高数竞赛习题[1]
数学竞赛高数试题及答案

数学竞赛高数试题及答案试题一:极限的计算问题:计算极限 \(\lim_{x \to 0} \frac{\sin x}{x}\)。
解答:根据洛必达法则,我们可以将原式转换为 \(\lim_{x \to 0} \frac{\cos x}{1}\),由于 \(\cos 0 = 1\),所以极限的值为 1。
试题二:导数的应用问题:若函数 \( f(x) = 3x^2 - 2x + 1 \),求其在 \( x = 1 \) 处的导数值。
解答:首先求导数 \( f'(x) = 6x - 2 \),然后将 \( x = 1 \) 代入得到 \( f'(1) = 6 \times 1 - 2 = 4 \)。
试题三:不定积分的求解问题:求不定积分 \(\int \frac{1}{x^2 + 1} dx\)。
解答:这是一个基本的积分形式,可以直接应用反正切函数的积分公式,得到 \(\int \frac{1}{x^2 + 1} dx = \arctan(x) + C\),其中\( C \) 是积分常数。
试题四:级数的收敛性判断问题:判断级数 \(\sum_{n=1}^{\infty} \frac{1}{n^2} \) 是否收敛。
解答:根据比值测试,我们有 \(\lim_{n \to \infty}\frac{1}{(n+1)^2} / \frac{1}{n^2} = \lim_{n \to \infty}\frac{n^2}{(n+1)^2} = 1\),由于极限值为 1,小于 1,所以级数收敛。
试题五:多元函数的偏导数问题:设函数 \( z = f(x, y) = x^2y + y^3 \),求 \( f \) 关于\( x \) 和 \( y \) 的偏导数。
解答:对 \( x \) 求偏导,保持 \( y \) 为常数,得到 \( f_x =2xy \)。
对 \( y \) 求偏导,保持 \( x \) 为常数,得到 \( f_y = x^2 + 3y^2 \)。
高数竞赛试题及答案

高数竞赛试题及答案在高等数学领域中,竞赛试题的编写与解答一直是学生们提高自己数学水平的重要方式之一。
本文将提供一些高等数学竞赛试题,并附上详细的解答过程,以帮助读者更好地理解和应用数学知识。
1. 竞赛试题一考虑函数f(x) = |x^2 - 4x + 3|,其中x为实数。
(1)求函数f(x)的定义域。
(2)求函数f(x)的最大值和最小值。
解答过程:(1)为了求函数f(x)的定义域,我们需要确定使函数的值有意义的x 的范围。
由于函数f(x)中包含了一个绝对值,我们可以将其拆分成两种情况讨论:当x^2 - 4x + 3 ≥ 0时,函数f(x) = x^2 - 4x + 3;当x^2 - 4x + 3 < 0时,函数f(x) = -(x^2 - 4x + 3)。
对于第一种情况,我们需要求解不等式x^2 - 4x + 3 ≥ 0。
通过因式分解或配方法,我们可以得到(x-1)(x-3) ≥ 0。
解这个不等式可以得到x ≤ 1或x ≥ 3。
对于第二种情况,我们需要求解不等式x^2 - 4x + 3 < 0。
同样通过因式分解或配方法,可以得到(x-1)(x-3) < 0。
解这个不等式可以得到1< x < 3。
综上所述,函数f(x)的定义域为x ≤ 1或x ≥ 3,且1 < x < 3。
(2)为了求函数f(x)的最大值和最小值,我们可以分别考虑函数f(x)在定义域的两个区间内的取值情况。
当x ≤ 1时,函数f(x) = x^2 - 4x + 3。
通过求导可以知道,函数f(x)在x = 2处取得最小值。
代入可得最小值为f(2) = 1。
当x ≥ 3时,函数f(x) = -(x^2 - 4x + 3)。
同样通过求导可以知道,函数f(x)在x = 2处取得最大值。
代入可得最大值为f(2) = -1。
综上所述,函数f(x)的最大值为-1,最小值为1。
2. 竞赛试题二已知函数f(x) = 2^(x+1) - 3^(x-2),其中x为实数。
高等数学竞赛试题及参考答案

九江职业大学第一届“数学建模”选拔赛暨《高等数学》竞赛试题院系 班级 学号 姓名一、单项选择题(每小题3分,共30分)1 设函数f(x)=⎪⎩⎪⎨⎧≥++<0x ,K x 2x 40x ,xx3sin 2在x=0处连续,则K=( )。
A. 3 B. 2 C. 1 D. 312 ⎰-=+116dx x sin 1xcos x ( )A.2π B.π C.1D.03 设f (x )=⎩⎨⎧<≥0x ,x sin 0x ,x ,则)0(f '=( )A.-1B.1C.0D.不存在 4 下列极限中不能应用洛必达法则的是( ) A.x xx ln lim +∞→B.xxx 2cos lim∞→C.xxx -→1ln lim1D.x e x x ln lim -+∞→5 设f (x)是连续函数,且⎰=x x x dt t f 0cos )(,则f (x)=( ) A.cos x-xsin xB.cos x+xsin xC.sin x-xcos xD.sin x+xcos x6 设函数f(x)满足)x (f 0'=0, )x (f 1'不存在, 则( ) A.x=x 0及x=x 1都是极值点 B.只有x=x 0是极值点C.只有x=x 1是极值点D.x=x 0与x=x 1都有可能不是极值点7 设f(x)在[-a,a](a>0)上连续, 则⎰-=a adx )x (f ( )A. 0B. 2⎰adx )x (fC.⎰-+a0dx )]x (f )x (f [D. ⎰--adx )]x (f )x (f [8 设函数y=f(x)在点x 0的邻域V(x 0)内可导,如果∀x ∈V(x 0)有f(x)≥f(x 0), 有( ) A .)(')('0x f x f ≥ B .)()('0x f x f ≥ C .0)('0=x fD .0)('0>x f9 设f(x)=x 15+3x 3-x+1,则f (16)(1)=( ) A .16!B .15!C .14!D .010=⎰])arctan ([673dx x x dx d ( ) A. 5 B. 3 C. 7 D. 0 二、填空题(每空4分,共32分)1 当x →0时,sin(2x 2)与ax 2是等价无究小,则a=___________ .2 设函数f(x)=⎪⎩⎪⎨⎧=≠+000)1ln(2x x xx ,则f '(0)=___________. 3 曲线y =x 3+3x 2-1的拐点为___________. 4 n31sin n 1lim22n ∞→= ___________.5 设1)1(f =' 则⎥⎦⎤⎢⎣⎡--∞→)1(f )x11(f x lim x =___________.6 曲线x 2+y 5-2xy=0在点(1、1)处的切线方程为 .7 dx xx x ⎰++221)(arctan = .8 曲线y =1222-+-x x x 的垂直渐近线的方程是 .三、计算题 (每题8分,共16分) 1. 计算⎰10dx ex2. 设f(x)的一个原函数为x e x 2,计算dx x x f)(/⎰四、解答题(第1题10分,第2题12分)1. 设曲线xy=1与直线y=2,x=3所围成的平面区域为D (如图所示).求D 的面积.2. 计算定积分⎰-+12.)2()1ln(dx x x九江职业大学第一届“数学建模”选拔赛暨《高等数学》竞赛试题参考答案一、单项选择题(每小题3分,共30分)1 设函数f(x)=⎪⎩⎪⎨⎧≥++<0x ,K x 2x 40x ,xx3sin 2在x=0处连续,则K=( A )。
高等数学竞赛试题含答案

I 4zx dydz 2z dzdx (1 z 2) dxdy
S
[解 1]S 的方程为 z e x2 y2 (1 x 2 y 2 4)
补两平面 S1 : z e(x2 y 2 1, 下侧) S2 : z e2 (x2 y 2 4, 上侧)
2
e2
zdV 2 zdz
3. 设 为 f (x) arctan x 在 [ 0, b] 上应用 拉格朗日 中值定理的 “中值”,则
lim
b0
2 b2
…………
(C )
(A) 1; (B) 1 ; (C) 1 ; (D) 1 .
2
3
4
4.
设
f
(x)
,
g(x)
连续,当
x
0 时,
f
(x)
与
g(x)
为等价无穷小,令
F(x)
x 0
0
2a
(2) F (x) 1 [G '(x a) G '(x a)] 1 [ f (x a) f (x a)]
2a
2a
(3) lim F(x) lim G(x a) G(x a) lim [G(x a) G(x)] [G(x) G(x a)]
a0
a0
2a
a0
2a
1 [G '(x) G '(x)] G '(x) f (x) 2
解
lim
f
(0,
y
1 n
)
n
lim 1
f (0, y 1) n
f
(0,
y
)
n
f (0, y 1) f (0, y)
lim
n
n 1 f (0, y)
高数竞赛试题集

高等数学竞赛一、 填空题⒈ 若5)(cos sin lim0=--→b x ae xx x ,则a = ,b = .⒉ 设2(1)()lim 1n n xf x nx →∞-=+, 则()f x 的间断点为x = .⒊ 曲线y=lnx 上与直线1=+y x 垂直的切线方程为.⒋ 已知xx xe e f -=')(,且f (1) = 0, 则f (x ) = .⒌ 设函数()y x 由参数方程333131x t t y t t ⎧=++⎪⎨=-+⎪⎩ 确定, 则曲线()y y x =向上凸的x 取值 范围为 . ⒍ 设1ln arctan 22+-=xxxe e e y ,则==1x dx dy.⒎若0→x 时,1)1(412--ax 与x x sin 是等价无穷小,则a= .⒏ 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则=-⎰221)1(dx x f . ⒐ 由定积分的定义知,和式极限=+∑=∞→nk n k n n122lim . ⒑1+∞=⎰ . 二、 单项选择题11.把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===0302sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是 【 】(A)γβα,,. (B)βγα,,. (C) γαβ,,. (D) αγβ,,.12.设函数f(x)连续,且,0)0(>'f 则存在0>δ,使得 【 】 (A) f(x)在(0,)δ内单调增加. (B )f(x)在)0,(δ-内单调减少.(C )对任意的),0(δ∈x 有f(x)>f(0) . (D) 对任意的)0,(δ-∈x 有f(x)>f(0) .13 . 设()(1)f x x x =-, 则 【 】(A )0x =是()f x 的极值点, 但(0,0)不是曲线()y f x =的拐点. (B )0x =不是()f x 的极值点, 但(0,0)是曲线()y f x =的拐点. (C )0x =是()f x 的极值点, 且(0,0)是曲线()y f x =的拐点.(D )0x =不是()f x 的极值点, (0,0)也不是曲线()y f x =的拐点.14 .22lim ln (1)n nn→∞+于 【 】(A )221ln xdx ⎰. (B )212ln xdx ⎰. (C )212ln(1)x dx +⎰. (D )221ln (1)x dx +⎰15 . 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界. 【 】(A) (-1 , 0). (B) (0 , 1). (C) (1 , 2). (D) (2 , 3).16 . 设f (x )在(-∞ , +∞)内有定义,且a x f x =∞→)(lim ,⎪⎩⎪⎨⎧=≠=0,00,)1()(x x xf xg ,则 【 】(A) x = 0必是g (x )的第一类间断点. (B) x = 0必是g (x )的第二类间断点.(C) x = 0必是g (x )的连续点. (D) g (x )在点x = 0处的连续性与a 的取值有关. 17 . 设)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是【 】(A) 至少存在一点),(0b a x ∈,使得)(0x f > f (a ).(B) 至少存在一点),(0b a x ∈,使得)(0x f > f (b ). (C) 至少存在一点),(0b a x ∈,使得0)(0='x f .(D) 至少存在一点),(0b a x ∈,使得)(0x f = 0.18 . 设⎪⎩⎪⎨⎧<-=>=0,10,00,1)(x x x x f ,⎰=x dt t f x F 0)()(,则【 】(A) F (x )在x = 0点不连续.(B) F (x )在(-∞ , +∞)内连续,但在x = 0点不可导.(C) F (x )在(-∞ , +∞)内可导,且满足)()(x f x F ='.(D) F (x )在(-∞ , +∞)内可导,但不一定满足)()(x f x F ='.三、解答题19.求极限3012cos lim 13x x x x→⎡⎤+⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.20.设函数()f x 在(,-∞+∞)上有定义, 在区间[0,2]上, 2()(4)f x x x =-, 若对任意的x 都满足()(2)f x k f x =+, 其中k 为常数.(Ⅰ)写出()f x 在[2,0]-上的表达式;(Ⅱ)问k 为何值时, ()f x 在0x =处可导.21.设 f (x ),g (x )均在[a , b ]上连续,证明柯西不等式⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡≤⎥⎦⎤⎢⎣⎡⎰⎰⎰ba b a b a dx x g dx x f dxx g x f )()()()(22222.设2e b a e <<<, 证明)(4ln ln 222a b ea b ->-.23曲线2x xe e y -+=与直线0,(0)x x t t ==>及0y =围成一曲边梯形. 该曲边梯形绕x 轴旋转一周得一旋转体, 其体积为()V t , 侧面积为()S t , 在x t =处的底面积为()F t .(Ⅰ)求()()S t V t 的值;(Ⅱ) ()lim ()t S t F t →+∞.24.设f (x ) , g (x )在[a , b ]上连续,且满足⎰⎰≥x axadt t g dt t f )()(,x ∈ [a , b ),⎰⎰=bab adt t g dt t f )()(.证明:⎰⎰≤babadx x xg dx x xf )()(.25. 某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h. 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).100.66⨯=k 问从着陆点算起,飞机滑行的最长距离是多少?注kg 表示千克,km/h表示千米/小时.高等数学竞赛试卷一、单项选择题1、若2lim()01x x ax b x →∞--=+,则(A )1,1a b == (B )1,1a b =-= (C ) 1,1a b ==- (D )1,1a b =-=-2、设(),0()(0),0f x x F x x f x ⎧≠⎪=⎨⎪=⎩ ,其中()f x 在0x =处可导且'(0)0f ≠,(0)0f =,则0x =是()F x 的(A ) 连续点 (B ) 第一类间断点 (C ) 第二类间断点 (D )以上都不是 3、设常数0k >,函数()ln xf x x k e =-+在(0,)+∞内零点的个数为 (A ) 0 (B ) 1 (C ) 2 (D ) 34、若在[0,1]上有(0)(0)0,(1)(1)0f g f g a ====>,且''()0f x >,''()0g x <,则110()I f x dx=⎰,120()I g x dx =⎰,130I ax dx =⎰的大小关系为(A ) 123I I I ≥≥ (B ) 231I I I ≥≥ (C ) 321I I I ≥≥ (D ) 213I I I ≥≥5、由平面图形0,0()a x b y f x ≤≤≤≤≤绕y 轴旋转所成的旋转体的体积为(A )2()b aV xf x dx π=⎰ (B ) 2()b aV f x dx π=⎰(C ) 2()b aV f x dx π=⎰ (D ) ()baV f x dx π=⎰6、(1,3,4)P -关于平面320x y z +-=的对称点是 (A ) (5,1,0)- (B )(5,1,0) (C )(5,1,0)-- (D )(5,1,0)-7、设D 为222x y R +≤,1D 是D 位于第一象限的部分,()f x 连续,则22()Df x y d σ+⎰⎰=(A )128()D f x d σ⎰⎰ (B )0 (C )22()R R RRdx f x y dy --+⎰⎰(D )1224()D f x y d σ+⎰⎰8、a为常数,则级数21sin()n na n ∞=⎡⎢⎣∑ (A ) 绝对收敛(B )发散C ) 条件收敛(D ) 收敛性与a 的取值有关二、填空题1、340tan 2lim(1)1x x x xx e →-=- 。
高数竞赛练习

高数竞赛练习试卷(一)1. 求极限1101lim21arctantt t te te t π→+-。
2. 求极限0tan(sin )sin(tan )lim tan sin t x x x x →--。
3. 设()f x 具有二阶连续导数,且(0)0,(0)(0)0f f f '''>==,t 是曲线()y f x =上点(,())x f x 处的切线在x 轴的截距,求0()lim()x xf t tf x →。
4. 设()f x 在[0,)+∞二阶可导,且(0)1,(0)1,()(),(0f f f x f x x '''=>>>.求证:()x f x e >。
5. 已知()234111ydx ydx y dx y dxdx y -+++=--⎰⎰⎰⎰⎰,求()x f y =的表达式。
6. 设tan 20()()x F x f tx dt=⎰,其中()f x 为连续函数,求()F x ',并讨论()F x '的连续性。
7. 计算ln(sin )x x dxπ⎰。
8. 设()f x连续可导,证明:[]10(1)(0)x dx f f π'=-⎰⎰。
9. 设非负函数()f x 在[]0,1上连续,且单调上升,[]0,1,()t y f x ∈=与直线(1)y f =及x t =围成图形的面积为1()S t ,()y f x =与直线(0)y f =及x t =围成图形的面积为2()S t .⑴ 证明:存在唯一的(0,1)t ∈,使得12()()S t S t =.⑵ t 取何值时两部分面积之和取最小值? 10.求函数xyz ω=+()1,0,1P -处沿直线11:111x y z L --==-在平面:210x y z π-+-=上的投影直线l 方向的方向导数。
11.已知01n <<,证明级数2211nn m a m n ∞∞==+∑∑收敛.12. 计算曲线积分[][]()cos ()sin ACBf y x y dx f y x dyππ'-+-⎰,其中ACB 为连结点(,2)A π与点(3,4)B π的线段AB 之下方的任意路线,且该路线与线段AB 所围图形的面积为1,()f x 是连续可导的函数.13. 设(),()f x g x 可微,且()()z yf xy dx xg xy dy =+. ⑴ 若存在u ,使du z =,求()()f x g x -;⑵ 若()()f x F x '=,求u ,使z du =.14. 设()f u 在[)1,+∞上有连续的二阶导数,(1)1f =-,3(1)2f '=,且函数()()222222x y z f x y z ω=++++满足:2222220x y z ωωω∂∂∂++=∂∂∂,求()f u 在[)1,+∞上的最小值。
高等数学竞赛最新试题及答案

高等数学竞赛最新试题及答案高等数学竞赛试题一、选择题(每题3分,共30分)1. 函数\( f(x) = x^2 - 4x + 3 \)的顶点坐标是:A. (2, -1)B. (1, 0)C. (2, 1)D. (2, -1)2. 已知\( \lim_{x \to 0} \frac{\sin x}{x} = 1 \),求\( \lim_{x \to 0} \frac{\sin 3x}{3x} \)的值是:A. 1B. 0C. 3D. 无法确定3. 曲线\( y = x^3 - 2x^2 + x \)在点(1,0)处的切线斜率是:A. 0B. -1C. 1D. 24. 以下哪个级数是发散的?A. \( \sum_{n=1}^{\infty} \frac{1}{n^2} \)B. \( \sum_{n=1}^{\infty} \frac{1}{n} \)C. \( \sum_{n=1}^{\infty} (-1)^n \frac{1}{n} \)D. \( \sum_{n=1}^{\infty} \frac{1}{2^n} \)5. 函数\( f(x) = \sin x + \cos x \)的周期是:A. \( \pi \)B. \( 2\pi \)C. \( \frac{\pi}{2} \)D. \( \pi \)6. 以下哪个函数是奇函数?A. \( f(x) = x^2 \)B. \( f(x) = x^3 \)C. \( f(x) = |x| \)D. \( f(x) = \sin x \)7. 已知\( \int_{0}^{1} x^2 dx = \frac{1}{3} \),求\( \int_{0}^{1} x^3 dx \)的值是:A. \( \frac{1}{4} \)B. \( \frac{1}{3} \)C. \( \frac{1}{2} \)D. \( 1 \)8. 以下哪个是二阶常系数线性微分方程?A. \( y'' + 3y' + 2y = 0 \)B. \( y' + y = x^2 \)C. \( y'' + y' = 0 \)D. \( y'' - 2y' + y = \sin x \)9. 以下哪个是二元函数的偏导数?A. \( \frac{\partial^2 f}{\partial x \partial y} \)B. \( \frac{\partial f}{\partial x} \)C. \( \frac{\partial f}{\partial y} \)D. \( \frac{d^2f}{dx^2} \)10. 已知\( \lim_{x \to \infty} \frac{f(x)}{x} = 0 \),那么\( f(x) \)是:A. 常数B. 有界函数C. 无穷小量D. 无穷大量二、填空题(每题4分,共20分)11. 函数\( f(x) = \sqrt{x} \)的定义域是_________。
高数竞赛习题(不定积分、定积分)

省高数竞赛学生报名网址:/mathcpt/第一讲 不定积分例1. 求下列不定积分 (1)⎰+dx e x e x(2)⎰--dx e x x x 22)1((3)⎰++⋅+dx e x x e x x x x )13()(22 例2.(1)dx e x x xx x ⎰⋅+-)cos 1(cos sin cos sin 2(2)⎰--dx x x x2)ln (ln 1例3. (1)⎰+)2(7x x dx(2)⎰++232)1(x x dx例4.(1)⎰++xx x dx4212(2)⎰+++6321x x x ee e dx例5. (1)dx e xx x⎰++cos 1sin 1 (2)⎰++dx x e x x2)2()1( (3)⎰+dx x e x x22)2( 例6. 设⎰+=C x dx x xf arcsin )(,则⎰=)(x f dx____________ 例7. (1)6532+-+x x x(2)2)1(1-x x(3))1)(21(12x x ++例8. (1) dx x x x x x x ⎰++--++)22()1(3612332 (2) ⎰+dx x x 91例9.(1)⎰-+dx x x 1003)1(12 (2) ⎰++dx x x x 234811例10. ⎰+++dx x x 3111例11. ⎰++3cos sin 2x x dx例12.(1)⎰x x dx53cos sin(2)⎰+dx x sin 1例13. (1)⎰+dx x xsin 1sin (2)⎰++dx xxx cos 1sin例14. (1)dx x x x ⎰3cos 2cos 4sin (2)⎰xdx x 42cos sin例15. (1)⎰+xdx x x arctan 122(2)⎰dx ee arc xxcot例16. dx x f x f x f x f x f ⎰⎥⎦⎤⎢⎣⎡'''-')()()()()(32例17. ⎪⎩⎪⎨⎧>≤≤+<=121011)(x x x x x x f 求⎰dx x f )(第二讲 定积分例1. ],[)(b a C t g ∈,⎰=xa dt t g x f )()(,证明:至少],[b a ∈∃ξ,使)()(ξg ab b f =-. 例2. (1)⎰-aa dx xa x 2422 (2)⎰--2ln 021dx e x(3)⎰---201010cos sin 4cos sin πdx xx xx例3. 估值(1)⎰333arctan xdx x (2)⎰+--13224xx x dx例4. 求导数 (1)由方程1sin 220=+⎰⎰x yt dt tt dt e ,确定y 为x 的函数,求dx dy(2)⎰-=x dt t x f x F 0)()(例5. 设当0>x 时,)(x f 可导,且满足)0()(11)(1>+=⎰x dt t f xx f x,求)(x f例6. )(x f 为连续函数,且⎰+=10)(2)(dt t f x x f ,则=)(x f ____________例7. 求极限(1)⎰-+∞→x t xx dt et xe 0222lim(2)xdt t x x ⎰∞→0sin lim例8. 求积分(1)⎰-20)1(dx x f ,其中⎪⎩⎪⎨⎧<+≥=+0110)(11x e x x f x x ,例9.(1)⎰-10dt x t t , (2)b a dx x ba <⎰,例10. ⎰--=x a y a y dy e x f 0)2()(,求⎰adx x f 0)(例11. (1))(x f 在),(∞+-∞上连续,且x ∀,有)()()(y f x f y x f +=+,求⎰-+112)()1(dx x f x(2)⎰--+=4421sin ππdx e xI x例12. (1)⎰++--42)3ln()9ln()9ln(dx x x x(2)dx e e e I xx x⎰+=20cos sin sin π例13. (1) ⎰+=π023c o s 1s i n dx xxx I (2)⎰+40)tan 1ln(πdx x例14. 已知A dx x x =+⎰π02)2(cos ,求⎰+201cos sin πdx x x x例15. )(x f 是连续函数,证明:(1)⎰⎰=20023)(21)(a a dx x xf dx x f x(2)dx x f dx x f ⎰⎰=2020)cos (4)cos (ππ(3)⎰⎰⎰++=+1001)(ln )()1(ln)(ln dt t f dt t f t f dt t x f x(4)设n 为正整数,证:⎰⎰=2020cos 21sin cos ππxdx xdx x n nnn例17. 若)(x f 连续,则⎰⎰⎰-=xxudu u f u x du dt t f 000)()(])([.例18. )(),(x g x f 在],[b a 上连续,证:至少),(b a ∈∃ξ,使得⎰⎰=ξξξξabdx x f g dx x g f )()()()(例19. ],[)(b a C x f ∈,证明:⎰⎰-≤b a ba dx x f ab dx x f )()())((22例20. ],[)(b a C x f ∈,且严格单调增,证:⎰⎰<+ba b a dx x xf dx x f b a )(2)()(.例21. )(x f 在],[b a 上可导,且0)(,)(=≤'a f M x f ,证:2)(2)(a b Mdx x f ba -≤⎰例22. 设)(x f 在],[b a 上不恒等于零,且其导数)(x f '连续,且有0)()(==b f a f ,证:],[b a ∈∃ξ,使⎰-≥'b adx x f a b f )()(4)(2ξ例23. 在],0[a 上,0)(>''x f ,证)2()(0aaf dx x f a ≥⎰例24. )(x f '在],0[a 连续,且0)0(=f ,证2)(2Ma dx x f a≤⎰,其中,)(max 0x f M ax '=≤≤.反常积分 例1. (1)⎰∞++02)1(1dx e x (2)⎰∞+∞-++942x x dx(3)⎰∞++022)1(ln dx x x x (4)⎰-e dx x x 12)(ln 11 例2. ⎰∞++03)1(x x dx定积分应用例1. 求由曲线x x y e x xx y axa 21)(,1lim)(221=-+=+∞→,及1=x 所围图形的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高数竞赛习题例1(1)ln ln ln (1ln )(1ln )(ln )x x x x x x x x x x dx e x dx e d x x e C x C +=+==+=+⎰⎰⎰ (2)dx xx x dx xx x ⎰⎰+++=+++22221)1ln(1)1ln()1l n ()1l n (22⎰++++=x x d x x()C x x +++=232)1ln(32(3)2ln tan ln tan 11ln tan ln tan (ln tan )sin 22sin cos 24x xdx dx xd x x C xx x===+⎰⎰⎰(4)⎰⎰⎰+=+=+=+C x x x d dx x xx dx xx )arctan(cos)(cos1cos )(cos1cos sin 2cos12sin 2222224(5)C exd edx exx xxx+=+=++++⎰⎰2221211211例2、(1)(06年真题)dx x x x x ⎰-++)1(1884解:(法一)4881(1)x xdx x x ++=-⎰dx xx xdx xx x⎰⎰-+-+)1()1(188847447484811(1)1(1)1xx xxdx dx dx dx x xxx x x-+=+=+----⎰⎰⎰⎰3748111xxdx dx dx x xx=++--⎰⎰⎰4811ln ln 1ln 148x xx C =----+(法二)dx x x xx x dx x x x x ⎰⎰-++-=-++)1(21)1(1884888437881211xxdx dx dx x xx=++--⎰⎰⎰而dx xxdx xxdx x xxdx xx⎰⎰⎰⎰++-=+-=-434344383121121)1)(1(14444441(1)1(1)11ln ||818181d x d x x C xxx-++=-+=+-+-⎰⎰从而4848841111ln ||ln ||ln |1|(1)814x xx dx x x C x x x+++=+--+--⎰4811ln ln 1ln 148x x x C =----+(2)22(1)ln(1)111xxxxxxx xxxxeee e d e dx dx e dx e e C eee+-+==-=-+++++⎰⎰⎰⎰(3)(07年的真题)求⎰+dx x x159解:⎰+dx x x1593555552112(1)5515x C ===+-⎰⎰(4)(资料中的发挥题)求xdx xx ⋅⎰4ln 2lnx d x x x d x xxdxx x ln 4ln ln2ln ln ln 4ln 2ln 4ln 2ln ⎰⎰⎰++==⋅l n l n 2l n 4l n 4ln ln ln 4x d x x ++-==+⎰11ln ln(ln ln 4)2ln ln 4d x d x x +⋅++⎰⎰l n l n 2l n |l n 4|x x C =-⋅+例3、224222111()11arctan()11122()2d x x xxdx dx x C x xx x x x+-+===-+++-+⎰⎰⎰224222111()1111()2d x x xxdx dx C xx x xx-+-===++++-⎰⎰⎰2224441111211xx x d x d x d x x x x ⎛⎫+-=+ ⎪+++⎝⎭⎰⎰⎰1111r c t (2x C x =-++2244411111211x x dx dx dx x x x ⎛⎫+-=- ⎪+++⎝⎭⎰⎰⎰1r c t (2x C x =--(03年 真题)2224440001111211xx x dx dx dx x x x +∞+∞+∞⎛⎫+-=+ ⎪+++⎝⎭⎰⎰⎰1111)4x x+∞+∞=-+=例4 (1)211sin 1sin tan sec 1sin (1sin )(1sin )cos xx dx dx dx x x C xx x x--===-+++-⎰⎰⎰(类似地,求⎰⎰⎰--+dx xdx xdx xsin 11,cos 11,cos 11等)(2)⎰⎰⎰+=++=++)1()()1()1()1(1xxxxxx xxe xexe d dx xe xeex dx xe x x()()ln11xxxxxxd xe d xe xeC xexe xe =-=+++⎰⎰(4)C x x dx xx dx xx +-+=--=+-⎰⎰221arcsin 1111*例5 若01()(0,0),st x I f t dx s t ss=+>>⎰则I 之值( C )(A )依赖于x t s ,, (B )依赖于t s , (C )只依赖于t (D )依赖于x s , 解: 令sx t u +=,则x su st =-,201()()st t tx I f t dx f u du ss=+=⎰⎰例5(1)(资料中的发挥题)计算12ln(1)1x dx x++⎰解:换元t x tan =, 则14422ln(1)ln(1tan )tan ln tan 1sec x t dx d t tdt xtππ++==+⎰⎰⎰再令u t -=4π,有44401tan ln(1tan )ln(1tan())ln(1)41tan u t dt u du du uππππ-+=+-=++⎰⎰⎰4440002l n l n 2l n (1t a n )1t a nd u d u u d u u πππ==-++⎰⎰⎰从而142ln(1)ln(1tan )1x dx t dt xπ+=++⎰⎰=2ln 8π(2)(07经管类真题)2(1)(1)dx x x α+∞++⎰)0(≠α解:122211(1)(1)(1)(1)(1)(1)x tdx t dt t I dt x x t t t t ααααα=+∞+∞+∞+-===++++++⎰⎰⎰02211arctan |1(1)(1)2dt dt t I I tt t απ+∞+∞+∞=-=-=-+++⎰⎰移项解得 2(1)(1)4dxI x x απ+∞==++⎰*(2)(05年数学类真题)计算220051tandx xπ+⎰解:令tan x t = 则220051tandx xπ+⎰22005(1)(1)dtt t+∞=++⎰12005200522005220052200511(1)(1)(1)(1)(1)(1)x tdxtdttI dt x xt t t t =+∞+∞+∞+-===++++++⎰⎰⎰022200511arctan |1(1)(1)2dt dt t I I tt tπ+∞+∞+∞=-=-=-+++⎰⎰移项解得 4I π=,从而220051tandx xπ+⎰22005(1)(1)4dtt tπ+∞==++⎰(3)(首届高数竞赛真题) :证明:0)sin(202>⎰dx x π证明:2222)t xx dx ππππ===+⎰⎰⎰而20s i n s i n t u t u ππππ=+-=⎰⎰从而 原式=00dt π->⎰例6(1)计算992sin cos 17sin cos x x dx x xπ-+⎰解:9999222sin cos sin cos 17sin cos 17sin cos 17sin cos x x x x dx dx dx x xx xx xπππ-=-+++⎰⎰⎰而99222cos sin 17sin cos 17cos sin t xx t dx dt x xt tπππ=-=++⎰⎰从而9999222sin cos sin cos 017sin cos 17sin cos 17sin cos x x x x dx dx dx x xx xx xπππ-=-=+++⎰⎰⎰(2)(04 年真题)计算2cos 2004xdx x x πππ+-+⎰解:22222cos sin 2004()()200422t xx tdx dt x x t t ππππππππππ=--++=-+---+⎰⎰222222222222sin sin 200420042004444t t dt dt dt t t t πππππππππππ---+==++-+-+-⎰⎰⎰2222020044dt t πππ=+=+-⎰420042arctan420042arctan22220ππππππ--=at a(3)(资料中的发挥题)计算2sin 1cos x x dx xπ+⎰解:222202()cos sin 21cos 1sin t xt tx x dx dt xtπππππ=---=++⎰⎰222222cos cos 21sin 1sin t t tdt dt t t πππππ--=-++⎰⎰22sin 01sin d t dt tππ=-+⎰220a r c t a n (s i n )4t πππ== 例7(1)*C xeexxedx exxexdxe dx x xexxxxxxx++=++-=++-=+-=+⎰⎰⎰11111)1(2(2)(资料中的发挥题)设101xedx a x=+⎰求12(1)xedx x +⎰1111211(1)1112xxxxeeee dx e d dx a x xxx=-=+=-+++++⎰⎰⎰(3)dx xx e x cos 1sin 1++⋅⎰解:2tan2sec212cos22cos 2sin 21cos 1sin 122x x x x x xx +=+=++从而21sin 1sec tantantan1cos 22222xxxxxx x x x x e dx edx e dx e d e dx x+⋅=+=++⎰⎰⎰⎰⎰t a n t a n t a n t a n 2222x x xxxx xx e e d x ed x eC =-+=+⎰⎰(4)(首届高数竞赛真题)计算12121(1)x xx edx x++-⎰解:11122211122211(1)()x x x xxxx edx x e dx edx xx ++++-=-+⎰⎰⎰1122112221(1)x x xxx edx edx x++=-+⎰⎰112211221()x x xxxed x edx x++=++⎰⎰11221122x x xxxd eedx ++=+⎰⎰1212x xxe+=-1212x xed x +⎰+1212x xedx +⎰5232e =(5)设0(()"())sin 5.f x f x xdx π+=⎰ .2)(=πf 求)0(f解:0(()"())sin ()sin sin ()f x f x xdx f x x dx x df x πππ'+=+⎰⎰⎰()sin sin ()cos ()f x xdx x f x x df x πππ'=+-⎰⎰ 0()sin cos ()sin ()f x xdx x f x x f x d x πππ=--⎰⎰c o s 0(0)c o s ()f f ππ=⋅-⋅= 从而 (0)3f =例8 (1)21(1)dx x x +∞=+⎰( C ).(A )∞ (B )2ln- (C )2ln(D )2ln3121221111()(ln ln 1)lnln (1)12dx xdx x x x x xx+∞+∞+∞=-=-+==++⎰⎰不能分(2)(06年文专科真题)计算dx x x x x ⎰+++-+23)1ln()2ln(2解: 21112312+-+=++x x x xdx x x x x ⎰+++-+23)1ln()2ln(211[ln(2)ln(1)]()12x x dx x x =+-+-++⎰[ln(2)ln(1)][ln(1)ln(2)]x x d x x =+-++-+⎰21[l n (2)l n (1)]2x x C =-+-++(3)2ln ln(1)111(ln ln(1))()[ln ln(1)](1)12x x dx x x dx x x C x x xx-+=-+-=-++++⎰⎰例9(1)(05年真题)计算sin 3cos 4sin x dx x x+⎰解: )sin 4cos 3()sin 4cos 3(sin '+++=x x B x x A x 43(3cos 4sin )(3cos 4sin )2525x x x x '=+-+从而sin 3cos 4sin xdx x x=+⎰⎰⎰+'+-++dx xx x x dx x x x x sin 4cos 3)sin 4cos 3(253sin 4cos 3)sin 4cos 3(25443(3c o s 4s i n )25253c o s4s i nd x x dx x x +=-+⎰⎰43ln |3cos 4sin |2525x x x C =-++ (2)sin 11(sin cos )11ln |sin cos |sin cos 22sin cos 22x d x x dx dx x x x C x x x x +=-=-++++⎰⎰⎰(3)4222222221sec (tan 1)tan (sin 2cos )(tan 2)(tan2)xx dx dx d x x x x x +==+++⎰⎰⎰2t a n 22222111(2)2(2)x tt dt dt dt t tt =+==-+++⎰⎰⎰2114(2)t tt C t =--++2t a nr c t )4(t a n 2)x C x =-++(4) (08年真题)cos(3)sin(5)dxx x +⋅+⎰解:cos(3)sin(5)cos(3)[sin(3)cos 2cos(3)sin 2]x x x x x +⋅+=++++2c o s (3)s i n (5)s i n 2c o s(3)c o s 2s i n (3)c o sd xd xx x x x x =+⋅+++++⎰⎰2sec (3)1ln tan(3)tan 2sin 2tan(3)cos 2cos 2x dx x Cx +==+++++⎰例10(1)11326611((428x dx x x xdx --+=+-+=⎰⎰(2)sin 1221212212(1)(1)cos2(1)cosx tnn n nn x dx tdt tdt πππ=++---=-=-⎰⎰⎰2224(2)!!(1)12(1)21213(21)!!n nnn n n n n -=-⋅⋅⋅⋅=-+-+(3)(05年真题)设 2222(1sin )1sin x A dx xππ--=+⎰,22222sin cos x B dx x xππ-=+⎰,2222210(1sin )4x C dx x πππ-+=+⎰,试,,A B C 的大小。