公开课解三角形中的值及取值范围问题
解三角形中的最值范围、多边形问题-专题课件-高一下学期数学人教A版(2019)必修第二册

cos B cos c 2sin A .
b
c
3 sin c
(1)求角 B 的大小和边长 b 的值;
3
(2)求 ABC 周长和面积的取值范围.
(∴2)12 cossBinaA
23ssinicnCBs1inb,Bsin23(B1
,)
6
1
,
B
6
2k ,k Z
2
,
B 为锐角, B ,
3
∵ cos B cos c 2sin A ,由2正余弦定理可得 a2 c2 b2 a2 b2 c2 2a ,
解三角形中的最值范围、多边形问题
1:在 ABC 中,角 A , B , C 所对的边分别为 a , b , c , bsin A a cos(B ) .
6
(1)求角 B 的大小;(2)若 b 2 3 ,求 ABC 面积的最大值
【解析】(1)由正弦定理得 sin Bsin A sin Acos(B ) ,由于 0 A , sin A 0 ,
(1)在 ACD 中,设 AD x(x 0) ,由余弦定理得 7=x2 4x2 2x 2x cos 2 ,整理 3
得 7x2 7 ,解得 x 1 .所以 AD 1,CD 2.
(由2正)弦由定已理知得得sSinADBCDCAC4SAsCinAD C23,所,以解12得AsBinADCACsinB721A.C
从而 S 1 casin 3 3 ,所以 ABC 的面积取得最大值3 3 .
2
3
(问:在(2)的基础上面积范围怎么求?周长范围怎么求?中线范围呢?) (问:在(2)的基础上附加一个“锐角三角形”条件,面积和周长范围怎么求?)
2:在锐角 ABC 中,角 A , B , C 的对边分别为 a , b , c ,若 cosB 3 sinB 2,
第11讲 解三角形中面积最值与取值范围问题(解析版) 高一数学同步题型讲义(新人教2019)必修二

第11讲解三角形中面积最值与取值范围问题题型一:三角形面积最大值问题【例1】已知ABC 的内角,,A B C 所对的边分别为,,a b c ,若3A π=,a =则ABC 面积的最大值为()A.4B .2C .1D【例2】在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若()tan tan 2B C +=,且2a =,则ABC 的面积的最大值为A .3B .2C D .【答案】A【解析】:因为()tan tan2AB C +=,且B C A +=π-,所以()22tan2tan tan 1tan 2A B C A A +=-=--tan 02A =>,所以tan 2A =,则2π3A =.由于2a =为定值,由余弦定理得222π42cos 3b c bc =+-,即224b c bc =++.根据基本不等式得22423b c bc bc bc bc =++≥+=,即43bc ≤,当且仅当b c =时,等号成立.所以11433sin 22323ABC S bc A =≤⨯⨯=.故选:A【例3】在ABC △中,a ,b ,c 分别为内角A ,B ,C 的对边,若4a c +=,2sin sin sin B A C =+,则ABC △的面积的最大值为()AB .2C.D .4【答案】A 【解析】因为2sin sin sin B A C =+,所以2b a c =+,因4a c +=,所以2=b ,由余弦定理得()acac ac ac ac b ac c a ac b c a B 221224216222cos 22222-=--=--+=-+=所以ac B ac 212cos 2-=,所以acacB -=6cos ,所以()()()()acac ac ac ac B B 22222661cos 1sin --=--=-=因11sin 22ABCSac B ac ac ∆==⋅==因为ac c a 2≥+,所以()442=+≤c a ac,ABC S ∆=≤=【例4】在ABC △中,a ,b ,c 分别为内角A ,B ,C的对边,若2a =,b =,则ABC △的面积的最大值为()AB .2C .D .4【答案】A 【解析】因为2a =,b =,由余弦定理得()2222222324432432cos c c cc cc bcac b A -=⋅-+=-+=所以()()2244244222223216324121632161232441cos 1sin c c c cc c c c c A A -+-=-+-=--=-=因21sin 2ABCS bc A ∆===设t c =2,则ABCS∆==≤【例5】在ABC 中,,,A B C 所对的边分别为,,.a b c 若2222312++=a b c ,则ABC 面积最大值为__________【例6】如图,在ABC 中,3ABC ∠=,点D 在线段AC 上,且2AD DC =,3BD =,则ABC 面积的最大值为___.【例7】ABC 的内角,,A B C 的对边分别为,,a b c ,已知B c C b a sin cos +=.(Ⅰ)求B ;(Ⅱ)若2=b ,求ABC 面积的最大值.【详解】(1)∵Bc C b a sin cos +=∴由正弦定理知B C C B A sin sin cos sin sin +=①在三角形ABC 中,()C B A +-=π∴()B C C B C B A sin sin cos sin sin sin +=+=②由①和②得C B C B sin cos sin sin =而()π,0∈C ,∴0sin ≠C ,∴B B cos sin =又()π,0∈B ,∴4π=B(2)ac B ac S ABC 42sin 21==∆,由已知及余弦定理得:4=a 2+c 2﹣2ac cos 4π≥2ac ﹣2ac 22⨯,整理得:ac≤,当且仅当a =c 时,等号成立,则△ABC 面积的最大值为(1212222⨯=+1=+【题型专练】1.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若8ac =,sin sin 20a B c A +=,则ABC 面积的最大值为______.2.材料一:已知三角形三边长分别为,,a b c ,则三角形的面积为S =,其中2a b cp ++=.这个公式被称为海伦一秦九韶公式.材料二:阿波罗尼奥斯(Apollonius )在《圆锥曲线论》中提出椭圆定义:我们把平面内与两个定点12,F F 的距离的和等于常数(大于)12F F 的点的轨迹叫做椭圆.根据材料一或材料二解答:已知ABC 中,6,10BC AB AC =+=,则ABC 面积的最大值为()A .6B .10C .12D .20【答案】C【分析】令(2,8)AB x =∈,根据材料一海伦公式写出ABC 面积S ,由二次函数性质求面积最大值即可.3.在ABC 中,角,,A B C的对边分别为,,a b c .已知角,3C AB =边上的高为(1)若ABC S = ABC 的周长;(2)求ABC 面积的最小值.。
解三角形中的最值、范围问题

Җ㊀山东㊀冯海侠㊀㊀在新高考形势下, 解三角形 应该会出现在第17题或第18题的位置,一般都属于中等或中等偏下难度的题目,是学生必拿分的题.高考对正弦定理和余弦定理的考查较为灵活,题型多变㊁综合性强,有利于培养学生的创新意识.这类问题简单,但部分学生却拿不到满分,尤其是求最值或范围的问题.下面笔者以两道高考题为例来归纳这类问题的解答方法及技巧,希望能帮助读者突破瓶颈,提高学习效率.例1㊀(2019年全国卷Ⅲ理18)әA B C 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a s i nA +C2=b s i n A .(1)求B ;(2)若әA B C 为锐角三角形,且c =1,求әA B C 面积的取值范围.(1)由a s i n A +C2=b s i n A ,可得s i n A s i n π-B 2=s i n B s i n A ,即s i n A c o s B2=s i n B s i n A ,因为s i n A ʂ0,所以c o s B 2=s i n B =2s i n B 2c o s B2.又因为B ɪ(0,π),所以B 2ɪ(0,π2),则c o s B 2ʂ0,所以s i n B 2=12,则B 2=π6,即B =π3.(2)由c =1,a s i n A =c s i n C,可得a =c s i n A s i n C =s i n A s i n C.所以S әA B C =12a c s i n B =12ˑ32a =34a =34s i n A s i n C =34s i n (B +C )s i n C=34ˑ32c o s C +12s i n Cs i n C =38+38ˑ1t a n C.又因为әA B C 是锐角三角形,故0<C <π2且0<2π3-C <π2,所以π6<C <π2,则t a n C >33,即0<1t a n C <3,所以S әA B C ɪ(38,32).例2㊀(2013年全国卷Ⅱ理17)әA B C 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a =b c o s C +c s i n B .(1)求B ;(2)若b =2,求әA B C 面积的最大值.(1)由已知条件及正弦定理得s i n A =s i n B c o s C +s i n C s i n B .①又因为A =π-(B +C ),故s i n A =s i n (B +C )=s i n B c o s C +c o s B s i n C .②由①②得s i n B =c o s B ,又B ɪ(0,π),所以B =π4.(2)әA B C 的面积S =12a c s i n B =24a c ,由已知条件及余弦定理得4=a 2+c 2-2a c c o sπ4ȡ2a c -2a c ,故a c ɤ42-2=2(2+2),当且仅当a =c 时,等号成立.因此,S =12a c s i n B =24a c ɤ24ˑ2(2+2)=2+1,即әA B C 面积的最大值为2+1.解三角形中的最值及范围问题主要有两种方法,其一是利用基本不等式求最大值或最小值,这类问题多与余弦定理相结合,常见形式如下.(1)a 2=b 2+c 2-2b c c o s A ȡ2b c -2b c c o s A ,从而求出b c 的最大值;(2)a 2=b 2+c 2-2b c c o s A =(b +c )2-(2-2c o s A )b c ȡ(b +c )2-(2-2c o s A )(b +c 2)2.在使用基本不等式时一定不要忘了等号的验证,同时,要将所求式子转化为含有一个未知数的函数,大多情况下是转化成关于某个角的函数,利用三角函数性质及角的条件求解,有时也转化为某个边的函数,再结合边的范围求解.解三角形中的最值和范围问题是重点也是难点,综合性较强,所以学生不仅要有扎实的基本功,还要灵活应变,掌握做题技巧,这样在高考中才能取得满意的成绩.(作者单位:山东省菏泽市巨野县第一中学)3。
第14讲 解三角形中周长最大值及取值范围问题(学生版)

第14讲解三角形中周长最大值及取值范围问题【考点分析】考点一:解三角形中角的最值及范围问题①利用锐角三角形,⎪⎩⎪⎨⎧<<<<<<πππC B A 000,求出角的范围②利用余弦定理及基本不等式求角的最值:bca bc bc a cb A 222cos 2222-≥-+=考点一:解三角形中周长的最值及范围问题①利用基本不等式:()bca bc cb bc a c b A 222cos 22222--+=-+=,再利用bc c b 2≥+及a c b >+,求出c b +的取值范围②利用三角函数思想:()B A R B R C R B R c b ++=+=+sin 2sin 2sin 2sin 2,结合辅助角公式及三角函数求最值【题型目录】题型一:三角形角的最值及范围问题题型二:三角形边周长的最值问题题型三:三角形边周长的最值范围问题【典型例题】题型一:三角形角的最值及范围问题【例1】在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且sin sin 2sin B C A +=,则A 的最大值为()A .2π3B .π6C .π2D .π3【例2】在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2cos 0a B c +=,则tan C 的最大值是()A .1BCD【例3】锐角ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若2cos b a a C -=,则()A .2C A =B .A 的取值范围是(,)64ππC .2A C=D .2ca的取值范围是【例4】已知在锐角ABC 中,sin tan 1cos BA B=+.(1)证明:2B A =;(2)求tan tan 1tan tan B AA B-+⋅的取值范围.【题型专练】1.在锐角三角形ABC 中,角,,A B C 所对的边分别为,,a b c ,若cos cos b b A a B +=,则()A .2AB =B .64B ππ<<C .(ab∈D .22a b bc=+2.在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,ABC 的面积为S ,若222sin()SA C b a +=-,则1tan 3tan()A B A +-的取值范围为()A .,3⎡⎫+∞⎪⎢⎣⎭B .4,33⎡⎤⎢⎥⎣⎦C .4,33⎛⎫⎪ ⎪⎝⎭D .433⎡⎫⎪⎢⎪⎣⎭题型二:三角形边周长的最值问题【例1】已知ABC 的内角,,A B C 的对应边分别为,,a b c ,6c =,60B =︒,则b 的最小值为()A .3B .C .D .6【例2】设ABC 边a ,b ,c 所对的角分别为A ,B ,C ,若ABC 的面积为212c ,则以下结论中正确的是()A .b aa b+取不到最小值2B .b aa b+的最大值为4C .角C 的最大值为2π3D .23b a ca b ab+-的最小值为-【例3】已知ABC 的内角A 、B 、C 所对的边长分别为a 、b 、c ,且()()()2sin sin 2sin sin a A B c b B C -=-+,若2AD DB =,1CD = ,求:(1)求()cos A B +的值;(2)求2b a +的最大值.【例4】△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知cos2A +cos2B +2sin A sin B =1+cos2C .(1)求角C ;(2)设D 为边AB 的中点,△ABC 的面积为CD 的最小值.【例5】ABC 三角形的内角,,A B C 的对边分别为,,a b c ,(2)sin (2)sin 2sin a b A b a B c C -+-=(1)求C ∠;(2)已知6c =,求ABC 周长的最大值.【题型专练】1.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,满足sin 2sin sin A B C =,则c bb c+的最大值为______,此时内角A 的值为______2.在平面四边形ABCD 中,20AB AD ==,π3BAD ∠=,2π3BCD ∠=.(1)若5π12ABC ∠=,求BC 的长;(2)求四边形ABCD 周长的最大值.3.在条件:①2sin 30b A =,②3sin cos a b A a B =-,③22cos a b C c =+中任选一个,补充在下列问题中,然后解答补充完整的题目.已知a ,b ,c 分别为锐角ABC 的三个内角A ,B ,C 的对边,3b =,而且__________;(1)求角B 的大小;(2)求ABC 周长的最大值.4.ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C .(1)求A ;(2)若BC =3,求ABC 周长的最大值.5.已知a ,b ,c 分别为ABC △三个内角A ,B ,C 的对边,(cos 3)a C C b c +=+.(1)求角A ;(2)若5a =,求ABC △的周长的最大值.题型三:三角形边周长的最值范围问题【例1】在锐角ABC 中,内角,,A B C 所对的边分别为,,a b c .若1c =,π3B =,则a 的取值范围为_____________;sin sin AC 的最大值为__________.【例2】设ABC 的内角A ,B ,C 的对边分别为a ,b ,.c 已知6a =,2b =,要使ABC 为钝角三角形,则c 的大小可取__________(取整数值,答案不唯一).【例3】在锐角ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,且2cos 2a cC b-=.(1)求角B 的大小;(2)求ac的取值范围.【例4】平面四边形ABCD 中,75A B C ∠=∠=∠= ,AB =2,则AD 长度的取值范围________.【例5】某公园有一块等腰直角三角形的空地ABC ,其中斜边BC 的长度为400米,现欲在边界BC 上选择一点P ,修建观赏小径PM ,PN ,其中M ,N 分别在边界AB ,AC 上,小径PM ,PN 与边界BC 的夹角都是60︒,区域PMB 和区域PNC 内部种郁金香,区域AMPN 内种植月季花.(1)探究:观赏小径PM ,PN 的长度之和是否为定值?请说明理由;(2)为深度体验观赏,准备在月季花区城内修建小径MN ,当点P 在何处时,三条小径(PM ,PN ,MN )的长度之和最少?【例6】请从下面三个条件中任选一个,补充在下面的横线上,并解答.①()()()sin sin sin 0a c A C b a B +-+-=;②2cos 12cos C C C =+;③2sin sin 2sin cos B A C A -=.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若.(1)求角C ;(2)若4c =,求△ABC 周长的取值范围.【例7】在ABC 中,,a b c 为角,,A B C 所对的边,且cos cos 2B bC a c=-.(1)求角B 的值;(2)若b ,求2a c -的取值范围.【例8】在ABC 中,内角,,A B C 的对边分别为,,a b c ,且()()sin sin 2sin sin sin a A c C B b C B =-++.(1)求角A ;(2)若ABC 为锐角三角形,求)2b c a-的取值范围.【题型专练】1.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos cos 2B bC a c=-,则下列说法正确的有()A .3B π=B .若sin 2sinC A =,且ABC 的面积为ABC 的最小边长为2C .若b =时,ABC 是唯一的,则a ≤D .若b =ABC 周长的范围为2.锐角ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若2cos b a a C -=,则()A .2C A =B .A 的取值范围是(,)64ππC .2A C=D .2ca的取值范围是3.已知三角形ABC 中,内角A ,B ,C 所对边分别为a ,b ,c ,且(2)cos cos 0a c B b C --=.(1)求角B ;(2)若b =2,求a c +的取值范围.4.在锐角ABC 中,内角,,A B C 的对边分别为,,a b c ,且满足()22sin sin sin sin A B B A B -=+.(1)证明:2A B =.(2)求bc 的取值范围.5.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知()()2sin 2sin 2sin a c A c a C b B -+-=.(1)求B ;(2)若ABC 为锐角三角形,且2b =,求ABC 周长的取值范围.6.如图:某公园改建一个三角形池塘,90C ∠=︒,2AB =(百米),1BC =(百米),现准备养一批观赏鱼供游客观赏.(1)若在ABC 内部取一点P ,建造APC 连廊供游客观赏,如图①,使得点P 是等腰三角形PBC 的顶点,且2π3CPB ∠=,求连廊AP PC PB ++的长(单位为百米);(2)若分别在AB ,BC ,CA 上取点D ,E ,F ,并建行连廊,使得DEF 变成池中池,放养更名贵的鱼类供游客观赏.如图②,当DEF 为正三角形时,求DEF 的面积的最小值.7.在锐角ABC 中,角A ,B ,C 所对的边为a ,b ,c ,若sin sin cos cos 3sin B C A CA a c=+,且222sin sin sin sin sin A B C A B +-=⋅,则ba c +2的取值范围是()A .B .(6,C .D .2)。
解三角形的范围与最值问题

解三角形的范围与最值问题解三角形的范围与最值问题三角形是我们初中数学中常见的几何图形,解决三角形的范围和最值问题是三角函数的重要内容。
本文将从范围和最值两个方面进行探讨。
一、解三角形的范围问题解三角形的范围问题主要是要找到三角函数定义域中的解集,也就是角的取值范围。
1. 正弦函数正弦函数的定义域为全集R,一个完整的正弦函数周期为360度,即sinθ=sin(θ+360°)。
因此,对于任意θ∈R,正弦函数的值总是在[-1,1]之间取值。
2. 余弦函数余弦函数的定义域为全集R,一个完整的余弦函数周期为360度,即cosθ=cos(θ+360°)。
因此,对于任意θ∈R,余弦函数的值总是在[-1,1]之间取值。
3. 正切函数正切函数的定义域由其分母不为零的限定,即tanθ存在当且仅当cosθ≠0,即θ∈R\{nπ+π/2|n∈N}。
对于任意θ∈R,正切函数没有上下界,其取值范围为全集R。
4. 余切函数余切函数的定义域由其分母不为零的限定,即cotθ存在当且仅当sinθ≠0,即θ∈R\{nπ|n∈N}。
对于任意θ∈R,余切函数没有上下界,其取值范围为全集R。
以上是几个常见三角函数的定义域和取值范围,要求掌握它们的基本特征和计算方法。
二、解三角形的最值问题解三角形的最值问题主要是要找到三角函数在定义域中的最大值和最小值,其思路一般是利用极值点或者函数的单调性来进行分析。
1. 正弦函数和余弦函数的最值正弦函数和余弦函数的最值为1和-1,当且仅当θ=nπ(n∈N)时取到。
当θ非整数倍π时,正弦函数和余弦函数的值位于-1和1之间。
2. 正切函数和余切函数的最值正切函数和余切函数都没有最值,但它们在某些点上趋近于无穷或者负无穷,这些点称为函数的特殊点。
正切函数的特殊点为θ=nπ+π/2(n∈Z),此时tanθ趋近于正无穷或负无穷,取决于极限方向。
余切函数的特殊点为θ=nπ(n∈Z),此时cotθ趋近于正无穷或负无穷,取决于极限方向。
浅谈解三角形中的最值与取值范围的解题方法

浅谈解三角形中的最值与取值范围的解题方法摘要:解三角形是高考重点考查内容,其中涉及到最值与取值范围问题,对基础一般的学生来说难度相对大点,学生比较害怕,所以本文整理了解三角形中最值与取值范围的基本解题思路,即一般情况下除了求面积最大值是用基本不等式之外,其他求最值与取值范围,化简成角的的范围去控制,转化为某一变量的函数求解基本能把问题解决.关键词:基本不等式;最值;取值范围一、化成角,转化为某一变量的函数求解(一)用正弦定理化边为角,用正弦和差角公式求解.例1.角A,B,C所对的边分别为a,b,c,且△ABC的面积 ,a=2,且A [ ],则边c的取值范围为:______________.解:由正弦定理整理得:c=A+B+C= , B= , 又a=2,∴C=﹣A,故c=== +1,又,∴1≤tan A≤,∴ 1≤≤∴c∈[2, +1].,由题得,求边的范围,化成角的范围去控制,用正弦定理,正弦的和差角公式化简,结合三角函数的图像与性质即有界性可求得结果.例2.已知△ABC的内角A,B,C的对边分别为a,b,c,若A=2B,求的取值范围.解:由正弦定理,A=2B, A+B+C= ,得:=====,A∈(0,π),∴2B∈(0,π),且A+B=3B∈(0,π),所以B∈(0,),令t=cos B,则,则f(t)=,求导得:在恒成立,故f(t)在上单调递减,所以f(1)<f(t)<f(),即,故的取值范围为.求边的范围,还是先考虑用角去控制,用正弦定理把边化为角之后,用正弦的和差角公式化简,用换元法整理后,求导化简,判断函数单调性从而求得取值范围.(二)用三角关系及正弦和差角公式求解.例3.角A,B,C所对的边分别为a,b,c且△ABC为锐角三角形,B=,则cos A+cos B+cos C的取值范围为________.解:B=,A+B+C= ,∴C=﹣A,∴cos A+cos B+cos C=cos A+cos(﹣A)+cos=cos A﹣ cos A+sin A+= cos A+ sin A+=sin(A+)+,△ABC为锐角三角形,∴<A<,∴<A+<,∴<sin(A+)≤1,∴ +<sin(A+)+≤,故所求的取值范围为(, ].例4.(2019•新课标Ⅲ)△ABC的内角A、B、C的对边分别为a,b,c.已知a sin=b sin A.(1)求B;(2)若△ABC为锐角三角形,且c=1,求△ABC面积的取值范围.解:(1)略;(2)∴△ABC面积S=a•1sinB=a,由正弦定理:,因为△ABC为锐角三角形,所以,∴,,所以<a<2.故△ABC面积S=a的取值范围为(,).本道题求面积的取值范围,通过整理转化求边的取值范围,然后转化为角的范围来控制.(三)用三角形的三角关系及二倍角,辅助角公式化简.例5.已知△ABC中,内角A,B,C的对边分别为a,b,c,满足,,求△ABC周长l的取值范围.解:由正弦定理得,因为所以,,, .又,所以,.所以所求△ABC周长l=a+b+c的取值范围为.求三角形周长取值范围,已知一组对边对角,用正弦定理求出2R,结合正弦的和差角公式,辅助角公式,利用三角函数的有界性控制范围,这道题可以变为求周长的最值,思路一样,此处略.二、用基本不等式求解例6.在△ABC中,A=,△ABC的面积为2,则的最小值为()A. B. C. D.==bc=2,∴bc=8,解:由题得S△ABC∴=,令t=则t>0,上式==≥2﹣=,当且仅当2t+1=2,即t=,可得b=2c,又bc=8,解得c=4,b=2时,等号成立;∴的最小值为:.故选:C.求与角有关的范围,直接用角来控制,换元后用基本不等式求解,难在需要配凑能约去的分母部分.本题也可以把角化为边,用边求解,同样用换元方法也可以,此处略.例7.△ABC的内角A,B,C的对边分别为a,b,c,已知且B为锐角,b=1,则△ABC面积的最大值为_______.,解: A+B+C= , ,,, 0 故B= .又b=1,由余弦定理b2=a2+c2﹣2ac•cos B得,当且仅当a=c时,等号成立.最值与取值范围的解题方法有多种,但是对于基础比较比较差的学生来说,方法多不一定就是好的,特别对于普通历史班中,学生基础较弱,方法多了学生还难以选择,我们可以总结最适合学生解题的一种(或者两种)方法,让学生多练习一类方法,提高解题速度,所以解三角形中很多都是化成角,变为某一变量的函数去求解,需要注意定义域范围,求面积最大值就用基本不等式即可.参考文献:1.高磊.运用一题多变探究三角形中的最值与范围问题[J].数学通讯,2020年(12);49-52.2.罗礼明.解三角形中的最值与范围问题求解策略[J].数学通讯,2020年(7);50-56.第4页(共4页)。
解三角形中范围与最值问题教学设计

《解三角形中范围与最值问题》教学设计【课题名称】解三角形中范围与最值问题 【课型】微专题复习课 【授课班级】高三(15)班【教学目标】1.通过剖析高考题,利用正弦定理、余弦定理解决一类解三角形范围与最值问题,减少对解三角形最值的畏难情绪.2.通过递进式学习,体验解三角最值的过程,感悟不同方法的要领. 【教学重难点】解三角形范围与最值问题的方法归纳和选择.【考情分析】通过全国卷考点可以发现,解三角形有关的最值与范围问题是高考的重要考点,2011~2021年的高考题考查了9次,以在解答题的第一题或填空题压轴题的形式呈现,值得剖析此类问题. 【教学过程】1.分析思路,提炼方法 例题 (2014年全国Ⅰ卷16)已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,a =2,且(2)(sin sin )()sin b A B c b C +-=-,则ABC ∆面积的最大值为【学习导问】条件如何化简?角化边还是边化角?面积如何表示?二.灵动探究,变式演练2.类比迁移,“固化”思维变式探究1:变式探究1 在问题1的基础上,ABC∆周长的取值范围为【学习导问】求ABC∆周长,本质是求什么?周长问题是常见问题,学生思考后说思路由例题的二元函数bc,类比到b+c,思维难度不大,让学生都容易入手变式探究2:ABC∆中,3,60==BCA ,则ACAB2+的最大值为_______.【学习导问】与探究1对比,有何差异?选择什么解题方法更方便?尝试解题,遇到障碍,调整策略由探究1的b+c到探究2的2b+c,让学生体会系数的不同,优选的方法会不同,总结解题经验. 学生可以课后进一步阅读第4页.变式探究3:ABC∆中,3,30==BCA ,点 D满足DCBD2=,则线段 AD 的最大值为______.【学习导问】分析条件,从数入手?还是从形入手?学生尝试借助已有经验,从代数或几何直观的角度求AD的最大值从数的角度,可以建立AD与a,b,c的关系,进而转化222cb+;从形的角度,可以转化为圆弧上的动点到定点D的距离问题,体会数与形之美.三.互动评说,灵活应用3.小组合作,共同提升在中,CBCAAB2,2==,则S△ABC的最大值为( )A.22 B.23C.32D.23【学习任务】1.结合条件,将动态问题具体化2.小组合作,选择合适的方法加以解决.小组合作,相互交流,展示方法例题和变式探究解决了已知对边对角的一类最值与范围问题,如果将问题变为已知一边,另两边成倍数关系ABC∆的问题,考验学生的灵活应用能力. 同时渗透数学文化——阿波罗尼奥斯圆.四.课堂小结 总结解题方法与技巧学生总结学到的知识 归纳整理,提炼解题方法 五.作业布置 (一)课堂反馈练习1.在例题中,若ABC ∆是锐角三角形,则ABC ∆的面积的取值范围为_______;若b ≥a ,则2b ﹣c 的取值范围为_______. 2. ABC ∆中, 30=A ,点 D 满足DA CD 2= ,,则ABC ∆面积的最大值为______.3.ABC ∆中,2=AB ,622=-CB CA ,当角C 最大时,C tan 等于_______. (二)小组合作尝试每个小组利用一个条件和问题编拟一个题目,并解答,再和其它小组交流.条件:在ABC ∆中,,,a b c 分别为ABC ∆的三个内角,,A B C 的对边, 1. 3,3==c C π2.3,3=+=b a C π3.b a c 2,3==4.3,3=+=b a c问题:1.求△ABC 周长的取值范围2.求△ABC 面积的取值范围3.求△ABC 的AB 边的中线长的取值范围独立完成与小组合作完成二轮复习,教师多指导学生解题思路,规范书写,同时学生课后定量练习,解题方法归纳整理也必不可少3=BD【课后反思】___________________________________________________________________ _______________________________________________________________________________。
解三角形中的最值或范围问题

解法探究2023年12月上半月㊀㊀㊀解三角形中的最值或范围问题◉哈尔滨师范大学教师教育学院㊀李鸿媛㊀㊀摘要:解三角形的最值或范围问题是高考考查的热点内容之一,并且对解三角形的命题设计,不只局限于解三角形,而是通常利用正余弦定理㊁三角形面积公式等求解三角形的边㊁角㊁周长和面积的最值等问题.这类问题的解法主要是将边角互化转化为三角函数的最值问题,或利用基本不等式求最值.本文中对这类问题加以归类解析,以提升学生的解题能力.关键词:解三角形;最值;范围1与边有关的最值或范围问题例1㊀在әA B C 中,角A ,B ,C 的对边分别是a ,b ,c ,角B =π3,若a +c =4,则b 的取值范围为.解析:由a +c =4,B =π3,由余弦定理得b 2=a 2+c 2-2a c c o s B ,则b 2=(a +c )2-2a c -2a c c o s π3,即b 2=16-3a c .由a +c ȡ2a c ,得4ȡ2a c ,即0<a c ɤ4,于是4ɤb 2<16,所以2ɤb <4.评析:本题利用已知条件结合余弦定理,借助基本不等式求三角形边的取值范围[1],渗透了逻辑推理㊁数学运算等数学核心素养.例2㊀在әA B C 中,角A ,32B ,C 成等差数列,且әA B C 的面积为1+2,则A C 边长的最小值是.解析:由A ,32B ,C 成等差数列,得A +C =3B .又A +B +C =π,所以B =π4.设角A ,B ,C 所对的边分别为a ,b ,c ,则由S әA B C =12a c s i n B =1+2,可得a c =22+4.由余弦定理得b 2=a 2+c 2-2a c c o s B ,则b 2=a 2+c 2-2a c .又a 2+c 2ȡ2a c ,则b 2ȡ(2-2)a c ,即b 2ȡ(2-2)(22+4),所以b ȡ2(当且仅当a =c 时,等号成立).故A C 边长的最小值为2.评析:本题考查了学生对等差数列的概念㊁三角形内角和定理㊁三角形面积公式㊁余弦定理等的掌握情况.解题的关键是将余弦定理与不等式相结合,进而求出三角形一边的最值.2与角有关的最值或范围问题例3㊀在әA B C 中,角A ,B ,C 的对边分别是a ,b ,c ,若A ʂπ2,s i n C +s i n (B -A )=2s i n2A ,则角A 的取值范围为.解法一:在әA B C 中,C =π-(A +B ),则s i n C =s i n (A +B ),所以s i n (A +B )+s i n (B -A )=2s i n 2A ,即2s i n B c o s A =22s i n A c o s A .又A ʂπ2,则c o s A ʂ0,所以s i n B =2s i n A .由正弦定理,得b =2a ,则A 为锐角.又s i n B =2s i n A ɪ(0,1],于是可得s i n A ɪ(0,22],故A ɪ(0,π4].评析:解法一利用三角形内角和定理㊁两角和与差的正弦公式㊁正弦定理与三角函数的性质等知识,对学生的推理能力㊁运算能力和直观想象能力进行了考查.解法二:在әA B C 中,C =π-(A +B ),则s i n C =s i n (A +B ),所以s i n (A +B )+s i n (B -A )=2s i n 2A ,即2s i n B c o s A =22s i n A c o s A .又A ʂπ2,则c o s A ʂ0,所以s i n B =2s i n A .由正弦定理,可得b =2a .结合余弦定理,可以得到c o s A =b 2+c 2-a 22b c =12b 2+c 22b c ȡ212b 2 c 22b c =22,当且仅当c =22b 时,等号成立,故A ɪ(0,π4].评析:解法二考查了三角形内角和定理㊁两角和与差的正弦公式㊁正弦定理㊁余弦定理㊁基本不等式等知识.这种解题方法需要学生灵活运用两个正数的和与积的关系,充分体现学生的数学运算能力和数据分析能力.3与周长有关的最值或范围问题例4㊀әA B C 为锐角三角形,角A ,B ,C 所对的472023年12月上半月㊀解法探究㊀㊀㊀㊀边分别为a ,b ,c ,已知33b s i n C +c c o s B =a ,且c =2,求әA B C 周长的最大值.解析:由33b s i n C +c c o s B =a ,根据正弦定理,得33s i n B s i n C +s i n C c o s B =s i n A .由A =π-(B +C ),得s i n A =s i n (B +C ).所以33s i n B s i n C +s i n C c o s B =s i n (B +C ),即33s i n B s i n C =s i n B c o s C .由s i n B ʂ0,得33s i n C =c o s C .又c o s C ʂ0,所以t a n C =3.而0<C <π,则C =π3.根据正弦定理,得a =433s i n A ,b =433s i n B ,则a +b +c =433s i n A +433s i n B +2=433s i n A +433s i n (2π3-A )+2=433(32s i n A +32c o s A )+2=4s i n (A +π6)+2.由әA B C 为锐角三角形,可知0<A <π2,0<2π3-A <π2,ìîíïïïï解得π6<A <π2.所以π3<A +π6<2π3.因此32<s i n (A +π6)ɤ1.故23+2<4s i n (A +π6)+2ɤ6.因此әA B C 周长的最大值为6.评析:这道题解题的关键是利用正弦定理将边化为角,转化为求三角函数的最值问题[2],考查了逻辑推理和数学运算等核心素养.4与面积有关的最值或范围问题例5㊀әA B C 的内角A ,B ,C 所对的边分别是a ,b ,c ,已知2(c -a c o s B )=3b .(1)求角A ;(2)若a =2,求әA B C 面积的取值范围.解法一:(1)略.(2)由(1)知A =π6,又a =2,根据正弦定理,可得b =4s i n B ,c =4s i n C .由C =π-A -B =5π6-B ,得s i n C =s i n (5π6-B ).所以,S әA B C =12b c s i n A =14b c =4s i n B s i n C =4s i n B s i n(5π6-B )=4s i n B (12c o s B +32s i n B )=2s i n B c o s B +23s i n 2B =s i n2B -3c o s 2B +3=2s i n (2B -π3)+3.由0<B <5π6,得-π3<2B -π3<4π3,所以可知-32<s i n (2B -π3)ɤ1,故0<S әA B C ɤ2+3,即әA B C 面积的取值范围为(0,2+3].解法二:(1)略.(2)由(1)知A =π6,a =2,则S әA B C =14b c .由c o s A =b 2+c 2-a 22b c =b 2+c 2-42b c =32,可得b 2+c 2-4=3b c .又b 2+c 2ȡ2b c ,则0<b c ɤ42-3=4(2+3),所以0<S әA B C ɤ2+3.故әA B C 面积的取值范围为(0,2+3].评析:本题求解三角形面积的取值范围,解法一通过正弦定理将边转化为角,再利用三角函数的性质,求解三角形面积的取值范围.解法二先利用余弦定理,结合不等式b 2+c 2ȡ2b c ,求解b c 的取值范围,接着利用三角形面积S әA B C =12b c s i n A 求出面积的取值范围[3].这两种解法都考查了数学运算㊁逻辑推理等数学核心素养.数学这门学科需要学生具备较强的逻辑推理能力㊁运算能力㊁直观想象能力等.针对解三角形最值或范围问题,学生需要熟练掌握三角形的面积公式㊁同角三角函数的基本关系㊁正弦定理㊁余弦定理㊁基本不等式等知识,并能够进行综合运用.参考文献:[1]刘海涛.谈解三角形中有关求范围或最值的解题策略[J ].数理化学习(高中版),2022(7):3G7.[2]张露梅.解三角形中的范围或最值问题[J ].中学生数理化(高二数学),2021(11):35G36.[3]玉素贞.解三角形最值问题的两种转化策略分析[J ].考试周刊,2021(49):85G86.Z57。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
36 b2 c2 2bc cos
36 b2 c2 bc
3
(b c)2 3bc
144 (b c)2 (b c) 12 又 (b c) a
bc (b c)2 (b c时取“”) 2
(b c) (6,12]
-3bc (3) (b c)2
36
(b c)2
- 3bc
4 (b c)2
3 (b c)2
(b c)2
4
4
uuur uuur 例3:等腰ABC中,AB AC, AC BC 2 6
则ABC面积的最大值为__4___ .
uuur uuur 例3:等腰ABC中,AB AC, AC BC 2 6 则ABC面积的最大值为_____ .
A
解:
26
3
3
B (0, 2 )
3
B
(
,
5
)
6 66
sin(B ) (1 ,1]
62
b c (6,12]
例2:在ABC中,角A,B,C所对的边分别为a,b,c, 已知:3b 2a sin B (1)求角A的大小. (2)若a 6, 求b c的取值范围.
(2) a2 b2 c2 2bc cos A
(1)B
4
例1.(2016年北京卷) ABC中,角A,B,C所对的边分别是a,b,c, 已知a2 c2 b2 2ac, (1)求B的大小. (2)求 2 cos A cos C的最大值.
(2) 2 cos A cosC 2 cos A cos(3 A)
4
2 cos A cos3 cos A sin 3 sin A
例1.(2016年北京卷) ABC中,角A,B,C所对的边分别是a,b,c, 已知a2 c2 b2 2ac, (1)求B的大小. (2)求 2 cos A cos C的最大值.
解: a2 c2 b2 2ac
a2 c2 - b2 2ac
2ac cos B 2ac
cos B 2 2
则a的最小值为__3_
3.ABC中,三边a,b, c成等比数列,a,b,c所对的角分别是 A,B,C,
则sin B cos B的取值范围是 (___1_,__2__]._
课堂小结
1、解三角形中范围问题的解题方法: (1)函数法 (2)不等式法
2、数学思想方法:
思考题
平面四边形ABCD中,DA DC,CA CB,CA 2,CB 1,
3
b c 2R(sin B sin C)
4 3[sin B sin(2 - B)]
3
4 3(sin B 3 sin B 1 cos B)
2
2
4 3( 3 sin B 3 cos B)
2
2
4 3 3( 3 sin B 1 cos B)
2
2
12sin(B )
6
A , B C 2
已知:3b 2a sin B ,角A为锐角. (1)求角A的大小. (2)若a 6, 求b c的取值范围.
例2:在ABC中,角A,B,C所对的边分别为a,b,c,
已知:3b 2a sin B ,角A为锐角. (1)求角A的大小. (2)若a 6, 求b c的取值范围.
解:(1) 3b 2a sin B
h
B
C
D
x Ex
x
y
A
(0, b)
(-a,0)
(a,0)
B O(0,0) C
x
(- a, 0)
反思与总结:
练习 1.在ABC中,a=2,c=1则C的取值范围是 __(_0_,_6_].
2.ABC中,角A, B,C的对边分别为a,b, c,若a2 b2 c2 bc,且ABC的面积为 3 3 , 4
1
1
SΔ
ah 2
,
SΔ
ab sinC 2
(4)重要不等式:a2 b2 2ab
(5)基本不等式:a b 2
(6)变形:ab ( a b )2 2
a( b a 0,b 0)
例1.(2016年北京卷) ABC中,角A,B,C所对的边分别是a,b,c, 已知a2 c2 b2 2ac, (1)求B的大小. (2)求 2 cos A cos C的最大值.
则BD的取值范围是 __(_1_,1__ . 2]
A
2
B
1
D
C
谢谢!
微专题 解三角形中取值范围(最值)问题
学习目标
1.能利用正弦、余弦定理来解三角形; 2.掌握解决解三角形问题中的取值范围问题 的常规解法:函数法,不等式法等.
知识要点归纳
(1)正弦定理: (2)余弦定理:
a b c 2R sinA sinB sinC
c2=a2+b2-2abcosC
(3)三角形面积公式:
3 sin B 2sin Asin B
3 2sin A
sin A 3
2
A为锐角 A
3
例2:在ABC中,角A,B,C所对的边分别为a,b,c, 已知:3b 2a sin B ,角A为锐角. (1)求角A的大小. (2)若a 6, 求b c的取值范围.
(2)
a sin
A
6
sin
4
3 2R
4
4
2
2
2 cos A cos A sin A
B , A C A ( , )
2 cos A 2 sin A
4
44
2
2
当A ,即A 时,取得最大值为1.
42
4
sin(A )
4
例2:在ABC中,角A,B,C所对的边分别为a,b,c,