四年级奥数第1次课图形问题
四年级奥数培优专题第一章 组合与推理

四年级奥数培优专题第一章组合与推理第一讲逻辑推理【专题导引】解答推理问题常用的方法有:排除法、假设法、反证法。
一般可以从以下几方面考虑:1、选准突破口,分析时综合几个条件进行判断。
2、根据题中条件,在推理过程中,不断排除不可能的情况,从而得出要求的结论。
3、对可能出现的情况作出假设,然后再根据条件推理,如果得到的结论和条件不矛盾,说明假设是正确的。
4、遇到比较复杂的推理问题,可以借助图表进行分析。
【典型例题】【例1】桌上有排球、足球、篮球各1个。
排球在足球的右边,篮球在足球的左边。
请按从左到右的顺序排列出球的摆放情况。
【试一试】1、甲、乙、丙比身高,甲说:“丙的身高没有乙高。
”乙说;“甲的身高比丙高。
”丙说:“乙比甲矮。
”问:最高的是谁?2、某班学生,如果:有红色铅笔的人没有绿色铅笔;没有红色铅笔的人有蓝色铅笔。
那么“有绿色铅笔的人就有蓝色铅笔”。
对吗?【例2】刘老师、夏老师和胡老师三人在语、英、数三门课中每人教一门课。
已知:夏老师:我不教数学。
胡老师:我既不教语文,也不教数学。
请你说这三位老师分别教什么课?【试一试】1、有4个球,编号为①、②、③、④,其中3个球一样重,有一个球比其他球轻1克。
为了找出这个轻球用天平称了两次,结果如下:第一次:①+②比③+④轻;第二次:①+③比②+④重。
林 数 克 数 奥学 那么,轻球的编号是几?2、王老师为表扬好人好事,要调查一件好事是谁做的。
他找来小红、小黄、小兰三人,进行询问。
小红说:“是小黄做的。
”小黄说:“不是我做的。
”小兰说:“不是我做的。
”已知这三人中,只有一个说了实话。
问:这件好事是谁做的。
【例3】有三个小朋友在谈论谁做的好事多。
冬冬说:“兰兰做的比静静多。
”兰兰说:“冬冬做的比静静多。
”静静说:“兰兰做的比冬冬少。
”这三位小朋友中谁做的好事最多?谁做的好事最少?【试一试】1、卢刚,丁飞和陈俞一位是工程师,一位是医生,一位是飞行员。
现在只知道:卢刚和医生不同岁;医生比丁飞年龄小;陈俞比飞行员年龄大。
图形的计数(四年级奥数秋季思维训练教程)

图形的计数(四年级奥数秋季思维训练教程)教学内容:第二讲图形的计数(四年级秋季思维训练教程)课时:第一、二课时课型:新授课教学目的:知识与技能理解并掌握数线段的两种方法:基本线段法、定端点法。
学会灵活地将数图形(三角形、正方形、长方形等)问题转化为数线段问题。
过程与方法通过引导学生复习旧知,鼓励学生总结归纳数线段的基本方法,培养学生的观察能力、抽象概括能力,增强学生探究问题的本领。
在观察、分析图形的过程中,要逐步培养学生掌握从特殊到一般的研究问题的方法。
情感态度与价值观在观察、总结归纳数线段的基本方法的过程中,体会探索新知的乐趣,养成善于思考,勇于探索,乐于交流的习惯。
在数图形个数时,要求按一定的顺序去做,做到不遗漏,不重复,提高学生的逻辑思维能力,养成严密的数学思维习惯。
教学重、难点:重点:通过观察、分析复杂图形并数出其中基本图形的个数的过程中,促进学生掌握类比转化的方法,培养学生分析和解决问题的能力。
难点:如何将复杂图形的计数问题转化为线段的计数问题教具、学具准备:教学过程:复习旧知,凝疑导入同学们,看看我左手上是什么?(粉笔)数数有几只?(三只)。
再看看老师右手上拿了什么?(纸)瞅瞅它们共有几张呢?我们两三岁时家人就开始教我们数数了,所以刚刚那两个问题对同学们来说都是小菜一碟,有没有?但是,不知,同学们还是否记得我们之前学过一种稍微复杂一点的数数问题---数线段。
下面我们来简单地复习一下:问题一:数一数下面图形中共有多少条线段?(10条)线段:有两个端点的直线组成的图形要求:不遗漏不重复展示与总结:定端点法:4+3+2+1=10(条)基本线段法:有4条基本线段由两条基本线段组成的线段:3条由三条基本线段组成的线段:2条由四条基本线段组成的线段:1条共有4+3+2+1=10(条)这道题有没有唤起同学们对以前学过知识的记忆呢?同学们应该都知道,学习是一个连续且不断发展的过程,随着我们年龄和年级的不断增加,我们会对同一个大问题进行更深入的研究,所以,理所当然,数数问题也需要我们对它进行更深一步的探究。
四年级奥数第一讲-一笔画问题

第十二讲一笔画问题那么,什么叫一笔画1什么样的图可以一笔画出■?欧竝又是如何彻底证明尢桥冋题的不可能性呢?下面,我们就来介貂这一方面的简单知谋数学书我们把由有限个点和连接这些点的线(线段或弧)所组成的图形叫做圈(如圈3 )S圈中的点叫做曙的结点!连按两結点的线叫做圏的边. 如图(b)中,有三个结点:氐F. G,四条边:线段臥FG以及连接臥F的两段呱•从图Q、0>)中可以看岀,任意两点之间都有一条通路〔即可臥从其中一点出发,沿着图的边走到另一点左WJI的通路为或A-Df I…”这样的图,我扪称为连通图;而下图中〔亡)的一些^点之间却不存在通略(如M与N),像这样的图就不是连逋图将所谓图的一笔ML指的就是;从图的一点出发,笔不离纟氐遍历每条边恰好一次,即每条边都只画一次,不推重复■从上图中容曷看出;能一笔画出的图首先必须是连逋图-但是否所有的连逋图都可以一笔画出呢?下面,我们就来探求醉抉这个问题的方法。
为了叙述的方使’我们把与奇数条边相连的结点叫做奇吊把与偶数条边相连的点称为播点■如I上鹵申的八个给点全是寄■点,上扇(b)申卫、F衣奇為G为偶点。
容易知道,上图00可以一笔画出,即从奇点E出发,沿箭头所指方向. 经过匚G> E.最后到达奇点心同理,从奇点F出发也可以一笔画也最后到达奇点氐而从偶点G岀发,却不能一笔画出•这是为什么呢?G事实上,这并不杲偶然现象•假定某个图可以一笔画成,且它的结点X既不是起点,也不是终点,而是中何点,那么X—定是一个偶点.这杲因为无论何时通过一条边到达X,由于不能重复,必须从另一董边离开X.这样与X连纟吉的边 -定成对出现,所以X必为偶点,也就是说:奇点在」笔画中只能作为起或终点•由此可臥看出,在一个可以一笔画出的图中,奇点的个数最多只有两个。
在七桥问题的图中有四个奇点,因此,欧拉断言’这个图无法一笔画岀,也即游人不可能不重复地1次走遍七座桥.更逬1步地,欧拉在解决七桥问题的同时彻底地解决了一笔画的问题,给出了下面的欧拉定理;①凡是由偶点组成的连通图,一定可以一笔画成;画时可以任一偶点为起点,最后一定能以这个点为终点画完此图。
小学奥数 4-1-1几何图形的认识.教师版

本讲知识点属于几何模块的第一讲,属于起步内容,难度并不大.要求学生认识各种基本平面图形和立体图形;了解简单的几何图形简拼和立体图形展开;看懂立体图形的示意图,锻炼一定的空间想象能力.几何图形的定义:1、几何图形主要分为点、线、面、体等,他们是构成中最基本的要素.(1)点:用笔在纸上画一个点,可以画大些,也可以画小些.点在纸上占一个位置.(2)线段:沿着直尺把两点用笔连起来,就能画出一条线段.线段有两个端点.(3)射线:从一点出发,沿着直尺画出去,就能画出一条射线.射线有一个端点,另一端延伸的很远很远,没有尽头.(4)直线:沿着直尺用笔可以画出直线.直线没有端点,可以向两边无限延伸(5)两条直线相交:两条直线相交,只有一个交点.(6)两条直线平行:两条直线平行,没有交点,无论延伸多远都不相交.(7)角:角是由从一点引出的两条射线构成的.这点叫角的顶点,射线叫点的边.边顶点(8)角分为锐角、直角和钝角三种:直角的两边互相垂直,三角板有一个角就是这样的直角.教室里天花板上的角都是直角.锐角比直角小,钝角比直角大.直角锐角钝角(9)三角形:三角形有三条边,三个角,三个顶点.顶角顶角边边角角角顶角边(10)直角三角形:直角三角形是一种特殊的三角形,它有一个角是直角.它的三条边中有两条叫直角边,知识点拨一条叫斜边.直角边斜边直角边(11)等腰三角形:等腰三角形也是一种特殊的三角形,它有两条边一样长(相等),相等的两条边叫”腰”,另外的一条边叫”底”.腰腰底(12)等腰直角三角形:等腰直角三角形既是直角三角形,又是等腰三角形.直角边直角边斜边腰腰底(13)等边三角形:等边三角形的三条边一样长(相等),三个角也一样大(相等).边边边角角角(14)四边形:四边形有四条边,内部有四个角. (15)长方形:长方形的两组对边分别平行且相等,四个角也都是直角.(16)正方形:正方形的四条边都相等,四个角都是直角. (17)平行四边形:平行四边形的两组对边分别平行而且相等,两组对角分别相等.(18)等腰梯形:等腰梯形是一种特殊的四边形,它的上下两边平行,左右两边相等.平行的两边分别叫上底和下底,相等的两边叫腰.腰腰下底上底(19)菱形:菱形的四条边都相等,对角分别相等.(20)圆:圆是个很美的图形.圆中心的一点叫圆心,圆心到圆上一点的连线叫圆的半径,过圆心连接圆上两点的连线叫圆的直径.直径把圆分成相等的两部分,每一部分都叫半圆. 半径直径 半圆直径(21)扇形:弧半径半径(22)长方体:长方体有六个面,十二条棱,八个顶点.长方体的面一般是长方形,也可能有两个面是正方形.互相垂直的三条棱分别叫做长方体的长、宽、高.高宽长(23)正方体:正方体有六个面,十二条棱,八个顶点.正方体的每个面都是同样大的正方形,所以它的十二条棱长都相等.(24)圆柱:圆柱的两个底面是完全相同的圆.(25)圆锥:圆锥的底面是圆. (26)棱柱:这个棱柱的上下底面是三角形.它有三条互相平行的棱,叫三棱柱.底面底面(27)棱锥:这个棱锥的底面是四边形.它有四条棱斜着立起来,所以叫四棱锥.底面(28)三棱锥:因为三棱锥有四个面,所以通常又叫”四面体”.三棱锥的每一个面都是三角形.(29)球体,简称球:球有球心,球心到球面上一点的连线叫球的半径.例题精讲模块一、几何图形的认识【例1】请看下图,共有个圆圈。
四年级奥数专题第一讲 图形问题

四年级奥数专题第一讲图形问题【一】将一个长10厘米,宽5厘米的长方形纸片,剪成一个最大的正方形,这个正方形的面积是多少平方厘米?练习1、一个长方形,长24分米,如果长减少了4分米,就成了正方形,则原长方形的面积是多少?2、将一个长8厘米,宽5厘米的长方形纸片,剪成一个最大的正方形,要剪去多大面积的纸片?【二】有一块长方形土地,长6米,长是宽的2倍,这块长方形土地的面积是多少?练习1、有一块面积是18平方米的长方形草地,长是宽的2倍,长与宽各是多少?2、一块面积为25平方厘米的正方形手帕,它的边长是多少?【三】竹苑小学操场长60米,宽30米,改造后,长增加10米,宽增加10米。
现在操场面积比原来增加了多少平方米?练习1、有一块长方形的铁片,长16分米,宽9分米,如果长和宽分别减少6分米、5分米,面积比原来减少多少平方分米?2、一个长方形,长15分米,宽6分米,如果长和宽各减少3分米,面积比原来减少多少平方分米?【四】一个长方形,如果长增加3米,那么它的面积增加12平方米;如果宽减少2米,那么它的面积减少14平方米。
这个长方形原来的面积是多少平方米?练习1、一个长方形,如果宽不变,长减少2米,那么它的面积减少24平方米;如果长不变,宽增加3米,那么它的面积增加18平方米,这个长方形原来的面积是多少平方米?2、一个长方形,如果宽不变,长增加8米,那么它的面积增加32平方米,如果长不变,宽增加6米,那么它的面积增加36平方米,这个长方形原来的面积是多少平方米?【五】下图是一个果农在院子周围用一段长20米的篱笆围成的一个长方形围墙,求占地面积有多大?1、用1米长的铁丝围成一个长方形,要使它的宽为15厘米,则它的面积是多少平方厘米?2、一个正方形与一个长方形的周长相等,长方形的长与宽的和是14分米,则正方形的面积是多少?【六】中心小学一个正方形的花坛四周有1米宽的水泥路,如果水泥路的总面积是20平方米,这个花坛的面积是多少平方米?练习1、有一块长方形土地,长是宽的2倍,中间有一座雕塑,雕塑的地面是一个正方形,周围是草坪,那么草坪的面积是多少平方米?2、四个完全相同的长方形和一个小正方形拼成了一个大正方形(如图)。
小学奥数4-1-1几何图形的认识.专项练习及答案解析

知识点拨本讲知识点属于几何模块的第一讲,属于起步内容,难度并不大.要求学生认识各种基本平面图形和立体图形;了解简单的几何图形简拼和立体图形展开;看懂立体图形的示意图,锻炼一定的空间想象能力.几何图形的定义:1、几何图形主要分为点、线、面、体等,他们是构成中最基本的要素.(1)点:用笔在纸上画一个点,可以画大些,也可以画小些.点在纸上占一个位置.(2)线段:沿着直尺把两点用笔连起来,就能画出一条线段.线段有两个端点.(3)射线:从一点出发,沿着直尺画出去,就能画出一条射线.射线有一个端点,另一端延伸的很远很远,没有尽头.(4)直线:沿着直尺用笔可以画出直线.直线没有端点,可以向两边无限延伸(5)两条直线相交:两条直线相交,只有一个交点.(6)两条直线平行:两条直线平行,没有交点,无论延伸多远都不相交.(7)角:角是由从一点引出的两条射线构成的.这点叫角的顶点,射线叫点的边.边顶点(8)角分为锐角、直角和钝角三种:直角的两边互相垂直,三角板有一个角就是这样的直角.教室里天花板上的角都是直角.锐角比直角小,钝角比直角大.直角锐角钝角(9)三角形:三角形有三条边,三个角,三个顶点.(10)直角三角形:直角三角形是一种特殊的三角形,它有一个角是直角.它的三条边中有两条叫直角边,一条叫斜边.(11)等腰三角形:等腰三角形也是一种特殊的三角形,它有两条边一样长(相等),相等的两条边叫”腰”,另外的一条边叫”底”.(12)等腰直角三角形:等腰直角三角形既是直角三角形,又是等腰三角形.(13)等边三角形:等边三角形的三条边一样长(相等),三个角也一样大(相等).(14)四边形:四边形有四条边,内部有四个角.(15)长方形:长方形的两组对边分别平行且相等,四个角也都是直角.(16)正方形:正方形的四条边都相等,四个角都是直角.(17)平行四边形:平行四边形的两组对边分别平行而且相等,两组对角分别相等.顶角顶角边边角角角顶角边直角边斜边直角边腰腰底直角边直角边斜边腰腰底边边边角角角(18)等腰梯形:等腰梯形是一种特殊的四边形,它的上下两边平行,左右两边相等.平行的两边分别叫上底和下底,相等的两边叫腰.(19)菱形:菱形的四条边都相等,对角分别相等.(20)圆:圆是个很美的图形.圆中心的一点叫圆心,圆心到圆上一点的连线叫圆的半径,过圆心连接圆上两点的连线叫圆的直径.直径把圆分成相等的两部分,每一部分都叫半圆.(21)扇形:(22)长方体:长方体有六个面,十二条棱,八个顶点.长方体的面一般是长方形,也可能有两个面是正方形.互相垂直的三条棱分别叫做长方体的长、宽、高.(23)正方体:正方体有六个面,十二条棱,八个顶点.正方体的每个面都是同样大的正方形,所以它的十二条棱长都相等.(24)圆柱:圆柱的两个底面是完全相同的圆.(25)圆锥:圆锥的底面是圆.腰腰下底上底半径直径半圆直径弧半径半径高宽长(26)棱柱:这个棱柱的上下底面是三角形.它有三条互相平行的棱,叫三棱柱.底面底面(27)棱锥:这个棱锥的底面是四边形.它有四条棱斜着立起来,所以叫四棱锥.底面(28)三棱锥:因为三棱锥有四个面,所以通常又叫”四面体”.三棱锥的每一个面都是三角形.(29)球体,简称球:球有球心,球心到球面上一点的连线叫球的半径.例题精讲模块一、几何图形的认识【例1】请看下图,共有个圆圈。
(完整版)四年级奥数第一讲_图形的计数问题

第一讲图形的计数问题一、知识点:几何图形计数问题常常没有不言而喻的次序,并且要数的对象往常是重叠交织的,要正确计数就需要一些智慧了.实质上,图形计数问题,往常采纳一种简单原始的计数方法-一列举法.详细而言,它是指把所要计数的对象一一列举出来,以保证列举时无一重复、.无一遗漏,而后计算其总和.正确地解答较复杂的图形个数问题,有助于培育同学们思想的有序性和优秀的学习习惯.二、典例解析:例( 1)数出右图中总合有多少个角解析:在∠ AOB内有三条角分线 OC1、OC2、OC3,∠ AOB被这三条角分线分红 4 个基本角,那么∠ AOB内总合有多少个角呢?第一有这 4 个基本角,其次是包括有 2 个基本角构成的角有 3 个(即∠ AOC2、∠ C1OC3、∠ C2OB),而后是包括有 3 个基本角构成的角有 2 个(即∠ AOC3、∠C1OB),最后是包括有 4 个基本角构成的角有 1 个(即∠ AOB),因此∠ AOB内总合有角:4+3+2+1=10(个)解:4+3+ 2+ 1=10(个)答:图中总合有10 个角。
方法 2:用公式计算:边数×(边数—1)÷ 25 ×( 5-1 )÷ 2=10练一练:数一数右图中总合有多少个角?例( 2 )数一数共有多少条线段?共有多少个三角形?解析:①要数多少条线段:先看线段 AB、AD、AE、AF、AC纵向线段,再看 BC、MN、 GH 这 3 条横向线段:(4×3÷2)×5+(5×4÷2)×3=60(条)②要数有多少个三角形,先看在△ ABC中,被 GH和 MN分红了三层,每一层的三角形同样多,因此只需算出一层三角形个数就能够了。
(5 ×4÷2)×3=30(个)答:在△ ABC中共有线段60 条,共有三角形30 个。
练一练:图中共有多少个三角形?例( 3)数一数图中长方形的个数解析:长边线段有:6× 5÷ 2=15宽边线段有: 4 ×3÷2=6共有长方形: 15×6 = 90(个)答:共有长方形90 个。
小学奥数图形找规律四年级

找规律是解决数学问题的图形找规律一种重要的手段,而规律的找寻既需要敏锐的观察力,又需要严密的逻辑推理能力.一般地说,在观察图形变化规律时,应抓住一下几点来考虑问题:⑴图形数量的变化;⑵图形形状的变化;⑶图形大小的变化;⑷图形颜色的变化;⑸图形位置的变化;⑹图形繁简的变化.对于较复杂的图形,也可分为几部分来分别考虑,总而言之,只要全面观察,勤于思考就一定能抓住规律,解决问题.板块一数量规律【例 1】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?【解析】横着看,每行圆形的个数一次减少,而三角形的个数依次增加,但每行图形的总个数不变.因为圆形的个数是按4、3、?、1的顺序变化的,显然“?”处应填一个圆形。
【巩固】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?【解析】(方法一)横着看,每行三角形的个数依次减少,而正方形的个数依次增加,但每行图形的总个数不变.因为三角形的个数是按4、3、?、1的顺序变化的,显然“?”处应填一个三角形△.(方法二)竖着看,三角形由左而右依次减少,而正方形由左而右依次增加,三角形按照4、?、2、1的顺序变化,也可以看出“?”处应是三角形△.【例 2】观察下面的图形,按规律在“?”处填上适当的图形.【解析】本题中,几何图形的变化表现在数量关系上,图中黑三角形的个数从左到右依次增多,从(2)起,每一个格比前面一个格多两个黑三角形,所以,第(4)个方框中应填七个黑三角形.【例 3】观察图形变化规律,在右边补上一幅,使它成为一个完整系列。
【解析】观察发现,乌龟的顺序是:头、身→一只脚、背上一个点→两只脚、背上两个点→两只脚、一条尾、背上三个点→三只脚、一条尾、背上四个点,根据这个规律,最后一幅图应该是:→四只脚、一条尾、背上五个点.即:【例 4】观察图形变化规律,在右边再补上一幅,使它们成为一个完整的系列.【解析】第一格有8个圆圈,第二格有4个圆圈,第三格有2个圆圈,第四格有1个圆圈,第五格有半个圆圈.由此发现,前一格中的图减少一般,正好是后一格的图.所以第六格的图应该是第五格图的一半,即:板块二旋转、轮换型规律【例 5】相传古时候一位老人留在人间很多宝盒,里面装着世界上最宝贵的财富,但是并不是拥有宝盒都可以得到这笔财富,在宝盒的上面设置了密码,只有写出密码的人才会真正拥有这笔财富,聪明的你你能找出密码吗?○□☆△○□☆△△○□☆△○□☆☆△○□☆△○□()()()()()()()()【解析】有几种方法可以找出密码:(方法一)后面一排和前面一排比,上排的第一个图形移到最后,其他每个图形都向前移动了一格,变成了下一排.(方法二)斜着看,每一斜列的图形是一样的.所以密码就是:□☆△○□☆△○【例 6】观察下图的变化规律,画出丙图.【总结】旋转是数学中的重要概念,掌握好这个概念,可以提高观察能力,加快解题速度,对于许多问题的解决,也有事半而功倍的效果.【例 7】下面各种各样的娃娃头好看吗?认真观察你能找到它们排列的规律吗?根据规律把最后一个画出来.【例 8】观察图中所给出图形的变化规律,然后在空白处填画上所缺的图形.【例 9】琪琪特别喜欢蝴蝶,她用直尺和圆规在纸上画了9幅蝴蝶图,并用剪刀将它们一一剪下来.她将这9只纸蝴蝶摆在桌上,见下图1,她发现这些纸蝴蝶排列挺有规律,突然一阵风来,吹走了3只纸蝴蝶,见下图2.你能找出蝴蝶的排列规律,将图2的3只蝴蝶放入图1的空缺处吗?【解析】从已摆好的第一行和第一列来看,无论横看或竖看,同一行中3只蝴蝶的翅膀形状各不相同,翅膀上的斑点的形状也各不相同.根据这个规律,剩下的3只蝴蝶图案的排列应该是:6号位置放图案C;8号位置放图案B;9号位置放图案A.【例 10】观察下列各组图的变化规律,并在“?”处画出相关的图形.(1)【解析】(1)这四个图形的变化规律是:每一个图形都是由其前一个图形顺时针旋转90°而得到的.见下面左图;(2)甲乙丙丁四个图形变化规律也类似,注意因为图形是由旋转而得到的,所以其中三角形、菱形的方向随旋转而变化,作图的时候要注意到这一点.丁图处的图形应是下面右图:【例 11】请你认真仔细观察,按照下面图形的变化规律,在“?”处画出合适的图形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学,必须要有扎实的基础,我们每天进步一点点,每天熟练一道题,相信我们一定可以学好数学这门简单易懂的学科!
图形问题
一、知识要点
解答有关“图形面积”问题时,应注意以下几点:
1.细心观察,把握图形特点,合理地进行切拼,从而使问题得以顺利地解决;
2.从整体上观察图形特征,掌握图形本质,结合必要的分析推理和计算,使隐蔽的数量关系明朗化。
二、精讲精练
【例题1】人民路小学操场长90米,宽45米。
改造后,长增加10米,宽增加5米。
现在操场面积比原来增加了多少平方米?
练习1:1.有一块长方形的木板,长22分米,宽8分米。
如果长和宽分别减少10分米、3分米,面积比原来减少多少平方分米?
2.一块长方形铁板,长18分米,宽13分米。
如果长和宽各减少2分米,面积比原来减少多少平方分米?
3.一块长方形地,长是80米,宽是45米。
如果把宽增加5米,要使面积不变,长应减少多少米?
【例题2】一个长方形,如果宽不变,长增加6米,那么它的面积增加54平方米;如
果长不变,宽减少3米,那么它的面积减少36平方米。
这个长方形原来的面积是多少
平方米?
练习2:1.一个长方形,如果宽不变,长减少3米,那么它的面积减少24平方米;如果长不变,宽增加4米,那么它的面积增加60平方米。
这个长方形原来的面积是多
少平方米?
2.一个长方形,如果宽不变,长增加5米,那么它的面积增加30平方米;如果长
不变,宽增加3米,那么它的面积增加48平方米。
这个长方形原来的面积是多少平方米?
3.一个长方形,如果它的长减少3米,或它的宽减少2米,那么它的面积都减少36
平方米。
求这个长方形原来的面积。
【例题3】下图是一个养禽专业户用一段16米的篱笆围成的一个长方形养鸡场,求它
的占地面积。
练习3:1.右图是某个养禽专业户用一段长13米的篱笆围成的一
个长方形养鸡场,求养鸡场的占地面积。
2.用56米长的木栏围成长或宽是20米的长方形,其中一边利用围墙,怎样才能使围成的面积最大?
3.用15米长的栅栏沿着围墙围一个种植花草的长方形苗圃,其中一面利用着墙。
如果每边的长度都是整数,怎样才能使围成的面积最大?
【例题4】街心花园中一个正方形的花坛四周有1米宽的水泥路,如
果水泥路的总面积是12平方米,中间花坛的面积是多少平方米?
练习4:1.有一个正方形的水池,如下图的阴影部分,在它的周围修一个
宽8米的花池,花池的面积是480平方米,求水池的边长。
2.四个完全相同的长方形和一个小正方形拼成了一个大正方形(如图),大正方形的面积是64平方米,小正方形的面积是4平方米,长方形的短边是多少米?
3.已知大正方形比小正方形的边长多4厘米,大正方形的面积比小正
方形面积大96平方厘米(如下图)。
问大小正方形的面积各是多少?
【例题5】一块正方形的钢板,先截去宽5分米的长方形,又截去宽8分米的长方形(如图),面积比原来的正方形减少181平方分米。
原正方形的边长是多少?
【思路导航】
练习5:
1.一个正方形一条边减少6分米,另一条边减少10分米后变为一个长方形,这个长方形的面积比正方形的面积少260平方米,求原来正方形的边长。
2.一个长方形的木板,如果长减少5分米,宽减少2分米,那么它的面积就减少66平方分米,这时剩下的部分恰好是一个正方形。
求原来长方形的面积。
3.一块正方形的的玻璃,长、宽都截去8厘米后,剩下的正方形比原来少448平方厘米,这块正方形玻璃原来的面积是多大?。