一等奖奖券1张,可获价值50元的奖品,有二等奖奖券3张,每张可获价值10元的奖品,其余6张没有奖品.(1)顾客甲从10张奖券中任意抽取1张,求中奖次数X的概率分布.(2)顾客乙从10张奖券中任意抽取2张,①求顾客乙中奖的概率;②设顾客乙获得的奖品总价值Y元,求Y的概率分布及期望.21.2018年10月28日,重庆公交车坠江事件震惊全国,也引发了广大群众的思考﹣﹣如何做一个文明的乘客.全国各地大部分社区组织居民学习了文明乘车规范.A社区委员会针对居民的学习结果进行了相关的问卷调查,并将得到的分数整理成如图所示的统计图.(Ⅰ)求得分在[70,80)上的频率;(Ⅱ)求A社区居民问卷调査的平均得分的估计值;(同一组中的数据以这组数据所在区间中点的值作代表)(Ⅲ)由于部分居民认为此项学习不具有必要性,A社区委员会对社区居民的学习态度作调查,所得结果统计如下:(表中数据单位:人)认为此项学习十分必要认为此项学习不必要50岁以上400600 50岁及50岁以下800200根据上述数据,计算是否有99.9%的把握认为居民的学习态度与年龄相关.附:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.P(K2≥k0)0.1000.0500.0100.001 k0 2.706 3.841 6.63510.82822.已知函数f(x)=(ax2+x+a)e﹣x(a∈R).(Ⅰ)当a=0时,求f(x)在点(0,f(0))处的切线方程;(Ⅱ)若a≥0,求函数f(x)的单调区间;(Ⅲ)若对任意的a≤0,f(x)≤bln(x+1)在x∈[0,+∞)上恒成立,求实数b的取值范围.参考答案一、单项选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(x+1)n的展开式共有11项,则n等于()A.9 B.10 C.11 D.8【分析】直接利用二项式定理的性质写出结果即可.解:因为(x+1)n的展开式共有11项,则n+1=11⇒n=10;故选:B.【点评】本题考查二项式定理的简单性质的应用,基本知识的考查.2.已知函数f(x)=sin x,其导函数为f'(x),则f'(π3)=()A.−12B.32C.12D.−32【分析】可以求出导函数f′(x)=cos x,从而可得出f′(π3)的值.解:∵f(x)=sin x,∴f′(x)=cos x,∴f′(π3)=cosπ3=12.故选:C.【点评】本题考查了基本初等函数的求导公式,已知函数求值的方法,考查了计算能力,属于基础题.3.从0,1,2,3这四个数中任取两个不同的数组成一个两位数,则这个两位数是偶数的概率为()A.13B.49C.12D.59【分析】基本事件总数n=3×3=9,这个两位数是偶数包含的基本事件个数m=1×3+1×2=5.由此能求出这个两位数是偶数的概率.解:从0,1,2,3这四个数中任取两个不同的数组成一个两位数,基本事件总数n=3×3=9,这个两位数是偶数包含的基本事件个数m=1×3+1×2=5.∴这个两位数是偶数的概率为p=mn=59.故选:D.【点评】本题主要考查概率的求法,考查古典概型计算公式等知识,意在考查学生的转化能力和计算求解能力.4.在(x+2)5的展开式中,二项式系数的最大值为()A.5 B.15 C.10 D.20【分析】展开式中共有6项,根据展开式中间两项的二项式系数最大,故第3,4项的二项式系数最大,问题得以解决.解:展开式中共有6项,根据展开式中间两项的二项式系数最大故第3,4项的二项式系数最大,故C52=C53=10,故选:C.【点评】本题主要考查二项式系数的性质及二项展开式的通项公式是解决二项展开式的特定项问题的工具,属于基础题. 5.已知正态密度曲线的函数关系式是f (x )=2πσe (x−μ)22σ2,设有一正态总体,它的概率密度曲线是函数f (x )的图象,且f (x )=8πe (x−10)28(x ∈R ),则这个正态总体的平均数μ与标准差σ分别是( ) A .10与8B .10与2C .8与10D .2与10【分析】把已知函数解析式转化为正态密度曲线的函数关系式求解.解:∵f (x )=18πe (x−10)28=22π(x−10)22×22,∴平均数μ=10,标准差σ=2. 故选:B .【点评】本题考查正态密度曲线的函数,是基础题. 6.设n ∈N*,则Cn 01n 80+C n 11n ﹣181+C n 21n ﹣282+C n 31n ﹣383+……+C nn−1118n ﹣1+Cnn 108n 除以9的余数为( )A .0B .8C .7D .2【分析】直接利用二项式定理把条件转化即可求解结论. 解:因为Cn 01n 80+C n 11n ﹣181+C n 21n ﹣282+C n 31n ﹣383+……+C nn−1118n ﹣1+Cnn 108n =(1+8)n =9n ; 故除以9的余数为0; 故选:A .【点评】本题考查余数的求法,是中档题,解题时要认真审题,注意组合数性质及二项式定理的合理运用.7.在比赛中,如果运动员甲胜运动员乙的概率是23,那么在五次比赛中,运动员甲恰有三次获胜的概率是( ) A .40243B .80243C .110243D .20243【分析】由条件利用n 次独立重复实验中恰好发生k 次的概率计算公式,计算求得结果. 解:根据每次比赛中,甲胜运动员乙的概率是23,故在五次比赛中,运动员甲恰有三次获胜的概率是C 53•(23)3•(1−23)2=80243, 故选:B .【点评】本题主要考查n 次独立重复实验中恰好发生k 次的概率计算公式,属于基础题. 8.设(1+x )n =a 0+a 1x +a 2x 2+a 3x 3+……+a n x n ,若a 0+a 1+a 2+a 3+……+a n =64,则展开式中系数最大的项是( ) A .15x 2B .21x 3C .20x 3D .30x 3【分析】由题意可得 a 0+a 1+a 2+…+a n =(1+1)n =64,得 n =6,由此求得展开式中系数最大的项.解:因为 a 0+a 1+a 2+…+a n =(1+1)n =64,得 n =6, 故展开式中系数最大的项是第四项;即∁63x 3=20x 3;故选:C .【点评】本题主要考查二项式定理的应用,二项式系数的性质,属于中档题. 9.某旅游公司为了推出新的旅游产品项目,派出五名工作人员前往重庆的三个网红景点一“洪崖洞夜景、轻轨穿楼、长江索道”进行团队游的可行性调研.若每名工作人员只去一个景点,每个景点至少有一名工作人员前往,其中工作员甲、乙需要到同一景点调研,则不同的人员分配方案种数为( ) A .18B .36C .54D .72【分析】根据分步计数原理,把2元素组合一个复合元素,再进行组合和分配,问题得以解决.解:由于工作员甲、乙需要到同一景点调研,把A,B看作一个复合元素,则本题等价于4个元素分配到3个位置,每一个位置至少一个,故有C42A33=36种,故选:B.【点评】本题考查了排列组合混合问题,先选后排是最基本的思想.10.设函数f(x)=ax+xx−1(x>1),若a是从1,2,3三数中任取一个,b是从2,3,4,5四数中任取一个,那么f(x)>b恒成立的概率为()A.16B.14C.34D.56【分析】先把f(x)的解析式变形,用分离常数法,然后用均值不等式求出最小值,本题是一个古典概型,试验发生包含的所有事件是12个,满足条件的事件是10个,列举出结果.解:x>1,a>0,f(x)=ax+x−1+1x−1=ax+1x−1+1=a(x﹣1)+1x−1+1+a≥2√a+1+a=(√a+1)2,当且仅当x=√1a+1>1时,取“=”,∴f(x)min=(√a+1)2,于是f(x)>b恒成立就转化为(√a+1)2>b成立.设事件A:“f(x)>b恒成立”,则基本事件总数为12个,即(1,2),(1,3),(1,4),(1,5);(2,2),(2,3),(2,4),(2,5);(3,2),(3,3),(3,4),(3,5);事件A包含事件:(1,2),(1,3);(2,2),(2,3),(2,4),(2,5);(3,2),(3,3),(3,4),(3,5)共10个由古典概型得P(A)=1012=56,故选:D.【点评】在使用古典概型的概率公式时,应该注意:(1)要判断该概率模型是不是古典概型;(2)要找出随机事件A包含的基本事件的个数和试验中基本事件的总数;当解析式中含有分式,且分子分母是齐次的,注意运用分离常数法来进行式子的变形,在使用均值不等式应注意一定,二正,三相等.二、多项选择题(本大题共2小题,每小题5分,共10分.全部选对得5分,部分选对得3分,有选错得0分)11.若随机变量X服从两点分布,其中P(X=0)=13,E(X)、D(X)分别为随机变量X均值与方差,则下列结论正确的是()A.P(X=1)=E(X)B.E(3X+2)=4C.D(3X+2)=4 D.D(X)=49【分析】推丑陋同P(X=1)=23从而E(X)=0×13+1×23=23,D(X)=(0−23)2×13+(1−23)2×23=29,由此能过河卒子同结果.解:随机变量X服从两点分布,其中P(X=0)=13,∴P(X=1)=23,E (X )=0×13+1×23=23,D (X )=(0−23)2×13+(1−23)2×23=29,在A 中,P (X =1)=E (X ),故A 正确;在B 中,E (3X +2)=3E (X )+2=3×23+2=4,故B 正确;在C 中,D (3X +2)=9D (X )=9×29=2,故C 错误; 在D 中,D (X )=29,故D 错误. 故选:AB .【点评】本题考查命题真假的判断,考查离散型随机变量的分布列、数学期望、方差等基础知识,考查运算求解能力,是中档题.12.已知函数f (x )=xlnx ,若0<x 1<x 2,则下列结论正确的是( ) A .x 2f (x 1)<x 1f (x 2)B .x 1+f (x 1)<x 2+f (x 2)C .f(x 1)−f(x 2)x 1−x 2<0D .当lnx >﹣1时,x 1f (x 1)+x 2f (x 2)>2x 2f (x 1)【分析】根据条件分别构造不同的函数,求函数的导数,利用函数单调性和导数之间的关系进行判断即可. 解:A .正确;因为令g (x )=f(x)x=lnx ,在(0,+∞)上是增函数,∴当 0<x 1<x 2 时,g (x 1)<g (x 2),∴f(x 1)x 1<f(x 2)x 2即x 2f (x 1)<x 1f (x 2).B .错误;因为令g (x )=f (x )+x =xlnx +x ∴g ′(x )=lnx +2,∴x ∈(e ﹣2,+∞)时,g ′(x )>0,g (x )单调递增,x ∈(0,e ﹣2)时,g ′(x )<0,g (x )单调递减.∴x 1+f (x 1)与x 2+f (x 2)无法比较大小.C .错误;因为令g (x )=f (x )﹣x =xlnx ﹣x ,g ′(x )=lnx ,∴x ∈(0,1)时,g ′(x )<0,g (x )在(0,1)单调递减,x ∈(1,+∞)时,g ′(x )>0,g (x )在(1,+∞)单调递增,∴当0<x 1<x 2<1时,g (x 1)>g (x 2), ∴f (x 1)﹣x 1>f (x 2)﹣x 2, ∴f (x 1)﹣f (x 2)>x 1﹣x 2, ∴f(x 1)−f(x 2)x 1−x 2<0.当1<x 1<x 2 时,g (x 1)<g (x 2) ∴f (x 1)﹣x 1<f (x 2)﹣x 2, ∴f (x 1)﹣f (x 2)<x 1﹣x 2, ∴f(x 1)−f(x 2)x 1−x 2>0.D.正确;因为lnx>﹣1时,f(x)单调递增,又∵A正确,∴x1•f(x1)+x2•f(x2)﹣2x2f(x1)>x1[f(x1)﹣f(x2)]+x2[f(x2)﹣f(x1)]=(x1﹣x2)[f(x1)﹣f(x2)]>0.故选:AD.【点评】本题主要考查命题的真假判断,在求解中用到了利用导数判断函数的单调性,并用到了函数单调性的定义.需要学习掌握的是构造函数的办法,综合性较强,有一定的难度.三、填空题(本大题共4小题,每小题5分,共20分)在[1,2]上的最大值是0 .13.函数在f(x)=﹣x+1x【分析】先求导数,得单调性,进而得出最大值.<0,解:因为f′(x)=﹣1−1x2所以f(x)在[1,2]上单调递减,f(x)max=f(1)=﹣1+1=0,故答案为:0.【点评】本题考查利用导数求单调性进而得出最大值.14.随机变量ξ服从正态分布N(1,σ2),已知P(ξ<0)=0.3,则P(ξ<2)=0.7 .【分析】随机变量ξ服从正态分布N(1,σ2),得到曲线关于x=1对称,根据曲线的对称性得到小于0的和大于2的概率是相等的,从而做出大于2的数据的概率,根据概率的性质得到结果.解:随机变量ξ服从正态分布N(1,σ2),∴曲线关于x=1对称,∴P(ξ<0)=P(ξ>2)=0.3,∴P(ξ<2)=1﹣0.3=0.7,故答案为:0.7【点评】本题考查正态分布曲线的特点及曲线所表示的意义,考查概率的性质,是一个基础题,这种题目可以出现在选择或填空中,是一个送分题目.15.设(1+ax)2020=a0+a1x+a2x2+……+a2019x2019+a2020x2020,若a1+2a2+3a3+…+2019a2019+2020a2020=2020a,则实数a=0 .【分析】结合所求式子与已知的式子特点,可以对原函数求导数,然后利用赋值法求解即可.解:对已知的式子两边同时求导数可得:2020a(1+ax)2019=a1+2a2x+3a3x2+⋯+2020a2020x2019,令x=1则:2020a(1+ax)2019=a1+2a2+3a3+…+2020a2020,又因为:a1+2a2+3a3+…+2019a2019+2020a2020=2020a,所以(1+a)2019=1,所以a=0.故答案为:0.【点评】本题考查二项式定理的系数的性质、赋值法的应用.同时考查了学生的运算能力,属于基础题.16.在《爸爸去哪儿》第二季第四期中,村长给6位“萌娃”布置一项搜寻空投食物的任务.已知:①食物投掷地点有远、近两处;②由于Grace年纪尚小,所以要么不参与该项任务,但此时另需一位小孩在大本营陪同,要么参与搜寻近处投掷点的食物;③所有参与搜寻任务的小孩须被均分成两组,一组去远处,一组去近处,那么不同的搜寻方案有 40 种.(以数字作答)【分析】根据题意,分2种情况讨论:①、Grace 不参与该项任务,需一位小孩在大本营陪同,则其余4人被均分成两组,一组去远处,一组去近处;②、Grace 参与该项任务,则从其余5人中选2人去近处,剩余3人搜寻远处,分别求出每种情况的方案数目;由分类计数原理计算可得答案. 解:根据题意,分2种情况讨论: ①、Grace 不参与该项任务,在其余5人中,任选1人在大本营陪同,有C 51=5种情况, 剩余4人,平均分成2组,有C 42C 22A 22=3种分组方法,在将2组对应2个地点,有A 22=2种情况,此时一共有5×3×2=30种方案; ②、Grace 参与该项任务,在其余5人中,任选2人与Grace 一起搜寻近处投掷点的食物,有C 52=10种情况, 而剩余3人搜寻远处投掷点的食物,有1种情况, 则此时一共有10×1=10种方案;则一共有30+10=40种符合题意的分配方案; 故答案为:40.【点评】本题考查排列、组合的运用,要先认真分析题意,注意2种方案参与的人数不同.四、解答题(本大题共6小题,共计70分) 17.有4名学生和2位老师站成一排合影.(1)若2位老师相邻,则排法种数为多少?(2)若2位老师不相邻,则排法种数为多少?【分析】(1)2位老师站在一起,可以采取绑定法计数,先绑定2位老师,再将2者看作一人与4名学生进行全排列;(2)2位老师互不相邻,可先排4名学生,然后把2位老师插空,最后用乘法原理计数.解:(1)先把2位老师“捆绑”看做1元素,与其余4个元素进行排列,再对2位老师进行排列,共有A22A55=240种,(2)先让4名学生站好,有A44种排法,这时有5个“空隙”可供2位老师选取,共有A44A52=480种.【点评】本题考查排列、组合及简单计数问题,解题的关键是熟练掌握计数原理及排列组合的公式,掌握一些特殊的计数技巧,如本题中绑定法,插空法.要注意每种方法与相应问题的对应.18.甲、乙、丙三位学生各自独立地解同一道题,已知甲、乙做对该题的概率都为13,丙做对该题的概率为14,且三位学生能否做对相互独立,设随机变量X表示这三位学生中做对该题的人数,其分布列为:X0123P13a b136(1)求a,b的值;(2)求X的数学期望.【分析】(1)利用相互独立事件概率乘法公式和互斥事件概率加法公式能求出a,利用对立事件概率计算公式能求出b.(2)由离散型随机变量的分布列能求出数学期望E(X).解:(1)∵甲、乙做对该题的概率都为13,丙做对该题的概率为14,且三位学生能否做对相互独立, ∴a =13×(1−13)×(1−14)+(1−13)×13×(1−14)+(1−13)×(1−13)×14=49, b =1﹣P (X =0)﹣P (X =1)﹣P (X =3)=1−13−49−136=736.(2)E (X )=0×13+1×49+2×736+3×136=1112. 【点评】本题考查概率的求法,考查离离散型随机变量的数学期望的求法,考查相互独立事件概率乘法公式、互斥事件概率加法公式、对立事件概率计算公式等基础知识,考查运算求解能力,是中档题. 19.在(x +2)10的展开式中,求: (1)含x 8项的系数;(2)如果第3r 项和第r +2项的二项式系数相等,求r 的值, 【分析】先求出展开式的通项.(1)令通项中x 的指数为8,求出k 的值即可; (2)写出该两项的二项式系数,令其相等,求出r 的值. 解:(1)二项式展开式的通项如下:T r+1=C 10r 2r x 10−r ,由已知令10﹣r =8, 所以r =2.所以含x 8项的系数为C 10222=180.(2)第3r 项与第r +2项的二项式系数相等, 则C 103r−1=C 10r+1,即3r ﹣1=r +1或3r ﹣1+r +1=10. 解得r =1或r =52(舍).故r 的值为1.【点评】本题考查二项式展开式系数的性质,利用通项法研究特定项的问题,同时考查学生的化简运算能力.属于基础题.20.在一次购物抽奖活动中,假设10张奖券中有一等奖奖券1张,可获价值50元的奖品,有二等奖奖券3张,每张可获价值10元的奖品,其余6张没有奖品. (1)顾客甲从10张奖券中任意抽取1张,求中奖次数X 的概率分布. (2)顾客乙从10张奖券中任意抽取2张, ①求顾客乙中奖的概率;②设顾客乙获得的奖品总价值Y 元,求Y 的概率分布及期望.【分析】(1)抽奖一次,只有中奖和不中奖两种情况,1表示中奖,0表示不中奖,则X 的取值只有0,1两种,分别求出相应的概率,由此能求出X 的分布列.(2)①顾客乙中奖可分为互斥的两类:所抽取的2张奖券有1张中奖和2张都中奖,由此利用互斥事件概率加法公式能求出顾客乙中奖的概率.②顾客乙所抽取的2张奖券中有0张中奖,1张中奖(1张1等奖或1张2等奖)或2张都中奖(2张二等奖或2张1等奖或1张2等奖1张2等奖),Y 的可能取值为0,10,20,50,60,分别求出相应的概率,由此能求出随机变量Y 的概率分布列和数学期望.解:(1)抽奖一次,只有中奖和不中奖两种情况, 1表示中奖,0表示不中奖,则X 的取值只有0,1两种,P (X =0)=C 61C 101=35,P (X =1)=C 41C 101=25,∴X 的分布列为:X1P3525(2)①顾客乙中奖可分为互斥的两类:所抽取的2张奖券有1张中奖和2张都中奖, ∴顾客乙中奖的概率为:P =C 41C 61+C 42C 102=23.②顾客乙所抽取的2张奖券中有0张中奖,1张中奖(1张1等奖或1张2等奖)或2张都中奖(2张二等奖或2张1等奖或1张2等奖1张2等奖), ∴Y 的可能取值为0,10,20,50,60,P (Y =0)=C 62C 102=13, P (Y =10)=C 41C 61C 102=25,P (Y =20)=C 32C 102=115, P (Y =50)=C 11C 61C 102=215, P (Y =60)=C 11C 31C 102=115,∴随机变量Y 的概率分布列为:Y 010205060P1325115215115EY =0×13+10×25+20×115+50×215+60×115=16(元).【点评】本题考查概率的求法,考查离离散型随机变量的数学期望的求法,考查互斥事件概率加法公式、古典概型等基础知识,考查运算求解能力,是中档题.21.2018年10月28日,重庆公交车坠江事件震惊全国,也引发了广大群众的思考﹣﹣如何做一个文明的乘客.全国各地大部分社区组织居民学习了文明乘车规范.A 社区委员会针对居民的学习结果进行了相关的问卷调查,并将得到的分数整理成如图所示的统计图.(Ⅰ)求得分在[70,80)上的频率;(Ⅱ)求A社区居民问卷调査的平均得分的估计值;(同一组中的数据以这组数据所在区间中点的值作代表)(Ⅲ)由于部分居民认为此项学习不具有必要性,A社区委员会对社区居民的学习态度作调查,所得结果统计如下:(表中数据单位:人)认为此项学习十分必要认为此项学习不必要50岁以上400600 50岁及50岁以下800200根据上述数据,计算是否有99.9%的把握认为居民的学习态度与年龄相关.附:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.P(K2≥k0)0.1000.0500.0100.001 k0 2.706 3.841 6.63510.828【分析】(Ⅰ)由频率分布直方图计算所求的频率值;(Ⅱ)利用各组的中间值与对应的频率乘积的和,计算平均分;(Ⅲ)根据2×2列联表计算观测值,对照临界值得出结论.解:(Ⅰ)由频率分布直方图,计算得分在[70,80)上的频率为1﹣0.1﹣0.15﹣0.2﹣0.15﹣0.1=0.3;(Ⅱ)由(Ⅰ)知各组的中间值与对应的频率如下表,中间值455565758595频率0.10.150.20.30.150.1计算问卷调査的平均得分为45×0.1+55×0.15+65×0.2+75×0.3+85×0.15+95×0.1=70.5;(Ⅲ)根据2×2列联表,认为此项学习十分必要认为此项学习不必要合计50岁以上400600100050岁及50岁以下8002001000总计12008002000计算K2=2000×(400×200−600×800)21000×1000×1200×800≈333.333>10.828,所以有99.9%的把握认为居民的学习态度与年龄相关.【点评】本题考查了频率分布直方图和样本数字特征的应用问题,也考查了独立性检验的应用问题,是基础题.22.已知函数f(x)=(ax2+x+a)e﹣x(a∈一、选择题).(Ⅰ)当a=0时,求f(x)在点(0,f(0))处的切线方程;(Ⅱ)若a≥0,求函数f(x)的单调区间;(Ⅲ)若对任意的a≤0,f(x)≤bln(x+1)在x∈[0,+∞)上恒成立,求实数b的取值范围.【分析】(Ⅰ)当a=0时,f(x)=x•e﹣x,f′(x)=e﹣x﹣x•e﹣x=e﹣x(1﹣x),可得f′(0)=1,f(0)=0,即可得出切线方程.(Ⅱ)由题意,f'(x)=(2ax+1)e﹣x﹣(ax2+x+a)e﹣x=﹣e﹣x[ax2+(1﹣2a)x+a ﹣1]=﹣e﹣x(x﹣1)(ax+1﹣a).对a分类讨论:a=0,a>0,即可得出.(Ⅲ)令g(a)=e﹣x(x2+1)a+xe﹣x,a∈(﹣∞,0],当x∈[0,+∞)时,e﹣x(x2+1)≥0,g(a)单调递增,则g(a)max=g(0)=xe−x.可得g(a)≤bln(x+1)对∀a ∈(﹣∞,0]恒成立等价于bln(x+1)≥g(a)max=g(0),即xe﹣x≤bln(x+1),对x∈[0,+∞)恒成立,对b分类讨论,利用单调性即可得出.解:(Ⅰ)当a=0时,f(x)=x•e﹣x,∴f′(x)=e﹣x﹣x•e﹣x=e﹣x(1﹣x)……(1分)∴f′(0)=1,f(0)=0,∴函数f(x)在点(0,f(0))处的切线方程为y=x.……(Ⅱ)由题意,f'(x)=(2ax+1)e﹣x﹣(ax2+x+a)e﹣x=﹣e﹣x[ax2+(1﹣2a)x+a ﹣1]=﹣e﹣x(x﹣1)(ax+1﹣a).……(ⅰ)当a=0时,f'(x)=﹣e﹣x(x﹣1),令f'(x)>0,得x<1;f'(x)<0,得x>1,所以f(x)在(﹣∞,1)单调递增,(1,+∞)单调递减;……(ⅱ)当a>0时,1−1a<1,令f'(x)>0,得1−1a <x<1;f'(x)<0,得x<1−1a或x>1,……所以f(x)在(1−1a ,1)单调递增,在(−∞,1−1a),(1,+∞)单调递减,………(Ⅲ)令g(a)=e﹣x(x2+1)a+xe﹣x,a∈(﹣∞,0],当x∈[0,+∞)时,e﹣x(x2+1)≥0,g(a)单调递增,则g(a)max=g(0)=xe−x,………………则g(a)≤bln(x+1)对∀a∈(﹣∞,0]恒成立等价于bln(x+1)≥g(a)max=g (0),即xe﹣x≤bln(x+1),对x∈[0,+∞)恒成立.………(ⅰ)当b≤0时,∀x∈(0,+∞),bln(x+1)<0,xe﹣x>0,此时xe﹣x>bln(x+1),不合题意,舍去.…………(ⅱ)当b>0时,令h(x)=bln(x+1)﹣xe﹣x,x∈[0,+∞),则h′(x)=bx+1−(e−x−xe−x)=bex+x2−1(x+1)e x,……其中(x+1)e x>0,∀x∈[0,+∞),令p(x)=be x+x2﹣1,x∈[0,+∞),则p(x)在区间[0,+∞)上单调递增,……①当b≥1时,p(x)≥p(0)=b﹣1≥0,所以对∀x∈[0,+∞),h'(x)≥0,则h(x)在[0,+∞)上单调递增,故对任意x∈[0,+∞),h(x)≥h(0)=0,即不等式bln(x+1)≥xe﹣x在[0,+∞)上恒成立,满足题意.…………②当0<b<1时,由p(0)=b﹣1<0,p(1)=be>0及p(x)在区间[0,+∞)上单调递增,所以存在唯一的x0∈(0,1)使得p(x0)=0,且x∈(0,x0)时,p(x)<0.即h'(x)<0,所以h(x)在区间(0,x0)上单调递减,则x∈(0,x0)时,h(x)<h(0)=0,即bln(x+1)<xe﹣x,不符合题意.……综上所述,b≥1.…………【点评】本题考查了利用利用导数研究函数的单调性极值与最值、方程与不等式的解法、分类讨论方法、等价转化方法,考查学生的运算推理能力,属于难题.。
2019-2020学年高二下学期期中数学试题 Word版含答案

姓名,年级:时间:邗江中学2019-2020学年度第二学期期中考试高二数学试卷(考试时间:120分钟 总分:150分)一、单项选择题(本题共12小题,每小题5分,共60分)1.函数f (x )=x 2﹣sin x 在[0,π]上的平均变化率为( )A .1B .2C .πD .π2 2.复数z 满足z =2i 1−i ,则复数z 的虚部为( )A .﹣1B .1C .iD .﹣i3.已知随机变量X 服从正态分布N (1,4),若P (X ≥2)=0。
2,则P (0≤X ≤1)为( )A .0。
2B .0.3C .0。
4D .0.6 4.已知C n+17−C n 7=C n 8(n ∈N *),则n 等于( )A .14B .12C .13D .155.已知f (x )=x •sin2x ,则)2(πf '为( ) A .﹣πB .−π2C .π2D .π 6.二项式(√x +2x 2)10展开式中的常数项是( )A .180B .90C .45D .3607.从1,2,3,4,5,6,7,8,9中不放回地依次取2个数,事件A 为“第一次取到的是奇数”,B 为“第二次取到的是3的整数倍”,则P (B |A )=( )A.38B.1340C.1345D.348.如图是我国古代数学家赵爽在为《周髀算经》作注解时给出的“弦图”.现提供4种颜色给“弦图”的5个区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方案共有()A.48种B.72种C.96种D.144种9.设函数f(x)在R上可导,其导函数为f′(x),且函数f(x)在x=﹣1处取得极大值,则函数y=xf′(x)的图象可能是()A.B.C.D.10.已知(x﹣1)9(1﹣x)=a0+a1x+a2x2+…+a10x10,则a8=()A.﹣45 B.27 C.﹣27 D.4511.现安排甲、乙、丙、丁、戊5名同学参加2022年杭州亚运会志愿者服务活动,有翻译、导游、礼仪、司机四项工作可以安排,以下说法正确的是()A.每人都安排一项工作的不同方法数为54B.每人都安排一项工作,每项工作至少有一人参加,则不同的方法数为A54C41C.如果司机工作不安排,其余三项工作至少安排一人,则这5名同学全部被安排的不同方法数为(C53C21+C52C32)A33D.每人都安排一项工作,每项工作至少有一人参加,甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数是C31C42A33+C32A3312.已知函数f(x)=ax﹣lnx,x∈[1,e]的最小值为3,若存在x1,x2,…,x n∈[1,e],使得f(x1)+f(x2)+…+f(x n﹣1)=f(x n),则正整数n的最大值为()A.2 B.3 C.4 D.5二、填空题(本题共4小题,每小题5分,共20分)13.在10件产品中有2件次品,任意抽取3件,则抽到次品的个数的数学期望值为.14.若(1﹣3x)10=a0+a1x+a2x2+…+a10x10,则a1+a2+a3+…+a10=.15.荷花池中,有一只青蛙在成品字形的三片荷叶上跳来跳去(每次跳跃时,均从一叶跳到另一叶),而且逆时针方向跳的概率是顺时针方向跳的概率的两倍,如图所示.假设现在青蛙在A 叶上,则跳四次之后停在A叶上的概率是_________16.若存在a>0,使得函数f(x)=6a2lnx与g(x)=x2﹣4ax﹣b的图象在这两函数图象的公共点处的切线相同,则b的最大值为.三、解答题(本题共6小题,其中第17题10分,其他每题12分,共70分;解答应写出文字说明、证明过程或演算步骤)17.已知z是复数,z+2i与z2−i均为实数.(1)求复数z;(2)复数(z+ai)2在复平面上对应的点在第一象限,求实数a的取值范围.18.有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数(结果用数字作答).(1)选5人排成一排;(2)排成前后两排,前排4人,后排3人;(3)全体排成一排,甲不站排头也不站排尾;(4)全体排成一排,女生必须站在一起;(5)全体排成一排,男生互不相邻。
2019-2020年高二上学期期中考试数学试卷 含答案

2019-2020年高二上学期期中考试数学试卷 含答案注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答题前,考生务必将自己的姓名、班级和准考证号填写在答题卡上..2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再涂选其它答案标号,写在本试卷上无效.3.回答第Ⅱ卷将答案写在答题卡上,在试题卷上作答,答案无效.4.考试结束,只交答题卡.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.直线x -y =0的倾斜角为( )A .45°B .60°C .90°D .135°2.若三点A (0,8),B (-4,0),C (m ,-4)共线,则实数m 的值是( )A .6B .-2C .-6D .23.圆x 2+y 2=4与圆x 2+y 2-6x+8y-24=0的位置关系是( ) A .相交 B .相离 C .内切D .外切4.如图,在长方体ABCD -A 1B 1C 1D 1中,棱锥A 1-ABCD 的体积与长方体AC 1的体积的比值为( )A.12 B .16 C.13D .155.如图,正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H ,K ,L 分别为AB ,BB 1,B 1C 1,C 1D 1,D 1D ,DA 的中点,则六边形EFGHKL 在正方体面上的射影可能是( )6.已知直线l与过点M(-3,2),N(2,-3)的直线垂直,则直线l的倾斜角是()A.π3 B.π4 C.2π3D.3π47.某几何体的三视图如图所示,则该几何体的表面积为( )A .2π+12B .π+12C .2π+24D .π+248.若坐标原点在圆x 2+y 2-2mx +2my +2m 2-4=0的内部,则实数m 的取值范围是( )A .(-1,1)B .⎝⎛⎭⎫-22,22 C .(-3,3)D .(-2,2)9.点P(7,-4)关于直线l:6x-5y-1=0的对称点Q的坐标是( )A .(5,6)B .(2,3)C .(-5,6)D .(-2,3)10.过(2,0)点作圆(x -1)2+(y -1)2=1的切线,所得切线方程为( )A .y =0B .x =1和y =0C .x =2和y =0D .不存在 11.两圆x2+y2+4x -4y =0与x2+y2+2x -12=0的公共弦长等于( ) A .4 B .2 3 C .3 2 D .4 212.已知直线y =kx +2k +1与直线y =12x +2的交点位于第一象限,则实数k 的取值范围是( )A .-6<k <2B .-16<k <0C .-16<k <12D .k >12第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分。
2019-2020学年度高二上学期期中考试数学试题(含答案解析)

2019-2020学年度高二上学期期中考试数学试题一、选择题(本大题共10小题,共40.0分)1.已知集合M={x|(x+3)(x-1)<0},N={x|x≤-3},则∁R(M∪N)=()A. {x|x≤1}B. {x|x≥1}C. {x|x<1}D. {x|x>1}2.数列-1,3,-5,7,-9,…的一个通项公式为()A. a n=2n−1B. a n=(−1)n(1−2n)C. a n=(−1)n(2n−1)D. a n(−1)n+1(2n−1)3.不等式2x-3y+6>0表示的平面区域在直线2x-3y+6=0的()A. 左上方B. 左下方C. 右上方D. 右下方4.下列说法正确的是()A. 若a<b,则1a <1bB. 若ac3>bc3,则a>bC. 若a>b,k∈N∗,则a k≤b kD. 若a>b,c>d,则a−d>b−c5.已知等比数列{a n}中,a2a3a4═1,a6a7a8=64,则a5=()A. ±2B. −2C. 2D. 46.设M=2a(a-2),N=(a+1)(a-3),则有()A. M>NB. M≥NC. M<ND. M≤N7.当x>1时,不等式x+1x−1≥a恒成立,则实数a的取值范围是()A. (−∞,2]B. [2,+∞)C. [3,+∞)D. (−∞,3]8.设{a n}是等差数列,公差为d,S n是其前n项的和,且S5<S6,S6=S7>S8,则下列结论错误的是()A. d<0B. a7=0C. S9>S5D. S6和S7均为S n的最大值9.设S n为等差数列{a n}的前n项和,a4=4,S5=15,若数列{1a n a n+1}的前m项和为1011,则m=()A. 8B. 9C. 10D. 1110.已知:x>0,y>0,且2x +1y=1,若x+2y>m2+2m恒成立,则实数m的取值范围是()A. (−∞,−2]∪[4,+∞)B. (−∞,−4]∪[2,+∞)C. (−2,4)D. (−4,2)二、填空题(本大题共4小题,共16.0分)11.△ABC中,a=1,b=√3,∠A=30°,则∠B等于______12.点P(x,y)在不等式组{x−2≤0y−1≤0x+2y−2≥0表示的平面区域上运动,则z=x-y的最大值为______.13.在△ABC中,三个角A、B、C所对的边分别为a、b、c.若角A、B、C成等差数列,且边a、b、c成等比数列,则△ABC的形状为______.14.对于任意实数x,不等式(a-2)x2-2(a-2)x-4<0恒成立,则实数a的取值范围是______.三、解答题(本大题共5小题,共44.0分)15.(1)解不等式2x2+x+1>0.<x<2},求a+b的值;(2)若不等式ax2+bx+2>0的解集是{x|-1216.已知数列{a n}中,a1=2,a n+1=2a n.(1)求a n;(2)若b n=n+a n,求数列{b n}的前5项的和S5.17.在△ABC中,角A,B,C的对边分别是a,b,c,若c cos A,b cos B,a cos C成等差数列.(Ⅰ)求∠B;,b=√3,求△ABC的面积.(Ⅱ)若a+c=3√3218.如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求B点在AM上,D点在AN上,且对角线MN过点C,已知AB=3米,AD=2米.(Ⅰ)要使矩形AMPN的面积大于32平方米,则DN的长应在什么范围内?(Ⅱ)当DN的长度为多少时,矩形花坛AMPN的面积最小?并求出最小值.19.已知数列{a n}的前n项和为S n,向量a⃗=(S n,2),b⃗ =(1,1−2n)满足条件a⃗ ⊥b⃗(1)求数列{a n}的通项公式;(2)设c n=na n,求数列{c n}的前n项和T n.答案和解析1.【答案】B【解析】解:∵集合M={x|(x+3)(x-1)<0}={x|-3<x<1},N={x|x≤-3},∴M∪N={x|x<1},∴∁R(M∪N)={x|x≥1},故选:B.先求出M,再求出M∪N,再根据补集的定义求出∁R(M∪N).本题主要考查集合的表示方法、集合的补集,两个集合并集的定义和求法,属于基础题.2.【答案】C【解析】解:数列-1,3,-5,7,-9,…的一个通项公式为.故选:C.其符号与绝对值分别考虑即可得出.本题考查了数列通项公式,考查了推理能力与计算能力,属于基础题.3.【答案】D【解析】解:画直线2x-3y+6=0,把(0,0)代入,使得2x-3y+6>0,所以不等式2x-3y+6>0表示的平面区域在直线2x-3+-6>0的右下方,故选:D.根据题意取特殊点验证不等式表示的平面区域即可.本题考查了二元一次不等式表示的平面区域问题,通常以直线定界,特殊点定区域,是基础题.4.【答案】D【解析】解:A.当a=1,b=2时,满足a<b,但不成立,故A错误,B.若ac3>bc3,若c<0,则a>b不成立,故B错误,C.当k=2时,a=1,b=-2满足条件.a<b,但a2≤b2不成立,故C错误,D.若a>b,c>d,则-d>-c,则a-d>b-c成立,故D正确故选:D.根据不等式的关系以及不等式的性质分别进行判断即可.本题主要考查命题的真假判断,结合不等式的性质分别进行判断是解决本题的关键.5.【答案】C【解析】解:设等比数列{a n}的公比为q,∵a2a3a4═1,a6a7a8=64,∴(q4)3=64,解得q2=2.又=1,解得a1=.则a5==2.故选:C.设等比数列{a n}的公比为q,由a2a3a4═1,a6a7a8=64,可得(q4)3=64,解得q2.又=1,解得a1.利用通项公式即可得出.本题考查了等比数列的通项公式与性质,考查了推理能力与计算能力,属于中档题.6.【答案】A【解析】解:∵M-N═2a(a-2)-(a+1)(a-3)=(a-1)2+2>0,∴M>N.故选:A.比较两个数的大小,通常采用作差法,分别计算M-N的结果,判断结果的符号.本题考查了比较两数大小的方法.当a-b>0时,a>b,当a-b=0时,a=b,当a-b <0时,a<b.7.【答案】D【解析】解:∵当x>1时,不等式x+恒成立,∴a≤x+对一切非零实数x>1均成立.由于x+=x-1++1≥2+1=3,当且仅当x=2时取等号,故x+的最小值等于3,∴a≤3,则实数a的取值范围是(-∞,3].故选:D.由题意当x>1时,不等式x+恒成立,由于x+的最小值等于3,可得a≤3,从而求得答案.本题考查查基本不等式的应用以及函数的恒成立问题,求出x+的最小值是解题的关键.8.【答案】C【解析】解:∵S5<S6,S6=S7>S8,∴a6>0,a7=0,a8<0,可得d<0.S6和S7均为S n的最大值.S9==9a5,S5==5a3.S9-S5=9(a1+4d)-5(a1+2d)=4a1+26d=4a7+2d<0,∴S9<S5.因此C错误.故选:C.S5<S6,S6=S7>S8,可得a6>0,a7=0,a8<0,可得d<0.S6和S7均为S n的最大值.作差S9-S5=4a7+2d<0,可得S9<S5.本题考查了等差数列的单调性、通项公式与求和公式、作差法,考查了推理能力与计算能力,属于中档题.9.【答案】C【解析】解:S n为等差数列{a n}的前n项和,设公差为d,a4=4,S5=15,则:,解得d=1,则a n=4+(n-4)=n.由于=,则,==,解得m=10.故答案为:10.故选:C.首先求出数列的通项公式,利用裂项相消法求出数列的和.本题考查的知识要点:数列的通项公式的求法及应用,裂项相消法求出数列的和10.【答案】D【解析】解:∵x>0,y>0,且,∴x+2y=(x+2y)()=2+++2≥8(当且仅当x=4,y=2时取到等号).∴(x+2y)min=8.∴x+2y>m2+2m恒成立,即m2+2m<(x+2y)min=8,解得:-4<m<2.故选:D.x+2y>m2+2m恒成立,即m2+2m<x+2y恒成立,只需求得x+2y的最小值即可.本题考查基本不等式与函数恒成立问题,将问题转化为求x+2y的最小值是关键,考查学生分析转化与应用基本不等式的能力,属于中档题.11.【答案】60°或120°【解析】解:∵a=1,b=,∠A=30°根据正弦定理可得:∴sinB=∴∠B=60°或120°故答案为:60°或120°根据正弦定理可求出角B的正弦值,进而得到其角度值.本题主要考查正弦定理的应用.属基础题.12.【答案】2【解析】解:画可行域如图,画直线z=x-y,平移直线z=x-y过点A(0,1)时z有最小值-1;平移直线z=x-y过点B(2,0)时z有最大值2.则z=x-y的最大值为2.故答案为:2.①画可行域;②z为目标函数的纵截距;③画直线z=x-y.平移可得直线过A 或B时z有最值.本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.13.【答案】等边三角形【解析】解:∵在△ABC中角A、B、C成等差数列,∴2B=A+C,由三角形内角和可得B=,又∵边a、b、c成等比数列,∴b2=ac由余弦定理可得b2=a2+c2-2accosB,∴ac=a2+c2-ac,即a2+c2-2ac=0,故(a-c)2=0,可得a=c,故三角形为:等边三角形,故答案为:等边三角形.由等差数列和三角形内角和可得B=,再由等比数列和余弦定理可得a=c,可得等边三角形.本题考查三角形形状的判定,涉及等差和等比数列及余弦定理,属基础题.14.【答案】(-2,2]【解析】解:当a=2时,-4<0恒成立;当a≠2时,不等式(a-2)x2-2(a-2)x-4<0恒成立,则,解得:-2<a<2;综上所述,-2<a≤2.故答案为:(-2,2].分a=2与a≠2讨论;在a≠2时,(a-2)x2-2(a-2)x-4<0恒成立⇒,解之,取并即可.本题考查函数恒成立问题,对a分a=2与a≠2讨论是关键,考查分类讨论思想与等价转化思想,属于中档题.15.【答案】解:(1)不等式2x2+x+1>0中,△=1-8=-7<0,所以该不等式的解集为R;(2)不等式ax2+bx+2>0的解集是{x|-12<x<2},则该不等式对应的方程两根是-12和2,所以{2a =−12×2−ba =−12+2,解得a=-2,b=3,∴a+b=1.【解析】(1)利用判别式△<0,得出该不等式的解集为R;(2)根据不等式的解集得出不等式对应方程的两个根,再由根与系数的关系求出a 、b 的值.本题考查了一元二次不等式的解法与应用问题,也考查了一元二次方程根与系数的关系应用问题.16.【答案】解:(1)由数列{a n }中,a 1=2,a n +1=2a n .则数列{a n }是首项为2,公比为2的等比数列, ∴a n =2n .(2)b n =n +a n =n +2n .∴数列{b n }的前5项的和S 5=(1+2+3+4+5)+(2+22+……+25) =5×(1+5)2+2×(25−1)2−1=77.【解析】(1)利用等比数列的通项公式即可得出.(2)b n =n+a n =n+2n .利用等差数列与等比数列的求和公式即可得出. 本题考查了等差数列与等比数列的求和公式,考查了推理能力与计算能力,属于中档题.17.【答案】解:(Ⅰ)∵c cos A ,B cosB ,a cos C 成等差数列,∴2b cos B =c cos A +a cos C ,由正弦定理知:a =2R sin A ,c =2R sin C ,b =2R sin B ,代入上式得:2sin B cosB=sin C cos A +sin A cos C ,即2sin B cosB=sin (A +C ). 又A +C =π-B ,∴2sin B cosB=sin (π-B ),即2sin B cosB=sin B . 而sin B ≠0,∴cos B =12,及0<B <π,得B =π3. (Ⅱ)由余弦定理得:cos B =a 2+c 2−b 22ac=12, ∴(a+c)2−2ac−b 22ac=12,又a +c =3√32,b =√3, ∴274-2ac -3=ac ,即ac =54,∴S △ABC =12ac sin B =12×54×√32=5√316.【解析】(Ⅰ)由ccosA ,BcosB ,acosC 成等差数列,可得2bcosB=ccosA+acosC ,利用正弦定理、和差公式即可得出;(II)利用余弦定理与三角形的面积计算公式即可得出.本题考查了等差数列、正弦定理、和差公式、余弦定理、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.18.【答案】解:(Ⅰ)设DN的长为x(x>0)米,则|AN|=(x+2)米∵|DN| |AN|=|DC||AM|,∴|AM|=3(x+2)x∴S AMPN=|AN|⋅|AM|=3(x+2)2x由S AMPN>32得3(x+2)2x>32又x>0得3x2-20x+12>0解得:0<x<23或x>6即DN的长取值范围是(0,23)∪(6,+∞)(Ⅱ)矩形花坛的面积为y=3(x+2)2x =3x2+12x+12x=3x+12x+12(x>0)≥2√3x⋅12x+12=24当且仅当3x=12x,即x=2时,矩形花坛的面积最小为24平方米.【解析】(Ⅰ)设DN的长为x(x>0)米,则|AN|=(x+2)米,表示出矩形的面积,利用矩形AMPN的面积大于32平方米,即可求得DN的取值范围.(2)化简矩形的面积,利用基本不等式,即可求得结论.本题考查根据题设关系列出函数关系式,并求出处变量的取值范围;考查利用基本不等式求最值,解题的关键是确定矩形的面积.19.【答案】解:(1)∵a⃗ ⊥b⃗ ,∴a⃗•b⃗ =S n+2-2n+1=0,∴S n=2n+1-2,当n≥2时,a n=S n-S n-1=2n,当n=1时,a1=S1=2满足上式,∴a n=2n,(2)∵c n=na n =n2n,∴T n=12+22+⋯+n−12+n2,两边同乘12,得12T n=122+223+⋯+n−12n+n2n+1,两式相减得:1 2T n=12+122+⋯12n−n2n+1=1−n+22n+1,∴T n=2−n+22n(n∈N+).【解析】(1)根据向量的数量积和可得S n=2n+1-2,再根据数列的递推公式即可求出,(2)根据错位相减法即可求出数列{c n}的前n项和T n本题考查了向量的数量积和数列的递推公式以及错位相减法,属于中档题第11页,共11页。
2019-2020年高二下学期期中数学试卷(文科) 含解析

2019-2020年高二下学期期中数学试卷(文科)含解析一、选择题:(每小题3分,共36分)1.已知复数z=,则z的共轭复数等于()A.2+i B.2﹣i C.1﹣2i D.1+2i2.用反证证明:“自然数a,b,c中恰有一个偶数”时正确的假设为()A.a,b,c都是偶数B.a,b,c都是奇数C.a,b,c中至少有两个偶数D.a,b,c中都是奇数或至少两个偶数3.下面的几种推理过程是演绎推理的是()A.两条直线平行,同旁内角互补,如果∠A和∠B是两条平行直线的同旁内角,则∠A+∠B=180°B.由平面三角形的性质,推测空间四面体性质C.某校高三共有10个班,1班有51人,2班有53人,3班有52人,由此推测各班都超过50人D.在数列{a n}中,a1=1,a n=(n=1,2,3,…),由此归纳出{a n}的通项公式+14.已知=b(1+i)(其中i为虚数单位,a,b∈R),则a等于()A.﹣2 B.2 C.﹣1 D.5.已知集合,N={y|y=3x2+1,x∈R},则M∩N等于()A.∅B.{x|x≥1}C.{x|x>1}D.{x|x≥1或x<0}6.设a=,b=﹣,c=﹣,则a,b,c的大小关系是()A.a>b>c B.a>c>b C.b>a>c D.b>c>a7.如图,△ABC是圆的内接三角形,∠BAC的平分线交圆于点D,交BC于E,过点B的圆的切线与AD的延长线交于点F,在上述条件下,给出下列四个结论:①BD平分∠CBF;②FB2=FD•FA;③AE•CE=BE•DE;④AF•BD=AB•BF.所有正确结论的序号是()A.①②B.③④C.①②③D.①②④8.给出一个如图所示的流程图,若要使输入的x值与输出的y值相等,则这样的x值的个数是()A.1 B.2 C.3 D.49.为了研究高中学生对乡村音乐的态度(喜欢和不喜欢两种态度)与性别的关系,运用2×2列联表进行独立性检验,经计算k2=8.01,附表如下:参照附表,得到的正确的结论是()A.有99%以上的把握认为“喜欢乡村音乐与性别有关”B.有99%以上的把握认为“喜欢乡村音乐与性别无关”C.在犯错误的概率不超过0.1%的前提下,认为“喜欢乡村音乐与性别有关”D.在犯错误的概率不超过0.1%的前提下,认为“喜欢乡村音乐与性别无关”10.设函数f(x),g(x)在[a,b]上均可导,且f′(x)<g′(x),则当a<x<b 时,有()A.f(x)>g(x)B.f(x)<g(x)C.f(x)+g(a)<g(x)+f(a)D.f(x)+g(b)<g(x)+f(b)11.设集合S={x||x﹣2|>3},T={x|a<x<a+8},S∪T=R,则a的取值范围是()A.﹣3<a<﹣1 B.﹣3≤a≤﹣1 C.a≤﹣3或a≥﹣1 D.a<﹣3或a >﹣112.设a,b∈R,则“a>b”是“a|a|>b|b|”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分又不必要条件二、填空题:本大题共6小题,每小题4分,共24分.13.设m∈R,m2+m﹣2+(m2﹣1)i是纯虚数,其中i是虚数单位,则m=.14.已知=2,=3,=4,…若=6,(a,t均为正实数),则类比以上等式,可推测a,t的值,a+t=.15.如图,已知AB和AC是圆的两条弦,过点B作圆的切线与AC的延长线相交于点D,过点C作BD的平行线与圆相交于点E,与AB相交于点F,AF=3,FB=1,EF=,则线段CD的长为.16.给出下列命题:①命题“∃x∈R,x2﹣x≤0”的否命题是“∃x∈R,x2﹣x>0”②命题:“已知x,y∈R,若x+y≠3,则x≠2或y≠1”的逆否命题是真命题③命题“若a=﹣1,则函数f(x)=ax2+2x﹣1只有一个零点”的逆命题是真命题④命题“p∨q为真”是命题“p∧q为真”的充分不必要条件⑤若p是¬q的充分不必要条件,则¬p是q的必要不充分条件.其中是真命题的有(把你认为正确的命题序号都填上)17.如图,在圆内接梯形ABCD中,AB∥DC,过点A作圆的切线与CB的延长线交于点E.若AB=AD=5,BE=4,则弦BD的长为.18.已知数列{a n}中,a n=,记f(n)=(1﹣a1)(1﹣a2)…(1﹣a n),试计算f (1),f(2),f(3)的值,推测f(n)的表达式为f(n)=.三、解答题:(共40分)解答应写出文字说明、证明过程或演算步骤.19.已知x=1是函数f(x)=mx3﹣3(m+1)x2+nx+1的一个极值点,其中m,n ∈R,m<0.(Ⅰ)求m与n的关系表达式;(Ⅱ)求f(x)的单调区间;(Ⅲ)当x∈[﹣1,1]时,函数y=f(x)的图象上任意一点的切线斜率恒大于3m,求m的取值范围.20.函数f(x)=ax2﹣(2a+1)x+lnx(1)当a=1时,求f(x)的单调区间和极值;(2)设g(x)=e x﹣x﹣1,当a<0时,若对任意x1∈(0,+∞),x2∈R,不等式f(x1)≤g(x2)恒成立,求实数a的取值范围.21.已知函数f(x)=xlnx,g(x)=(﹣x2+ax﹣3)e x(其中a实数,e是自然对数的底数).(Ⅰ)当a=5时,求函数y=g(x)在点(1,e)处的切线方程;(Ⅱ)求f(x)在区间[t,t+2](t>0)上的最小值;(Ⅲ)若存在x1,x2∈[e﹣1,e](x1≠x2),使方程g(x)=2e x f(x)成立,求实数a的取值范围.xx天津市新华中学高二(下)期中数学试卷(文科)参考答案与试题解析一、选择题:(每小题3分,共36分)1.已知复数z=,则z的共轭复数等于()A.2+i B.2﹣i C.1﹣2i D.1+2i【考点】复数代数形式的乘除运算.【分析】直接利用复数代数形式的乘除运算化简,求得z,则可求.【解答】解:z==,∴.故选:B.2.用反证证明:“自然数a,b,c中恰有一个偶数”时正确的假设为()A.a,b,c都是偶数B.a,b,c都是奇数C.a,b,c中至少有两个偶数D.a,b,c中都是奇数或至少两个偶数【考点】反证法.【分析】用反证法法证明数学命题时,假设命题的反面成立,写出要证的命题的否定形式,即为所求.【解答】解:∵结论:“自然数a,b,c中恰有一个偶数”可得题设为:a,b,c中恰有一个偶数∴反设的内容是假设a,b,c都是奇数或至少有两个偶数.故选:D.3.下面的几种推理过程是演绎推理的是()A.两条直线平行,同旁内角互补,如果∠A和∠B是两条平行直线的同旁内角,则∠A+∠B=180°B.由平面三角形的性质,推测空间四面体性质C.某校高三共有10个班,1班有51人,2班有53人,3班有52人,由此推测各班都超过50人=(n=1,2,3,…),由此归纳出{a n}的通项公式D.在数列{a n}中,a1=1,a n+1【考点】演绎推理的基本方法.【分析】演绎推理是由普通性的前提推出特殊性结论的推理.其形式在高中阶段主要学习了三段论:大前提、小前提、结论,由此对四个命题进行判断得出正确选项.【解答】解:A选项是演绎推理,大前提是“两条直线平行,同旁内角互补,”,小前提是“∠A与∠B是两条平行直线的同旁内角”,结论是“∠A+∠B=180°”B选项“由平面三角形的性质,推测空间四面体性质”是类比推理;C选项:某校高二共有10个班,1班有51人,2班有53人,3班有52人,由此推测各班都超过50人,是归纳推理;=(n=1,2,3,…),由此归纳出{a n}的通项D选项中,在数列{a n}中,a1=1,a n+1公式,是归纳推理.综上得,A选项正确故选A.4.已知=b(1+i)(其中i为虚数单位,a,b∈R),则a等于()A.﹣2 B.2 C.﹣1 D.【考点】复数相等的充要条件.【分析】根据复数相等的条件进行化简即可.【解答】解:由=b(1+i)得a+i﹣(1+i)=b(1+i)(1+i)=2bi.即a﹣+i=2bi.则a﹣=0且=2b,解得a=,b=,故选:D.5.已知集合,N={y|y=3x2+1,x∈R},则M∩N等于()A.∅B.{x|x≥1}C.{x|x>1}D.{x|x≥1或x<0}【考点】其他不等式的解法;交集及其运算.【分析】求出集合M,N的元素,利用集合的基本运算求交集.【解答】解:由得x>1或x≤0,即M={x|x>1或x≤0},N={y|y=3x2+1,x∈R}={y|y≥1},∴M∩N={x|x>1或x≤0}∩{y|y≥1}={x|x>1},故选:C.6.设a=,b=﹣,c=﹣,则a,b,c的大小关系是()A.a>b>c B.a>c>b C.b>a>c D.b>c>a【考点】不等式比较大小.【分析】利用有理化因式和不等式的性质即可得出.【解答】解:=,.∵,∴,∴b<c.∵=4,∴.即c<a.综上可得:b<c<a.故选:B.7.如图,△ABC是圆的内接三角形,∠BAC的平分线交圆于点D,交BC于E,过点B的圆的切线与AD的延长线交于点F,在上述条件下,给出下列四个结论:①BD平分∠CBF;②FB2=FD•FA;③AE•CE=BE•DE;④AF•BD=AB•BF.所有正确结论的序号是()A.①②B.③④C.①②③D.①②④【考点】与圆有关的比例线段;命题的真假判断与应用.【分析】本题利用角与弧的关系,得到角相等,再利用角相等推导出三角形相似,得到边成比例,即可选出本题的选项.【解答】解:∵圆周角∠DBC对应劣弧CD,圆周角∠DAC对应劣弧CD,∴∠DBC=∠DAC.∵弦切角∠FBD对应劣弧BD,圆周角∠BAD对应劣弧BD,∴∠FBD=∠BAF.∵AD是∠BAC的平分线,∴∠BAF=∠DAC.∴∠DBC=∠FBD.即BD平分∠CBF.即结论①正确.又由∠FBD=∠FAB,∠BFD=∠AFB,得△FBD~△FAB.由,FB2=FD•FA.即结论②成立.由,得AF•BD=AB•BF.即结论④成立.正确结论有①②④.故答案为D8.给出一个如图所示的流程图,若要使输入的x值与输出的y值相等,则这样的x值的个数是()A.1 B.2 C.3 D.4【考点】选择结构.【分析】由已知的流程图,我们易得这是一个计算并输出分段函数函数值的程序,我们根据条件,分x≤2,2<x≤5,x>5三种情况分别讨论,满足输入的x值与输出的y值相等的情况,即可得到答案.【解答】解:当x≤2时,由x2=x得:x=0,1满足条件;当2<x≤5时,由2x﹣3=x得:x=3,满足条件;当x>5时,由=x得:x=±1,不满足条件,故这样的x值有3个.故选C.9.为了研究高中学生对乡村音乐的态度(喜欢和不喜欢两种态度)与性别的关系,运用2×2列联表进行独立性检验,经计算k2=8.01,附表如下:参照附表,得到的正确的结论是()A.有99%以上的把握认为“喜欢乡村音乐与性别有关”B.有99%以上的把握认为“喜欢乡村音乐与性别无关”C.在犯错误的概率不超过0.1%的前提下,认为“喜欢乡村音乐与性别有关”D.在犯错误的概率不超过0.1%的前提下,认为“喜欢乡村音乐与性别无关”【考点】独立性检验.【分析】由题目所给数据,结合独立检验的规律可作出判断.【解答】解:∵k2=8.01>6.635,∴在犯错误概率不超过0.1的前提下认为“喜欢乡村音乐与性别有关”,即有99%以上的把握认为“喜欢乡村音乐与性别有关”.故选:A10.设函数f(x),g(x)在[a,b]上均可导,且f′(x)<g′(x),则当a<x<b 时,有()A.f(x)>g(x)B.f(x)<g(x)C.f(x)+g(a)<g(x)+f(a)D.f(x)+g(b)<g(x)+f(b)【考点】利用导数研究函数的单调性.【分析】比较大小常用方法就是作差,构造函数F(x)=f(x)﹣g(x),研究F (x)在给定的区间[a,b]上的单调性,F(x)在给定的区间[a,b]上是增函数从而F(x)>F(a),整理后得到答案.【解答】解:设F(x)=f(x)﹣g(x),∵在[a,b]上f'(x)<g'(x),F′(x)=f′(x)﹣g′(x)<0,∴F(x)在给定的区间[a,b]上是减函数.∴当x>a时,F(x)<F(a),即f(x)﹣g(x)<f(a)﹣g(a)即f(x)+g(a)<g(x)+f(a)故选C.11.设集合S={x||x﹣2|>3},T={x|a<x<a+8},S∪T=R,则a的取值范围是()A.﹣3<a<﹣1 B.﹣3≤a≤﹣1 C.a≤﹣3或a≥﹣1 D.a<﹣3或a >﹣1【考点】集合的包含关系判断及应用.【分析】根据题意,易得S={x|x<﹣1或x>5},又有S∪T=R,可得不等式组,解可得答案.【解答】解:根据题意,S={x||x﹣2|>3}={x|x<﹣1或x>5},又有S∪T=R,所以,故选A.12.设a,b∈R,则“a>b”是“a|a|>b|b|”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分又不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据不等式的性质,结合充分条件和必要条件的定义进行判断即可得到结论.【解答】解:若a>b,①a>b≥0,不等式a|a|>b|b|等价为a•a>b•b,此时成立.②0>a>b,不等式a|a|>b|b|等价为﹣a•a>﹣b•b,即a2<b2,此时成立.③a≥0>b,不等式a|a|>b|b|等价为a•a>﹣b•b,即a2>﹣b2,此时成立,即充分性成立.若a|a|>b|b|,①当a>0,b>0时,a|a|>b|b|去掉绝对值得,(a﹣b)(a+b)>0,因为a+b >0,所以a﹣b>0,即a>b.②当a>0,b<0时,a>b.③当a<0,b<0时,a|a|>b|b|去掉绝对值得,(a﹣b)(a+b)<0,因为a+b <0,所以a﹣b>0,即a>b.即必要性成立,综上“a>b”是“a|a|>b|b|”的充要条件,故选:C.二、填空题:本大题共6小题,每小题4分,共24分.13.设m∈R,m2+m﹣2+(m2﹣1)i是纯虚数,其中i是虚数单位,则m=﹣2.【考点】复数的基本概念.【分析】根据纯虚数的定义可得m2﹣1=0,m2﹣1≠0,由此解得实数m的值.【解答】解:∵复数z=(m2+m﹣2)+(m﹣1)i为纯虚数,∴m2+m﹣2=0,m2﹣1≠0,解得m=﹣2,故答案为:﹣2.14.已知=2,=3,=4,…若=6,(a,t均为正实数),则类比以上等式,可推测a,t的值,a+t=41.【考点】类比推理.【分析】观察所给的等式,等号右边是,,…第n个应该是,左边的式子,写出结果.【解答】解:观察下列等式=2,=3,=4,…照此规律,第5个等式中:a=6,t=a2﹣1=35a+t=41.故答案为:41.15.如图,已知AB和AC是圆的两条弦,过点B作圆的切线与AC的延长线相交于点D,过点C作BD的平行线与圆相交于点E,与AB相交于点F,AF=3,FB=1,EF=,则线段CD的长为.【考点】与圆有关的比例线段.【分析】由相交弦定理求出FC,由相似比求出BD,设DC=x,则AD=4x,再由切割线定理,BD2=CD•AD求解.【解答】解:由相交弦定理得到AF•FB=EF•FC,即3×1=×FC,FC=2,在△ABD 中AF:AB=FC:BD,即3:4=2:BD,BD=,设DC=x,则AD=4x,再由切割线定理,BD2=CD•AD,即x•4x=()2,x=故答案为:16.给出下列命题:①命题“∃x∈R,x2﹣x≤0”的否命题是“∃x∈R,x2﹣x>0”②命题:“已知x,y∈R,若x+y≠3,则x≠2或y≠1”的逆否命题是真命题③命题“若a=﹣1,则函数f(x)=ax2+2x﹣1只有一个零点”的逆命题是真命题④命题“p∨q为真”是命题“p∧q为真”的充分不必要条件⑤若p是¬q的充分不必要条件,则¬p是q的必要不充分条件.其中是真命题的有②⑤(把你认为正确的命题序号都填上)【考点】命题的真假判断与应用.【分析】①根据特称命题的否定是全称命题进行判断,②根据逆否命题的定义进行判断,③根据逆命题的定义结合函数零点的定义进行判断,④根据充分条件和必要条件的定义以及复合命题的关系进行判断,⑤根据充分条件和必要条件的定义结合逆否命题的等价性进行判断.【解答】解:①命题“∃x∈R,x2﹣x≤0”的否命题是“∀x∈R,x2﹣x>0”,故①错误,②命题:“已知x,y∈R,若x+y≠3,则x≠2或y≠1”的逆否命题是若x=2且y=1时,x+y=3,为真命题,故②正确,③命题“若a=﹣1,则函数f(x)=ax2+2x﹣1只有一个零点”的逆命题是若函数f (x)=ax2+2x﹣1只有一个零点,则a=﹣1,为假命题,当a=0时,由f(x)=2x﹣1=0,得x=,此时函数f(x)也是一个零点,故③错误,④命题“p∨q为真”是命题,则p,q至少有一个为真,若“p∧q为真”,则p,q 同时为真,则命题“p∨q为真”是命题“p∧q为真”的必要不充分条件,故④错误,⑤若p是¬q的充分不必要条件,q是¬p的充分不必要条件,即¬p是q的必要不充分条件.正确,故⑤正确,故真命题是②⑤,故答案为:②⑤17.如图,在圆内接梯形ABCD中,AB∥DC,过点A作圆的切线与CB的延长线交于点E.若AB=AD=5,BE=4,则弦BD的长为.【考点】与圆有关的比例线段;余弦定理.【分析】连结圆心O与A,说明OA⊥AE,利用切割线定理求出AE,通过余弦定理求出∠BAE的余弦值,然后求解BD即可.【解答】解:如图连结圆心O与A,因为过点A作圆的切线与CB的延长线交于点E.所以OA⊥AE,因为AB=AD=5,BE=4,梯形ABCD中,AB∥DC,BC=5,由切割线定理可知:AE2=EB•EC,所以AE==6,在△ABE中,BE2=AE2+AB2﹣2AB•AEcosα,即16=25+36﹣60cosα,所以cosα=,AB=AD=5,所以BD=2×ABcosα=.故答案为:.18.已知数列{a n}中,a n=,记f(n)=(1﹣a1)(1﹣a2)…(1﹣a n),试计算f (1),f(2),f(3)的值,推测f(n)的表达式为f(n)=.【考点】归纳推理.【分析】根据f(n)=(1﹣a1)(1﹣a2)…(1﹣a n),依次求得f(1),f(2),f (3)的值,将结果转化为同一的结构形式,进而推广到一般得出f(n)的值.【解答】解:∵f(n)=(1﹣a1)(1﹣a2)…(1﹣a n),a n=,∴f(1)=,f(2)==,f(3)==,…,根据其结构特点可得:f(n)=.故答案为:.三、解答题:(共40分)解答应写出文字说明、证明过程或演算步骤.19.已知x=1是函数f(x)=mx3﹣3(m+1)x2+nx+1的一个极值点,其中m,n ∈R,m<0.(Ⅰ)求m与n的关系表达式;(Ⅱ)求f(x)的单调区间;(Ⅲ)当x∈[﹣1,1]时,函数y=f(x)的图象上任意一点的切线斜率恒大于3m,求m的取值范围.【考点】利用导数研究函数的极值;函数恒成立问题;利用导数研究函数的单调性.【分析】(Ⅰ)求出f′(x),因为x=1是函数的极值点,所以得到f'(1)=0求出m与n的关系式;(Ⅱ)令f′(x)=0求出函数的极值点,讨论函数的增减性确定函数的单调区间;(Ⅲ)函数图象上任意一点的切线斜率恒大于3m即f′(x)>3m代入得到不等式即3m(x﹣1)[x﹣(1+)]>3m,又因为m<0,分x=1和x≠1,当x≠1时g(t)=t﹣,求出g(t)的最小值.要使<(x﹣1)﹣恒成立即要g(t)的最小值>,解出不等式的解集求出m的范围.【解答】解:(Ⅰ)f′(x)=3mx2﹣6(m+1)x+n.因为x=1是f(x)的一个极值点,所以f'(1)=0,即3m﹣6(m+1)+n=0.所以n=3m+6.(Ⅱ)由(Ⅰ)知f′(x)=3mx2﹣6(m+1)x+3m+6=3m(x﹣1)[x﹣(1+)]当m<0时,有1>1+,当x变化时f(x)与f'(x)的变化如下表:由上表知,当m<0时,f(x)在(﹣∞,1+)单调递减,在(1+,1)单调递增,在(1,+∞)单调递减.(Ⅲ)由已知,得f′(x)>3m,即3m(x﹣1)[x﹣(1+)]>3m,∵m<0.∴(x﹣1)[x﹣1(1+)]<1.(*)10x=1时.(*)式化为0<1怛成立.∴m<0.20x≠1时∵x∈[﹣1,1],∴﹣2≤x﹣1<0.(*)式化为<(x﹣1)﹣.令t=x﹣1,则t∈[﹣2,0),记g(t)=t﹣,则g(t)在区间[﹣2,0)是单调增函数.∴g(t)min=g(﹣2)=﹣2﹣=﹣.由(*)式恒成立,必有<﹣⇒﹣<m,又m<0.∴﹣<m<0.综上10、20知﹣<m<0.20.函数f(x)=ax2﹣(2a+1)x+lnx(1)当a=1时,求f(x)的单调区间和极值;(2)设g(x)=e x﹣x﹣1,当a<0时,若对任意x1∈(0,+∞),x2∈R,不等式f(x1)≤g(x2)恒成立,求实数a的取值范围.【考点】利用导数研究函数的单调性;利用导数研究函数的极值.【分析】(1)当a=1时,函数f(x)=x2﹣3x+lnx,f′(x)=.令f'(x)=0得:x1=,x2=1.列出表格即可得出函数的单调性极值;(2)对于任意的x1∈(0,+∞),x2∈R,不等式f(x1)≤g(x2)恒成立,则有f(x)max≤g(x)min.利用导数分别在定义域内研究其单调性极值与最值即可.【解答】解:(1)当a=1时,函数f(x)=x2﹣3x+lnx,f′(x)=.令f'(x)=0得:x1=,x2=1.当x变化时,f'(x),f(x)的变化情况如下表:因此,f(x)的单调递增区间为:(0,),(1,+∞);单调递减区间为:(,1)当x=时,f(x)有极大值,且f(x)极大值=﹣﹣ln2;2.当x=1时,f(x)有极小值,且f(x)极小值=﹣(2)由g(x)=e x﹣x﹣1,则g'(x)=e x﹣1,令g'(x)>0,解得x>0;令g'(x)<0,解得x<0.∴g(x)在(﹣∞,0)是减函数,在(0,+∞)是增函数,0)=0.即g(x)最小值=g(对于任意的x1∈(0,+∞),x2∈R,不等式f(x1)≤g(x2)恒成立,则有f(x1)≤g(0)即可.即不等式f(x)≤0对于任意的x∈(0,+∞)恒成立.f′(x)=①当a=0时,f′(x)=,令f'(x)>0,解得0<x<1;令f'(x)<0,解得x>1.∴f(x)在(0,1)是增函数,在(1,+∞)是减函数,1)=﹣1<0,∴f(x)最大值=f(∴a=0符合题意.②当a<0时,令f'(x)>0,解得0<x<1;令f'(x)<0,解得x>1.∴f(x)在(0,1)是增函数,在(1,+∞)是减函数,1)=﹣a﹣1≤0,∴f(x)最大值=f(得﹣1≤a<0,∴﹣1≤a<0符合题意.③当a>0时,令f'(x)=0得:x1=,x2=1.a>时,0<x1<1,令f'(x)>0,解得0<x<或x>1;令f'(x)<0,解得<x<1.∴f(x)在(1,+∞)是增函数,而当x→+∞时,f(x)→+∞,这与对于任意的x∈(0,+∞)时f(x)≤0矛盾.同理0<a≤时也不成立.综上所述:a的取值范围为[﹣1,0].21.已知函数f(x)=xlnx,g(x)=(﹣x2+ax﹣3)e x(其中a实数,e是自然对数的底数).(Ⅰ)当a=5时,求函数y=g(x)在点(1,e)处的切线方程;(Ⅱ)求f(x)在区间[t,t+2](t>0)上的最小值;(Ⅲ)若存在x1,x2∈[e﹣1,e](x1≠x2),使方程g(x)=2e x f(x)成立,求实数a的取值范围.【考点】利用导数研究曲线上某点切线方程;利用导数求闭区间上函数的最值.【分析】(Ⅰ)写出当a=5时g(x)的表达式,求出导数,求得切线的斜率和切点,再由点斜式方程,即可得到切线方程;(Ⅱ)求出f(x)的导数,求出极值点,讨论①当t时,②当0<t<时,函数f (x)的单调性,即可得到最小值;(Ⅲ)由g(x)=2e x f(x)可得2xlnx=﹣x2+ax﹣3,得到a=x+2lnx+,令h(x)═x+2lnx+,求出导数,列表求出极值,求出端点的函数值,即可得到所求范围.【解答】解:(Ⅰ)当a=5时,g(x)=(﹣x2+5x﹣3)e x,g′(x)=(﹣x2+3x+2)e x,故切线的斜率为g′(1)=4e,且g(1)=e,所以切线方程为:y﹣e=4e(x﹣1),即4ex﹣y﹣3e=0.(Ⅱ)f′(x)=lnx+1,令f′(x)=0,得x=,①当t时,在区间(t,t+2)上,f′(x)>0,f(x)为增函数,所以f(x)min=f(t)=tlnt,②当0<t<时,在区间(t,)上f′(x)<0,f(x)为减函数,在区间(,e)上f′(x)>0,f(x)为增函数,所以f(x)min=f()=﹣;(Ⅲ)由g(x)=2e x f(x)可得2xlnx=﹣x2+ax﹣3 a=x+2lnx+,h()=+3e﹣2,h(1)=4,h(e)=+e+2,h(e)﹣h()=4﹣2e+<0则实数a的取值范围为(4,e+2+].xx1月15日。
2019-2020年高二上学期期中考试数学试题 含答案(V)(可打印修改)

A.15
B.30
C.31
D.64
3.锐角中,角、所对的边长分别为、,若,则角等于( )
A.
B.
C.
D.
4.在中,若 sin A : sin B : sin C 3 : 4 : 5 ,则的值为( )
A.
B.
C.
D.
5.已知数列的前 n 项和,则的值为( )
A.80
B.40
C.20
D.10
6.在△ABC 中,若,则△ABC 的形状是( )
A.
B.
C.
D.
高二数学试卷 邢弘引
第 II 卷
二、填空题(共 4 题,共计 20 分) 13.如图,测量河对岸的塔高时,选与塔底在同一水平面内的两个测点与,测得,米,并在点测得 塔顶的仰角为,则塔高 .
14.设等比数列的前项和为,已知,则
.
15.已知在中,,,,若有两解,则的取值范围是____.
,所以,则 sin A sin B sin A sin(1200 A) 3 sin A 3 cos A 3 sin( A 300 ) ,当时,
2
2
有最大值,此时最大值为,故选 C.
考点:三角函数的性质;正弦定理.
9.B
【解析】
试题分析:因为是等差数列,又前四项之和为 20,,且最后四项之和为 60,
当时, 2 5 8
26 29 2 .
所以,解得,.故 D 正确.
考点:数列.
13.
【解析】
试题分析:在中,由正弦定理,得 BC sin1200 10 10 3m ,在中, sin 300
AB BC tan 600 10 3 3 30m .
考点:三角形的实际应用. 【方法点晴】本题主要考查了三角形的实际应用问题,其中解答中涉及到三角形的正弦定 理、直角三角形的性质、三角函数的定义等知识的考查,着重考查了学生分析问题和解答 问题的能力,以及学生的推理与运算能力,试题比较基础,属于基础题,本题的解答中正 确的理解题意,恰当选择三角形,利用正、余弦定理求解是解答的关键. 14. 【解析】 试题分析:由等比数列的连续项和成等比的性质可知,将代入可得.故本题填. 考点:等比数列的性质
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
那么单开一条水管,最快注满水池的水管编号为()
A. ①
B. ②
C. ④
D. ③或⑤【答案】C
【解析】
【分析】
将表格中数据两两横向对比即可比较出不同水管的进水速度,从而得到答案.
【详解】①②用2小时,②③用15小时,所以①的速度要比③快;②③用15小时,③④要用6小时,所以④比②进水速度快;③④用6小时,④⑤用3小时,所以⑤比③进水速度快;④⑤用3小时,⑤①用19小时,④比①进水速度快;①②用两个小时,⑤①用19个小时,所以②比⑤进水快. 根据以上分析可得到:进水速度①>③;④>②;⑤>③;④>①;
②>⑤.
所以最快的是④.
所以C选项是正确的.
【点睛】本题考查识别表格的能力,关键根据表格中两个水管灌满水的时间,每两个横向比较,找到最快的.
6.函数2()(2)x f x x x e =-的图象大致为( )
A. B.
C. D.
【答案】A 【解析】 【分析】
根据排除法可令x =1,排除C ,D ,且当0x <时,2
()(2)0x
f x x x e =-<,排除B ,从而得到答案.
【详解】令x =1,则f (1)=e >0,所以排除C ,D ,令2
()(2)0x f x x x e =-<,解得0x <或
2x >,
则0x <时,2
()(2)0x
f x x x e =-<,排除B ,选A. 所以本题选A.
【点睛】本题考查函数图象的判断,一般采用排除法,可利用赋值,求函数奇偶性等进行排除,属基础题.
7.用S 表示图中阴影部分的面积,若有6个对面积S 的表示,如图所示,()c
a
S f x dx =⎰
①;
()c a
S f x dx =⎰②;()c a S f x dx =⎰③;()()b c
a b
S f x dx f x dx =-⎰⎰④;
()()c b b
a
S f x dx f x dx =-⎰⎰⑤;()()b c
a
b
S f x dx f x dx =-⎰⎰⑥.则其中对面积S 的表示正确序号
的个数为( )
A. 2
B. 3
C. 4
D. 5
【答案】B 【解析】 【分析】
先将阴影部分的面积用定积分()+
()c
b
b
a
f x dx f x dx ⎰
⎰
表示,然后根据定积分的意义和函数
的符号进行选择化简即可.
【详解】由定积分的几何意义知,区域内的面积为:
()+
()c
b
b
a
f x dx f x dx ⎰
⎰
,
又当[],x a b ∈时,()0f x ≤,当[]
,x b c ∈时,()0f x ≥, 所以
()+()=()()()()c
b c b
b
b
a
b
a
a
c
b
f x dx f x dx f x dx f x dx f x dx f x dx -=
-⎰
⎰⎰⎰⎰
⎰,
或者
()()()()|()||()|=|()|c
b c b c b c
b
a
b
a
b
a
a
f x dx f x dx f x dx f x dx f x dx f x dx f x dx -=+-=+⎰
⎰⎰⎰⎰⎰⎰,
所以③,⑤,⑥是正确的. 所以本题答案为B.
【点睛】本题考查定积分在求面积中的应用,解题时要注意分割,关键是要注意在x 轴下方的部分积分为负(积分的几何意义强调代数和),属于基础题.
8.已知111
()12f n L n n n n
=
++++++,用数学归纳法证明:对于任意的*n N ∈,
故
1
2
14x dx π
-=⎰
,又0
22
cos sin |sin 0sin()12xdx x πππ
--
==--=⎰, 所以
101
20
2
2
()cos 114f x dx xdx x dx π
π
π
-
-
=
+-=+
⎰⎰⎰.
所以本题答案为14
π+
. 【点睛】本题考查微积分基本定理和定积分的几何意义,利用定积分准确表示封闭图形的面积并正确计算是解答的关键,属基础题. 15. 【答案】40 【解析】
16.若函数()ln f x x =与函数()()2
g 2ln 0x x x a x =++<有公切线,则实数a 的取值范围
是________.
【答案】1,2e ⎛⎫+∞ ⎪⎝⎭
【解析】 【分析】
分别求出导数,设出各自曲线上的切点,得到切线的斜率,结合切点满足曲线方程,再设出两条切线方程,变形为斜截式,从而根据切线相同则系数相等,可得切点坐标的关系式,整理得到关于一个坐标变量的方程,借助于函数的极值和最值,即可得到a 的范围.
【试题分析】(1)将()z bi b R =∈代入21z i -+,再借助2
1z i
-+是实数,其虚部为0建立方程求出b
的
值;(2)将2z i =-代入()2
m z +,借助其表示的点在第一象限建立不等式组,通
过解不等式组求出m 的取值范围:
解:(1)∵z=bi(b∈R),
∴=
=
=.
又∵
是实数,∴
, ∴b=﹣2,即z=﹣2i .
(2)∵z=﹣2i ,m∈R,∴(m+z )2=(m ﹣2i )2=m 2﹣4mi+4i 2=(m 2﹣4)﹣4mi , 又∵复数所表示的点在第一象限,∴
,
解得m <﹣2,即m∈(﹣∞,﹣2)时,复数所表示的点在第一象限. 18.(1)
19.已知函数3
1()443
f x x x =
-+. (1)求()f x 在[]0,3上的最值;
(2)对任意[]
12,0,x x m ∈,1216
()()3
f x f x -≤
恒有成立,求实数m 的取位范围. 【答案】(1)当0x =时,()f x 的最大值为4;当2x =时,()f x 的最小值为
4
3
-;(2)(0,23]. 【解析】 【分析】
(1)对()f x 求导,令()0f x '=,得到()f x 在[0]3,上的单调性,从而求得最值;(2)由
416
433
⎛⎫--= ⎪⎝⎭,数形结合分析可得取值范围.
【详解】(1)因为3
1()443
f x x x =-+,所以2()4f x x =-',令()0f x '=,解得2x =-或2x =,
因为()f x 在[0]3,
上,所以()f x 在[0]2,上单调递减;在]
(23,上单调递增,
又因为(0)4f =,4
(2)3
f =-
,(3)1f =, 所以,当0x =时,()f x 的最大值为4;当2x =时,()f x 的最小值为43
-. (2)因为416
433
⎛⎫--
= ⎪⎝⎭,结合()f x 的
图象:
令()04f x =,解得023x =, 所以m 的取值范围是(0,23].
【点睛】本题考查利用导数研究函数的最值,考查根据函数的图像和性质求参数法人方法,要熟练掌握数形结合思想方法的运用,属中档题.
20.设函数()ln(1)f x x =+,()()g x xf x '=,0x ≥,其中()f x '是()f x 的导数,令
1()()g x g x =,1()(())n n g x g g x +=,*n N ∈.
(1)求1()g x ,2()g x ,3()g x ,并猜想()n g x ; (2)证明:猜想的()n g x 表达式成立. 【答案】(1)见解析;(2)证明见解析. 【解析】 【分析】
(1)求出()g x 的解析式,依次计算即可得出猜想;(2)利用数学归纳法证明即可. 【详解】(1)因为()ln(1)f x x =+,所以1()1f x x '=
+,则()(0)1x
g x x x
=
≥+,
【点睛】本题考查利用导数研究函数的
单调区间和根据不等式恒成立求参数,尤其是第二问,考查转化与化归的能力,对于恒成立问题,通常要构造新函数,利用导数研究函数的单调性,
求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值。