大连理工大学无机化学教研室《无机化学》(第5版)(复习笔记 原子结构)

大连理工大学无机化学教研室《无机化学》(第5版)(复习笔记 原子结构)
大连理工大学无机化学教研室《无机化学》(第5版)(复习笔记 原子结构)

8.1 复习笔记

一、氢原子光谱与Bohr 理论

1.氢原子光谱

氢原子光谱是人们认识原子结构的实验基础,原子光谱是线状光谱。

每种元素的原子辐射都具有由一定频率成分构成的特征光谱,是一条条离散的谱线,称为线状光谱。

每一种元素都有各自不同的原子光谱。氢原子光谱的频率的经验公式:,n=3,4,5,615122113.28910()s 2v n

-=?-2.Bohr 理论

Bohr 理论(三点假设):

(1)核外电子只能在有确定半径和能量的轨道上运动,且不辐射能量;

(2)通常,电子处在离核最近的轨道上,能量最低——基态;原子获得能量后,电子被激发到高能量轨道上,原子处于激发态;

(3)从激发态回到基态释放光能,光的频率取决于轨道间的能量差。

氢原子光谱中各能级间的能量关系式为:

21

h E E ν=-氢原子能级图如图8-1所示。

图8-1

能级间能量差为

H 2212

11

(E R n n ?=-式中,R H 为Rydberg 常数,其值为2.179×10-18 J 。

当时,,即氢原子的电离能。

121n n ==∞或182.17910J E -?=?二、微观粒子运动的基本特征

1.波粒二象性

微观粒子具有粒子和光的特性,即具有波粒二象性。

微观粒子的波长为:

h

h

mv p

λ==式中,m 为实物粒子的质量;v 为粒子的运动速度;p 为动量。

2.不确定原理

Heisenberg 不确定原理:

2h

x p π

???≥

式中,Δx 为微观粒子位置的测量偏差;Δp 为微观粒子的动量偏差。

微观粒子的运动不遵循经典力学的规律。

微观粒子的波动性是大量微粒运动表现出来的性质,即具有统计意义的概率波。

三、氢原子结构的量子力学描述

1.薛定谔方程与波函数

式中,ψ为量子力学中描述核外电子在空间运动的数学函数式,即原子轨道;E 为轨道能量(动能与势能总和);V 为势能;m 为微粒质量;h 为普朗克常数;x ,y ,z 为微粒的空间坐标。

2.量子数

主量子数n :n =1,2,3…正整数,它决定电子离核的远近和能级。

角量子数l :l =0,1,2,3…,(n -1),以s ,p ,d ,f 对应的能级表示亚层,它决定原子轨道或电子云的形状。n 确定后,l 可取n 个数值。

磁量子数m :原子轨道在空间的不同取向。在给定角量子数l 的条件下,

m =0,±1,±2,±3…,±l ,一种取向相当于一个轨道,共可取2l +1个数值。m 值反映

了波函数(原子轨道)或电子云在空间的伸展方向。

自旋量子数m s :m s =±(1/2),表示同一轨道中电子的两种自旋状态,取值

。1122

+-或四个量子数确定之后,电子在核外空间的运动状态就确定了。

可以得出如下结论:

(1)一个原子轨道可由n ,l 和m 三个量子数确定;

(2)一个电子的运动状态必须用n ,l ,m 和m s 四个量子数描述;

(3)n 决定电子云的大小;l

决定电子云的形状;m 决定电子云的伸展方向。

四、多电子原子结构

1.轨道能级

Pauling 近似能级如图8-2所示。

图8-2 Pauling 近似能级图

存在如下规律:

(1)l 相同的能级的能量随n 增大而升高:E 1s <E 2s <E 3s <E 4s ……;

(2)n 相同的能级的能量随l 增大而升高:E ns <E np <E nd <E nf ……;

(3)“能级交错”:E 4s <E 3d <E

4p ……。

2.Cotton 原子轨道能级(如图8-3所示。)

图8-3

原子轨道的能量随原子序数的增大而降低。

随着原子序数的增大,原子轨道产生能级交错现象。

3.屏蔽效应

屏蔽效应:由核外电子云抵消一些核电荷作用的现象。

多电子原子中每个电子的轨道能量为:

182

22.17910()J Z E n

σ--?-=式中,σ为屏蔽常数。

4.钻穿效应

钻穿效应是由于电子受到核的较强的吸引作用而进入原子内部空间的现象。

当主量子数n相同时,角量子数l愈小的电子,钻穿效应愈明显,能级越低,即:钻穿能力大小:n s>n p>n d>n f;

轨道能级高低:E ns<E np<E nd<E nf。

5.核外电子分布

(1)基态原子的核外电子排布原则

①能量最低原理:电子在原子轨道中的排布要尽可能使整个原子系统能量最低;

②Pauli不相容原理:每个轨道中最多容纳两个自旋方式相反的电子;

③Hund规则:在n和l相同的轨道上分布的电子,将尽可能分占m值不同的轨道,且自旋平行。

(2)基态原子的核外电子排布

基态原子的核外电子在各原子轨道上排布顺序:

1s,2s,2p,3s,3p,4s,3d,4p,5s,4d,5p,6s,4f,5d,6p,7s,5f,6d,7p 即出现d轨道时,依照n s,(n-1)d,n p顺序排布;d,f轨道均出现时,依照

n s,(n-2)f,(n-1)d,n p顺序排布。

五、元素周期表

元素周期表如图8-3所示。

大连理工大学《无机化学》自测练习题

大连理工大学《无机化学》自测练习题 第十章:固体结构 一、判断 1、固体物质可以分为晶体和非晶体两类。............................................................(√) 2、仅依据离子晶体中正负离子半径的相对大小即可决定晶体的晶格类型。. ............................. ............................. ............................. ................................ (×) 3、自然界存在的晶体或人工制备的晶体中,所有粒子都是按照一定规律有序排列的,没有任何缺陷。............................. ............................. ..................................(×) 4、在常温常压下,原子晶体物质的聚集状态只可能是固体................................(√) 5、某物质可生成两种或两种以上的晶体,这种现象叫做类质多晶现象。........(×) 1、√ 2、× 3、× 4、√ 5、× 二、单选题 1、下列物质的晶体结构中既有共价键又有大p键和分子间力的是....................(C) (A) 金刚砂;(B) 碘;(C) 石墨;(D) 石英。 2、氯化钠晶体的结构为.... ............................. ......................................................(B) (A) 四面体;(B) 立方体;(C) 八面体;(D) 单斜体。 3、下列各组离子中极化力由大到小的顺序正确的是. .........................................(B) (A) Si4+ > Mg2+ > Al3+ > Na+;(B) Si4+ > Al3+ > Mg2+ > Na+; (C) Si4+ > Na+ > Mg2+ > Al3+;(D) Na+ > Mg2+ > Al3+ > Si4+。 4、在离子极化过程中,通常正离子的主要作用是................................................(A) (A) 使负离子极化;(B) 被负离子极化; (C) 形成正离子时放热;(D) 正离子形成时吸收了负离子形成时放出的能量。 5、下列两组物质: ① MgO、CaO、SrO、BaO ② KF、KCl、KBr、KI 每组中熔点最高的分别是............. ............................. ...........................................(D) (A) BaO 和KI;(B) CaO 和KCl;(C) SrO 和KBr;(D) MgO 和KF。 1、C 2、B 3、B 4、A 5、D 三、填空题 1、指出下列离子的外层电子构型的类型: Ba2+ __2__ e-;Mn2+ __9~17__ e-;Sn2+ _18 + 2_ e-;Cd2+ _18_ e-。 2、钾原子半径为235 pm,金属钾晶体为体心立方结构。试确定每个晶胞内有__2_个原子,晶胞边长为__543__pm,晶胞体积为__1.60 ×10-22_cm3,并推算金属钾的密度为__0.812__ g·cm-3。(钾的相对原子质量为39.1) 3、试判断下列各组物质熔点的高低(用">"或"<"符号表示): NaCl __>__RbCl,CuCl__<__NaCl,MgO __>__BaO,NaCl__>__MgCl2。 4、氧化钙晶体中晶格结点上的粒子为_ Ca2+_和_ O2-_;粒子间作用力为_离子键_,晶体类型为__离子晶体__。 1、2;9~17;18 + 2;18。 2、2;543;1.60 ×10-22;0.812。 3、>;<;>;>。 4、Ca2+;O2-;离子键;离子晶体。 第十一章:配合物结构 一、判断

第四版无机化学习题及答案

第四版无机化学习题及 答案 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

第一章原子结构和原子周期系 1-1根据原子序数给出下列元素的基态原子的核外电子组态: (a)K (b)Al (c)Cl (d)Ti(Z=22)(e)Zn(Z=30)(f)As (Z=33) 答:(a)[Ar]4s1(b)[Ne]3s23p1(c)[Ne]3s23p5(d)[Ar]3d54s2(e)[Ar] 3d104s1(f)[Ar]4s24p3 1-2给出下列原子或离子的价电子层电子组态,并用方框图表示轨道,填入轨道的电子用箭头表示。 (a)Be (b)N (c)F (d)Cl-(e)Ne+(f)Fe3+(g)As3+ 1-3 Li+、Na+、K+、Rb+、Cs+的基态的最外层电子组态与次外层电子组态分别如何 1-4以下+3价离子那些具有8电子外壳Al3+、Ga3+、Bi3+、Mn3+、Sc3+ 答:Al3+和Sc3+具有8电子外壳。 1-5已知电中性的基态原子的价电子层电子组态分别为: (a)3s23p5(b)3d64s2(c)5s2(d)4f96s2(e)5d106s1 试根据这个信息确定它们在周期表中属于那个区、哪个族、哪个周期。

答:(a)p区,ⅦA族,第三周期(b)d区,Ⅷ族,第四周期(c)s区,ⅡA族,第五周期(d)f区,ⅢB族,第六周期(e)ds区,ⅠB族,第六周期1-6根据Ti、Ge、Ag、Rb、Ne在周期表中的位置,推出它们的基态原子的电子组态。 答:Ti位于第四周期ⅣB族,它的基态原子的电子组态为[Ar]3d24s2; Ge位于第四周期ⅣA族,它的基态原子的电子组态为[Ar]3d104s24p2; Ag位于第五周期ⅠB族,它的基态原子的电子组态为[Kr] 4d105s1; Rb位于第五周期ⅠA族,它的基态原子的电子组态为[Kr] 5s1; Ne位于第二周期0族,它的基态原子的电子组态为[He] 2s22p6。 1-7某元素的基态价层电子构型为5d36s2,给出比该元素的原子序数小4的元素的基态原子电子组态。 答:该元素的基态原子电子组态为[Xe] 4f126s2。 1-8某元素基态原子最外层为5s2,最高氧化态为+4,它位于周期表哪个去是第几周期第几族元素写出它的+4氧化态离子的电子构型。若用A代表它的元素符号,写出相应氧化物的化学式。 答:该元素的基态原子电子组态为[Kr] 4d25s2,即第40号元素锆(Zr)。它位于d区,第五周期ⅣB族,+4氧化态离子的电子构型为[Kr],即 1s22s22p63s23p63d104s24p6, 相应氧化物为AO2。 第二章分子结构 2-1用VSEPR模型讨论CO2、H2O、NH3、CO32-、PO33-、PO3-、PO43-的分子模型,画出他们的立体结构,用短横代表σ键骨架,标明分子构型的几何图形的名称。

无机化学知识点摘要大连理工大学第五版

第一章气体 1、气体具有两个基本特性:扩散性和可压缩性。主要表现在: (1)气体没有固定的体积和形状。 (2)不同的气体能以任意比例相互均匀地混合。 (3)气体是最容易被压缩的一种聚集状态。气体的密度比液体和固体的密度小很多。 2、理想气态方程:pV=nRT,其中p、V、T分别为一定量气体的体积、压力和热力学温度。R为摩尔气体 常数。在国际单位制中,p以Pa、V以m3、T以K为单位,则R=8.314J·mol-1·K-1。 3、理想气体是一种假想的模型,它忽略了气体本身的体积和分子之间的相互作用。对于真实气体,只有在 低压高温下,分子间作用力比较小,分子间平均距离比较大,分子自身的体积与气体体积相比,完全微不足道,才能把它近似地看成理想气体。 4、理想气体混合物:当两种或两种以上的气体在同一容器中混合时,相互间不发生化学反应,分子本身的 体积和它们相互间的作用力都可以忽略不计,这就是理想气体混合物。其中每一种气体都称为该混合气体的组分气体。 5、混合气体中某组分气体对器壁所施加的压力叫做该组分气体的分压。对于理想气体来说,某组分气体的 分压力等于在相同温度下该组分气体单独占有与混合气体相同体积时所产生的压力。 6、Dalton分压定律:混合气体的总压等于混合气体中各组分气体的分压之和。 7、Amage分体积定律:混合气体中组分B的分体积V B是该组分单独存在并具有与混合气体相同温度和压 力时占有的体积。 8、气体分子动理论的基本要点: (1)气体是由分子组成的,分子是很小的粒子,彼此间的距离比分子的直径大许多,分子体积与气体体 积相比可以略而不计。 (2)气体分子以不同的速度在各个方向上处于永恒地无规则运动之中。 (3)除了在相互碰撞时,气体分子间相互作用是很弱的,甚至是可以忽略的。 (4)气体分子相互碰撞或对器壁的碰撞都是弹性碰撞。碰撞时总动能保持不变,没有能量损失。 (5)分子的平均动能与热力学温度成正比。 9、气体的压力是由气体分子对器壁的弹性碰撞而产生的,是“分子群”对器壁碰撞作用的统计平均的结果。 压力与气体分子每次对器壁的碰撞力和碰撞速度成正比。每次的碰撞力等于分子的质量与分子运动速度的乘积。碰撞速度与单位体积内的分子数和分子的运动速度成正比;分子数越多,分子运动得越快,其碰撞器壁的速度就越大。即气体的压力是由单位体积中分子的数量、分子的质量和分子的运动速度所决定的。 10、分子的平均动能与热力学温度成正比。气体分子的平均动能越大,系统的温度越高。和压力一样,物 体的温度也是大量分子(“分子群”)集体运动产生的总效应,含有统计平均的意义。对单个分子而言,温度是没有意义的。 11、在一定温度下,每种气体的分子速度分布是一定的。除了少数分子的速度很大或很小以外,多数分子 的速度都接近于方均根速度V rms。当温度升高时,速度分布曲线变得更宽了,方均根速度增大,高于这一速度的分子数增加得更多。 第二章热化学 一、热力学术语和基本概念

无机化学.原子结构教案

无机化学课程 项目教学设计方案 作者:熊颖 单位:江西省医药学校 2014年 3 月5 日

教学过程一、新课导入 二、教学步骤 2 §2.1 原子结构理论的发展概述一、含核的原子模型,古中国和古希腊的物质结构学说;,道尔顿的原子学说(1808 ):原子不可分;,卢瑟福的含核原子模型(1911 )。二、玻尔的原子模型(一)氢原子光谱玻尔氢原子理论(191 3 )(二)玻尔氢原子理论,原子结构理论的几点假设:原子结构理论的几点 3 1、在原子中,电子不是在任意轨道上绕核运动,而是在一些符合一定条件(从量子论导出的条件)的轨道上运动。稳定轨道(stable orbital)具有固定的能量,沿此轨道运动的电子,称为处在定态的电子,它不吸收能量,也不发射能量2、电子在不同轨道上运动时具有不同的能量,通常把这些具有不连续能量的状态称为能级(energy level)。玻尔氢原子能级为:玻尔氢原子能级为: B E=, 2 n n称为量子数(quantum number n quantum number),其值可取1,2,3…等任何1 2 3… 正整数。B为常数,其值等于2.18×10-18J。3、当电子从某一轨道跃迁到另一轨道时,有能量的吸收或放出。其频率ν 可由两个轨道的能量差,E决定:E2- E1 = ,E = hν h为普朗克常量,其数值为6.62618×1034J,s。 4 (三)对玻尔理论的评价优点:,优点:首先引入量子化的概念,解释了氢原子光谱为不连续光谱。,不足:不足:(1)未能完全冲破经典力学连续概念,只是勉强加进了一些人为的量子化条件和假定。(2)不能解释多电子原子(核外电子数大于1的原子)、分子或固体的光谱。亦不能解释氢光谱的每条谱线实际上还可分裂为两条谱线的现象。(3)未考虑其运动的波动性,采用了宏观轨道的概念。 5 (四)几个基本概念,稳定轨道在原子中一些符合一定条件(从量子论导出的条件)的轨道。稳定轨道的特点——具有固定的能量。,定态电子稳定轨道上运动的电子,不吸收能量,也不发射能量,能级——具有不连续能量的状态。,基态——轨道离核最近,能量最低,这时的能量状态。, 激发态——除基态以外的任何能级状态。 6 §2.2 原子的量子力学模型一、微观粒子的运动特征 1. 量子性,量子:如果某一物理量的变化是不连续的,而是以某一最小单位量子:作跳跃式的增减,这一物理量就是量子化的,其最小单位就称这一物理量的量子(quantum)。如物体所带的电荷量从Q增加到Q+dQ,Q>>dQ,但dQ所包含的电子个数却是很大的(例如1库仑的电荷量为6.24×1018个电子的电量) 从宏观上Q → Q+dQ可以认为是连续变化的。在微观领域里,一个微观粒子如果是一个离子,所带电荷只有一个或几个电子,从而离子所带电荷的变化,如A- → A2- → A3-,就不能认为是连续变化的,而是跳跃式的变化。 7 2. 波粒二象性,波粒二象性:与光子一样,电子、质子、中子、原子和分子等微观粒子都具有波动和粒子两重性质。,德布罗依波或物质波:实物微粒除具有粒子性外,还具有波的性质,这种波称为~(matter wave)。h 德布罗依预言高速运动电子的波长为:λ = mν m——电子的质量;ν——电子运动的速率,h——普朗克常量。,波动性的实验证明 8 3、微观粒子运动的统计性、概率密度:,概率密度:单位体积的概率。在空间某一点波的强度和粒子出现的概率密度成正比。,衍射实验:用强度很弱的电子流,即让电子一个一个地通过晶体到达底片时,底片上就会出现一个一个显示电子微粒性的斑点,如图(a),但斑点的位置无法预言,似乎是毫无规则地分散在底片上。若时间足够长,斑点最后会形成和强电子流所得的衍射图案一样,显示了电子的波动性,如图(b)示。 9 对大量粒子行为而言,衍射强度大的地方,出现粒子的数目就多,强度小的地方出现粒子数目就少;对一个粒子的行为而言,通过晶体后粒子所到达的地方是不能预测的,但衍射强度大的地方,粒子出现的机会也多(概率大),而强度小的地方,粒子出现的机会也少(概率小)。衍射强度大小即表示波的强度大小,即电子出现概率的大小。,概率波:电子运动在空间出现的概率可以由波的强度表现出来,概率波:因此电子及其微观粒子波(物质波)又称~。10 二、核外电子运动状态的近代描述 1. 薛定锷方程,2ψ ,2ψ ,2ψ 8π2 m 形式:,形式:+ 2 + 2 + 2 (E ,V )ψ = 0 2 ,z ,x ,y h ,求解:求解:常将直角坐标的函数ψ(x,y,z),经坐标变换后,成为球极坐标的函数ψ(r,θ,φ,) ,再用分离变量法将ψ(r,θ,φ) 表示成为R(r)和Y(θ,φ)两部分,Y(θ,φ)又可分为Θ(θ)和Φ(φ)。Y(θ,φ) = Θ(θ),Φ(φ) 变换关系如图:ψ(r,θ,φ) = R(r),Y(θ,φ) R(r)只与电子离核半径有关,故称为波函数的径向部分;波函数的径向部分;Y(θ,φ)只与θ、φ两个角度有关,故称为波函数的角度部分11 2、波函数与原子轨道、在解R(r)方程时,要引入一个参数n,在解Θ(θ)方程时要引入另一个参数,在解Φ(φ)方程时还要引入一个参数m。n称为主量子数,称为角量子数,m称为磁量子数。它们的取值范围分别是:n = 1,2,3,4,…7 l = 0,1,2,3,…,n-1,共可取n个数值。m = 0,±1,±2,±3,…,±。共可取2l +1个数值。解薛定锷方程,可得波函数的径向部分Rn l (r)和角度部分Yl m(θ,φ) ,原子轨道:在量子力学中,三个量子数都有确定值的波函数称为~。12 注意:原子轨道的含义不同于宏观物体的运动轨道,也不注意:同于玻尔所说的固定轨道,它指的是电子的一种

大连理工大学无机化学教研室《无机化学》(第5版)(复习笔记 原子结构)

8.1 复习笔记 一、氢原子光谱与Bohr 理论 1.氢原子光谱 氢原子光谱是人们认识原子结构的实验基础,原子光谱是线状光谱。 每种元素的原子辐射都具有由一定频率成分构成的特征光谱,是一条条离散的谱线,称为线状光谱。 每一种元素都有各自不同的原子光谱。氢原子光谱的频率的经验公式:,n=3,4,5,615122113.28910()s 2v n -=?-2.Bohr 理论 Bohr 理论(三点假设): (1)核外电子只能在有确定半径和能量的轨道上运动,且不辐射能量; (2)通常,电子处在离核最近的轨道上,能量最低——基态;原子获得能量后,电子被激发到高能量轨道上,原子处于激发态; (3)从激发态回到基态释放光能,光的频率取决于轨道间的能量差。 氢原子光谱中各能级间的能量关系式为: 21 h E E ν=-氢原子能级图如图8-1所示。

图8-1 能级间能量差为 H 2212 11 (E R n n ?=-式中,R H 为Rydberg 常数,其值为2.179×10-18 J 。 当时,,即氢原子的电离能。 121n n ==∞或182.17910J E -?=?二、微观粒子运动的基本特征 1.波粒二象性 微观粒子具有粒子和光的特性,即具有波粒二象性。 微观粒子的波长为: h h mv p λ==式中,m 为实物粒子的质量;v 为粒子的运动速度;p 为动量。

2.不确定原理 Heisenberg 不确定原理: 2h x p π ???≥ 式中,Δx 为微观粒子位置的测量偏差;Δp 为微观粒子的动量偏差。 微观粒子的运动不遵循经典力学的规律。 微观粒子的波动性是大量微粒运动表现出来的性质,即具有统计意义的概率波。 三、氢原子结构的量子力学描述 1.薛定谔方程与波函数 式中,ψ为量子力学中描述核外电子在空间运动的数学函数式,即原子轨道;E 为轨道能量(动能与势能总和);V 为势能;m 为微粒质量;h 为普朗克常数;x ,y ,z 为微粒的空间坐标。 2.量子数 主量子数n :n =1,2,3…正整数,它决定电子离核的远近和能级。 角量子数l :l =0,1,2,3…,(n -1),以s ,p ,d ,f 对应的能级表示亚层,它决定原子轨道或电子云的形状。n 确定后,l 可取n 个数值。 磁量子数m :原子轨道在空间的不同取向。在给定角量子数l 的条件下, m =0,±1,±2,±3…,±l ,一种取向相当于一个轨道,共可取2l +1个数值。m 值反映

无机化学——原子结构 习题解答③

第7章习题解答③ 一、是非题 1. 价电子为ns2的元素都是碱土金属。() 解:错 2. s区元素的原子最后填充的是ns电子,次外层的各亚层则均已充满电子。.() 解:错 3. p区元素的原子最后填充的是np电子,因ns轨道都已充满,故都是非金属元素。 () 解:错 4. d区元素(ⅢB~Ⅷ族)的原子,一般在(n-1)d亚层中电子数不同,而最外层多 数具有ns2的构型,所以都是金属元素。() 解:对 5. 某元素的原子序数是48,它在周期表中属于()。 (A)s区;(B)p区;(C)d区;(D)ds区。 解:D 6. ds区元素的原子价层电子构型均为(n-1)d10ns1-2,都是金属元素。() 解:对 7. f区元素原子主要在(n-2)f亚层中电子数目不同,外层及次外层则相差不多,所 以同一周期的f区元素之间表现出相似的化学性质。.() 解:对 二、选择题 1. 下列离子中,最容易再失去一个电子的是.()。 (A)Ca2+;(B)K+;(C)Be+;(D)Al3+。 解:C 2. 某元素的原子最外层只有两个l=0的电子,该元素在周期表中必定不属于.( )。 (A)s区元素;(B)ds区元素;(C)d区元素;(D)p区元素。 解:D 3. 下列各组数字都是分别指原子的次外层、最外层电子数和元素的常见氧化值, 其中符合于硫的情况的是.()。 (A)2、6、-2;(B)8、6、-3;(C)18、6、-4;(D)8、6、+6。 解:D 4. 原子的价电子构型中3d亚层全满,4s亚层只有一个电子的元素是()。 (A)汞;(B)银;(C)铜;(D)钾。 解:C 5. 下列基态离子中,具有d7电子构型的是.()。 (A)Co2+;(B)Ni2+;(C)Fe3+;(D)Fe2+。 解:A 6. 已知某元素+3价离子的电子排布式为1s22s22p63s23p63d5,该元素在周期表中属 于()。 (A)ⅤB族;(B)ⅢB族;(C)Ⅷ族;(D)ⅤA族。 解:C 7. 某一族元素都是金属,其原子最外层只有一个l=0的电子,且可呈现+1以外的

大连理工无机化学考研分析

我是去年考的无机化学研究生,考得无机跟物化,最终无机考了127分,物化是130分。我先把当年的情况给大家简单介绍一下,我们专业招15人,来参加复试的是18人,刷了3人,在这15人中,有3个一等奖学金,6个二等奖学金,6个三等奖学金,也就是自费的。了解了这个情况后,我现在把学无机的心得给大家分享一下。 考研本身就是一条不归路,只要你选择了就得坚持。的确考研挺累的,但只要你想考,你就能考上,为什么这么说呢?因为你考研必定有自己的理由和目标,只要你脚踏实地做好每天该做的事专业课应该就查不多,而且我们这个学校考得不会很难。 复习计划 首先,每天要给自己制定个计划,当然每个人的习惯不同,有的适合早上学,有的适合晚上学,但不管怎样,每天至少应该在12个小时,那么这12个小时你应该怎样安排?我感觉早上5h,下午4h,晚上3h。当然你不但要有时间还要有效率。如果实在不想学的话,你可以偶尔放松一下。 其次,我说一下学无机用到的资料,只用大连理工的课本、学习指导、真题就行。当然这几本书是比较简单的,有些地方如杂化轨道等是比较难的,给大家推荐北师的《无机化学》。当然这本书只看上册就行了,可能老师还给你们说了吉林大学宋天佑主编的《无机化学例题与习题》,我不主张大家看这本书,因为这本书太难了,大工考不了那么难的,当参考资料参考还行,主要是把《学习指导》跟真题吃透,学精。 再次,我说一下咱们考试的题型,我想这个应该是大家最关心的。 一、判断:正确的要背过,错的要知道为什么错,而且要学会扩散。 二、选择:你选了其中一个的同时要知道为什么不选其他三个。 三、填空:这个当然是你会就能填,不会就不能填了,因为这玩意它不像判断跟选择那样,你不会可以蒙一个。所以我说填空只要你做上的就得保证是正确的。这样你就能拿高分。 四、配平:这个就得靠平时积累,它只要求你配平的还和做点,那种只给你汉字连方程式都让你自己写的是最难的。 五、推断:这个可以多试几次。当然也得靠自己平时的积累,特别是元素反应的一些现 六、计算:氧化还原反应电化学基础这一章每年都会必考一个的。 酸碱平衡或者酸碱平衡与其它平衡结合起来考一个。 整体规划 无机分为四大块

大连理工大学无机化学教研室《无机化学》(第5版)(课后习题详解 气 体)

1.2 课后习题详解 1.有多个用氦气填充的气象探测气球,在使用过程中,气球中氦的物质的量保持不 变,它们的初始状态和最终状态的实验数据如下表所示。试通过计算确定表中空位所对应 的物理量,以及由(2)的始态求得M (He )和(3)的始态条件下 解:(1)根据题意可知,,,3121110.0, 5.0010p p kPa V L ===?1273.1547320.15T K =+=217273.15290.15T K =+=由于恒定,,因此 ,n p 1221V T V T =335.0010290.15 4.5310320.15 L ??==?。333 1111010 5.0010102078.314320.15 p V n mol RT -????===?(2)已知,,,1101.3251.02103.41kPa p atm kPa atm =?=31 3.510V L =?32 5.010V L =?12273.15T T K ==由于恒定,,因此,n T 1122p V p V =3 1123 2103.4 3.510715.1010p V p kPa V ??===?因为,所以mRT M V ρ=。11136378.314273.15() 4.0103.4 3.510g J mol K K M He g mol kPa L ---??==??g g g (3)已知,,,,1101.3250.9899.30p kPa kPa =?=4110V L =1303T K =260.80p kPa =41 1.3610V L =?由于一定,,因此 n 42460.8 1.3610303252.399.3010kPa L K T K kPa L ? ??==?。 2.某气体化合物是氮的氧化物,其中含氮的质量分数以 某一容器中充

无机化学习题汇总

第四章原子结构和元素周期系 一、填空题 4.1 在氢原子的激发态中,4s和3d状态的能量高低次序为E4s______________E3d;对于钾原子,能量高低次序为E4s______________E3d;对于钛原子,能量高低次序为E4s______________E3d。 4.2 氢原子的电子能级由量子数______________决定,而锂原子的电子能级由量子数______________决定。 4.3 有两种元素的原子在n=4的电子层上都只有两个电子,在次外层l=2的轨道中电子数分别为0和10。前一种原子是______________,位于周期表中第______________周期,第______________族,其核外电子排布式为______________;原子序数大的原子是______________,位于周期表中第______________周期,第______________族,其核外电子排布式为______________,该原子的能级最高的原子轨道的量子数为______________。 4.4 镧系元素的价层电子构型为______________,锆与和铪、铌与钽性质相似是由于______________而造成的。 4.5 当n=4时,电子层的最大容量为______________,如果没有能级交错,该层各轨道能级由低到高的顺序应为______________,4f电子实际在第______________周期的______________系元素的______________元素中开始出现。 4.6 第六周期的稀有气体的电子层结构为______________,其原子序数为______________。4.7 具有ns2np3价电子层结构的元素有______________ ,具有(n-1)d10ns2np6价电子层结构的元素有______________ ,前一类元素又叫______________族元素,后一类元素属于______________。 4.8 每一个原子轨道要用______________个量子数描述,其符号分别是______________,表征电子自旋方式的量子数有______________个,具体值分别是______________。 4.9 如果没有能级交错,第三周期应有______________个元素,实际该周期有______________个元素;同样情况,第六周期应有______________个元素,实际有______________个元素。4.10 氢原子光谱的能量关系式为ΔE=R H(1/n12-1/n22),R H等于______________,当n1=1,n2=______________时,ΔE=R H,R H也等于氢原子的______________能。 4.11 某过渡元素在氪之前,此元素的原子失去一个电子后的离子在角量子数为2的轨道中电子恰为全充满,该元素为______________,元素符号为______________。该元素原子的基态核外电子排布式为______________,原子最外层轨道中电子的屏蔽系数σ等于______________,有效核电荷z*______________等于。 二、选择题 4.12 所谓原子轨道是指() A. 一定的电子云 B. 核外电子的概率 C. 一定的波函数 D. 某个径向分布函数 4.13 下列电子构型中,属于原子激发态的是() A. 1s22s12p1 B. 1s22s22p6 C. 1s22s22p63s2 D. 1s22s22p63s23p64s1 4.14 周期表中第五、六周期的ⅣB、ⅤB、ⅥB族元素的性质非常相似,这是由于以下哪项导致的() A. s区元素的影响 B. p区元素的影响 C.d区元素的影响 D. 镧系元素的影响 4.15 描述Ψ3dZ2的一组量子数是() A. n=2, l=1, m=0 B. n=3, l=2, m=0 C. n=3, l=1, m=0 D. n=3, l=2, m=1 4.16 下列各组量子数中错误的是() A. n=3, l=2, m=0, m s=+1/2 B. n=2, l=2, m=-1, m s=-1/2 C. n=4, l=1, m=0, m s=-1/2 D. n=3, l=1, m=-1, m s=+1/2 4.17 下列原子半径大小顺序中正确的是()

大连理工大学,第五版,无机化学期末试卷A卷

HSU2008-2009学年度第一学期 《无机化学》(本科)期末试卷(A)(时间120分钟) 试卷编号: 2008772001-01 院(系) 班 姓名 学号 得分 一、选择题(每小题2分,共30分,每小题只有一个选项) 1、气体液化必须在临界温度以下,根据下列气体的临界温度,判断在室温可液化的一组气体是( ) ①H 2 5.1K ②NH 3 408.4K ③CH 4 190.9K ④CO 2 304.1K ⑤ O 2 154.6K A ① ② ③ B ③ ④ ⑤ C ② ④ D ① ④ 2、下列说法不正确的是( ) A 电子衍射和氢光谱是说明微观粒子运动特点的两个重要实验; B 不准确关系是微观粒子波粒二象性的反映它限制了经典力学适用的范围; C 能量是量子化的,这个可用氢光谱的实验证实; D 量子力学中的波函数是原子轨道的同义词,故它和波尔轨道也是一样的。 3、判断下列元素在元素周期表中的位置,不正确的是( ) A Mn 第四周期 第Ⅶ B 族d 区 B Zn 第四周期 第ⅠB 族ds 区 C Sb 第五周期 第ⅤA 族p 区 D W 第六周期 第ⅥB 族 d 区 4、下列各组量子数不合理的是( ) A n=2 l=1 m=0 B n=2 l=2 m= -1 C n=3 l=0 m=0 D n=4 l=2 m= -2 5、下列原子轨道中各有一个自旋方向相反的不成对电子,则沿x 轴方向可形成σ键的是( ) A 22x x p p - B 224z s d - C 22y y p p - D 33xy xy d d - 6、下列各物质分子间的范德华力仅含色散力的是( ) A H 2O B Br 2(l ) C NH 3(l ) D C 2H 5OH 7、下列结论或解释正确的是( ) A 某一种物质熔点低,微溶于水,易溶于CCl 4,不导电,它一定是原子晶体; B KCl 易溶于水,而AgCl 难溶于水,其原因是KCl 是典型的离子晶体,而AgCl 由于Ag +较强的极化作用已有明显的共价性; C NaCl 的熔化主要是克服正负离子间的静电引力,而冰的熔点主要克服氢和氧之间的共价能力; D NaF 的熔点比KF 高,这是由于Na +的极化力比K +强。 8、判断下列反应的Δ r H θ m 何者与Δ f H θm 一致( )。 A C(金刚石)+2H 2(g)→ CH 4(g) B C(g)+4H(g)→ CH 4(g) C C(石墨)+2H 2(g)→ CH 4(g) D C(石墨)+4H(g)→CH 4(g) 9、下列分子呈直线形的是( ) A H 2S B NH 3 C H 2O D CO 2 10、有可逆反应(假设是基元反应)2A B +2C , 已知某温度下,正反应速率k 正=1,k 逆=0.5,下列体系处于平衡态的是( ) A 31A C mol dm -=? 3 2 B C C C mol dm -==? B 33 21A C B C C mol dm C mol dm --==?=?, C 33 21A B C C mol dm C C mol dm --=?==?, D 33 12A B C C C mol dm C mol dm --==?=?, 11、对于一个化学反应来说,下列说法正确的是( ) A Δf G 0越负,反应速率越快 B Δf H 0 越负,反应速率越快 C K 值越大,反应速率越快 D 活化能越大,反应速率越慢 12、已知:⑴ 22()()2()Cu s O g CuO s += K 1 ⑵ 221 ()()2()2Cu O s O g CuO s + == K 2 则反应 ⑶ 221 2()() ()2 Cu s O g Cu O s +=的K 等于( ) A 12 K K + B 12- K K C 12 K K ? D 1 2 K K 13、在合成硝酸工业中,吸收塔內进行的反应是:2NO 2(g) + H 2O(l) 2HNO 3(l) + NO(g),ΔH 0为负值。为增加生成硝酸的转化率,应采取的措施是( ) A 加压并升温 B 加压并降温 C 减压并升温 D 减压并降温 14、CO 和H 2O 等物质的量混合,发生如下反应: ---------------------------------------- 装 -------------------------------------- 订------------------------------------- 线----------------------------------------------------

大学无机化学第二章(原子结构)试题及答案

第五章 原子结构和元素周期表 本章总目标: 1:了解核外电子运动的特殊性,会看波函数和电子云的图形 2:能够运用轨道填充顺序图,按照核外电子排布原理,写出若干元素的电子构型。 3:掌握各类元素电子构型的特征 4:了解电离势,电负性等概念的意义和它们与原子结构的关系。 各小节目标: 第一节:近代原子结构理论的确立 学会讨论氢原子的玻尔行星模型213.6E eV n = 。 第二节:微观粒子运动的特殊性 1:掌握微观粒子具有波粒二象性(h h P mv λ= =)。 2:学习运用不确定原理(2h x P m π???≥ )。 第三节:核外电子运动状态的描述 1:初步理解量子力学对核外电子运动状态的描述方法——处于定态的核外电子在核外空间的概率密度分布(即电子云)。 2:掌握描述核外电子的运动状态——能层、能级、轨道和自旋以及4个量子数。 3:掌握核外电子可能状态数的推算。 第四节:核外电子的排布 1:了解影响轨道能量的因素及多电子原子的能级图。 2;掌握核外电子排布的三个原则: ○ 1能量最低原则——多电子原子在基态时,核外电子尽可能分布到能量最低的院子轨道。 ○ 2Pauli 原则——在同一原子中没有四个量子数完全相同的电子,或者说是在同一个原子中没有运动状态完全相同的电子。 ○3Hund 原则——电子分布到能量简并的原子轨道时,优先以自旋相同的方式

分别占据不同的轨道。 3:学会利用电子排布的三原则进行 第五节:元素周期表 认识元素的周期、元素的族和元素的分区,会看元素周期表。 第六节:元素基本性质的周期性 掌握元素基本性质的四个概念及周期性变化 1:原子半径——○1从左向右,随着核电荷的增加,原子核对外层电子的吸引力也增加,使原子半径逐渐减小;○2随着核外电子数的增加,电子间的相互斥力也增强,使得原子半径增加。但是,由于增加的电子不足以完全屏蔽增加的核电荷,因此从左向右有效核电荷逐渐增加,原子半径逐渐减小。 2:电离能——从左向右随着核电荷数的增多和原子半径的减小,原子核对外层电子的引力增大,电离能呈递增趋势。 3:电子亲和能——在同一周期中,从左至右电子亲和能基本呈增加趋势,同主族,从上到下电子亲和能呈减小的趋势。 4:电负性——在同一周期中,从左至右随着元素的非金属性逐渐增强而电负性增强,在同一主族中从上至下随着元素的金属性依次增强而电负性递减。 习题 一选择题 1.3d电子的径向函数分布图有()(《无机化学例题与习题》吉大版) A.1个峰 B.2个峰 C. 3个峰 D. 4个峰 2.波函数一定,则原子核外电子在空间的运动状态就确定,但仍不能确定的是() A.电子的能量 B.电子在空间各处出现的几率密度 C.电子距原子核的平均距离 D.电子的运动轨迹 3.在下列轨道上的电子,在xy平面上的电子云密度为零的是()(《无机化学例题与习题》吉大版) A .3s B .3p x C . 3p z D .3d z2 4.下列各组量子数中,合理的一组是() A .n=3,l=1,m l=+1,m s= +1/2 B .n=4,l=5,m l= -1,m s= +1/2 C .n=3,l=3,m l=+1,m s= -1/2

大连理工大学无机化学教研室《无机化学》(第5版)(复习笔记 配合物结构)

11.1 复习笔记 一、配合物的空间构型与磁性 配合物是由中心离子(或原子)与一定数目的阴离子或中性分子形成具有一定空间构型和稳定性的复杂化合物。 1.配合物的空间结构 (1)配合物的空间构型:是指配合物围绕着中心离子(或原子)排布的几何构型。通过实验可以测定配合物的空间构型。 (2)影响配合物的空间构型的因素 ①配合物分子或离子的空间构型与配位数的多少密切相关,如表11-1所示。配合物的配位数在 2-14之间,常见的配位数为2、4和6,另有5; ②配合物的空间构型还与中心离子和配位体的种类有关,如[Ni(Cl)4]2-是四面体构型,而[Ni(CN)4]2-则为平面正方形。 (3)配合物的空间构型的规律 ①形成体在中间,配位体围绕中心离子排布; ②配位体倾向于尽可能远离,能量低,配合物稳定。 2.配合物的异构现象

异构现象:两种或两种以上化合物,具有相同的原子种类和数目,但结构性质不同的现象。一般可分为几何异构和旋光异构。 (1)几何异构:按照配体对于中心离子的不同位置区分。可分为顺式异构体和反式异构体两类。几何异构主要发生在配位数为4的平面正方形和配位数为6的八面体构型的配合物中。配位数为4的四面体配合物以及配位数为2和3的配合物不存在几何异构体。 (2)旋光异构:由于分子的特殊对称性形成的两种异构体而引起旋光性相反的现象,又称光学异构。 两种旋光异构体互成镜像关系。具有旋光性的分子称为手性分子。平面正方形的4配位化合物通常没有旋光性,而四面体构型的配合物通常有旋光性。 3.配合物的磁性 物质的磁性是它在磁场中表现出来的性质。含有未成对电子的配合物具有顺磁性,不含有未成对电子的配合物具有反磁性。 通常用磁矩来表示顺磁性配合物在磁场中产生的磁效应。磁矩与配合物中的未成对电子数n 之间的近似关系为: μ=式中,n 为未成对电子数。 顺磁性:被磁场吸引,n>0,μ>0。例:O 2,NO ,NO 2。 反磁性:被磁场排斥,n=0,μ=0。例:H 2,N 2。 铁磁性:被磁场强烈吸引。例:Fe ,Co ,Ni 。 二、配合物的化学键理论

第四版无机化学习题及答案

第四版无机化学习题及答案

第一章原子结构和原子周期系 1-1根据原子序数给出下列元素的基态原子的核外电子组态: (a)K (b)Al (c)Cl (d)Ti(Z=22)(e)Zn(Z=30)(f)As(Z=33) 答:(a)[Ar]4s1(b)[Ne]3s23p1(c)[Ne]3s23p5(d)[Ar]3d54s2(e)[Ar] 3d104s1(f)[Ar]4s24p3 1-2给出下列原子或离子的价电子层电子组态,并用方框图表示轨道,填入轨道的电子用箭头表示。 (a)Be (b)N (c)F (d)Cl-(e)Ne+(f)Fe3+(g)As3+ 1-3 Li+、Na+、K+、Rb+、Cs+的基态的最外层电子组态与次外层电子组态分别如何?

1-4以下+3价离子那些具有8电子外壳?Al3+、Ga3+、Bi3+、Mn3+、Sc3+ 答:Al3+和Sc3+具有8电子外壳。 1-5已知电中性的基态原子的价电子层电子组态分别为: (a)3s23p5(b)3d64s2(c)5s2(d)4f96s2(e)5d106s1 试根据这个信息确定它们在周期表中属于那个区、哪个族、哪个周期。 答:(a)p区,ⅦA族,第三周期(b)d区,Ⅷ族,第四周期(c)s区,ⅡA族,第五周期(d)f区,ⅢB族,第六周期(e)ds区,ⅠB族,第六周期 1-6根据Ti、Ge、Ag、Rb、Ne在周期表中的位置,推出它们的基态原子的电子组态。 答:Ti位于第四周期ⅣB族,它的基态原子的电子组态为[Ar]3d24s2;

Ge位于第四周期ⅣA族,它的基态原子的电子组态为[Ar]3d104s24p2; Ag位于第五周期ⅠB族,它的基态原子的电子组态为[Kr] 4d105s1; Rb位于第五周期ⅠA族,它的基态原子的电子组态为[Kr] 5s1; Ne位于第二周期0族,它的基态原子的电子组态为[He] 2s22p6。 1-7某元素的基态价层电子构型为5d36s2,给出比该元素的原子序数小4的元素的基态原子电子组态。 答:该元素的基态原子电子组态为[Xe] 4f126s2。1-8某元素基态原子最外层为5s2,最高氧化态为+4,它位于周期表哪个去?是第几周期第几族元素?写出它的+4氧化态离子的电子构型。若用A 代表它的元素符号,写出相应氧化物的化学式。答:该元素的基态原子电子组态为[Kr] 4d25s2,即第40号元素锆(Zr)。它位于d区,第五周期ⅣB族,+4氧化态离子的电子构型为[Kr],即1s22s22p63s23p63d104s24p6, 相应氧化物为AO2。

大学无机化学原子结构模型

师生三代共建原子结构模型 19世纪末20世纪初,随着X射线、电子、放射性现象的发现,在物理学领域内爆发了一场举世瞩目的大革命。在不太长时间内,新理论风起云涌,新实验层出不穷,一位位科学巨匠应运而生。在这批科学巨人所创建的科学大厦中,汤姆生、卢瑟福、玻尔师生三代精心雕琢起来的原子结构模型,至今依然光芒闪耀。 1897年,刚刚40岁的汤姆生证明了电子的存在,轰动了科学界,一举成为国际物理学界的佼佼者。然而,他并没有因此而停步不前,仍一如既往、兢兢业业,继续攀登科学的高峰。1904年,汤姆生提出,原子好像一个带正电的球,这个球承担了原子质量的绝大部分,电子作为点电荷镶嵌在球中间。这种“葡萄干蛋糕”式的无核模型是汤姆生企图解释元素化学性质发生规律性变化而反复思考得出的。 汤姆生既是一位理论物理学家,又是一位出色的教育家。他在担任英国卡文迪许实验物理学教授及实验室主任的34年间,培养出了众多优秀人才,在他的弟子中,有9位获得过诺贝尔奖,卢瑟福 就是其中之一。1906年,英国人卢瑟福做了一次极为著名的实验,他用α粒子(即氦粒子流)作“炮弹”去轰击金属箔片制的靶子,他发现α粒子穿过箔片后,大多数没有改变方向,如入无人之境,畅通无阻,这说明原子内部是很“空”的。同时他也发现竟有少数α粒子在偏离原方向相当大的角度散射出来,有极少数甚至被反弹回来,这是汤姆生原子模型所无法解释的,由此卢瑟福证明了正电荷不是分散分布在一个较大的球体内,而是集中在一个很小的核心上,这个核心被他称作原子核。原子核的发现使卢瑟福感到惊讶,而科学家的敏感和追根问底的性格使他始终抓住这个问题不放,并经过周密的思考后于1911年大胆地提出了有核原子模型。他设想原子可以和一个小行星系统相比拟,原子模型的中心是一个带正电荷的核,这个核几乎把整个原子的质量集中于一身,原子核的半径在10-14m~10-15m间,是整个原子半径的万分之一至十万分之一,带负电的电子散布在核的外围,围绕原子核旋转。这种模型被后人称之为行星式原子结构模型。卢瑟福的实验室被后人称为“诺贝尔奖得主的幼儿园”。他的头像出现在新西兰货币的最大面值——100元上面,作为国家对他最崇高的敬意和纪念。 卢瑟福的原子模型虽比汤姆生模型前进了一大步,但是仍然没有摆脱宏观物体运动规律的框架,所以在解释原子的稳定性和光谱规律性上同样遇到了难以逾越的困难。而提出解释这一困难办法的是丹麦物理学家玻尔。玻尔曾在曼切斯特大学的卢瑟福实验室工作过。他非常赞赏他的老师的学问和为人。受卢瑟福的影响,玻尔的主要兴趣就集中在原子和原子核问题的研究上,于1913年提出了“电子在原子核外空间的一定轨道上绕核做高速的圆周运动”原子模型学说,使原子结构理论为之一

相关文档
最新文档