运筹学试题3

合集下载

运筹学考试试题

运筹学考试试题

运筹学考试试题一、选择题(每题2分,共10分)1. 线性规划的标准形式中,目标函数的系数应为:A. 正数B. 负数C. 任意非零数D. 零2. 在单纯形法中,如果某个非基变量的检验数大于零,则:A. 该变量不能进入基B. 该变量必须进入基C. 该变量的值可以增加D. 该变量的值可以减少3. 下列哪项不是运输问题的特殊矩阵?A. 平衡矩阵B. V型矩阵C. U型矩阵D. 散布矩阵4. 对于一个确定的线性规划问题,下列哪项是正确的?A. 只有一个最优解B. 有多个最优解C. 可能没有可行解D. 所有选项都是正确的5. 在动态规划中,状态转移方程的作用是:A. 确定初始状态B. 确定最终状态C. 确定中间状态D. 确定最优解二、简答题(每题5分,共20分)1. 简述单纯形法的基本步骤。

2. 解释什么是灵敏度分析,并说明其在运筹学中的应用。

3. 什么是网络流问题?请举例说明其在实际中的应用。

4. 描述动态规划的基本原理及其与分阶段决策过程的关系。

三、计算题(每题10分,共30分)1. 给定如下线性规划问题,请找出其最优解,并计算目标函数的最小值。

Maximize Z = 3x1 + 2x2Subject tox1 + 2x2 ≤ 103x1 + x2 ≤ 15x1, x2 ≥ 02. 考虑一个有三个仓库(A、B、C)和三个市场(D、E、F)的运输问题。

运输成本矩阵如下:| D E F ||--|--|--|A | 2 3 4 || B | 1 2 3 || C | 5 6 7 |每个仓库的供应量和每个市场的需求量如下:Supply/Demand: A: 10, B: 8, C: 5, D: 8, E: 10, F: 7使用北街角规则找出初始可行解。

3. 一个公司想要在三个城市(城市1、城市2、城市3)之间运输货物。

运输成本和需求量如下表所示:| 城市1 城市2 城市3 ||--|--|--|| 2 3 5 || 1 2 4 || 3 4 6 |需求量:城市1: 4, 城市2: 3, 城市3: 2请使用匈牙利算法解决此问题。

运筹试题

运筹试题

一、回答下面问题(每小题3分)1.在单纯形法计算中,如果不按最小比值规则确定换基变量,则在下一个解中一定会出现。

2. 原问题无界时,其对偶问题,反之,当对偶问题无可行解时,原问题。

3.已知y0为线性规划的对偶问题的最优解,若y0>0,说明在最优生产计划中对应的资源。

4.已知y0为线性规划的对偶问题的最优解,若y0=0,说明在最优生产计划中对应的资源。

5.已知线形规划问题的原问题有无穷多最优解,则其对偶问题的最优解一定是。

6.m个产地n个销地的产销平衡运输问题的模型其决策变量的个数是个;基变量的个数是个;决策变量的系数列向量的特点是。

7.用位势法求解运输问题,位势的含义是;行位势与列位势中有一个的取值是任意的,这是因为。

8.用割平面法求解整数规划,割平面割去了;但未割去。

9.按教材中的符号写出最大流问题的数学模型。

10.什么是截集,何谓最小截集?二、(10分)下表是用单纯形法计算到某一步的表格,已知该线性规划的目标函数值为z=14表1c j x1x2x3x4x3 x12acde11/51σj b-1f g(1)求a—g的值;(8分)(2)表中给出的解是否为最优解。

(2分)三、(每小题6分共12分)车间为全厂生产一种零件,其生产准备费是100元,存贮费是0.05元/天·个,需求量为每天30个,而且要保证供应。

(1)设车间生产所需零件的时间很短(即看成瞬时供应);(2)设车间生产零件的生产率是50个/天。

要求在(1)(2)条件下的最优生产批量Q*,生产间隔期t*和每天的总费用C*。

四、(18分)某公司下属甲、乙两个厂,有A原料360斤,B原料640斤。

甲厂用A、B两种原料生产x1,x2两种产品,乙厂也用A、B两种原料生产x3,x4两种产品。

每种单位产品所消耗各种原料的数量及产值、分配等如下工厂甲分配原料乙分配原料产品x1 x2x3 x4原料AB 8 46 101603305 810 4200310产值(百元) 4 3 3 41.求各厂最优生产计划;(12分)2.问公司能否制定新的资源分配方案使产值更高?(6分)五、(10分)已知有六个村庄,相互间道路的距离如图所示,已知各村庄的小学生数为:A村50人,B村40人,C村40人,D村60人,E村50人,F村90人。

河北1233工程大学运筹学试题及答案

河北1233工程大学运筹学试题及答案

河北工程大学~学年第学期期末考试试卷题号一二三四五六七八九十总分评分评卷教师一、写出下列线性规划问题的对偶问题:(8 分)MIN Z5X1 6 X 27 X 3X15X 23X315约束条件5X1 6X2 10X3 20X1X 2X35X10, X20, X 3不受限制二、用图解法求解下列线性规划问题:(10 分)MAX Z10X15X 23X14X 29约束条件 5 X12X 28X1, X20三、用沃戈法求下列运输问题的初始基本可行解(12 分)销地甲乙丙丁产量产地1412411162210391038511622销量814121448四、用对偶单纯形法求解线性规划问题:(12 分)MIN Z 4X112X218X3X13X33约束条件2X2 2X35X130五、某公司安排五名工作人员到五个不同岗位上工作。

但必须对上岗人员进行培训。

由于五名工作人员的经历不同,文化水平也有差异,故所需培训时间也不相同。

如下表所示培工训B1B2B3B4B5时作人间员A7598111A29127119A854693A736964A5467511问如何分配这五名人员的工作,使总的培训时间最短(12 分)六、若某产品中有一外购件,年需求量为10000件,单价为100 元。

由于该件可在市场采购,故定货提前期为零,并设不允许缺货。

已知每组织一次采购需2000 元,每年每件的存贮费为该件单价的10%,试求经济定货批量及每年的最小存贮加上采购的总费用。

(10 分)七、、某工程项目各项活动的逻辑关系如表所示,试绘制网络图,并确定关键路线。

(12 分)工序名称紧前工序花费时间(天)A—3B—2C—2D—2E B2F C2G F、 D3H A、E、G4八、已知线性规划问题:( 12 分)MAX Z 2X1X2X3X1X2X36约束条件X12X24X1,X2,X30用单纯形法求解得最终单纯形表如下表所示:X1X X X X 2345X61111O1X51003111 C-Z-3-1-2j j试说明分别发生下列变化时,新的最优解是什么( 1)目标函数变为 MAX Z= 2X123+3X +X6 3(2)约束条件右项由变为44九、已知赢得矩阵为1 7 13A0 29 试用图解法求解此对策。

《运筹学》试题及答案大全(三)

《运筹学》试题及答案大全(三)

《运筹学》试题及答案(代码:8054)一、填空题(本大题共8小题,每空2分,共20分)1.线性规划闯题中,如果在约束条件中出现等式约束,我们通常用增加_人工变量__的方法来产生初始可行基。

2.线性规划模型有三种参数,其名称分别为价值系数、_技术系数__和_限定系数__。

3.原问题的第1个约束方程是“=”型,则对偶问题相应的变量是_无非负约束(或无约束、或自由__变量。

4.求最小生成树问题,常用的方法有:避圈法和 _破圈法__。

5.排队模型M/M/2中的M,M,2分别表示到达时间为__负指数_分布,服务时间服从负指数分布和服务台数为2。

6.如果有两个以上的决策自然条件,但决策人无法估计各自然状态出现的概率,那么这种决策类型称为__不确定__型决策。

7.在风险型决策问题中,我们一般采用__效用曲线_来反映每个人对待风险的态度。

8.目标规划总是求目标函数的_最小__信,且目标函数中没有线性规划中的价值系数,而是在各偏差变量前加上级别不同的_优先因子(或权重)___。

二、单项选择题(本大题共l0小题,每小题3分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

多选无分。

9.使用人工变量法求解极大化线性规划问题时,当所有的检验数在基变量中仍含有非零的人工变量,表明该线性规划问题【 D 】A.有唯一的最优解 B.有无穷多最优解C.为无界解 D.无可行解10.对偶单纯形法解最大化线性规划问题时,每次迭代要求单纯形表中【 D 】A.b列元素不小于零 B.检验数都大于零C.检验数都不小于零 D.检验数都不大于零11.已知某个含10个结点的树图,其中9个结点的次为1,1,3,1,1,1,3,1,3,则另一个结点的次为【 A 】A.3 B.2C.1 D.以上三种情况均有可能12.如果要使目标规划实际实现值不超过目标值。

则相应的偏离变量应满足【 B 】13.在运输方案中出现退化现象,是指数字格的数目【 C 】A.等于 m+n B.等于m+n-1C.小于m+n-1 D.大于m+n-114.关于矩阵对策,下列说法错误的是【 D 】A.矩阵对策的解可以不是唯一的C.矩阵对策中,当局势达到均衡时,任何一方单方面改变自己的策略,都将意味着自己更少的赢得和更大的损失D.矩阵对策的对策值,相当于进行若干次对策后,局中人I的平均赢得或局中人Ⅱ的平均损失值【 A 】A.2 8.—l C.—3 D.116.关于线性规划的原问题和对偶问题,下列说法正确的是【 B 】A.若原问题为元界解,则对偶问题也为无界解B.若原问题无可行解,其对偶问题具有无界解或无可行解c.若原问题存在可行解,其对偶问题必存在可行解D.若原问题存在可行解,其对偶问题无可行解17.下列叙述不属于解决风险决策问题的基本原则的是【 C 】A.最大可能原则 B.渴望水平原则C.最大最小原则 D.期望值最大原则18.下列说法正确的是【 D 】A.线性规划问题的基本解对应可行域的顶点也必是该问题的可行解D.单纯形法解标准的线性规划问题时,按最小比值原则确定换出基变量是为了保证迭代计算后的解仍为基本可行解三、多项选择题(本大题共5小题,每小题2分,共l0分)在每小题列出的四个备选项中至少有两个是符合题目要求的,请将其代码填写在题后的括号内。

《运筹学》试题及答案(三)

《运筹学》试题及答案(三)

《运筹学》试题及答案(A卷)一、单项选择题(从下列各题四个备选答案中选出一个正确答案,答案选错或未选者,该题不得分。

每小题1分,共10分)1.线性规划具有唯一最优解是指A.最优表中存在常数项为零B.最优表中非基变量检验数全部非零C.最优表中存在非基变量的检验数为零D.可行解集合有界2.设线性规划的约束条件为则基本可行解为A.(0, 0, 4, 3)B.(3, 4, 0, 0)C.(2, 0, 1, 0)D.(3, 0, 4, 0)3.则A.无可行解B.有唯一最优解mednC.有多重最优解D.有无界解4.互为对偶的两个线性规划, 对任意可行解X 和Y,存在关系A.Z > W B.Z = WC.Z≥W D.Z≤W5.有6 个产地4个销地的平衡运输问题模型具有特征A.有10个变量24个约束B.有24个变量10个约束C.有24个变量9个约束D.有9个基变量10个非基变量6.下例错误的说法是A.标准型的目标函数是求最大值B.标准型的目标函数是求最小值C.标准型的常数项非正D.标准型的变量一定要非负7. m+n-1个变量构成一组基变量的充要条件是A.m+n-1个变量恰好构成一个闭回路B.m+n-1个变量不包含任何闭回路C.m+n-1个变量中部分变量构成一个闭回路D.m+n-1个变量对应的系数列向量线性相关8.互为对偶的两个线性规划问题的解存在关系A.原问题无可行解,对偶问题也无可行解B.对偶问题有可行解,原问题可能无可行解C.若最优解存在,则最优解相同D.一个问题无可行解,则另一个问题具有无界解9.有m个产地n个销地的平衡运输问题模型具有特征A.有mn个变量m+n个约束…m+n-1个基变量B.有m+n个变量mn个约束C.有mn个变量m+n-1约束D.有m+n-1个基变量,mn-m-n-1个非基变量10.要求不超过第一目标值、恰好完成第二目标值,目标函数是A.)(m in22211+-+++=ddpdpZB.)(m in22211+-+-+=ddpdpZC.)(m in22211+---+=ddpdpZD.)(m in22211+--++=ddpdpZ二、判断题(你认为下列命题是否正确,对正确的打“√”;错误的打“×”。

运筹学期末考试试题

运筹学期末考试试题

运筹学期末考试试题一、选择题(每题2分,共20分)1. 以下哪项不是线性规划问题的基本特征?A. 线性目标函数B. 线性约束条件C. 非线性约束条件D. 可行域2. 单纯形法中,如果某个基解的系数矩阵的某一列的所有元素都是负数,这意味着什么?A. 该基解是最优解B. 该基解不可行C. 该基解是退化解D. 该基解是可行解但不是最优解3. 在网络流问题中,若某条路径的流量超过了其容量限制,这将导致:A. 问题无解B. 问题有无穷多解C. 问题有唯一解D. 问题有多个可行解4. 动态规划用于解决的问题通常具有以下哪种特性?A. 线性性B. 递归性C. 非线性性D. 随机性5. 以下哪个算法不是用于解决整数规划问题的?A. 分支定界法B. 割平面法C. 单纯形法D. 贪心算法二、简答题(每题10分,共30分)1. 解释什么是敏感性分析,并简述其在运筹学中的应用。

2. 描述网络流问题中的最小费用流问题,并给出一个简单的实例。

3. 简述如何使用动态规划解决资源分配问题。

三、计算题(每题25分,共50分)1. 给定以下线性规划问题,求解其最优解:\[ \text{Maximize } Z = 3x_1 + 2x_2 \]\[ \text{Subject to: } \]\[ 2x_1 + x_2 \leq 10 \]\[ x_1 + 3x_2 \leq 15 \]\[ x_1, x_2 \geq 0 \]2. 考虑一个生产问题,工厂需要生产两种产品A和B。

产品A的生产需要机器X工作2小时,机器Y工作1小时,利润为每单位500元。

产品B的生产需要机器X工作1小时,机器Y工作3小时,利润为每单位300元。

机器X每天最多工作8小时,机器Y每天最多工作12小时。

如何安排生产计划以最大化利润?四、案例分析题(共30分)1. 某公司计划在不同地区开设新的销售点,需要考虑运输成本、市场需求和竞争对手的情况。

请使用运筹学方法分析该公司应该如何决定销售点的位置和数量,以实现成本最小化和市场覆盖最大化。

《运筹学》试题

《运筹学》试题

《运筹学》试题一、名词解释(20分)对偶可行基影子价格灵敏度分析平衡运输问题不平衡运输问题纯整数规划0—1规划问题混合整数规划网络最大流问题二、选择题(20分)1、我们可以通过()来验证模型最优解。

A观察B应用C实验D调查2、建立运筹学模型的过程不包括()阶段。

A观察环境B数据分析C模型设计D模型实施3、建立模型的一个基本理由是去揭晓那些重要的或有关的()A数量B变量 C 约束条件 D 目标函数4、模型中要求变量取值()A可正B可负C非正D非负5、运筹学研究和解决问题的效果具有()A连续性 B 整体性 C 阶段性 D 再生性6、如果线性规划问题有可行解,那么该解必须满足()A所有约束条件 B 变量取值非负 C 所有等式要求 D 所有不等式要求7、如果线性规划问题存在目标函数为有限值的最优解,求解时只需在()集合中进行搜索即可得到最优解。

A基 B 基本解 C 基可行解 D 可行域8、线性规划问题是针对()求极值问题.A约束B决策变量 C 秩D目标函数9、如果第K个约束条件是“≤”情形,若化为标准形式,需要()A左边增加一个变量B右边增加一个变量C左边减去一个变量D右边减去一个变量10、若某个bk≤0, 化为标准形式时原不等式()A不变 B 左端乘负1 C 右端乘负1 D 两边乘负1三、填空题(20分)1、线性规划问题具有对偶性,即对于任何一个求最大值的线性规划问题,都有一个求()的线性规划问题与之对应,反之亦然。

2、在一对对偶问题中,原问题的约束条件的右端常数是对偶问题的()。

3、如果原问题的某个变量无约束,则对偶问题中对应的约束条件应为()。

4、对偶问题的对偶问题是()。

5、若原问题可行,但目标函数无界,则对偶问题()。

6、在某线性规划问题中,已知某资源的影子价格为Y1,相应的约束常数b1,在灵敏度容许变动范围内发生Δb1的变化,则新的最优解对应的最优目标函数值是()(设原最优目标函数值为Z﹡)7、若某约束常数bi的变化超过其容许变动范围,为求得新的最优解,需在原最优单纯形表的基础上运用()求解。

物流运筹学试题三及答案

物流运筹学试题三及答案

物流运筹学试题三及答案1.已知A 、B 两个人对策时对A 的赢得矩阵如下,求双方各自的最优策略及对策值。

(1)963564743--⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(5分) (2) 176435024⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦--(5分)2.用优超法简化计算以下矩阵对策。

(7分)3403050259739594687660883A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦3.某小城市有两家超市互相竞争,超市A 有三个广告策略,超市B 也有三个广告策略。

已经算出当双方采取不同的广告策略时,A 方所占市场份额增加的百分比数如下:302020214A ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦则此对策问题表示为一个线性规划模型,并用单纯形法求解此对策。

(8分)4.某理发店只有一名理发师,来理发的顾客按泊松分布到达,平均每小时4人,理发时间服从负指数分布,平均需6小时,求:(1)理发店空闲时间的概率; (2)店内有3个顾客的概率; (3)店内至少有1个顾客的概率;(4)在店内顾客平均数;(5)在店内平均逗留时间;(6)等待服务的顾客平均数;(7)平均等待服务时间;(8)必须在店内消耗15分钟以上的概率。

(15分)5.一个计算中心有三台电子计算机,型号和计算能力都是相同的。

任何时间在中心的使用人数等于10。

对每一个使用人,书写(和穿孔)一个程序的时间是服从于平均率为每小时0.5的指数分布。

每当完成程序后,就直接送到中心上机。

每一个程序的计算时间是服从于平均率每小时为2的指数分布。

假定中心是全日工作的,并略去停机时间的影响,求以下各点。

(1)中心收到一个程序时不能立即执行计算的概率;(2)直到由中心送出一个程序为止的平均时间;(3)等待上机的程序的平均个数;(4)空闲的计算机的期望台数;(5)计算机中心空闲时间的百分率;(6)每台计算机空闲时间的平均百分率。

(15分)6.有一种游戏:任意掷一枚钱币,先将出现的正面或反面告诉甲。

甲有两种选择:(1)认输,付给乙一元;(2)打赌,只要甲认输,就从新开始下一局。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《运筹学》试题3一.(10分)用共轭梯度法求下列无约束非线性规划Min Z=22215x x + 取初始可行点T x )2,2(0=,终止误差为610- 二.(15分)(1)叙述(MP )问题的迭代法的一般步骤;(2)写出可行下降方向的代数条件,并证明; (3)可行下降方向代数条件的几何解释。

三.(30分)已知线性规划问题: 44332118max x c x c x x Z +++-=⎪⎩⎪⎨⎧=≥+≤--+-≤+++)4,3,2,1(056543153243214321j x x x x x x x x x stj λ求:(1)以21,x x 为基变量列出单纯形表(当)1时=λ。

(2)以21,x x 为最优基,确定问题最优解不变时43,c c 的变化范围。

(3)保持最优基不变时的λ的变化范围。

(4)增加一个新变量,其约束条件中系数向量为T)3,2(,目标函数中系数为k c ,求问题最优解不变时的k c 取值范围。

四.(15分)用动态规划方法求解某机器可以在高低两种不同的负荷下进行生产,在高负荷下进行时,产品的年产量g 和投入的机器数量x 的关系为x x g 8)(=,机器的完好率为0.4,在底负荷下生产产品年产量和投入的机器数量关系为y y h 6)(=,相应的机器完好率为0.9。

设开始时完好机器数量为1000台,要求制定一个2年计划,在每年开始时决定如何重新分配完好的机器在两种不同负荷下生产的数量使2年内产品总产量达到最高。

五.(15分)如下表已知三个产地A 、B 、C ,四个销售地点D 、E 、F 、G ,产销量及单位运价表如下表,(1) 求使总运费最小的调运方案,(2) C 32为何值时有无穷多最优调运方案? (3) C 33为何值时最优调运方案不变?六.(15分)某公司打算在三个不同的地区设置5个销售点,根据市场预测,在不同地区设置不同数量的销售点,每月可得的利润如下表,试问在各地区应如何设置销售点,才能使每《运筹学》试题参考答案及评分标准如解题过程正确数据错可给50——90%的分数一.)10,2(),()(2121x x x f x f x f T=∂∂∂∂=∇ T x f )20,4()(0=∇ T d )20,4(0-= T d x )202,42(00λλλ--=+2200)202(5)42()(λλλ-+-=+d x f 0='f 得 252/260=λ T d x x )0635.0,587.1(0001-=+=λ--------------------------------------------------------4分 T x x x f )635.0,17.3()10,2()(211-==∇02548.0)()(2210=∇∇=x f x f γ()Td x f d 125.0,3019.3)(0011-=+-∇=γ2211)125.00635.0(5)3019.36.1()(λλλ+-+-=+d x f令0=λd df得=1λ0.4855 1112d x x λ+==(0,0)T -------------------10分二.(1)迭代法一般步骤:①. 选取初始点0x ,0:=k ②. 构造搜索方向k p ③. 根据k p 方向确定k λ ④. 令k k k k p x x λ+=+1 ⑤. 若1+k x已满足某终止条件,停止迭代,输出近似最优解1+k x。

否则令1:+=k k ,转向第②步。

--------------------------------------------5分(2)可行方向下降的代数条件:0)(>∇p x g T i ,)(x I i ∈0)(<∇p x f T 。

-----------------------------------7分由泰勒公式:||)(||)()()(p p x g x g p x g T i i i λολλ+∇+=+ 当x 为)(x g i 的积极约束时,有0)(=x g i 。

只要0>λ足够小,)(p x g i λ+和p x g T i )(∇λ同号,于是当0)(>∇p x g T i 时有0)(≥+p x g i λ )(x I i ∈。

当x 为)(x g i 的非积极约束时,有0)(>x g i 。

由)(x g i 的连续性,当0>λ足够小时,由保号性知 0)(≥+p x g i λ )(x I i ∉。

所以只要 0)(>∇p x g T i ,)(x I i ∈就可保证0)(≥+p x g i λ,于是p 为x 点处的一个可行方向。

称0)(>∇p x g T i ,)(x I i ∈ 为p 在点x 处是可行方向的代数条件。

--------------------------------------------------------------------------------------------9分由泰勒公式:||)(||)()()(p p x f x f p x f T λολλ+∇+=+。

当λ足够小时,只要0)(<∇p x f T ,有)()(x f p x f <+λ。

称0)(<∇p x f T 为p 在x 点处的一个下降方向的代数条件。

----------------------------------------------------------------------------------------11分 可行下降方向代数条件的几何解释: 对于 0)(0)(>⋅-∇⇒<∇p x f p x f T T ,由0cos ||||||)(||)(>-∇=⋅∇-θp x f p x f T T 0900<<⇒θ,即p 与该点处目标函数负梯度向量之间夹角为锐角。

同理 0)(>∇p x g T i 说明p 与该点处积极约束的梯度向量之间的夹角成锐角。

因此,若p ∃,使得p 和T x f )(∇-及T i x g )(∇均为锐角,则p 为可行下降方向。

-----------------------------------------------------------------------------15分 三. (1)(2) 053≤-c ,084≤-c -----------------------------------------------------------16分(3)010/55/551510/110/35/15/25151≥⎪⎪⎭⎫⎝⎛+-=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛+-λλλλB2550≤≤-∴λ--------24分(4)0161≤-=--k k B k c P B c c 16≤∴k c ---------------- ----------30分四. 2年划分2个阶段,k x 表示K 个阶段高负荷生产的设备台数k s 表示第K 个阶段完好的设备台数 ),(9.04.01k k k k x s x s -+=+{}0)(,)()(68)(33110m ax =+-+=++≤≤s f s f x s x s f k k k k k s x k k kk -------------------7分2=k时,}{222222022,8)(68)(m ax 22s x s x s xs f s x ==-+=≤≤1=k 时}{0,2.138)(68)(112111011m ax 11==+-+=≤≤x s s x s x s f s x01=x ,13200)1000(,90012===f z x 为最优解和最优值-----------15分五.(1)用最小元素法求得初始基本可行解为20012=x , 30013=x ,20023=x ,40024=x ,30031=x ,034=x81953,2431342323121=+=+=+=+=+=+v u v u v u v u v u v u 得 73101204321321=======v v v v u u u 因为1222222-=--=c r 得闭回路 12132322x x x x得调整后基本可行解为20022=x , 50013=x ,023=x ,40024=x ,30031=x ,034=x由位势法知为最优解。

----------------------------------------------------------------------10分 (2)0113232=--=c r 知232=c 时有无穷多最优解-------------------------- ----15分 (3)因为33x 不是基变量,所以0133333≥--=c r 即433≥c 时最优解不变。

---20分六. 有三个变量划分三个阶段,k x 表示K 个阶段的销售点个数k s 表示第K 个阶段到第四个阶段的销售点个数之和 k k k k k s x x s s ≤≤-=+0,1{}0)(,)()()(44110m ax =+=++≤≤s f s f x g s f k k k k s x k k kk ---------------------------------5分2=k 时最优解为)3,1,1(*=x ,最优值为34------------------------------------------------15分。

相关文档
最新文档