2020届高三数学3月在线公益联考试题文
2020届全国第三次(3月)在线大联考(新课标Ⅲ卷)数学(文)试题解析

绝密★启用前2020届全国第三次(3月)在线大联考(新课标Ⅲ卷)数学(文)试题注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题卡上 一、单选题1.已知集合2{|1}A x x =<,{|ln 1}B x x =<,则 A .{|0e}A B x x =<<I B .{|e}A B x x =<I C .{|0e}A B x x =<<U D .{|1e}A B x x =-<<U答案:D 解:因为2{|1}{|11}A x x x x =<=-<<,{|ln 1}{|0e}B x x x x =<=<<, 所以{|01}A B x x =<<I ,{|1e}A B x x =-<<U ,故选D . 2.已知i 为虚数单位,若复数12i12iz +=+-,则z = A .9i 5+B .1i -C .1i +D .i -答案:B 解:因为212i (12i)(2i)2i 4i 2i 1111i 2i (2i)(2i)5z ++++++=+=+=+=+--+,所以1i z =-,故选B . 3.已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,若双曲线C 的一条渐近线的倾斜角为3π,且点F ,则双曲线C 的实轴的长为A .1B .2C .4D 答案:B 解:双曲线C 的渐近线方程为by x a=±,由题可知tan 3b a π==.设点(c,0)F ,则点F 到直线3y x =的距离为22|3|3(3)(1)c =+-,解得2c =,所以222222344c a b a a a =+=+==,解得1a =,所以双曲线C 的实轴的长为22a =,故选B .4.从某市的中学生中随机调查了部分男生,获得了他们的身高数据,整理得到如下频率分布直方图:根据频率分布直方图,可知这部分男生的身高的中位数的估计值为 A .171.25cm B .172.75cm C .173.75cm D .175cm答案:C 解:由题可得0.00520.02020.040(1)10a ⨯++⨯+⨯=,解得0.010a =, 则(0.0050.0100.020)100.35++⨯=,0.350.040100.750.5+⨯=>, 所以这部分男生的身高的中位数的估计值为0.50.3517010173.75(cm)100.040-+⨯=⨯,故选C .5.某几何体的三视图如图所示,若侧视图和俯视图均是边长为2的等边三角形,则该几何体的体积为A .83B 43C .1D .2答案:C解:由三视图可知,该几何体是三棱锥,底面是边长为2的等边三角形,三棱锥的高为3,所以该几何体的体积1132231322V=⨯⨯⨯⨯⨯=,故选C.6.已知实数,x y满足约束条件11220220xyx yx y≥-⎧⎪≥-⎪⎨-+≥⎪⎪--≤⎩,则23x y-的最小值是A.2-B.72-C.1 D.4答案:B解:作出该不等式组表示的平面区域,如下图中阴影部分所示,设23z x y=-,则2133y x z=-,易知当直线2133y x z=-经过点D时,z取得最小值,由1220xx y=-⎧⎨-+=⎩,解得112xy=-⎧⎪⎨=⎪⎩,所以1(1,)2D-,所以min172(1)322z=⨯--⨯=-,故选B.7.函数52sin()([,0)(0,])33x xx xf x x-+=∈-ππ-U的大致图象为A.B.C .D .答案:A 解: 因为5()2sin()52sin ()()3333x x x xx x x xf x f x ---+-+-===--,所以函数()f x 是偶函数,排除B 、D ,又5()033f π-πππ=>-,排除C ,故选A .8.如图,在三棱锥D ABC -中,DC ⊥平面ABC ,AC BC ⊥,2AC BC CD ===,E ,F ,G 分别是棱AB ,AC ,AD 的中点,则异面直线BG 与EF 所成角的余弦值为A .0B .63C .33D .1答案:B 解:根据题意可得BC ⊥平面ACD ,EF BC ∥,则CBG ∠即异面直线BG 与EF 所成的角,连接CG ,在Rt CBG △中,cos BCCBG BG∠=,易得22BD AD AB ===6BG =cos CBG ∠=66=,故选B . 9.历史上有不少数学家都对圆周率作过研究,第一个用科学方法寻求圆周率数值的人是阿基米德,他用圆内接和外切正多边形的周长确定圆周长的上下界,开创了圆周率计算的几何方法,而中国数学家刘徽只用圆内接正多边形就求得π的近似值,他的方法被后人称为割圆术.近代无穷乘积式、无穷连分数、无穷级数等各种π值的表达式纷纷出现,使得π值的计算精度也迅速增加.华理斯在1655年求出一个公式:π2244662133557⨯⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯L L,根据该公式绘制出了估计圆周率π的近似值的程序框图,如下图所示,执行该程序框图,已知输出的 2.8T >,若判断框内填入的条件为?k m ≥,则正整数m 的最小值是A .2B .3C .4D .5答案:B 解:初始:1k =,2T =,第一次循环:2282 2.8133T =⨯⨯=<,2k =,继续循环;第二次循环:8441282.833545T =⨯⨯=>,3k =,此时 2.8T >,满足条件,结束循环, 所以判断框内填入的条件可以是3?k ≥,所以正整数m 的最小值是3,故选B .10.已知函数()2sin()(0,0)3f x x A ωωπ=->>,将函数()f x 的图象向左平移3π个单位长度,得到函数()g x 的图象,若函数()g x 的图象的一条对称轴是6x π=,则ω的最小值为 A .16B .23C .53D .56答案:C 解:将函数()f x 的图象向左平移3π个单位长度,得到函数()2sin()33g x x ωωππ=+-的图象,因为函数()g x 的图象的一条对称轴是6x π=,所以sin()1633ωωπππ+-=±,即,6332k k ωωππππ+-=+π∈Z ,所以52,3k k ω=+∈Z ,又0>ω,所以ω的最小值为53.故选C .11.已知抛物线2:2(0)C y px p =>的焦点为F ,过点F 的直线l 与抛物线C 交于A ,B 两点(设点A 位于第一象限),过点A ,B 分别作抛物线C 的准线的垂线,垂足分别为点1A ,1B ,抛物线C 的准线交x 轴于点K ,若11||2||A KB K =,则直线l 的斜率为 A .1 BC.D答案:C 解:根据抛物线定义,可得1||||AF AA =,1||||BF BB =, 又11AA FK BB ∥∥,所以11||||2||||A K AF B K BF ==,所以1111||||2||||A K AAB K BB ==, 设1||(0)BB m m =>,则1||2AA m =,则111||||21cos cos ||23AA BB m m AFx BAA AB m m --∠=∠===+,所以sin 3AFx ∠=,所以直线l的斜率tan k AFx =∠=C . 12.在ABC V 中,角,,A B C 所对的边分别为,,a b c ,已知23C π=,1c =.当,a b 变化时,若z b a λ=+存在最大值,则正数λ的取值范围为 A .(0,1) B .(0,2) C .1(,2)2D .(1,3)答案:C 解: 因为23C π=,1c =,所以根据正弦定理可得sin sin sin a b c A B C ===,所以a A =,b B =,所以sin()])sin 32z b a B A B B B λλλπ=+==+-=-+])B B φ=+,其中tan φ=,03B π<<, 因为z b a λ=+存在最大值,所以由2,2B k k φπ+=+π∈Z ,可得22,62k k k φπππ+<<π+∈Z ,所以tan φ>>,解得122λ<<,所以正数λ的取值范围为1(,2)2,故选C .二、填空题13.已知向量(2,1)a =-,(1,)m =b ,若向量+a b 与向量a 平行,则实数m =___________.。
2020届陕西、湖北、山西部分学校高三下学期3月联考数学(文)试题(解析版)

2020届陕西、湖北、山西部分学校高三下学期3月联考数学(文)试题一、单选题1.设集合{}2{|50},|320A x N x B x x x =∈-=-+=…,则A B =ð( ) A .{0,3,4} B .{0,3,4,5}C .{3,4}D .{3,4,5}【答案】B【解析】分别用列举法表示A 、B 两个集合,再计算A B ð即可. 【详解】由题得,{}{0,1,2,3,4,5},1,2A B ==, 则{0,3,4,5}A B =ð. 故选:B. 【点睛】本题考查了集合的补集运算,属于基础题.2.复数321ii -=+ A .1522i + B .1522i - C .1522i -+ D . 1522i --【答案】B【解析】试题分析:()()()()2232132332215151111222i i i i i i i i i i i i -----+-====-++--.【考点】复数的除法3.若直线240x y m ++=经过抛物线22y x =的焦点,则m =( ) A .12B .12-C .2D .2-【答案】B【解析】计算抛物线的交点为10,8⎛⎫⎪⎝⎭,代入计算得到答案.【详解】22y x =可化为212x y =,焦点坐标为10,8⎛⎫⎪⎝⎭,故12m =-.故选:B . 【点睛】本题考查了抛物线的焦点,属于简单题.4.如图所示的是某篮球运动员最近5场比赛所得分数的茎叶图,则该组数据的方差是( )A .20B .10C .2D .4【答案】D【解析】先根据茎叶图得到数据26,28,29,30,32,求出均值,再利用公式求出方差即可. 【详解】由茎叶图可知,5场比赛得分的均值为29, 故其方差为:222221[(2629)(2829)(2929)(3029)(3229)]45-+-+-+-+-=. 故选:D. 【点睛】本题考查了由茎叶图求数据的方差的问题,属于简单题.5.已知函数22,0,()1,0,x x x f x x x ⎧-=⎨+<⎩…,则((1))f f -=( )A .2B .3C .4D .5【答案】A【解析】根据分段函数直接计算得到答案. 【详解】因为22,0,()1,0,x x x f x x x ⎧-=⎨+<⎩…所以2((1))(2)222f f f -==-=.故选:A . 【点睛】本题考查了分段函数计算,意在考查学生的计算能力.6.要得到函数2sin 26y x π⎛⎫=+ ⎪⎝⎭的图象,只需将函数2cos2y x =的图象A .向左平移3π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度 D .向右平移6π个单位长度 【答案】D【解析】先将2sin 26y x π⎛⎫=+ ⎪⎝⎭化为2cos 26π⎡⎤⎛⎫=-⎪⎢⎥⎝⎭⎣⎦y x ,根据函数图像的平移原则,即可得出结果. 【详解】因为2sin 22cos 22cos 2636y x x x πππ⎡⎤⎛⎫⎛⎫⎛⎫=+=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 所以只需将2cos2y x =的图象向右平移6π个单位. 【点睛】本题主要考查三角函数的平移,熟记函数平移原则即可,属于基础题型. 7.已知数列{}n a 是公差为()d d ≠0的等差数列,且136,,a a a 成等比数列,则1a d=( )A .4B .3C .2D .1【答案】A【解析】根据等差数列和等比数列公式直接计算得到答案. 【详解】由136,,a a a 成等比数列得2316a a a =⋅,即()()211125a d a a d +=+,已知0d ≠,解得14a d=. 故选:A . 【点睛】本题考查了等差数列,等比数列的基本量的计算,意在考查学生的计算能力. 8.已知21532121,,log 353a b c -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则( )A .a b c <<B .c b a <<C .c a b <<D .b c a <<【答案】C【解析】加入0和1这两个中间量进行大小比较,其中2510()13<<,132()15->,21log 03<,则可得结论.【详解】205110()()133<<=Q ,10322()()155->=, 221log log 103<=, c a b ∴<<.故选:C. 【点睛】本题考查了指数幂,对数之间的大小比较问题,是指数函数,对数函数的性质的应用问题,其中选择中间量0和1是解题的关键,属于基础题.9.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”意思为有一个人要走378里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了六天恰好到达目的地,请问第二天比第四天多走了( ) A .96里 B .72里C .48里D .24里【答案】B【解析】人每天走的路程构成公比为12的等比数列,设此人第一天走的路程为1a ,计算1192a =,代入得到答案. 【详解】由题意可知此人每天走的路程构成公比为12的等比数列,设此人第一天走的路程为1a ,则61112378112a ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=-,解得1192a =,从而可得3241119296,1922422a a ⎛⎫=⨯==⨯= ⎪⎝⎭,故24962472a a -=-=.故选:B . 【点睛】本题考查了等比数列的应用,意在考查学生的计算能力和应用能力.10.已知整数,x y 满足2210x y +≤,记点M 的坐标为(,)x y ,则点M 满足x y +≥的概率为( ) A .935B .635C .537D .737【答案】D【解析】列出所有圆内的整数点共有37个,满足条件的有7个,相除得到概率. 【详解】因为,x y 是整数,所以所有满足条件的点(,)M x y 是位于圆2210x y +=(含边界)内的整数点,满足条件2210x y +≤的整数点有(0,0),(0,1),(0,2),(0,3),(1,0),±±±±(2,0),(3,0),(1,1),(2,1),(3,1),(1,2),(2,2),(1,3)±±±±±±±±±±±±±±共37个,满足x y +≥的整数点有7个,则所求概率为737. 故选:D . 【点睛】本题考查了古典概率的计算,意在考查学生的应用能力.11.111ABC A B C -中,ABC ∆的边长为2,D 为棱11B C 的中点,若一只蚂蚁从点A 沿表面爬向点D ,则蚂蚁爬行的最短距离为( )A .3B .C .D .2【答案】A【解析】将正三棱柱展开,化平面图形中的距离最短的问题.有三种选择,第一种是从A 点出发,经过BC 再到达点D .第二种是从A 点出发,经过11A B 再到达点D .第三种是从A 点出发,经过1BB ,最后到达点D .分别求出三种情况的距离,选其中较小的值,即为所求最短距离. 【详解】如图1,将矩形11BCB C 翻折到与平面ABC 共面的位置11BCC B '', 此时,爬行的最短距离为23AD '=;如图2,将111A B C △翻折到与平面11ABB A 共面的位置111A B C ',易知113A D AA '==,1120D A A '∠=︒,此时爬行的最短距离3AD '=; 如图3,将矩形11BCBC 翻折到与平面11ABB A 共面的位置11BC C B '', 此时,爬行的最短距离23AD '=.综上,小蚂蚁爬行的最短距离为3. 故选:A. 【点睛】本题考查了空间想象能力,和平面几何的计算能力,解决本题的关键是依据“在平面内,两点之间线段最短”.属于中档题.12.过双曲线22221(0)x y a b a b -=>>右焦点2F 的直线交两渐近线于,P Q 两点,90OPQ ︒∠=,O 为坐标原点,且OPQ ∆内切圆的半径为3a,则该双曲线的离心率为( ) A .2 B 5C 10D 10【答案】B【解析】由双曲线的渐近线关于x 轴对称可知,OPQ △的内切圆圆心M 在x 轴上,过点M 分别作MN OP ⊥于N ,MT PQ ⊥于T ,结合条件2F P OP ⊥可知四边形MTPN为正方形,在2Rt OPF V中求出OP ,又由题意得出PN 的长,进而求得ON 的长度.在Rt OMN V 中,求出tan NOM ∠,也即是b a 的值,再根据21()be a=+的值. 【详解】如图,设OPQ △的内切圆圆心为M ,则M 在x 轴上,过点M 分别作MN OP ⊥于N ,MT PQ ⊥于T , 由2F P OP ⊥得四边形MTPN 为正方形, 由焦点到渐近线的距离为b ,得2F P b =, 又2OF c =,所以OP a =,由13NP MN a ==,得23a NO =, 所以113tan 223a MN bNOM a NO a =∠===, 故22151()1()22b e a =+=+=. 故选:B. 【点睛】本题考查了双曲线离心率的求法,其中利用渐近线关于x 对称,将内切圆的圆心固定在x 轴上,在直角三角形中用边长之比表示ba是关键.属于较难题.二、填空题13.已知向量(1,2),(1,2)a b ==-r r,则|3|a b -=r r ________.【答案】2【解析】先算出3a b -r r的坐标,再用求模的公式计算即可. 【详解】由(1,2),(1,2)a b ==-r r可得3(4,4)a b -=r r ,则342ab -=r r.故答案为:42. 【点睛】本题考查了向量的模的坐标运算,属于基础题.14.已知实数,x y 满约束条件20,250,1,x y x y y -+⎧⎪+-⎨⎪⎩…„…,则3z x y =-+的最大值为___________.【答案】8【解析】画出可行域和目标函数,根据平移计算得到答案. 【详解】根据约束条件20,250,1,x y x y y -+⎧⎪+-⎨⎪⎩…„…,画出可行域,图中阴影部分为可行域.又目标函数3,3zz x y =-+表示直线30x y z -+=在y 轴上的截距, 由图可知当30x y z -+=经过点(1,3)P 时截距最大,故z 的最大值为8. 故答案为:8.【点睛】本题考查了线性规划问题,画出图像是解题的关键.15.在长方体1111ABCD A B C D -中,13,4AD AA AB ===,则异面直线1A B 与AC 所成角的余弦值为________. 【答案】225【解析】由1//A B CD 可将直线1A B 平移到CD ,与AC 相交,则1ACD ∠为异面直线1A B 与AC 所成角.在1ACD △中,利用余弦定理即可求值.【详解】如图,连接1CD ,1AD ,则1//A B CD , 所以1ACD ∠为异面直线1A B 与AC 所成角,由题意可得15AC AD ==,1142A B CD ==,则2221111cos 2AC CD AD ACD AC CD +-∠=⋅ 2542=⨯⨯225=故答案为:25. 【点睛】本题考查了平移法求异面直线所成角,属于基础题.16.已知函数()1x f x e ax =+-,若0,()0x f x 厖恒成立,则a 的取值范围是___________. 【答案】[1,)-+∞【解析】求导得到()xf x e a '=+,讨论10a +…和10a +<两种情况,计算10a +<时,函数()f x 在[)00,x 上单调递减,故()(0)0f x f =„,不符合,排除,得到答案。
宜昌市2020届高三年级3月线上统一测试文科数学试题及参考答案

3 2 cos 2 4 2 sin2 3 .
(1)若点 A(2, 0) 在直线 l 上,求直线 l 的极坐标方程;
(2)已知 a 0 ,若点 P 在直线 l 上,点 Q 在曲线 C 上,且 PQ 的最小值为
6
,求
2
a 的值.
23.【选修 4-5:不等式选讲】(本题满分 10 分)
设函数 f (x) x 2 2x 2 . (1)解不等式 f (x) 2x 1; (2)记 f (x) 的最大值为 M ,若实数 a 、 b 、 c 满足 a b c M ,
宜昌市 2020 届高三年级 3 月线上统一调研测试
数学试题(文科)
本试卷共 23 题(含选考题),全卷满分 150 分,考试用时 120 分钟.
★祝考试顺利★
一、选择题:本题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一
项是符合题目要求的.
1.已知集合 M x log2 (x 1) 1 ,集合 N x x2 x 6 0 ,则 M N
(二)选考题:共 10 分.请考生在第 22、23 题中任选一题作答.如果多做,则按所做的第 一题计分.
22.【选修 4-4:坐标系与参数方程】(本题满分 10 分)
在平面直角坐标系
xOy
中,直线
l
的参数方程为
x
a
1 2
t
( t 为参数,a R ).
y
3a 3 t 2
在以坐标原点为极点、 x 轴的非负半轴为极轴的极坐标系中,曲线 C 的极坐标方程为
x2 a2
y2 b2
1(a
0,b
0)
的右焦点,以 F
为圆心, b
为半径的
圆与 双曲线在第一象限的交点为 P ,线段 FP 的中点为 D ,△ POF 的外心为 I ,且满足 OD OI ( 0) ,则双曲线 E 的离心率为
山西省长治市2020届高三数学3月在线综合测试试题文(含答案)

,"5&5#)"
/%!
0%槡#(
1%!槡!
2%#(
$%*+NH# ¡<¢£¤5¥¦¥§,¨©ª«¬
,®¯#~<¢°°±,²³#´µ}<¶ ¡,·R¸¹(,º»w¼,½¾
7 &:!$;"% "3#' "3#" "3"' "3"!' "3"#" "3""' "3""#
;"
!3":! !3:"* (39)# '3"!) *3*(' :39:$ #"39!9
:!+&)3*%&(+3&)<<%5&)*3++%!%&*3<%#l<(+)3*3+3<3
文科数学试题 &三 %&第(页&共)页
,&+#!@ :4#" ívxí&:íys:øv#k86! ,:øwß&+!=?83 &#%C6##6! ,z)wß/ &!%{4! ck86# d#ò5|,@+!槡(#4# ~k86! d,4#C!?# , 3
!(3hu)5'-Qù+h} &"u#aÿ#"ÿ% !".(,&"%+"!"5#"3""5)"3 &#%Ç)+#r#CQù+,&"%(!,Â#/ &!%âQù+,&"%#!" c"1$##!.do's#Ct(),çèé%
2020届高三下学期第三次月考试数学文科试卷

n(ad bc)2
,
(a b)(c d)(a c)(b d)
P(K 2…K )
0.050
0.010
0.001
精品 文档 欢迎下载
K
3.841
6.635
10.828
18.( 12 分)在 V ABC 中,角 A, B, C 的对边分别为 a, b, c ,且 2ccosB 2a b . ( I)求角 C 的大小;
因为四边形 ABCD 是菱形, BAD 120 ,且 PC PB , 所以 BC AM , BC PM ,又 AM I PM M ,
所以 BC ⊥ 平面 APM,又 AP 平面 APM,
所以 BC PA.
同理可证: DC PA ,又 BC I DC C ,
所以 PA 平面 ABCD ,所以平面 PAF 平面 ABCD ,
C
:
x2 a2
y2 b2
1(a 0,b 0) ,点 P x0, y0 是直线 bx ay 4a 0 上任意一点,若
2
圆 x x0
y y0 1 与双曲线 C 的右支没有公共点,则双曲线的离心率取值范围是
A . 1,2
B. 1,4
C. 2,
D . 4,
2
第 II 卷 非选择题( 90 分)
精品 文档 欢迎下载
17~21 题为必考题,每个试
题考生都必须作答。第 22、 23 题为选考题,考生根据要求作答。
(一)必考题:共 60 分。
17.( 12 分) 23.为了打好脱贫攻坚战,某贫困县农科院针对玉米种植情况进行调研,力争有效地 改良玉米品种, 为农民提供技术支援, 现对已选出的一组玉米的茎高进行统计, 获得茎叶图如图 (单
2020届全国第三次(3月)在线大联考(新课标Ⅲ卷)数学(文)试题(解析版)

2020届全国第三次(3月)在线大联考(新课标Ⅲ卷)数学(文)试题一、单选题1.已知集合2{|1}A x x =<,{|ln 1}B x x =<,则 A .{|0e}A B x x =<<I B .{|e}A B x x =<I C .{|0e}A B x x =<<U D .{|1e}A B x x =-<<U【答案】D 【解析】【详解】因为2{|1}{|11}A x x x x =<=-<<,{|ln 1}{|0e}B x x x x =<=<<, 所以{|01}A B x x =<<I ,{|1e}A B x x =-<<U ,故选D . 2.已知i 为虚数单位,若复数12i12iz +=+-,则z = A .9i 5+B .1i -C .1i +D .i -【答案】B 【解析】【详解】因为212i (12i)(2i)2i 4i 2i 1111i 2i (2i)(2i)5z ++++++=+=+=+=+--+,所以1i z =-,故选B . 3.已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,若双曲线C 的一条渐近线的倾斜角为3π,且点F C 的实轴的长为A .1B .2C .4D .5【答案】B 【解析】【详解】双曲线C 的渐近线方程为by x a=±,由题可知tan 3b a π==.设点(c,0)F ,则点F 到直线y =,解得2c =,所以222222344c a b a a a =+=+==,解得1a =,所以双曲线C 的实轴的长为22a =,故选B .4.从某市的中学生中随机调查了部分男生,获得了他们的身高数据,整理得到如下频率分布直方图:根据频率分布直方图,可知这部分男生的身高的中位数的估计值为 A .171.25cm B .172.75cm C .173.75cm D .175cm【答案】C 【解析】【详解】由题可得0.00520.02020.040(1)10a ⨯++⨯+⨯=,解得0.010a =, 则(0.0050.0100.020)100.35++⨯=,0.350.040100.750.5+⨯=>, 所以这部分男生的身高的中位数的估计值为0.50.3517010173.75(cm)100.040-+⨯=⨯,故选C .5.某几何体的三视图如图所示,若侧视图和俯视图均是边长为2的等边三角形,则该几何体的体积为A .83B .433C .1D .2【答案】C 【解析】【详解】由三视图可知,该几何体是三棱锥,底面是边长为2的等边三角形,3所以该几何体的体积1132231322V =⨯⨯⨯⨯⨯=,故选C .6.已知实数,x y 满足约束条件11220220x y x y x y ≥-⎧⎪≥-⎪⎨-+≥⎪⎪--≤⎩,则23x y -的最小值是A .2-B .72-C .1D .4【答案】B 【解析】【详解】作出该不等式组表示的平面区域,如下图中阴影部分所示, 设23z x y =-,则2133y x z =-,易知当直线2133y x z =-经过点D 时,z 取得最小值,由1220x x y =-⎧⎨-+=⎩,解得112x y =-⎧⎪⎨=⎪⎩,所以1(1,)2D -,所以min 172(1)322z =⨯--⨯=-,故选B .7.函数52sin ()([,0)(0,])33x xx xf x x -+=∈-ππ-U 的大致图象为A .B .C .D .【答案】A 【解析】【详解】因为5()2sin()52sin ()()3333x x x xx x x xf x f x ---+-+-===--,所以函数()f x 是偶函数,排除B 、D , 又5()033f π-πππ=>-,排除C ,故选A .8.如图,在三棱锥D ABC -中,DC ⊥平面ABC ,AC BC ⊥,2AC BC CD ===,E ,F ,G 分别是棱AB ,AC ,AD 的中点,则异面直线BG 与EF 所成角的余弦值为A .0B .63C .33D .1【答案】B 【解析】【详解】根据题意可得BC ⊥平面ACD ,EF BC ∥,则CBG ∠即异面直线BG 与EF 所成的角,连接CG ,在Rt CBG △中,cos BCCBG BG∠=,易得22BD AD AB ===6BG =cos CBG ∠=66=,故选B . 9.历史上有不少数学家都对圆周率作过研究,第一个用科学方法寻求圆周率数值的人是阿基米德,他用圆内接和外切正多边形的周长确定圆周长的上下界,开创了圆周率计算的几何方法,而中国数学家刘徽只用圆内接正多边形就求得π的近似值,他的方法被后人称为割圆术.近代无穷乘积式、无穷连分数、无穷级数等各种π值的表达式纷纷出现,使得π值的计算精度也迅速增加.华理斯在1655年求出一个公式:π2244662133557⨯⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯L L,根据该公式绘制出了估计圆周率π的近似值的程序框图,如下图所示,执行该程序框图,已知输出的 2.8T >,若判断框内填入的条件为?k m ≥,则正整数m 的最小值是A .2B .3C .4D .5【答案】B 【解析】【详解】初始:1k =,2T =,第一次循环:2282 2.8133T =⨯⨯=<,2k =,继续循环;第二次循环:8441282.833545T =⨯⨯=>,3k =,此时 2.8T >,满足条件,结束循环, 所以判断框内填入的条件可以是3?k ≥,所以正整数m 的最小值是3,故选B .10.已知函数()2sin()(0,0)3f x x A ωωπ=->>,将函数()f x 的图象向左平移3π个单位长度,得到函数()g x 的图象,若函数()g x 的图象的一条对称轴是6x π=,则ω的最小值为 A .16B .23C .53D .56【答案】C 【解析】【详解】将函数()f x 的图象向左平移3π个单位长度,得到函数()2sin()33g x x ωωππ=+-的图象,因为函数()g x 的图象的一条对称轴是6x π=,所以sin()1633ωωπππ+-=±,即,6332k k ωωππππ+-=+π∈Z ,所以52,3k k ω=+∈Z ,又0>ω,所以ω的最小值为53.故选C .11.已知抛物线2:2(0)C y px p =>的焦点为F ,过点F 的直线l 与抛物线C 交于A ,B 两点(设点A 位于第一象限),过点A ,B 分别作抛物线C 的准线的垂线,垂足分别为点1A ,1B ,抛物线C 的准线交x 轴于点K ,若11||2||A KB K =,则直线l 的斜率为 A .1B 2C .22D 3【答案】C 【解析】【详解】根据抛物线定义,可得1||||AF AA =,1||||BF BB =, 又11AA FK BB ∥∥,所以11||||2||||A K AF B K BF ==,所以1111||||2||||A K AAB K BB ==, 设1||(0)BB m m =>,则1||2AA m =,则111||||21cos cos ||23AA BB m m AFx BAA AB m m --∠=∠===+,所以sin AFx ∠,所以直线l的斜率tan k AFx =∠=C . 12.在ABC V 中,角,,A B C 所对的边分别为,,a b c ,已知23C π=,1c =.当,a b 变化时,若z b a λ=+存在最大值,则正数λ的取值范围为 A .(0,1) B .(0,2) C .1(,2)2D .(1,3)【答案】C 【解析】【详解】 因为23C π=,1c =,所以根据正弦定理可得sin sin sin a b c A B C ===,所以a A =,b B =,所以sin()])sin 32z b a B A B B B λλλπ=+==+-=-+])B B φ=+,其中tan φ=,03B π<<, 因为z b a λ=+存在最大值,所以由2,2B k k φπ+=+π∈Z ,可得22,62k k k φπππ+<<π+∈Z ,所以tan φ>>,解得122λ<<,所以正数λ的取值范围为1(,2)2,故选C .二、填空题13.已知向量(2,1)a =-,(1,)m =b ,若向量+a b 与向量a 平行,则实数m =___________.【答案】12-【解析】【详解】由题可得(1,1)m +=-+a b ,因为向量+a b 与向量a 平行,所以2(1)1(1)0m -⨯+-⨯-=,解得12m =-. 14.已知函数2|1|,0()4,0x x f x x x +≤⎧=⎨>⎩,若函数()y f x a =-有3个不同的零点123123,,()x x x x x x <<,则123ax x x ++的取值范围是___________. 【答案】(2,0]- 【解析】【详解】作出函数()y f x =的图象及直线y a =,如下图所示,因为函数()y f x a =-有3个不同的零点123123,,()x x x x x x <<,所以由图象可知122x x +=-,3102x <≤,233()4a f x x ==,所以123ax x x ++=324(2,0]x -+∈-.15.若1sin()63απ+=-,(0,)απ∈,则cos α=___________.【答案】261+【解析】【详解】因为(0,)απ∈,所以7(,)666απππ+∈,又1sin()063απ+=-<,所以7(,)66αππ+∈π,则2122cos()1()63απ+=--=,所以cos cos[()]cos()cos sin()sin 666666ααααππππππ=+-=+++=22311261()()32++-⨯=. 16.若存在直线l 与函数1()(0)f x x x =<及2()g x x a =+的图象都相切,则实数a 的最小值为___________. 【答案】332【解析】【详解】设直线l 与函数()f x 及()g x 的图象分别相切于1(,)(0)A m m m<,2(,)B n n a +,因为21()f x x'=-,所以函数()f x 的图象在点A 处的切线方程为211()y x m m m -=--,即212y x m m=-+,因为()2g x x '=,所以函数()g x 的图象在点B 处的切线方程为22()y n a n x n --=-,即22y nx n a =-+,因为存在直线l 与函数()f x 及()g x 的图象都相切,所以22122n m n a m ⎧=-⎪⎪⎨⎪-+=⎪⎩,所以4124a m m =+, 令1(0)t t m =<,设41()2(0)4h t t t t =+<,则3()2h t t '=+,当t <()0h t '<,函数()h t单调递减;当0t <时,()0h t '>,函数()h t 单调递增,所以min()(h t h ==,所以实数a的最小值为三、解答题17.为增强学生的法治观念,营造“学宪法、知宪法、守宪法”的良好校园氛围,某学校开展了“宪法小卫士”活动,并组织全校学生进行法律知识竞赛.现从全校学生中随机抽取50名学生,统计他们的竞赛成绩,已知这50名学生的竞赛成绩均在[50,100]内,并得到如下的频数分布表:(1)将竞赛成绩在[70,100]内定义为“合格”,竞赛成绩在[50,70)内定义为“不合格”.请将下面的22⨯列联表补充完整,并判断是否有95%的把握认为“法律知识竞赛成绩是否合格”与“是否是高一新生”有关?(2)在(1)的前提下,按“竞赛成绩合格与否”进行分层抽样,从这50名学生中抽取5名学生,再从这5名学生中随机抽取2名学生,求这2名学生竞赛成绩都合格的概率.参考公式及数据:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.【答案】(1)见解析;(2)310P = 【解析】【详解】(1)补充完整的22⨯列联表如下:则2K的观测值250(1261418)225 4.327 3.8413020242652k⨯⨯-⨯==≈>⨯⨯⨯,所以有95%的把握认为“法律知识竞赛成绩是否合格”与“是否是高一新生”有关. (2)抽取的5名学生中竞赛成绩合格的有530350⨯=名学生,记为,,a b c , 竞赛成绩不合格的有520250⨯=名学生,记为,m n , 从这5名学生中随机抽取2名学生的基本事件有:,,,,,,,,,ab ac bc am an bm bn cm cn mn ,共10种,这2名学生竞赛成绩都合格的基本事件有:,,ab ac bc ,共3种,所以这2名学生竞赛成绩都合格的概率为310P =. 18.已知数列{}n a 满足112(2)n n n n a a n a a +-+=≥,且12a a ≠,315a =,125,,a a a 成等比数列. (1)求证:数列1{}na 是等差数列,并求数列{}n a 的通项公式; (2)记数列1{}n a 的前n 项和为n S ,+114n n n n b a a S =-,求数列{}n b 的前n 项和n T . 【答案】(1)见解析;(2)84n nT n =+【解析】【详解】 (1)因为112(2)n n n n a an a a +-+=≥,所以0n a ≠,所以11112n n na a a +-+=,所以数列1{}na 是等差数列, 设数列1{}na 的公差为d ,由12a a ≠可得0d ≠, 因为125,,a a a 成等比数列,所以2125a a a =,所以2152111a a a ⋅=,所以2333111(2)(2)()d d d a a a -+=-, 因为315a =,所以2(52)(52)(5)d d d -+=-, 解得0d =(舍去)或2d =,所以311(3)21n n d n a a =+-=-,所以121n a n =-. (2)由(1)知121n a n =-,2(121)2n n n S n +-==, 所以2+1111111()4(21)(21)44(21)(21)82121n n n n n b a a S n n n n n n =-=-==--+-+-+, 所以11111111(1)(1)8335212182184n nT n n n n =⨯-+-++-=⨯-=-+++L .19.如图,已知正方形ABCD 所在平面与梯形ABMN 所在平面垂直,BM ∥AN ,2NA AB ==,4BM =,CN =(1)证明:MN ⊥平面BCN ; (2)求点N 到平面CDM 的距离.【答案】(1)证明见解析 (2)25【解析】【详解】(1)因为正方形ABCD 所在平面与梯形ABMN 所在平面垂直,平面ABCD I 平面ABMN AB =,BC AB ⊥,所以BC ⊥平面ABMN ,因为MN ⊂平面ABMN ,BN ⊂平面ABMN ,所以BC MN ⊥,BC BN ⊥, 因为2,23BC CN ==,所以2222BN CN BC =-=, 因为2NA AB ==,所以222AB AN BN +=,所以AB AN ⊥, 因为在直角梯形ABMN 中,4BM =,所以22MN =,所以222BN MN BM +=,所以BN MN ⊥,因为BC BN B =I ,所以MN ⊥平面BCN . (2)如图,取BM 的中点E ,则BE AN =,又BM ∥AN ,所以四边形ABEN 是平行四边形,所以NE ∥AB ,又AB ∥CD ,所以NE ∥CD ,因为NE ⊄平面CDM ,CD ⊂平面CDM ,所以NE ∥平面CDM ,所以点N 到平面CDM 的距离与点E 到平面CDM 的距离相等,设点N 到平面CDM 的距离为h ,由BE EM =可得点B 到平面CDM 的距离为2h , 由题易得CD ⊥平面BCM ,所以CD CM ⊥,且22222425CM BC BM =+=+=, 所以111145222523232B CDM hV CD CM h h -=⨯⨯⨯⨯=⨯⨯⨯⨯=,又1111822432323M BCD V BC CD BM -=⨯⨯⨯⨯=⨯⨯⨯⨯=,所以由B CDM M BCD V V --=可得4583h =, 解得25h =,所以点N 到平面CDM 的距离为25.20.已知椭圆2222:1(0)x y a b a b Γ+=>>过点2,设椭圆Γ的上顶点为B ,右顶点和右焦点分别为A ,F ,且56AFB π∠=. (1)求椭圆Γ的标准方程;(2)设直线:(1)l y kx n n =+≠±交椭圆Γ于P ,Q 两点,设直线BP 与直线BQ 的斜率分别为BP k ,BQ k ,若1BP BQ k k +=-,试判断直线l 是否过定点?若过定点,求出该定点的坐标;若不过定点,请说明理由.【答案】(1)2214x y += (2)直线l 过定点,该定点的坐标为(2,1)-.【解析】【详解】(1)因为椭圆Γ过点)2,所以222112a b += ①,设O 为坐标原点,因为56AFB π∠=,所以6BFO π∠=,又||BF a ==,所以12b a =②, 将①②联立解得21a b =⎧⎨=⎩(负值舍去),所以椭圆Γ的标准方程为2214x y +=.(2)由(1)可知(0,1)B ,设11(,)P x y ,22(,)Q x y .将y kx n =+代入2214x y +=,消去y 可得222(14)8440k x knx n +++-=,则22222(8)4(14)(44)16(41)0kn k n k n ∆=-+-=-+>,122814kn x x k -+=+,21224414n x x k -=+,所以122121************11()()2(1)()BP BQy y x kx n x x kx n x kx x n x x k k x x x x x x --+-++-+-++=+== 222224482(1)8(1)214141444(1)(1)114n knk n k n k k k n n n n k --⋅+-⋅-++====--+-++,所以21n k =--,此时2216[4(21)1]640k k k ∆=---+=->,所以k 0<, 此时直线l 的方程为21y kx k =--,即(2)1y k x =--,令2x =,可得1y =-,所以直线l 过定点,该定点的坐标为(2,1)-. 21.已知函数1()(1)ln f x ax a x x=-+-,a R ∈. (1)当1a ≤时,讨论函数()f x 的单调性; (2)若1a =,当[1,2]x ∈时,函数23412()()F x f x x x x=++-,求函数()F x 的最小值. 【答案】(1)见解析 (2)()F x 的最小值为7(2)2ln 22F =- 【解析】【详解】(1)由题可得函数()f x 的定义域为(0,)+∞,222211(1)1(1)(1)()(0)a ax a x x ax f x a x x x x x +-++--'=-+==>,当0a ≤时,10ax -<,令()0f x '<,可得1x >;令()0f x '>,可得01x <<, 所以函数()f x 在(0,1)上单调递增,在(1,)+∞上单调递减; 当01a <<时,令()0f x '<,可得11x a <<;令()0f x '>,可得01x <<或1x a>,所以函数()f x 在(0,1),1(,)a+∞上单调递增,在1(1,)a上单调递减; 当1a =时,()0f x '≥恒成立,所以函数()f x 在(0,)+∞上单调递增.综上,当0a ≤时,函数()f x 在(0,1)上单调递增,在(1,)+∞上单调递减;当01a <<时,函数()f x 在(0,1),1(,)a +∞上单调递增,在1(1,)a上单调递减;当1a =时,函数()f x 在(0,)+∞上单调递增.(2)方法一:当1a =时,2323412312()()2ln F x f x x x x x x x x x=++-=-++-,[1,2]x ∈, 设()2ln g x x x =-,[1,2]x ∈,则22()10x g x x x-'=-=≤, 所以函数()g x 在[1,2]上单调递减,所以()(2)22ln 2g x g ≥=-,当且仅当2x =时取等号.当[1,2]x ∈时,设1t x=,则1[,1]2t ∈,所以232331232t t t x x x +-=+-,设23()32h t t t t =+-,1[,1]2t ∈,则22119()3266()66h t t t t '=+-=--+,所以函数()h t '在1[,1]2上单调递减,且15()022h '=>,(1)10h '=-<,所以存在01(,1)2t ∈,使得0()0h t '=,所以当012t t ≤<时,()0h t '>;当01t t <≤时,()0h t '<,所以函数()h t 在01(,)2t 上单调递增,在0(,1)t 上单调递减,因为13()22h =,(1)2h =,所以13()()22h t h ≥=,所以2331232x x x +-≥,当且仅当2x =时取等号.所以当2x =时,函数()F x 取得最小值,且min 37()22ln 22ln 222F x =-+=-, 故函数()F x 的最小值为72ln 22-.方法二:当1a =时,2323412312()()2ln F x f x x x x x x x x x=++-=-++-,[1,2]x ∈, 则3223442326(1)(46)()1x x x x F x x x x x x ----'=---+=,令32()46g x x x x =---,[1,2]x ∈,则22113()3243()33g x x x x '=--=--,所以函数()g x '在[1,2]上单调递增,又(1)3,(2)4g g ''=-=,所以存在0(1,2)x ∈,使得00()g x '=, 所以函数()g x 在0[1,)x 上单调递减,在0[,2]x 上单调递增,因为(1)100,(2)100g g =-<=-<,所以当[1,2]x ∈时,()0<g x 恒成立, 所以当[1,2]x ∈时,()0F x '≤恒成立,所以函数()F x 在[1,2]上单调递减, 所以函数()F x 的最小值为233127(2)22ln 22ln 22222F =-++-=-. 22.在平面直角坐标系xOy 中,直线l 的参数方程为8242x tt y t ⎧=⎪⎪+⎨⎪=⎪+⎩(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin ρθ=. (1)求直线l 的普通方程与曲线C 的直角坐标方程; (2)若射线(0)4πθρ=>与l 和C 分别交于点,A B ,求||AB .【答案】(1)l : 40(0)x y x +-=≠;C : 2220x y y +-=.(2) ||AB =【解析】【详解】 (1)由82x t=+可得0x ≠, 由8242x t t y t ⎧=⎪⎪+⎨⎪=⎪+⎩,消去参数t ,可得直线l 的普通方程为40(0)x y x +-=≠.由2sin ρθ=可得22sin ρρθ=,将sin y ρθ=,222x y ρ=+代入上式,可得2220x y y +-=,所以曲线C 的直角坐标方程为2220x y y +-=. (2)由(1)得,l 的普通方程为40(0)x y x +-=≠, 将其化为极坐标方程可得cos sin 40()2ρθρθθπ+-=≠,当()04θρπ=>时,A ρ=B ρ=所以|||||A B AB ρρ=-== 23.已知函数()|21||1|f x x ax =+--,a R ∈. (1)当2a =时,求不等式1()1f x -≤≤的解集;(2)当1(,0)2x ∈-时,不等式()2f x x >恒成立,求实数a 的取值范围.【答案】(1) 11[,]44- (2) [4,0)-【解析】【详解】(1)当2a =时,12,211()|21||21|4,2212,2x f x x x x x x ⎧-<-⎪⎪⎪=+--=-≤≤⎨⎪⎪>⎪⎩,当21x <-或12x >时,|()|2f x =,所以1()1f x -≤≤可转化为1124211x x -≤-≤≤⎧≤⎪⎨⎪⎩,解得1144x -≤≤,所以不等式1()1f x -≤≤的解集为11[,]44-. (2)因为1(,0)2x ∈-,所以|21|21x x +=+,所以()2f x x >,即21|1|2x ax x +-->,即|1|1ax -<. 当0a ≥时,因为1(,0)2x ∈-,所以|1|1ax -≥,不符合题意. 当0a <时,解|1|1ax -<可得20x a<<, 因为当1(,0)2x ∈-时,不等式()2f x x >恒成立,所以12(,0)(,0)2a -⊆,所以212a ≤-,解得40a -≤<,所以实数a 的取值范围为[4,0)-.。
广东省深圳市2020年普通高中高三年级3月线上统一测试数学文科试题(含解析)

2020年高考模拟高考数学一模试卷(文科)一、选择题1.已知集合A={1,2,3,4,5},B={0,2,4,6},则集合A∩B的子集共有()A.2个B.4个C.6个D.8个2.若复数z=的实部为0,其中a为实数,则|z|=()A.2B.C.1D.3.已知向量,,,且实数k>0,若A、B、C三点共线,则k=()A.0B.1C.2D.34.意大利数学家斐波那契的《算经》中记载了一个有趣的问题:已知一对兔子每个月可以生一对兔子,而一对兔子出生后在第二个月就开始生小兔子.假如没有发生死亡现象,那么兔子对数依次为:1,1,2,3,5,8,13,21,34,55,89,144……,这就是著名的斐波那契数列,它的递推公式是a n=a n﹣1+a n﹣2(n≥3,n∈N*),其中a1=1,a2=1.若从该数列的前100项中随机地抽取一个数,则这个数是偶数的概率为()A.B.C.D.5.设,,c=log0.3,则下列正确的是()A.a>b>c B.a>c>b C.c>a>b D.b>a>c6.如图所示的茎叶图记录了甲,乙两支篮球队各6名队员某场比赛的得分数据(单位:分).若这两组数据的中位数相等,且平均值也相等,则x和y的值为()A.2和6B.4和6C.2和7D.4和77.若双曲线(a>0,b>0)的焦距为,且渐近线经过点(1,﹣2),则此双曲线的方程为()A.B.C.D.8.如图,网格纸上小正方形的边长为1,粗线画出的是由一个长方体切割而成的三棱锥的三视图,则该三棱锥的体积为()A.12B.16C.24D.329.已知函数的最大值、最小值分别为3和﹣1,关于函数f (x)有如下四个结论:①A=2,b=1;②函数f(x)的图象C关于直线对称;③函数f(x)的图象C关于点对称;④函数f(x)在区间内是减函数.其中,正确的结论个数是()A.1B.2C.3D.410.函数的图象大致为()A.B.C.D.11.已知直三棱柱ABC﹣A1B1C1,∠ABC=90°,AB=BC=AA1=2,BB1和B1C1的中点分别为E、F,则AE与CF夹角的余弦值为()A.B.C.D.12.函数f(x)是定义在(0,+∞)上的可导函数,f'(x)为其导函数,若xf'(x)+f(x)=(1﹣x)e x,且f(2)=0,则f(x)>0的解集为()A.(0,1)B.(0,2)C.(1,2)D.(1,4)二、填空题:共4小题,每小题5分,共20分.13.已知sin(α+)=,则sin2α=.14.在△ABC中,角A,B,C的对边分别为a,b,c,若(a+b)(sin A﹣sin B)=(a﹣c)sin C,b=2,则△ABC的外接圆面积为.15.已知一圆柱内接于一个半径为的球内,则该圆柱的最大体积为.16.设椭圆C:=1(a>b>0)的左、右焦点分别为F1、F2,其焦距为2c,O为坐标原点,点P满足|OP|=2a,点A是椭圆C上的动点,且|PA|+|AF1|≤3|F1F2|恒成立,则椭圆C离心率的取值范围是.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.已知数列{a n},a1=4,(n+1)a n+1﹣na n=4(n+1)(n∈N*).(1)求数列{a n}的通项公式;(2)若b n=,求数列{b n}前n项和为T n.18.某公司为了对某种商品进行合理定价,需了解该商品的月销售量y(单位:万件)与月销售单价x(单位:元/件)之间的关系,对近6个月的月销售量y i和月销售单价x i(i =1,2,3,…,6)数据进行了统计分析,得到一组检测数据如表所示:月销售单价x(元/件)456789月销售量y(万件)898382797467(1)若用线性回归模型拟合y与x之间的关系,现有甲、乙、丙三位实习员工求得回归直线方程分别为:=﹣4x+105,=4x+53和=﹣3x+104,其中有且仅有一位实习员工的计算结果是正确的.请结合统计学的相关知识,判断哪位实习员工的计算结果是正确的,并说明理由;(2)若用y=ax2+bx+c模型拟合y与x之间的关系,可得回归方程为+0.875x+90.25,经计算该模型和(1)中正确的线性回归模型的相关指数R2分别为0.9702和0.9524,请用R2说明哪个回归模型的拟合效果更好;(3)已知该商品的月销售额为z(单位:万元),利用(2)中的结果回答问题:当月销售单价为何值时,商品的月销售额预报值最大?(精确到0.01)参考数据:≈80.91.19.如图,四边形ABCD为长方形,AB=2BC=4,E、F分别为AB、CD的中点,将△ADF 沿AF折到△AD'F的位置,将△BCE沿CE折到△B'CE的位置,使得平面AD'F⊥底面AECF,平面B'CE⊥底面AECF,连接B'D'.(1)求证:B'D'∥平面AECF;(2)求三棱锥B'﹣AD'F的体积.20.在平面直角坐标系xOy中,过点F(2,0)的动圆恒与y轴相切,FP为该圆的直径,设点P的轨迹为曲线C.(1)求曲线C的方程;(2)过点A(2,4)的任意直线l与曲线C交于点M,B为AM的中点,过点B作x 轴的平行线交曲线C于点D,B关于点D的对称点为N,除M以外,直线MN与C是否有其它公共点?说明理由.21.已知函数f(x)=(x﹣1)lnx+ax2+(1﹣a)x﹣1.(1)当a=﹣1时,判断函数的单调性;(2)讨论f(x)零点的个数.(二)选考题:共10分.请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一题计分,[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,直线C1的参数方程为(t为参数,α为倾斜角),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4sinθ.(1)求C2的直角坐标方程;(2)直线C1与C2相交于E,F两个不同的点,点P的极坐标为,若2|EF|=|PE|+|PF|,求直线C1的普通方程.[选修4-5:不等式选讲]23.已知a,b,c为正数,且满足a+b+c=1.证明:(1)≥9;(2)ac+bc+ab﹣abc≤.参考答案一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={1,2,3,4,5},B={0,2,4,6},则集合A∩B的子集共有()A.2个B.4个C.6个D.8个【分析】求出集合的交集,写出子集,判断即可.解:已知集合A={1,2,3,4,5},B={0,2,4,6},则集合A∩B={2,4}则子集共有{2},{4},{2,4},∅,4个故选:B.2.若复数z=的实部为0,其中a为实数,则|z|=()A.2B.C.1D.【分析】利用复数代数形式的乘除运算化简,由实部为0求得a值,进一步得到z,再由复数模的计算公式求解.解:∵z==的实部为0,∴a=2,则z=2i,则|z|=2.故选:A.3.已知向量,,,且实数k>0,若A、B、C三点共线,则k=()A.0B.1C.2D.3【分析】求出==(2,2﹣k),==(k+1,﹣2),由A、B、C 三点共线,得∥,由此能求出k.解:∵向量,,,且实数k>0,==(2,2﹣k),==(k+1,﹣2),∵A、B、C三点共线,∴∥,∴,由k>0,解得k=3.故选:D.4.意大利数学家斐波那契的《算经》中记载了一个有趣的问题:已知一对兔子每个月可以生一对兔子,而一对兔子出生后在第二个月就开始生小兔子.假如没有发生死亡现象,那么兔子对数依次为:1,1,2,3,5,8,13,21,34,55,89,144……,这就是著名的斐波那契数列,它的递推公式是a n=a n﹣1+a n﹣2(n≥3,n∈N*),其中a1=1,a2=1.若从该数列的前100项中随机地抽取一个数,则这个数是偶数的概率为()A.B.C.D.【分析】从斐波那契数列,1,1,2,3,5,8,13,21,34,55,89,144……,可得:每三个数中有应该偶数,即可得出结论.解:从斐波那契数列,1,1,2,3,5,8,13,21,34,55,89,144……,可得:每三个数中有一个偶数,可得:从该数列的前100项中随机地抽取一个数,则这个数是偶数的概率=.故选:B.5.设,,c=log0.3,则下列正确的是()A.a>b>c B.a>c>b C.c>a>b D.b>a>c【分析】利用指数函数对数函数的单调性即可得出.解:∵b>1>a>0>c,∴b>a>c,故选:D.6.如图所示的茎叶图记录了甲,乙两支篮球队各6名队员某场比赛的得分数据(单位:分).若这两组数据的中位数相等,且平均值也相等,则x和y的值为()A.2和6B.4和6C.2和7D.4和7【分析】利用中位数和平均值的计算公式可得答案.解:由所有选项可知x>0,y<9,再由茎叶图可知:甲队的数据中位数为:=18,乙队的数据中位数为:,若这两组数据的中位数相等,且平均值也相等,即=16,解得y=7,=(7+12+16+20+20+x+31),乙=(8+9+19+17+27+28),甲=乙,解得x=2,甲故选:C.7.若双曲线(a>0,b>0)的焦距为,且渐近线经过点(1,﹣2),则此双曲线的方程为()A.B.C.D.【分析】依题意可得a2+b2=c2=5,b=2a.解得,即可求解.解:依题意可得a2+b2=c2=5,…①.∵渐近线经过点(1,﹣2),∴(1,﹣2)在直线上.∴b=2a…②.由①②可得,则此双曲线的方程为:.故选:B.8.如图,网格纸上小正方形的边长为1,粗线画出的是由一个长方体切割而成的三棱锥的三视图,则该三棱锥的体积为()A.12B.16C.24D.32【分析】首先把三视图转换为几何体,进一步求出几何体的体积.解:根据几何体的三视图转换为几何体为:如图所示:请旋转一下角度再看所以V=3×4×4﹣4×=16.故选:B.9.已知函数的最大值、最小值分别为3和﹣1,关于函数f (x)有如下四个结论:①A=2,b=1;②函数f(x)的图象C关于直线对称;③函数f(x)的图象C关于点对称;④函数f(x)在区间内是减函数.其中,正确的结论个数是()A.1B.2C.3D.4【分析】由条件利用正弦函数的最值,求得A和b的值.结合正弦函数性质对命题逐一判断即可.解:由于函数f(x)=A sin(x+)+b的最大值为3,最小值为﹣1,可得;∴A=2,b=1,故f(x)=2sin(x+)+1.故①正确;直线代入x+=﹣,故函数f(x)的图象C关于直线对称;②正确;点代入,得x+=π;故函数f(x)的图象C关于点对称;③正确;当x∈时,x+∈(,).故函数f(x)在区间内是减函数.④正确;∴正确的结论个数是:4个;故选:D.10.函数的图象大致为()A.B.C.D.【分析】由函数的奇偶性及特殊点的函数值,运用排除法得解.解:,∴函数f(x)为奇函数,其图象关于原点对称,故排除AD;当x=π时,,故排除C.故选:B.11.已知直三棱柱ABC﹣A1B1C1,∠ABC=90°,AB=BC=AA1=2,BB1和B1C1的中点分别为E、F,则AE与CF夹角的余弦值为()A.B.C.D.【分析】根据题意,可以点B为原点,直线BA,BC,BB1分别为x,y,z轴,建立空间直角坐标系,然后可求出,然后可求出,从而可得出AE与CF夹角的余弦值.解:分别以直线BA,BC,BB1为x,y,z轴,建立如图所示的空间直角坐标系,则:A(2,0,0),E(0,0,1),C(0,2,0),F(0,1,2),∴,∴=,∴AE与CF夹角的余弦值为.故选:B.12.函数f(x)是定义在(0,+∞)上的可导函数,f'(x)为其导函数,若xf'(x)+f(x)=(1﹣x)e x,且f(2)=0,则f(x)>0的解集为()A.(0,1)B.(0,2)C.(1,2)D.(1,4)【分析】令g(x)=xf(x),结合已知可求函数g(x)的单调性,然后结合特殊点g (0)=g(2)=0及单项即可求解.解:令g(x)=xf(x),则g′(x)=xf′(x)+f(x)=(1﹣x)e x,当x∈(0,1)时,g′(x)>0,g(x)单调递增,当x∈(1,+∞)时,g′(x)<0,函数单调递减,又因为f(2)=0,所以g(2)=2f(2)=0,g(0)=0,由f(x)>0可得,xf(x)>0即g(x)>0,所以0<x<2.故选:B.二、填空题:共4小题,每小题5分,共20分.13.已知sin(α+)=,则sin2α=﹣.【分析】利用诱导公式和二倍角的余弦公式把要求的式子化为2﹣1,运算求得结果.解:∵,∴sin2α=﹣cos(2α+)=﹣cos2(α+)=2﹣1=﹣,故答案为﹣.14.在△ABC中,角A,B,C的对边分别为a,b,c,若(a+b)(sin A﹣sin B)=(a﹣c)sin C,b=2,则△ABC的外接圆面积为.【分析】△ABC中,由条件利用正弦定理可得a2+c2﹣b2=a,求得cos B=的值,即可求得B的值.利用正弦定理,圆的面积公式即可求解.解:∵△ABC中,由(a+b)(sin A﹣sin B)﹣(a﹣c)sin C=0,利用正弦定理可得:(a+b)(a﹣b)﹣(a﹣c)c=0,即a2+c2﹣b2=a,∴cos B==,∴B=.∵b=2,∴设△ABC的外接圆半径为R,可得2R==,可得R=,可得△ABC的外接圆面积S=πR2=.故答案为:.15.已知一圆柱内接于一个半径为的球内,则该圆柱的最大体积为4π.【分析】作出轴截面,设圆柱体的底面半径为r,进而根据截面圆半径、球半径、球心距满足勾股定理,我们可以用R与r表示出圆柱的高,进而得到其体积的表达式,然后结合基本不等式,即可得到圆柱体积的最大和此时底面半径的值.解:作出轴截面如右.设圆柱体的底面半径为r,则球心到底面的距离(即圆柱高的一半)为d,则d=,则圆柱的高为h=2,则圆柱的体积V=πr2h=2πr2=πr2=π≤π=4π,当且仅当r2=6﹣2r2,即r=时,圆柱的体积取最大值,且为4π.故答案为:4π.16.设椭圆C:=1(a>b>0)的左、右焦点分别为F1、F2,其焦距为2c,O为坐标原点,点P满足|OP|=2a,点A是椭圆C上的动点,且|PA|+|AF1|≤3|F1F2|恒成立,则椭圆C离心率的取值范围是[,1).【分析】设P的坐标,由题意可得|PF1|≤|PA|+|AF1,所以由|PA|+|AF1|≤3|F1F2|恒成立可得|PF1|≤3|F1F2|,将P的坐标代入即P的横坐标的方程可得离心率的取值范围.解:因为|OP|=2a,所以P在以原点为圆心,以2a为半径的圆上,设P坐标为(x,y),即P满足的方程为:x2+y2=4a2,由题意可|PF1|≤|PA|+|AF1,所以由|PA|+|AF1|≤3|F1F2|恒成立可得|PF1|≤3|F1F2|,可得(x+c)2+y2≤9×4c2,即4a2+2cx+c2≤36c2恒成立,﹣2a≤x≤2a,所以4a2+4ac+c2≤35c2,整理可得:35e2﹣4e﹣4≥0,解得e,又因为椭圆的离心率e<1故答案为:[,1).三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.已知数列{a n},a1=4,(n+1)a n+1﹣na n=4(n+1)(n∈N*).(1)求数列{a n}的通项公式;(2)若b n=,求数列{b n}前n项和为T n.【分析】本题第(1)题根据递推式可用累加法求出数列{a n}的通项公式;第(2)题先根据第(1)题的结果计算出数列{b n}的通项公式,然后用裂项相消法计算出前n项和T n.解:(1)依题意,由(n+1)a n+1﹣na n=4(n+1)(n∈N*),可得2a2﹣a1=8,3a3﹣2a2=12,•••na n﹣(n﹣1)a n﹣1=4n.各项相加,可得na n﹣a1=8+12+…+4n,∴na n=4+8+12+…+4n=,∴a n=2n+2,n∈N*.(2)由(1)知,b n===(﹣).故T n=b1+b2+…+b n=(﹣)+(﹣)+…+(﹣)=(﹣+﹣+…+﹣)=(﹣)=.18.某公司为了对某种商品进行合理定价,需了解该商品的月销售量y(单位:万件)与月销售单价x(单位:元/件)之间的关系,对近6个月的月销售量y i和月销售单价x i(i =1,2,3,…,6)数据进行了统计分析,得到一组检测数据如表所示:月销售单价x(元/件)456789月销售量y(万件)898382797467(1)若用线性回归模型拟合y与x之间的关系,现有甲、乙、丙三位实习员工求得回归直线方程分别为:=﹣4x+105,=4x+53和=﹣3x+104,其中有且仅有一位实习员工的计算结果是正确的.请结合统计学的相关知识,判断哪位实习员工的计算结果是正确的,并说明理由;(2)若用y=ax2+bx+c模型拟合y与x之间的关系,可得回归方程为+0.875x+90.25,经计算该模型和(1)中正确的线性回归模型的相关指数R2分别为0.9702和0.9524,请用R2说明哪个回归模型的拟合效果更好;(3)已知该商品的月销售额为z(单位:万元),利用(2)中的结果回答问题:当月销售单价为何值时,商品的月销售额预报值最大?(精确到0.01)参考数据:≈80.91.【分析】(1)由变量x,y具有负相关关系,说明乙不对,求出样本点的中心坐标,验证甲与丙得答案;(2)由R2越大,残差平方和越小,拟合效果越好,可得选用+0.875x+90.25更好;(3)求出z关于x的函数关系式,再由导数求最值.解:(1)已知变量x,y具有负相关关系,故乙不对.∵,,代入甲和丙的回归方程验证甲正确;(2)∵0.9702>0.9524,且R2越大,残差平方和越小,拟合效果越好,∴选用+0.875x+90.25更好;(3)由题意可知,,即,则z′=.令z′=0,解得x=(舍去)或x=.令,当x∈(0,x0)时,z单调递增,当x∈(x0,+∞)时,z单调递减.∴当x=x0时,商品的月销售额预报值最大,∵,∴x≈9.77.∴当x≈9.77时,商品的月销售额最大.19.如图,四边形ABCD为长方形,AB=2BC=4,E、F分别为AB、CD的中点,将△ADF 沿AF折到△AD'F的位置,将△BCE沿CE折到△B'CE的位置,使得平面AD'F⊥底面AECF,平面B'CE⊥底面AECF,连接B'D'.(1)求证:B'D'∥平面AECF;(2)求三棱锥B'﹣AD'F的体积.【分析】(1)作D′M⊥AF于M,作B′N⊥EC于点N,从而M,N为AF,CE的中点,且,推导出D′M⊥底面AECF,B′N⊥底面AECF,D′M∥B′N,四边形D′B′NM是平行四边形,B′D′∥MN,由此能证明B′D′∥平面AECF.(2)设点B′到平面AD’F的距离为h,连结NF,B′到平面AD′F的距离与点N 到平面AD′F的距离相等,求出点B′到平面AD′F的距离h=,由此能求出三棱锥B'﹣AD'F的体积.解:(1)证明:作D′M⊥AF于M,作B′N⊥EC于点N,∵AD′=D′F=2,B′C=B′E=2,∠AD′F=∠CB′E=90°,∴M,N为AF,CE的中点,且,∵平面AD′F⊥底面AECF,平面AD′F∩底面AECF=AF,D′M⊥AF,D′M⊂平面‘F,∴D′M⊥底面AECF,同理:B′N⊥底面AECF,∴D′M∥B′N,∴四边形D′B′NM是平行四边形,∴B′D′∥MN,∵B′D′⊄平面AECF,MN⊂平面AECF,∴B′D′∥平面AECF.(2)解:设点B′到平面AD’F的距离为h,连结NF,∵D′M∥B′N,D′M⊂平面AD′F,B′N⊄平面AD′F,∴B′N∥平面AD′F,∴B′到平面AD′F的距离与点N到平面AD′F的距离相等,∵N为CE中点,EF=2,∴NF⊥CE,∵AF∥CE,∴NF⊥AF,∵平面AD′F⊥底面AECF=AF,NF⊂底面AECF,∴NF⊥平面AD′F,∴点N到平面AD′F的距离为NF=,∴点B′到平面AD′F的距离h=,∵S△AD′F=,∴三棱锥B'﹣AD'F的体积V B′﹣AD′F===.20.在平面直角坐标系xOy中,过点F(2,0)的动圆恒与y轴相切,FP为该圆的直径,设点P的轨迹为曲线C.(1)求曲线C的方程;(2)过点A(2,4)的任意直线l与曲线C交于点M,B为AM的中点,过点B作x 轴的平行线交曲线C于点D,B关于点D的对称点为N,除M以外,直线MN与C是否有其它公共点?说明理由.【分析】(1)设P的坐标,过P做y轴的垂线交于点H,及与直线x=﹣2交于一点,得E到y轴的距离为半径r,又是梯形的中位线可得P到定点F的距离等于到定直线x =﹣2的距离,由抛物线的定义可得,P的轨迹为抛物线,并且焦点F(2,0),准线为x=﹣2的抛物线;(2)分直线l的斜率存在和不存在两种情况讨论,设M的坐标,可得中点B的坐标,由题意可得D的坐标,进而可得N的坐标,求出直线MN,与抛物线方程联立,由判别式为0可得直线除M点外,没有其他的公共点.解:(1)如图,过P作y轴的垂线,垂足为H,交直线x=﹣2于P',设动圆的圆心为E,半径为r,则E到y轴的距离为r,在梯形OFPH中,由中位线性质可得PH=2r﹣2,所以|PP'|=2r﹣2+2=2r,又|PF|=2r,所以|PF|=|PP'|,由抛物线的定义知,点P是以F(2,0)为焦点,以直线x=﹣2为准线的抛物线,所以曲线C的方程为:y2=8x;(2)由A(2,4)可得A在求出C上,(i当直线l的斜率存在时,设M(x1,y1),N(x2,y2)(x1≠2),则y12=8x1,AM的中点B(,),即B(+1,+2),在方程y2=8x中,令y=+2,得x=(+2)2,所以D(,),设N(x2,y2),由中点坐标公式可得x2=(+2)2﹣,又y12=8x1,代入化简x2=,所以N(,+2),直线MN的斜率为:=,所以直线MN的方程为:y=(x﹣x1)+y1①,将x1=代入①化简可得:y=x+②,将x=代入②式整理可得y2﹣2y1y+y12=0,△=4y12﹣4y12=0,所以直线MN与抛物线相切,所以除M点外,直线MN与C没有其他的公共点.(ii)当直线MN的斜率不存在时.M(2,﹣4),B(2,0),D(0,0),N(﹣2,0),直线MN的方程为:y=﹣x﹣2代入抛物线的方程可得x2﹣4x+4=0,△=42﹣4×4=0,所以除M点外,直线MN与C没有其他的公共点.综上所述,除M点外直线MN与C没有其他的公共点.21.已知函数f(x)=(x﹣1)lnx+ax2+(1﹣a)x﹣1.(1)当a=﹣1时,判断函数的单调性;(2)讨论f(x)零点的个数.【分析】(1)把a=﹣1代入后对函数求导,然后结合导数与单调性的关系即可求解函数的单调性;(2)先对函数求导,然后结合导可判断函数的单调性,然后结合函数的性质及零点判定定理即可求解.解:(1)a=﹣1时,f(x)=(x﹣1)lnx﹣x2+2x﹣1,,令h(x)=,则=,易得函数h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,故h(x)≤h(1)=0即f′(x)≤0,所以f(x)在(0,+∞)上单调递减;(2)由f(x)=(x﹣1)lnx+ax2+(1﹣a)x﹣1可得f(1)=0,即x=1为函数f(x)的一个零点,设g(x)=lnx+ax+1,则f(x)的零点个数即为g(x)的不为1的零点个数加上1,(i)当a=﹣1时,由(1)知f(x)单调递减,且x=1是f(x)的零点,故f(x)有且只有1个零点1;(ii)当a≥0时,g(x)单调递增且g(1)>0,g(x)=lnx+ax+1<=,0<x<1,因为ax2+(a+3)x﹣1<(a+4)x2+(a+3)x﹣1=[(a+4)x﹣1](x+1),所以g()<0,综上可知,g(x)在(0,+∞)上有1个零点且g(1)=9,所以f(x)有2个零点(iii)又,所以当﹣1<a<0时,g(x)在(0,﹣)上单调递增,在(﹣)上单调递减,故g(x)的最大值g(﹣)=ln(﹣)>0,又g(x)<=0,且g()<0,g()=<0,所以g(x)在(0,﹣)上有1个零点,在(﹣)上有1个零点且x=0也是零点,此时f(x)共有3个零点,(iv)又,所以当a<﹣1时,g(x)在(0,﹣)上单调递增,在(﹣)上单调递减,故g(x)的最大值g(﹣)=ln(﹣)<0,故g(x)没有零点,此时f(x)只有1个零点,综上可得,当a<﹣1时,f(x)有1个零点;当﹣1<a<0时,f(x)有3个零点,当a≥0时,f(x)有2个零点.(二)选考题:共10分.请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一题计分,[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,直线C1的参数方程为(t为参数,α为倾斜角),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4sinθ.(1)求C2的直角坐标方程;(2)直线C1与C2相交于E,F两个不同的点,点P的极坐标为,若2|EF|=|PE|+|PF|,求直线C1的普通方程.【分析】(1)曲线C2的极坐标方程为ρ=4sinθ.即ρ2=4ρsinθ,利用互化公式可得普通方程.(2)点P的极坐标为,可得直角坐标为(﹣2,0).把直线C1的参数方程为(t为参数,α为倾斜角),代入C2方程可得:t2﹣(4cosα+4sinα)t+12=0,△>0,由α为锐角.可得:sin(α+)>,解得:0<α<.利用根与系数的关系可得:|EF|==4,|PE|+|PF|=|t1|+|t2|=|t1+t2|=8|sin(α+)|,解出α即可得出.解:(1)曲线C2的极坐标方程为ρ=4sinθ.即ρ2=4ρsinθ,可得普通方程:x2+y2=4y.(2)点P的极坐标为,可得直角坐标为(﹣2,0).把直线C1的参数方程为(t为参数,α为倾斜角),代入C2方程可得:t2﹣(4cosα+4sinα)t+12=0,△=﹣48>0,可得:sin(α+)>,或sin(α+)<﹣,由α为锐角.可得:sin(α+)>,解得:0<α<.则t1+t2=4cosα+4sinα,t1t2=12.∴|EF|==4,|PE|+|PF|=|t1|+|t2|=|t1+t2|=8|sin(α+)|,∴8=8|sin(α+)|,∴化为:sin(α+)=1,∴α=+2kπ,k∈Z.α满足0<α<.可得α=.∴直线C1的参数方程为:,可得普通方程:x﹣y+2=0.[选修4-5:不等式选讲]23.已知a,b,c为正数,且满足a+b+c=1.证明:(1)≥9;(2)ac+bc+ab﹣abc≤.【分析】(1)利用乘一法,结合基本不等式即可求证;(2)ac+bc+ab﹣abc)=(1﹣a)(1﹣b)(1﹣c),再利用基本不等式即可求证.【解答】证明:(1)=,当且仅当时,等号成立;(2)∵a,b,c为正数,且满足a+b+c=1,∴c=1﹣a﹣b,1﹣a>0,1﹣b>0,1﹣c>0,∴ac+bc+ab﹣abc=(a+b﹣ab)c+ab=(a+b﹣ab)(1﹣a﹣b)+ab=(b﹣1)(a﹣1)(a+b)=(1﹣a)(1﹣b)(1﹣c),∴ac+bc+ab﹣abc≤,当且仅当时,等号成立.。
【数学】山西省长治市2020届高三(3月在线)综合测试 数学(文)试题(PDF版)

1
19.【解析】(1)设学习积极性不高的学生的学生共 名,则 x 2 ,解得 x 80 .则列联表如下: 200 5
参加文体活动
不参加文体活动
合计
学习积极性高
80
40
120
学习积极性不高
20
60
80
合计
100
100
200
(2)有理由:由已知数据可求 K 2 200 (80 60 20 40)2 33.33 10.828 ,因此有 99.9%的把握认为学习积极性高与参加文体活动有关. 100 100 120 80
c78!"5&3)+"d#%ï4ìo"/1",u~
/%)槡'5'! 槡#"&&&0%槡''&&&1%!'槡'&&&2%)'槡' @7 TAB6C$"D
UVW6E6C)F6G6'DCH!"D%XYRSZ[V\IZ6]^_L `ab%
#(%<-=:'25<-=#'2,~&&&&&3 #)3!"ðñc4 d,.(,&"%ab,"%+5,&(5"%#ò,&"%,/ói.&"%+
¿¡ÀÁÂÃ&-ÄÅÆ' (Ç(È'#(#ÄÉÆ' (Ç(È'"(#%ÊËÌ¡,
(ÍqÎ-
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P B 取得最大值时△PAB 的面积。
(二)选考题:共 10 分。请考生在第 22、23 两题中任选一题作答。如果多做,则按所做的第
一题计分。
22.(本小题满分 10 分)选修 4-4:坐标系与参数方程
x 2 cos
已知在平面直角坐标系 xOy 中,曲线 C 的参数方程为
,(θ 为参数),直线 l 的参
直方图:
规定:成绩不低于 90 分的为优秀,低于 90 分的为不优秀。 (1)根据这次抽查的数据,填写下面的 2×2 列联表:
2020 高考
(2)根据(1)中的列联表,能否有 85%的把握认为成绩是否优秀与班级有关? 附:临界值参考表与参考公式
2
(
)2
n ad bc
(
,其中 n=a+b+c+d)
K
每个试题考生都必须作答。第 22、23 题为选考题,考生根据要求作答。
(一)必考题:共 60 分。
17.(本小题满分 12 分)
甲、乙两个班级(各 40 名学生)进行一门考试,为易于统计分析,将甲、乙两个班学生的成绩
分成如下四组:[60,70),[70,80),[80,90),[90,100],并分别绘制了如下的频率分布
2 1
B.向左平移 π 个单位长度后,再将图象上所有点的横坐标缩小到原来的 ,纵坐标不变
2
C.向左平移 π 个单位长度后,再将图象上所有点的横坐标伸长到原来的 2 倍,纵坐标不变
D.向右平移 π 个单位长度后,再将图象上所有点的横坐标伸长到原来的 2 倍,纵坐标不变
1
10.已知数列
a
n
2
2
A.
B.
5
A. 3
B.2 2
C. 5
D. 2
12.如果定义在 R 上的函数 f(x)满足:对于任意 x1≠x2,都有x1f(x1)+x2f(x2)<x1f(x2)+x2f(x1),
1
则称 f(x)为“M 函数”。给出下列函数:①y=-x2+2x+1;②y=( )3x+1;③y=e-x-ex;④
2 ln x , x 0
行业自由职业者的工资收入情况,对该行业 10 个自由职业者人均年收入 y(千元)与平均每天
的工作时间 x(小时)进行调查统计,得出 y 与 x 具有线性相关关系,且线性回归方程为 yˆ =12x
+60。若自由职业者平均每天工作的时间为 5 小时,估计该自由职业者年收入为
A.50 千元 B.60 千元 C.120 千元 D.72 千元
(1)求证:平面 NPC//平面 AB1M; (2)在线段 BB1 上是否存在一点 Q 使 AB1⊥平面 A1MQ?若存在,确定点 Q 的位置;若不存在,也 请说明理由。 20.(本小题满分 12 分)
ax2 x
已知函数 f(x)=
x
1
(a∈R)。
(1)当 a=1 时,若 1≤x≤3,求函数 f(x)的最值; (2)若函数 f(x)在 x=2 处取得极值,求实数 a 的值。
为
。
15.已知等边三角形 ABC 的三个顶点都在以点 O 为球心、2 为半径的球面上,若三棱锥 O-ABC
的高为 1,则三棱锥 O-ABC 的体积为
。
16.已知 F 为抛物线 C:x2=8y 的焦点,P 为 C 上一点,M(-4,3),则△PMF 周长的最小值
是。
三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。第 17~21 题为必考题,
1.设全集 U={1,2,3,4,5},集合 A={1,2,3},B={2,4},则 A∩ B=
ð U
A.{1} B.{2} C.{1,2,3} D.{1,3}
2.若 i 是虚数单位,则 1 i
1 2i
5
10
2
1
A.
B.
5
5
C.
5
D. 5
3.在“新零售”模式的背景下,自由职业越来越流行,诸如淘宝店主、微商等等。现调研某
2020 高考
21.(本小题满分 12 分)
xy
2
,且长轴长是短轴长的 倍。
2
2 1(a b 0)
2
ab
(1)求椭圆 C 的标准方程;
(2)若过椭圆 C 左焦点 F 的直线 l 交椭圆 C 于 A,B 两点,点 P 在 x 轴非负半轴上,且点 P 到
坐标原点的距离为 2,求 P A
6.函数 f(x)=
的部分图象大致是
x
2020 高考
7.《算经十书》是指汉、唐一千多年间的十部著名的数学著作,它们曾经是隋唐时代国子监
算学科的教科书。十部书的名称是:《周髀算经》《九章算术》《海岛算经》《五曹算经》《孙
子算经》《夏侯阳算经》《张丘建算经》《五经算术》《缉古算经》《缀术》。小明计划从这十部
2020 高考
2020 高考
2020 高考
2020 高考
f(x)=
0, x 0
,其中为“M 函数”的是
A.①②③ B.①② C.②③ D.②④
二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
13.曲线 y=2x3+lnx 在点(1,2)处的切线的斜率为
。
14.已 知 首 项 为 3 的 等 比 数 列 {an} 的 前 n 项 和 为 Sn , 若 2S2 = S3 + S4 , 则 a2020 的 值
y sin
xt
数方程为
,(t 为参数)。
yt
(1)若以坐标原点 O 为极点,x 轴的非负半轴为极轴且取相同的单位长度建立极坐标系,试求 曲线 C 的极坐标方程; (2)求直线 l 被曲线 C 截得线段的长。 23.(本小题满分 10 分)选修 4-5:不等式选讲 已知实数 x,y,z 满足 x-2y+z=4。 (1)求 x2+y2+z2 的最小值; (2)若 y=x+z,求 xz 的最大值。
书中随机选择两部书购买,则选择到《九章算术》的概率是
1
3
2
1
A.
B.
C.
2
10
5
D. 5
8.若执行如图所示的程序框图,则输出 k 的值是
A.8 B.10 C.12 D.14
1
9.要得到函数 y=sinx 的图象,需将函数 y=cos x 的图象上所有的点
2 1
A.向右平移 π 个单位长度后,再将图象上所有点的横坐标缩小到原来的 ,纵坐标不变
4.设 a=ln0.9, b
2
log ,c=40.01,则 a,b,c 的大小关系为
1
3
2
A.b<a<c B.a<c<b C.a<b<c D.b<c<a
5.若平面向量 a,b 满足|a|=2,|b|=3,且 a·b=4,则向量 a 在 b 方向上的投影是
4
3
A.
B.
C.2 D.1
3
4
(ex e x) sin x
2020 高考
2020 届高三数学 3 月在线公益联考试题 文
考生注意: 1.本试卷分选择题和非选择题两部分。满分 150 分,考试时间 120 分钟。 2.答题前,考生务必用直径 0.5 毫米黑色墨水签字笔将密封线内项目填写清楚。 3.考生作答时,请将答案答在答题卡上。选择题每小题选出答案后,用 2B 铅笔把答题卡上对 应题目的答案标号涂黑;非选择题请用直径 0.5 毫米黑色墨水签字笔在答题卡上各题的答题 区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效。 4.本卷命题范围:高考范围。 一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一 项是符合题目要求的。
(a b)(c d )(a c)(b d )
18.(本小题满分 12 分) 已知在△ABC 中,角 A,B,C 的对边分别为 a,b,c,b(cosB+cosAcosC)=2asinBcosC。 (1)求 tanC 的值;
1
(2)若 a=6,cosB= ,求 b。
3
19.(本小题满分 12 分) 如图,在正三棱柱 ABC-A1B1C1 (侧棱垂直于底面,且底面三角形 ABC 是等边三角形)中,BC= CC1,M,N,P 分别是 CC1,AB,BB1、的中点。
3
1
是等差数列,若 a2a4+a4a6+a6a2=1,a2a46=
6
,则 a3=
22
C. 或
D.2
53
xy
2
2
2 2 1( 0,
a
11.已知 F1,F2 是双曲线 C:
ab
0)
b
的左、右焦点,P 是双曲线 C 上一点,
2020 高考
若|PF1|+|PF2|=6a, P F 1 P F
2 =0,则双曲线 C 的离心率为