解决求取值范围问题的策略
椭圆离心率取值范围解题策略

椭圆离心率取值范围解题策略离心率是高中“圆锥曲线”的一个重要几何性质,是三种圆锥曲线统一定义的桥梁和纽带,是研究圆锥曲线其他性质的基础,它是一个比值椭圆的离心率是刻画椭圆“扁圆”程度的基本量之一.在我们的教材中直接给出了离心率的定义,并没有明确解释为什么把这个比值作为椭圆的离心率.如果教师在教学中只是告诉学生这是“人为规定”,学生没有经历概念的产生和发展过程,就很难理解概念的本质,因此在运用概念解题时无从下手.本节课就是希望通过数学文化背景深入认识椭圆的离心率,从而更好地解决和椭圆离心率有关的问题.一、离心率定义的内涵在教材中焦距与长轴长的比值定义为椭圆的离心率.在教学中,许多学生会有这样的疑问:也可以刻画椭圆的扁圆程度,为什么不用它们定义椭圆的离心率?”其实作为椭圆的离心率更有优势,我们知道椭圆是平面上到两个定点F1,F2距离的和为常数2a的动点的轨迹(其中|F1F2|=2c,且2a>2c),此定义中涉及的参数是a和c,为了和椭圆的定义保持一致,所以用表示椭圆的离心率;另外,椭圆的第二定义是“到定点的距离与到定直线的距离的比值为常数的动点的轨迹”,而这个常数恰好是即椭圆的离心率.其实说椭圆的离心率是“人为规定”也未尝不可,因为在天文学中把天体运行轨道的离心率也叫作偏心率,描述的是某一天体椭圆轨道与理想圆形的偏离程度.天文学家发现太阳系中,行星是围绕着以太阳为焦点的椭圆形轨道运行的,所以行星和太阳之间的距离不是恒定的,其中离太阳最近的距离为a-c,离太阳最远的距离为a+c,也就是说偏心率就是衡量行星偏离太阳的程度,所以用表示椭圆的偏心率更符合客观实际.二、椭圆离心率取值范围的几种求法求椭圆离心率的取值范围是高考经常考查的热点问题之一,这类题涉及解析几何、平面几何、代数等多个知识点,综合性强、方法灵活,解题关键是构造关于a,c或e的不等式,下面用几个实例通过构造不等式求椭圆离心率的取值范围.1.利用椭圆的范围构造不等式例1 设椭圆的左、右焦点分别为F1,F2,若椭圆上存在点P,使得∠F1PF2=90°,求椭圆离心率e的取值范围.解:设点P的坐标为(x,y),点F1的坐标为(-c,0),点F2的坐标为(c,0),则有因为∠F1PF2=90°,得则即(x+c)(x-c)+y2=0,整理得x2+y2=c2,将其与椭圆方程联立,消去y,可得由椭圆上点的坐标的范围可知,0≤x2<a2,解得c2≥b2,即所以2.利用二次方程判别式构造不等式以上题为例.解:由椭圆的定义可知|PF1|+|PF2|=2a,所以有+2|PF1|·|PF2|=4a2,又因为∠F1PF2=90°,所以=4c2,由此可得|PF1|·|PF2|=2(a2-c2),所以|PF1|,|PF2|可以看作二次方程x2-2ax+2(a2-c2)=0的两实根.所以Δ=4a2-8(a2-c2)≥0,整理得所以3.利用焦半径的取值范围构造不等式例2 已知椭圆的左、右焦点分别为F1,F2,椭圆上存在一点P,使得线段PF1的中垂线经过焦点F2,则椭圆离心率e的取值范围是______.图1解:如图1,因为线段PF1的中垂线经过焦点F2,所以|PF2|=|F1F2|=2c,即椭圆上存在一点P,使得|PF2|=2c.所以|PF2|=2c≥a-c,所以a≤3c,所以即4.利用均值不等式构造不等式例3 设F1,F2是椭圆的两个焦点,若椭圆上任意一点M都满足∠F1MF2为锐角,则椭圆离心率的取值范围是( ).解:因为又因为∠F1MF2为锐角,所以又因为-4c2=(|MF1|+|MF2|)2-2|MF1||MF2|-4c2>0,所以|MF1||MF2|<2a2-2c2,由均值不等式得所以a2<2a2-2c2,解得所以图25.利用椭圆中重要结论构造不等式以上题为例.解:如图2,当M移动到椭圆的短轴的端点B时,∠F1MF2最大.由已知可知,∠F1BF2为锐角,即∠F1BO<45°,在Rt△F1BO中,所以6.利用题设中的已知条件构造不等式例4 已知椭圆的右焦点为F,短轴的一个端点为M,直线l:5x-12y=0交椭圆于A,B两点,若|AF|+|BF|=6,点M到直线l的距离不小于则该椭圆E的离心率的取值范围是( ).图3解:如图3所示,设F1为椭圆的左焦点,连接AF1,BF1,则四边形AFBF1为平行四边形,所以6=|AF|+|BF|=|AF1|+|AF|=2a,所以a=3.取M(0,b),因为点M到直线l的距离不小于所以解得b≥1,所以又因为0<e<1,所以椭圆E的离心率的取值范围是故选A.在新一轮课改的实施过程中,作为数学教师,需要在平时的教学中,适时地引导学生探究出问题的本源,只有这样深入才能使学生更容易掌握解决问题的方法.而椭圆离心率取值范围的解法灵活多样,综合性强,需要我们认真分析题意,探究问题本源,才能找到最佳突破口,从而准确、快速地解决问题.参考文献:[1]王侠.椭圆离心率的深入认知及基本求法[J].中小学数学,2013(4).[2]黄贻淦.如何建立不等式求离心率的范围[J].数理化解题研究,2012(2).[3]林风,林善柱.数学概念教学要重视其生成过程——“椭圆离心率及其应用”的教学思考[J].中学数学教学参考(上),2017(12).*基金项目:本文系2018年度甘肃省教育科学“十三五”规划重点课题“基于核心素养下的数学史融入高中数学教学的实践”(课题编号:GS[2018]GHB3863)的阶段性成果之一.。
高中不等式组的解集取值范围

高中不等式组的解集取值范围
不等式组是高中数学中的重要内容,它在实际生活中有着广泛的应用。
不等式组的解集取值范围是解决实际问题的关键,掌握其求解方法对我们解决实际问题具有重要意义。
一、高中不等式组的概念与解集取值范围的关系
高中不等式组是由多个不等式组成的集合,其中的每个元素都满足所有的不等式。
解集取值范围是指不等式组所有解的数值范围,它可以帮助我们了解不等式组的性质和规律。
二、高中不等式组解集取值范围的求解方法
1.原则:同小取小,同大取大,小大取中,大大取大。
2.符号规律:两个不等式相乘,符号看两边;两个不等式相加,符号看中间。
3.逐步淘汰法:从约束条件出发,逐步淘汰不可能的解,缩小解集范围。
4.图像法:将不等式组转化为直线或曲线,观察其交点,确定解集取值范围。
三、高中不等式组解集取值范围的实例分析
例:解不等式组:{x + 2 > 5, x - 3 < 1}
1.解第一个不等式:x + 2 > 5,得到x > 3
2.解第二个不等式:x - 3 < 1,得到x < 4
3.根据原则,取两个不等式解的交集,得到解集:3 < x < 4
四、提高解题技巧,扩大解集取值范围的策略
1.熟练掌握不等式组的解法,灵活运用各种求解方法。
2.注意观察约束条件,挖掘题目中的隐含信息。
3.培养数形结合的思维能力,将不等式组问题转化为图像问题。
4.大量练习,提高解题速度和准确率。
通过以上分析,我们可以看到高中不等式组解集取值范围的重要性。
解三角形中取值范围的求解策略例谈

技法点拨摘要:解三角形是高考数学考查的重点内容,从历年高考真题来看题型难度中等。
有关取值范围的问题是一个难点,涉及的问题主要有三角形边或边的比值的取值范围、角的取值范围、面积和周长等几类。
关键词:解三角形;取值范围;高考解三角形是普通高中数学重要的内容之一,主要研究三角形中边和角的关系,其中有关取值范围的考题是历年高考的重点和热点。
解三角形中的取值范围问题通常有三类,一是边或边的比值的取值范围;二是角的取值范围;三是三角形的周长或面积的取值范围。
本文结合实例,分析求解解三角形取值范围的常用策略。
一、运用函数思想方法求解取值范围函数思想方法,是破解取值范围和最值问题的强大武器。
运用函数思想方法的关键是合理选择自变量,在解三角形的取值范围中,主要以角为自变量,通过三角函数的有界性求解。
例1.(2020年浙江卷)在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知2b sin A -3a =0.(1)求角B 的大小;(2)求cos A +cos B +cos C 的取值范围.解:(1)B =π3(过程略).(2)由A +B +C =π得C =2π3-A ,由△ABC 是锐角三角形,得ìíîïïïï0<A <π20<C <π2,即ìíîïïïï0<A <π20<2π2-A <π2,解得π6<A <π2.由cos C =cos(2π3-A )=-12cos A+A ,得cos A +cos B +cos C=A +12cos A +12=sin(A +π6)+12,因为π3<A +π6<2π3,sin(A +π6)≤1,<sin(A +π6)+12≤32,得cos A +cos B +cosC∈(32].故cos A +cos B +cosC ∈(3+12,32].点评:本题把求解的式子转化为关于角A 的三角函数,也可以转化为角C 的三角函数,无论转化为哪一种都有求出角的范围。
高中数学专题---最值或取值范围问题

高中数学专题--- 最值或取值范围问题基本方法:最值或取值范围问题解题策略一般有以下几种:(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质求解.(2)代数法:在利用代数法解决范围问题时常从以下五个方面考虑: ①利用判别式来构造不等关系,从而确定参数(自变量)的取值范围;②利用已知参数(自变量)的范围,求新参数(新自变量)的范围,解这类问题的核心是在两个参数(自变量)之间建立等量关系;③利用隐含或已知的不等关系建立不等式,从而求出参数(自变量)的取值范围; ④利用基本不等式求出参数(自变量)的取值范围;⑤利用函数的值域的求法,如导数法等,确定参数(自变量)的取值范围. 最值或取值范围问题,是解析几何中的一类常见问题,解决这类问题的关键是构造含参数(自变量)的不等式,通过解不等式求出其范围,韦达定理、曲线与方程的关系等在构造不等式中起着重要作用.一、典型例题1. 已知抛物线2y x =和C :()2211x y ++=,过抛物线上的一点()()000,1P x y y ≥,作C 的两条切线,与y 轴分别相交于A ,B 两点.求ABP ∆面积的最小值.2. 已知椭圆:C 2214y x +=,过点()0,3M 的直线l 与椭圆C 相交于不同的两点A ,B . 设P 为椭圆上一点,且OA OB OP λ+=(O 为坐标原点).求当AB <λ的取值x范围.二、课堂练习1. 已知椭圆C :2214x y +=,过点()4,0M 的直线l 交椭圆于A ,B 两个不同的点,且MA MB λ=⋅,求λ的取值范围.2. 已知A ,B 为椭圆Γ:22142x y +=的左,右顶点,若点()()000,0P x y y ≠为直线4x =上的任意一点,PA ,PB 交椭圆Γ于C ,D 两点,求四边形ACBD 面积的最大值.三、课后作业1. 已知椭圆22:143x y C +=,过点1,02⎛⎫ ⎪⎝⎭作直线l 与椭圆C 交于点,E F (异于椭圆C 的左、右顶点),线段EF 的中点为M .点A 是椭圆C 的右顶点.求直线MA 的斜率k 的取值范围.2. 已知抛物线2:4C y x =的焦点为F ,准线为l ,过焦点F 的直线交C 于()11,A x y ,()22,B x y 两点,点B 在准线l 上的投影为E ,D 是C 上一点,且AD EF ⊥,求ABD 面积的最小值及此时直线AD 的方程.x3. 已知F 为椭圆2214x y +=的一个焦点,过点F 且不与坐标轴垂直的直线交椭圆于,A B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围.。
求参数范围问题—常见解题方法

求参数范围问题—常见解题方法一、确定“主元”思想常量与变量是相对的,一般地,可把已知范围的那个看作自变量,另一个看作常量.例1.对于满足0的一切实数,不等式x2+px>4x+p-3恒成立,求x的取值范围.分析:习惯上把x当作自变量,记函数y= x2+(p-4)x+3-p,于是问题转化为当p时y>0恒成立,求x的范围.解决这个问题需要应用二次函数以及二次方程实根分布原理,这是相当复杂的.若把x与p两个量互换一下角色,即p视为变量,x为常量,则上述问题可转化为在[0,4]内关于p的一次函数大于0恒成立的问题.解:设f(p)=(x-1)p+x2-4x+3,当x=1时显然不满足题意.由题设知当0时f(p)>0恒成立,∴f(0)>0,f(4)>0即x2-4x+3>0且x2-1>0,解得x>3或x<-1.∴x的取值范围为x>3或x<-1.二、分离变量例2.若对于任意角总有成立,求的范围.分析与解:此式是可分离变量型,由原不等式得,又,则原不等式等价变形为恒成立.根据边界原理知,必须小于的最小值,这样问题化归为怎样求的最小值.因为即时,有最小值为0,故.评析:一般地,分离变量后有下列几种情形:①f(x)≥g(k) [f(x)]min≥g(k)②f(x)> g(k) g(k) < [f(x)] min③f(x)≤g(k) [f(x)] max≤g(k)④f(x)<g(k) [f(x)] max < g(k)三、数形结合对于含参数的不等式问题,当不等式两边的函数图象形状明显,我们可以作出它们的图象,来达到解决问题的目的.例3.设,若不等式恒成立,求a的取值范围.分析与解:若设函数,则,其图象为上半圆.设函数,其图象为直线.在同一坐标系内作出函数图象如图,依题意要使半圆恒在直线下方,只有圆心到直线的距离且时成立,即a的取值范围为.四、分类讨论当不等式中左、右两边的函数具有某些不确定因素时,应用分类讨论的方法来处理,分类讨论可使原问题中的不确定因素变成确定因素,为问题的解决提供新的条件。
解析几何中求参数取值范围的方法(精)

解析几何中求参数取值范围的方法近几年来,与解析几何有关的参数取值范围的问题经常出现在高考考试中,这类问题不仅涉及知识面广,综合性大,应用性强,而且情景新颖,能很好地考查学生的创新能力和潜在的数学素质,是历年来高考命题的热点和重点。
学生在处理这类问题时,往往抓不住问题关键,无法有效地解答,这类问题求解的关键在于根据题意,构造相关的不等式,然后求出不等式的解。
那么,如何构造不等式呢?本文介绍几种常见的方法:一、利用曲线方程中变量的范围构造不等式曲线上的点的坐标往往有一定的变化范围,如椭圆 x2a2 + y2b2 = 1上的点P(x,y)满足-a≤x≤a,-b≤y≤b,因而可利用这些范围来构造不等式求解,另外,也常出现题中有多个变量,变量之间有一定的关系,往往需要将要求的参数去表示已知的变量或建立起适当的不等式,再来求解.这是解决变量取值范围常见的策略和方法.例1 已知椭圆 x2a2 + y2b2 = 1 (a>b>0), A,B是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0 , 0)求证:-a2-b2a ≤ x0 ≤ a2-b2a分析:先求线段AB的垂直平分线方程,求出x0与A,B横坐标的关系,再利用椭圆上的点A,B满足的范围求解.解: 设A,B坐标分别为(x1,y1) ,(x2,y2),(x1≠x2)代入椭圆方程,作差得: y2-y1x2-x 1 =-b2a2 •x2+x1 y2+y1又∵线段AB的垂直平分线方程为y- y1+y22 =- x2-x1 y2-y1 (x-x1+x22 )令y=0得x0=x1+x22 •a2-b2a2又∵A,B是椭圆x2a2 + y2b2 = 1 上的点∴-a≤x1≤a, -a≤x2≤a, x1≠x2 以及-a≤x1+x22 ≤a∴ -a2-b2a ≤ x0 ≤ a2-b2a例2 如图,已知△OFQ的面积为S,且OF•FQ=1,若 12 < S <2 ,求向量OF与FQ的夹角θ的取值范围.分析:须通过题中条件建立夹角θ与变量S的关系,利用S的范围解题.解: 依题意有∴tanθ=2S∵12 < S <2 ∴1< tanθ<4又∵0≤θ≤π∴π4 <θ<ARCTAN4< p>例3对于抛物线y2=4x上任一点Q,点P(a,0)都满足|PQ|≥|a|,则a的取值范围是 ( )A a<0B a≤2C 0≤a≤2D 0<A<2< p>分析:直接设Q点坐标,利用题中不等式|PQ|≥|a| 求解.解: 设Q( y024 ,y0) 由|PQ| ≥a得y02+( y024 -a)2≥a2 即y02(y02+16-8a) ≥0∵y02≥0 ∴(y02+16-8a) ≥0即a≤2+ y028 恒成立又∵ y02≥0而 2+ y028 最小值为2 ∴a≤2 选( B )二、利用判别式构造不等式在解析几何中,直线与曲线之间的位置关系,可以转化为一元二次方程的解的问题,因此可利用判别式来构造不等式求解.例4设抛物线y2 = 8x的准线与x轴交于点Q,若过点Q的直线L与抛物线有公共点,则直线L的斜率取值范围是 ( )A [-12 ,12 ]B [-2,2]C [-1,1]D [-4,4]分析:由于直线l与抛物线有公共点,等价于一元二次方程有解,则判别式△≥0解:依题意知Q坐标为(-2,0) , 则直线L的方程为y = k(x+2)由得 k2x2+(4k2-8)x+4k2 = 0∵直线L与抛物线有公共点∴△≥0 即k2≤1 解得-1≤k≤1 故选 (C)例5 直线L: y = kx+1与双曲线C: 2x2-y2 = 1的右支交于不同的两点A、B,求实数k的取值范围.分析:利用直线方程和双曲线方程得到x的一元二次方程,由于直线与右支交于不同两点,则△>0,同时,还需考虑右支上点的横坐标的取值范围来建立关于k的不等式.解:由得 (k2-2)x2 +2kx+2 = 0∵直线与双曲线的右支交于不同两点,则解得 -2<K<-2< p>三、利用点与圆锥曲线的位置关系构造不等式曲线把坐标平面分成三个区域,若点P(x0,y0)与曲线方程f(x,y)=0关系:若P在曲线上,则f(x0,y0)=0;若P在曲线内,则f(x0,y0)<0;若P在曲线外,则f(x0,y0)>0;可见,平面内曲线与点均满足一定的关系。
浅谈确定解几问题中的参数取值范围的策略.

浅谈确定解几问题中的参数取值范围的策略重庆一中 李红林求参数的取值范围在中学数学中比比皆是,它使函数、方程与不等式、数与形、常量与变量有机地结合在一起。
这类问题不仅综合性强,而且情景新颖,能很好地考查考生的创新能力和潜在的数学素质,是历年高考命题的热点和重点.本文结合近几年的高考试题,对此问题的转化方法作简单探讨.转化策略一:构造关于目标参数的不等式建立关于目标参数的不等式,然后解出不等式,则得到所求参数的取值范围.建立目标参数的不等式有多种途径,常见的有:圆锥曲线的x,y 取值范围、函数的有界性、判别式、基本不等式及位置关系(点与曲线、曲线与曲线)等。
通过解不等式求参数的取值范围特别要注意必须进行等价变换,不然会扩大或缩小参数的取值范围。
例1(2004年高考题重庆卷10题)已知双曲线22221,(0,0)x y a b a b-=>>的左、右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为( ) A 43 B 53 C 2 D 73分析:因题意涉及到双曲线的焦半径,故可考虑利用双曲线的两种定义。
若用第一定义则据焦半径存在一个取值范围能列出关于离心率的不等式;若用第二定义(焦半径公式)则据双曲线上的点的坐标存在取值范围也能列出关于离心率的不等式.略解1:由双曲线的定义可得:122232PF PF a PF a -=⇒= (点P 在双曲线的右支上) 2PF c a ≥- 523()533a c a a c e ∴≥-⇒≥⇒≤ 所以选B. 略解2:∵点P (x,y)在双曲线的右支上,由焦半径公式可得: 1PF a ex =+ 2PF a ex =-+ 5533ax x a e e ∴=≥∴≤ 例2(2002年高考题全国卷19题)设点P 到点)0,1(-M 、)0,1(N 距离之差为m 2,到x 轴、y 轴距离之比为2.求实数m 的取值范围.分析:显然点P 是直线与双曲线的交点,其交点P 的横坐标、纵坐标都与参数m 有,显化这种关系,则为实数的平方,根据其有界性即可列出关于参数m 的不等式。
中学数学中求取值范围的解题策略

浅谈中学数学中求取值范围的解题策略内容摘要:本文给出了中学数学中求取值范围的两类解题策略,包括了九种具体的解题方法,基本解决了初等数学中求变量取值范围的问题.求取值范围问题是中学数学的重要内容,也是高考中的热点题型.这类问题涉及面广,综合性强,学生常常感到束手无策. 本文给出此类问题的一般解题策略,以供同志们商榷.一、基本策略――不等式法.求参数m的取值范围的基本策略是列出关于m的不等式 (组). 由于得到不等式的根据是多方面的,因此列不等式求取值范围有以下几个常见类型:(一)根据实际问题有意义列不等式(二) 利用不等式的放缩变形得不等式(三)利用恒不等成立的最值法得不等式(四)利用某些变量的有界性得不等式(五)利用有关图形的性质得不等式.(六)利用方程有解的条件得不等式二、常用策略——转移法.如果欲求范围的变量m的不等式(组)不易直接得到,题中常常隐含有m 与另一变量n间的等量关系 F(m,n)=0及n的取值范围.解题的一般思路是求出F(m,n)=0及n的范围,再设法利用F(m,n)=0求出m的范围.这种求变量范围的方法就是转移法.由于F(m,n)=0的情况不同,转移法常有如下三种类型:(1)不等式型如果由F(m,n)=0能够解出 n = f(m),则利用n的范围容易得到m的不等式,即可求其范围.(2)函数值域型如果 F(m,n)=0能够解出m=f(n),则在n的范围内去求m=f(n) 的值域即可.(3)方程根的分布型如果F(m,n)=0 比较复杂,常常可以变形为关于n的一个一元二次方程,这时可以通过讨论方程在n的范围内有解的条件得出m的不等式.注:这是06年自己评中学高级教师时发表的一篇论文的提纲。
由于自己输入科技论文的水平有限,不能把例题一同附上,望各位同仁谅解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、解答求取值范围或最 值问题的方法 二、解决求取值范围或最 值问题的策略
一、解答求取值范围或最值问题的方法 (一)函数法 (二)不等式法 (三)几何法
x T = f ( x)
(一)函数法
1、把所求范围或最值的量表示为另 外一个量(或几ห้องสมุดไป่ตู้量)的函数 2、运用函数的知识求函数的值域
例1
x
(二)不等式法
1、建立关于所求范围或最值的量的 不等式组或混合组 2、解不等式组或混合组
例2
x
(三)几何法
1、把所求范围或最值的量表示为某 种几何量(距离或角及其函数) 2、结合图形,求几何量的取值范围
例3
二、解决求取值范围或最值问题的策略 (一)深刻理解数学的基本概念和结论的 本质,提高推理论证的能力 (二)深切体会数学的基本思想和方法的 精髓,提高分析和解决问题的能力 (三)熟练掌握数学的基本技能,提高运 算求解的能力
x T = f ( x)
(一)深刻理解数学的基本概念和结论的 本质,提高推理论证的能力
例4
(二)深切体会数学的基本思想和方法的 精髓,提高分析和解决问题的能力
求函数值域的方法 求函数极值的步骤 例5 例6
(三)熟练掌握数学的基本技能,提高运 算求解的能力
例7
例8
例9