大连理工大学无机化学_第8章_原子结构
大连理工大学无机化学教研室《无机化学》笔记和课后习题(含考研真题)详解(原子结构)【圣才出品】

第8章 原子结构8.1 复习笔记一、氢原子光谱与Bohr 理论 1.氢原子光谱(1)线状光谱:元素的原子辐射所产生的具有一定频率的、离散的特征谱线。
(2)氢原子光谱特征:①线状光谱;②频率具有规律性。
(3)氢原子光谱的频率公式1512212113.28910()s v n n -=⨯- 【注意】n 2>n 1,且均为正整数,n 1=2时,n 2=3,4,5,6。
2.Bohr 理论Bohr 理论(三点假设):(1)定态假设:核外电子只能在有确定半径和能量的轨道上稳定运行,且不辐射能量; (2)跃迁规则:①基态→激发态:电子处在离核最近、能量最低的轨道上(基态);原子获得能量后,基态电子被激发到高能量轨道上(激发态);②激发态→基态:不稳定的激发态电子回到基态释放光能,光的频率取决于轨道间的能量差。
光能与轨道能级能量的关系式为 h ν=E 2-E 1=ΔE氢原子能级图如图8-1-1所示。
图8-1-1 氢原子光谱中的频率与氢原子能级能级间能量差为H 221211()E R n n ∆=-式中,R H 为Rydberg常数,其值为2.179×10-18J 。
n 1=1,n 2=∞时,ΔE =2.179×10-18J ,为氢原子的电离能。
二、微观粒子运动的基本特征 1.微观粒子的波粒二象性定义:具有粒子性和波动性的微观粒子。
微观粒子的波长为h hmv pλ==式中,m 为实物粒子的质量;v 为粒子的运动速度;p 为动量。
2.不确定原理Heisenberg 不确定原理:处于运动状态的微观粒子的动量和位置不能同时确定。
表示为4hx p π∆⋅∆≥式中,Δx 为微观粒子位置的测量偏差;Δp 为微观粒子的动量偏差。
【注意】波动性是大量粒子运动或一个粒子多次重复运动所表现出来的性质。
三、氢原子结构的量子力学描述 1.薛定谔方程与量子数 (1)薛定谔方程()2222222280mE V x y z hψψψπψ∂∂∂+++-=∂∂∂ 式中,ψ为量子力学中描述核外电子在空间运动的数学函数式,即原子轨道;E 为轨道能量(动能与势能总和);V 为势能;m 为微粒质量;h 为普朗克常数;x ,y ,z 为微粒的空间坐标。
大学无机化学第八章

(6)配离子的电荷数
形成体和配体电荷的代数和即为配离子的电荷。
例如,K3[Fe(CN)6]中配离子的电荷数可根据Fe3+和6个CN-电
荷的代数和判定为-3,也可根据配合物的外界离子(3个K+)电荷 数判定[Fe(CN)6]3-的电荷数为-3。 又如:[PtCl6]2-的电荷数是-2, [Co(NH3)3(H2O)Cl2]+的电荷数是+1
+
例题
[CoCl(NH3)(en)2]SO4
命名: 硫酸(一)氯 •(一) 氨 • 二(乙二胺)合钴(Ⅲ) 内界: [CoCl(NH3)(en)2]2+ 外界: SO42中心原子:Co3+ 配位体: Cl- NH en 3 配位原子:Cl N 配位数: 6
主要内容
1、配合物概述
2、配合物的化学键本性(价键理论) 3、配位平衡 4、 螯合物
多个配体的次序(正着写正着念): 若含多种配体,先无机后有机,先简单后复杂;
若为多种无机配体,先阴离子后中性分子; 若为同类配体,按配位原子元素符号的英文字母顺序 排列: 同类配体同一配位原子时,将含较少原子数的 配体排在前面。
配体化学式相同但配位原子不同,(- SCN, -NCS) 时,则按配位原子元素符号的字母顺序排列。
如: [Cu(NH3)4]SO4 H2[PtCl6]
硫酸四氨合铜(Ⅱ)
六氯合铂(Ⅳ)酸
[Cu(NH3)4](OH)2 氢氧化四氨合铜(Ⅱ)
K[PtCl5(NH3)] 五氯•氨合铂(Ⅳ)酸钾 五羰(基)合铁
大连理工大学无机化学课件完整版

教 尔分数成正比。
程
在稀溶液中:nA远大于nB,nA+nB≈ nA
无 机
xB
nB nA nB
nB nA
nB mA
MA
bBM A
化 学
∆ p = pA* xB = pA*MAbB =kbB
基
础
在一定温度下,难挥发非电解质稀溶液
教 程
的蒸气压下降与溶质的质量摩尔浓度成正比。
拉乌尔定律的另一种表达形式。
, 单位:mol
L1
无 机 化
2. 质量摩尔浓度
bB
nB mA
, 单位: mol
kg
1
学
基 3. 质量分数
础
wB
mB m
, 单位:1
教
程 4. 摩尔分数
xB
nB n
, 单位:1
5. 质量浓度
B
mB V
,单位:g L1或mg L1
1.2.2 稀溶液的依数性
1. 溶液的蒸气压下降
基 础 教
无机化学课程——高等学校化学化工类专业以及 近化学类专业的第一门重要化学基础课。
程 无机化学内容: 1. 化学反应基本原理(第1~7章);
2. 物质结构基础理论(第8~11章);
3. 元素化学基本知识(第12~18章)。
几点教学要求
1、课前预习,认真听课,记好笔记,及时复习。
无
机 化 2、按时、认真、独立完成作业(16开纸),
无机化学
Inorganic Chemistry
无
机
化
学
主教材:无机化学基础教程
基
大连理工大学无机化学教研室《无机化学》(第5版)(复习笔记 原子结构)

8.1 复习笔记一、氢原子光谱与Bohr 理论1.氢原子光谱氢原子光谱是人们认识原子结构的实验基础,原子光谱是线状光谱。
每种元素的原子辐射都具有由一定频率成分构成的特征光谱,是一条条离散的谱线,称为线状光谱。
每一种元素都有各自不同的原子光谱。
氢原子光谱的频率的经验公式:,n=3,4,5,615122113.28910()s 2v n-=⨯-2.Bohr 理论Bohr 理论(三点假设):(1)核外电子只能在有确定半径和能量的轨道上运动,且不辐射能量;(2)通常,电子处在离核最近的轨道上,能量最低——基态;原子获得能量后,电子被激发到高能量轨道上,原子处于激发态;(3)从激发态回到基态释放光能,光的频率取决于轨道间的能量差。
氢原子光谱中各能级间的能量关系式为:21h E E ν=-氢原子能级图如图8-1所示。
图8-1能级间能量差为H 221211(E R n n ∆=-式中,R H 为Rydberg 常数,其值为2.179×10-18 J 。
当时,,即氢原子的电离能。
121n n ==∞或182.17910J E -∆=⨯二、微观粒子运动的基本特征1.波粒二象性微观粒子具有粒子和光的特性,即具有波粒二象性。
微观粒子的波长为:hhmv pλ==式中,m 为实物粒子的质量;v 为粒子的运动速度;p 为动量。
2.不确定原理Heisenberg 不确定原理:2hx p π∆⋅∆≥式中,Δx 为微观粒子位置的测量偏差;Δp 为微观粒子的动量偏差。
微观粒子的运动不遵循经典力学的规律。
微观粒子的波动性是大量微粒运动表现出来的性质,即具有统计意义的概率波。
三、氢原子结构的量子力学描述1.薛定谔方程与波函数式中,ψ为量子力学中描述核外电子在空间运动的数学函数式,即原子轨道;E 为轨道能量(动能与势能总和);V 为势能;m 为微粒质量;h 为普朗克常数;x ,y ,z 为微粒的空间坐标。
2.量子数主量子数n :n =1,2,3…正整数,它决定电子离核的远近和能级。
大连理工大学2024年硕士招生考试自命题科目考试大纲 630 无机化学及无机化学实验

大连理工大学2024年硕士研究生入学考试大纲科目代码:630 科目名称:无机化学及无机化学实验具体复习大纲如下:一、气体和溶液1、理想气体的概念、理想气体状态方程、理想气体状态方程的应用.2、混合气体中组分气体、分压的概念,分压定律、分体积定律.3、真实气体与理想气体的差别.4、液体的蒸发及饱和蒸汽压.5、稀溶液的依数性.二、热化学1、系统、环境、相、热、功、热力学能和焓等概念.2、热力学第一定律.3、热化学方程式、化学反应的标准摩尔焓变(Δr H mӨ).4、物质的标准摩尔生成焓(Δf H mӨ)、物质的标准摩尔燃烧焓(Δc H mӨ).5、Hess定律及有关计算.三、化学反应速率1、化学反应速率、(基)元反应、复合反应等概念.2、反应速率方程、速率系数、反应级数的确定.3、活化分子、活化能等概念、阿伦尼乌斯方程.4、用碰撞理论和活化络合物理论说明浓度、温度和催化剂对反应速率的影响.四、化学平衡熵和Gibbs函数1、化学平衡、标准平衡常数、平衡组成的计算、多重平衡规则.2、反应商判据、Le Chaterlier原理.3、浓度、压力、温度对化学平衡移动的影响及相关计算.4、熵的概念、吉布斯函数的概念,物质的标准摩尔熵S mӨ、物质的标准摩尔生成Gibbs函数、反应的Δr S mӨ和Δr G mӨ的简单计算,Δr G mӨ与Δr H mӨ和Δr S mӨ的关系、Δr G mӨ与KӨ的关系.5、介绍反应的Δr G m,用Δr G m和Δr G mӨ判断反应进行的方向和程度.五、酸碱平衡1、酸碱质子理论、水的解离平衡、水的离子积常数、常见酸碱指示剂的变色范围.2、强酸、强碱溶液有关离子浓度和pH的计算.3、一元(多元)弱酸(碱)的解离平衡、解离常数和平衡组成的计算.4、一元弱酸强碱盐和一元强酸弱碱盐的水解平衡、水解常数和平衡组成的计算.5、多元弱酸强碱盐的分步水解及其平衡组成的计算、酸式盐溶液pH的近似计算.6、同离子效应、缓冲溶液、缓冲能力、缓冲溶液pH的计算.7、酸碱电子理论、配合物的基本概念、配合物的命名、配合物的不稳定常数和稳定常数、配体过量时配位平衡组成的计算、酸碱反应与配合反应共存时溶液平衡组成的计算.六、沉淀-溶解平衡1、难溶电解质的沉淀-溶解平衡、标准溶度积常数、标准溶度积常数与溶解度之间的关系和有关计算.2、溶度积规则、用溶度积规则判断沉淀的生成和溶解.3、pH对难溶金属氢氧化物沉淀-溶解平衡的影响及有关计算、沉淀的配位溶解及其简单计算.4、分步沉淀和两种沉淀间的转化及有关计算.七、氧化还原反应电化学基础1、氧化还原反应的基本概念、氧化反应方程式的配平.2、原电池的基本概念、电池电动势的概念.3、电极电势的概念及其影响因素、Nernst方程式及其相关计算、电极电势的应用.4、元素电势图及其应用.八、原子结构和元素周期律1、氢原子光谱、Bohr原子结构理论、电子的波粒二象性、量子化和能级、原子轨道、概率密度、概率、电子云.2、四个量子数的名称、符号、取值和意义.3、s、p、d原子轨道与电子云的形状和空间伸展方向.4、多电子原子轨道能级图和核外电子排布的规律、写出常见元素原子的核外电子排布、根据核外电子排布确定它们在周期表中的位置.5、周期表中元素的分区、结构特征.6、原子半径、电离能、电子亲和能和电负性的变化规律.九、分子结构1、化学键的分类、共价键价键理论的基本要点、共价键的特征和类型.2、杂化轨道理论的概念和类型、用杂化轨道理论解释简单分子和离子的几何构型.3、价层电子对互斥理论的要点、用价层电子对互斥理论推测简单分子或离子的几何构型.4、分子轨道的概念、第二周期同核双原子分子的能级图、电子在分子轨道中的分布、推测第二周期同核双原子分子(离子)的磁性和稳定性(键级).5、键级、键能、键长、键角等概念.十、晶体结构1、晶体的类型、特征和组成晶体的微粒间的作用力.2、金属晶体的三种密堆积结构及其特征、金属键的形成和特征.3、三种典型离子晶体的结构特征、晶格能的概念、离子电荷和半径对晶格能的影响、晶格能对离子化合物熔点、硬度的影响、晶格能的热化学计算方法.4、离子极化及其对键型、晶格类型、溶解度、熔点、颜色的影响.5、键的极性和分子的极性、分子的偶极矩和变形性及其变化规律、分子间力的产生及其对物质性质的影响.6、氢键形成的条件、特点及对物质某些性质的影响.7、过渡性晶体结构(如:层状晶体).十一、配合物结构1、配合物价键理论的基本要点、配合物的几何构型与中心离子杂化轨道的关系、内轨型和外轨型配合物的概念、中心离子价电子排布与配离子稳定性和磁性的关系.2、配合物晶体场理论的基本要点、八面体场中d电子的分布、高自旋和低自旋配合物、推测配合物的稳定性和磁性、配合物的颜色与d-d跃迁的关系.十二、s区元素1、碱金属和碱土金属的通性、单质的重要物理性质和化学性质.2、碱金属和碱土金属的重要氢化物、氧化物、过氧化物、超氧化物的生成和基本性质.3、碱金属和碱土金属氢氧化物碱性强弱的变化规律、重要盐类的溶解性和稳定性.4、锂和铍的特殊性、对角线规则.十三、p区元素(一)1、硼族元素的通性、缺电子原子和缺电子化合物的概念、乙硼烷的结构和重要性质、硼酸的晶体结构和性质、硼砂的结构和性质、硼的卤化物的结构和水解.2、铝及其重要化合物的性质.3、碳族元素的通性、碳单质的结构、碳的氧化物、碳酸及其盐的重要性质、用离子极化理论说明碳酸盐的热稳定性.4、硅单质、硅的氢化物、硅的氧化物、硅酸及其盐的重要性质.5、硅的卤化物的结构和水解.6、锡和铅的氧化物和氢氧化物的酸碱性及其变化规律、Sn(Ⅱ)的还原性、Pb(Ⅳ)的氧化性、锡和铅硫化物的颜色、生成和溶解性.十四、p区元素(二)1、氮族元素的通性、氮分子的结构和特殊稳定性、铵盐的性质、氮的氧化物的结构、硝酸的结构和性质、硝酸盐和亚硝酸盐的性质.2、磷的单质、氢化物、氧化物、卤化物的结构和性质.3、磷酸及其盐的性质、亚磷酸、次磷酸、焦磷酸、聚磷酸、聚偏磷酸的结构和性质.4、砷、锑、铋氧化物及其水合物的酸碱性及其变化规律.5、砷、锑、铋化合物氧化还原性的变化规律和重要反应.6、砷、锑、铋硫化物的颜色、生成和溶解性及砷、锑的硫代酸盐.7、氧族元素的通性、氧单质的结构和性质、过氧化氢的结构和性质及其重要反应.8、硫单质的结构和性质、硫化氢的性质、金属硫化物的溶解性、多硫化物的性质、二氧化硫和三氧化硫的结构、亚硫酸及其盐的性质、硫酸及其盐的性质、硫代硫酸盐的结构和性质、过二硫酸盐的结构和性质、焦硫酸盐和连二亚硫酸盐的性质.十五、p区元素(三)1、卤素的通性、卤素单质的制备和性质、卤化氢的制备及其性质(还原性、酸性、稳定性)的变化规律、氯的含氧酸及其盐的性质及其变化规律、溴和碘的含氧酸的基本性质.2、稀有气体的重要性质及其变化规律、稀有气体化合物及其几何构型.3、p区元素的氢化物、氧化物及其水合物性质的递变规律.4、p区元素化合物的氧化还原性递变规律、p区元素含氧酸盐的热稳定性递变规律.十六、d区元素(一)1、过渡元素的原子结构特征和通性.2、钛单质的性质和用途.3、铬单质的性质、Cr(Ⅲ)和Cr(Ⅵ)化合物的酸碱性和氧化还原性及其相互转化,杂多酸盐磷钼酸铵.4、Mn(Ⅱ)、Mn(Ⅳ)、Mn(Ⅵ)、Mn(Ⅶ)重要化合物的性质.5、Fe(Ⅱ)、Co(Ⅱ)、Ni(Ⅱ)重要化合物的性质及其变化规律.6、Fe(Ⅲ)、Co(Ⅲ)、Ni(Ⅲ)重要化合物的性质及其变化规律.7、铁、钴、镍的重要配合物.十七、d区元素(二)1、铜族元素的通性.2、铜的氧化物、氢氧化物、重要铜盐的性质.3、Cu(Ⅰ)和Cu(Ⅱ)相互转化、铜的重要配合物、水溶液中Cu2+的重要反应.4、银的氧化物和氢氧化物的性质、银的重要配合物、水溶液中Ag+的重要反应.5、锌族元素的通性、氢氧化锌的性质、水溶液中Zn2+的重要反应、锌的重要配合物.6、镉的重要化合物的性质.7、汞的重要化合物的性质、Hg(Ⅰ)和Hg(Ⅱ)间的相互转化、水溶液中Hg2+和Hg22+的重要反应.十八、无机化学实验1.实验基本操作:加热、洗涤、过滤等无机化学实验操作。
《无机化学》第8章.配位化合物PPT课件

配位化合物的发展趋势与展望
新材料与新能源
随着人类对新材料和新能源需求的不断增加,配位化合物有望在太 阳能电池、燃料电池等领域发挥重要作用。
生物医药领域
配位化合物在药物设计和治疗方面的应用前景广阔,有望为人类疾 病的治疗提供新的解决方案。
环境科学领域
配位化合物在处理环境污染和保护生态环境方面具有潜在的应用价值, 未来有望为环境保护做出贡献。
螯合物
由两个或更多的配位体与同一 中心原子结合而成的配合物,
形成环状结构,如: Fe(SCN)3。
命名
一般命名法
根据配位体和中心原子的名称,加上 “合”字和数字表示配位数的顺序来 命名,如:Co(NH3)5Cl。
系统命名法
采用系统命名法,将配位体名称按照 一定的顺序列出,加上“合”字和数 字表示配位数的顺序,最后加上中心 原子名称,如: (NH4)2[Co(CO3)2(NH3)4]·2H2O。
配位化合物的种类繁多,其组成和结 构取决于中心原子或离子和配位体的 性质。
配位化合物的形成条件
01
存在可用的空轨道 和孤对电子
中心原子或离子必须有可用的空 轨道,而配位体则需提供孤对电 子来形成配位键。
02
能量匹配
中心原子或离子和配位体的能量 状态需要匹配,以便形成稳定的 配位化合物。
03
空间和电子构型适 应性
中心原子或离子和配位体的空间 和电子构型需相互适应,以形成 合适的几何构型和电子排布。
02
配位化合物的组成与结构
组成
配位体
提供孤电子对与中心原子形成配位键的分子或离子。常见的配位 体有:氨、羧酸、酰胺、酸酐、醛、酮、醇、醚等。
中心原子
接受配位体提供的孤电子对形成配位键的原子。常见的中心原子有: 过渡金属元素的离子。
无机化学知识点摘要(一)大连理工大学第五版

第一章气体1、气体具有两个基本特性:扩散性和可压缩性。
主要表现在:(1)气体没有固定的体积和形状。
(2)不同的气体能以任意比例相互均匀地混合。
(3)气体是最容易被压缩的一种聚集状态。
气体的密度比液体和固体的密度小很多。
2、理想气态方程:pV=nRT,其中p、V、T分别为一定量气体的体积、压力和热力学温度。
R为摩尔气体常数。
在国际单位制中,p以Pa、V以m3、T以K为单位,则R=8.314J·mol-1·K-1。
3、理想气体是一种假想的模型,它忽略了气体本身的体积和分子之间的相互作用。
对于真实气体,只有在低压高温下,分子间作用力比较小,分子间平均距离比较大,分子自身的体积与气体体积相比,完全微不足道,才能把它近似地看成理想气体。
4、理想气体混合物:当两种或两种以上的气体在同一容器中混合时,相互间不发生化学反应,分子本身的体积和它们相互间的作用力都可以忽略不计,这就是理想气体混合物。
其中每一种气体都称为该混合气体的组分气体。
5、混合气体中某组分气体对器壁所施加的压力叫做该组分气体的分压。
对于理想气体来说,某组分气体的分压力等于在相同温度下该组分气体单独占有与混合气体相同体积时所产生的压力。
6、Dalton分压定律:混合气体的总压等于混合气体中各组分气体的分压之和。
7、Amage分体积定律:混合气体中组分B的分体积V B是该组分单独存在并具有与混合气体相同温度和压力时占有的体积。
8、气体分子动理论的基本要点:(1)气体是由分子组成的,分子是很小的粒子,彼此间的距离比分子的直径大许多,分子体积与气体体积相比可以略而不计。
(2)气体分子以不同的速度在各个方向上处于永恒地无规则运动之中。
(3)除了在相互碰撞时,气体分子间相互作用是很弱的,甚至是可以忽略的。
(4)气体分子相互碰撞或对器壁的碰撞都是弹性碰撞。
碰撞时总动能保持不变,没有能量损失。
(5)分子的平均动能与热力学温度成正比。
9、气体的压力是由气体分子对器壁的弹性碰撞而产生的,是“分子群”对器壁碰撞作用的统计平均的结果。
大连理工大学无机化学_第8章_原子结构

主 l 亚 n m 层 层 1 K 0 1s 0 2 L 0 2s 0 1 2p 0,±1 3 M 0 3s 0 1 3p 0,±1 2 3d 0,±1, ±2 4 N 0 4s 0 1 4p 0,±1 2 4d 0,±1, ±2 3 4f 0,±1, ±2, ±3
原子轨道
1s 2s 2pz,2px,2py
当 n1 1, n2 时, E 2.179 10 18 J,
这就是氢原子的电离能 。
氢原子各能级的能量:
n1 1, E1 R H n2 2, E 2 RH n3 3, E3 RH 1 1 1 2 1 3
2 2 2 2
2.179 10 5.45 10
2
Yd yz
2
Yd xz
2
原子轨道和电子云的角度分布图:
Yd 2
z
Yd
x 2 - y2
Yd2
z2
Yd
2
x 2 -y 2
小结: • 一个原子轨道可由n,l,m 3个量子数确定。 • 一个电子的运动状态必须用n,l,m,ms 4个 量子数描述。 • n:决定电子云的大小 • l:决定电子云的形状
• m:决定电子云的伸展方向
13.70 14.70 15.70 16.70 17.70
9.85 10.85 11.85 12.85 13.85 4.15 4.80 5.45 6.10 6.75
4.钻穿效应 电子进入原子内部空间,受到核的较 强的吸引作用。
钠原子的电子云径向分布图
n相同时,l愈小的电子,钻穿效应愈明显: ns>np>nd>nf,Ens<Enp<End< Enf 。
180
o
cos q 1