磁盘阵列技术

合集下载

容灾备份技巧:磁盘阵列与存储网络配置(一)

容灾备份技巧:磁盘阵列与存储网络配置(一)

容灾备份技巧:磁盘阵列与存储网络配置引言:随着信息技术的快速发展,数据对于企业的重要性日益凸显。

因此,对数据的安全性和可靠性的要求也越来越高。

在面对日益频繁的数据故障和灾难时,一套完善的容灾备份方案显得尤为重要。

本文将重点介绍容灾备份技巧中的磁盘阵列与存储网络配置。

一、磁盘阵列磁盘阵列是指将多个独立的硬盘通过特定的方式连接在一起,形成一个逻辑上的整体。

它具有提高性能和可靠性的优势,可实现数据的快速读写和故障容错。

1. RAID技术RAID(Redundant Array of Independent Disks),即独立磁盘冗余阵列技术,是常用的磁盘阵列技术之一。

它将多个硬盘组织成一个逻辑上的整体,并通过数据分布和冗余技术实现数据的读写性能提升和数据的容错能力。

2. RAID级别RAID技术可以根据不同的要求选择不同的RAID级别。

常见的RAID级别包括RAID 0、RAID 1、RAID 5等。

RAID 0通过数据分布实现读写性能的提升,但无冗余机制;RAID 1通过数据镜像实现数据的冗余备份,但无读写性能提升;RAID 5通过数据分布和奇偶校验实现读写性能提升和数据的容错能力。

3. 热备份和冷备份热备份和冷备份是磁盘阵列中常用的两种备份方式。

热备份指在设备运行期间实时进行备份,对业务的影响较小,但要求硬件设备支持热插拔。

冷备份指在设备停机期间进行备份,对业务有一定的影响,但不要求硬件设备支持热插拔。

二、存储网络配置存储网络配置是容灾备份技巧中另一个重要的方面。

在大规模数据存储和备份中,光纤通道和以太网是常用的存储网络技术。

1. 光纤通道光纤通道是一种基于光纤传输的高速存储网络技术,具有低延迟、高带宽和高可靠性的特点。

它能够满足大规模数据的高速传输和备份需求,并支持多路径冗余、故障自愈等功能。

2. 以太网以太网是一种常见的局域网通信技术,也可以用于存储网络。

采用以太网作为存储网络配置能够降低成本,并支持IP协议,方便管理和监控。

RAID磁盘阵列

RAID磁盘阵列
这一设计思想很快被接受,从此RAID技术得到了广泛应用,数据存储进入了更快速、更安全、更廉价的新时 代。
磁盘阵列对于个人电脑用户,还是比较陌生和神秘的。印象中的磁盘阵列似乎还停留在这样的场景中:在宽 阔的大厅里,林立的磁盘柜,数名表情阴郁、早早谢顶的工程师徘徊在其中,不断从中抽出一块块沉重的硬盘, 再插入一块块似乎更加沉重的硬盘……终于,随着大容量硬盘的价格不断降低,个人电脑的性能不断提升,IDERAID作为磁盘性能改善的最廉价解决方案,开始走入一般用户的计算机系统。
RAID磁盘阵列
独立冗余磁盘阵列
01 主要目的
03 发展 05 技巧
目录
02 分类 04 规范 06 磁盘阵列
基本信息
RAID是英文Redundant Array of Independent Di简单的 说,RAID是一种把多块独立的硬盘(物理硬盘)按不同的方式组合起来形成一个硬盘组(逻辑硬盘),从而提供 比单个硬盘更高的存储性能和提供数据备份技术。
RAID 2:将数据条块化地分布于不同的硬盘上,条块单位为位或字节,并使用称为“加重平均纠错码(海明 码)”的编码技术来提供错误检查及恢复。这种编码技术需要多个磁盘存放检查及恢复信息,使得RAID 2技术实 施更复杂,因此在商业环境中很少使用。
技巧
技巧
从技术的角度来看,RAID恢复服务提供商不仅需要具备包括原先的5种(或者6种,如果包括RAID 0或者无 RAID保护)基本的RAID阵列级别或者技术的能力,而且需要具备RAID 5E、RAID 5EE、RAID 6、RAID 10、RAID 50、RAID 51、RAID 60以及RAID ADG等其它级别的能力。这些RAID级别可以利用多个连接和磁盘驱动器的类型 以及各种各样的以太连接。技术挑战之外就是由服务器和存储系统厂商以及有些介质制造商带来的RAID技术的变 化。

磁盘阵列各种RAID原理磁盘使用率

磁盘阵列各种RAID原理磁盘使用率

磁盘阵列各种RAID原理磁盘使用率RAID(Redundant Array of Inexpensive Disks)是一种磁盘阵列,可以将多块普通的磁盘拼接在一起形成更高效、可靠的数据存储系统。

它可以通过将存储空间划分成若干块虚拟磁盘来提高磁盘访问性能。

存储空间划分的方式共分为9种,分别是RAID0,RAID1,RAID2,RAID3,RAID4,RAID5,RAID6,RAID7和RAID10,其中RAID 0、RAID 1、RAID 5和RAID 10是最常用的四种RAID级别。

RAID0是把多块磁盘组合成一个虚拟磁盘,通过分割、重组来提升数据的存取速度,这种RAID把多块磁盘拼接在一起形成一个虚拟磁盘,不提供数据冗余,磁盘使用率比较高,但是其可靠性较低。

RAID1是把多块相同容量的磁盘拼接在一起形成一个虚拟磁盘,不同的是,这种RAID方式采用镜像技术,每个磁盘上的数据都会与另一块磁盘上的数据完全相同,提供了更好的可靠性,磁盘使用率较低,只有一半的磁盘空间可以使用。

RAID5是一种磁盘阵列中比较常用的RAID级别,它将磁盘阵列中的磁盘分成两种,一般磁盘和校验磁盘,这样就可以在一个虚拟磁盘上存储大量数据,任一块磁盘出现问题时,系统可以通过校验磁盘上的冗余数据来恢复受损的数据,并且RAID5提供了比RAID1更高的数据存储空间,磁盘使用率也比RAID1更高。

磁盘阵列原理

磁盘阵列原理

磁盘阵列原理磁盘阵列(RAID)是一种通过将多个磁盘驱动器合并成一个逻辑单元来提供数据冗余和性能提升的技术。

磁盘阵列利用磁盘级别的冗余来提供数据的备份和恢复能力,并通过将数据分布在多个磁盘上来提高数据访问速度。

在本文中,我们将探讨磁盘阵列的原理以及它是如何工作的。

1. 磁盘阵列的概念和分类磁盘阵列是一种将多个独立的磁盘驱动器组合在一起,形成一个逻辑单元的技术。

根据不同的需求,磁盘阵列可以被划分为多个级别,常见的包括RAID 0、RAID 1、RAID 5、RAID 6等级别。

每个级别都有其特定的数据保护和性能特性。

2. RAID 0RAID 0将数据分块并分布到多个磁盘上,以提高数据的读写性能。

它通过在多个磁盘上同时读取和写入数据来实现并行访问。

然而,RAID 0没有冗余机制,一旦其中一个磁盘损坏,所有数据将会丢失。

3. RAID 1RAID 1通过将数据复制到多个磁盘上来提供冗余能力。

每个数据块都会被复制到两个或更多的磁盘上,以确保数据的完整性。

当其中一个磁盘发生故障时,系统可以从其他磁盘中恢复数据。

4. RAID 5RAID 5采用分布式奇偶校验的方式来提供冗余能力。

它将数据分块并分布到多个磁盘上,同时计算奇偶校验信息并存储在不同的磁盘上。

当其中一个磁盘损坏时,系统可以通过计算奇偶校验信息来恢复数据。

5. RAID 6RAID 6在RAID 5的基础上增加了第二个奇偶校验信息。

这意味着RAID 6可以容忍两个磁盘的故障,提供更高的数据可靠性。

6. 磁盘阵列的工作原理磁盘阵列通过控制器来管理和操作多个磁盘驱动器。

控制器负责将数据分块并分布到多个磁盘上,同时监测磁盘的状态。

当磁盘发生故障时,控制器可以根据不同的级别(如RAID 1、RAID 5等)来执行数据的恢复操作。

7. 磁盘阵列的优势和应用磁盘阵列提供了数据的冗余和性能提升能力,可以提高数据的可靠性和访问速度。

它广泛应用于服务器、存储系统、数据库等需要高可靠性和高性能的场景。

raid技术(磁盘阵列)

raid技术(磁盘阵列)

磁盘阵列(Disk Array)1.为什么需要磁盘阵列如何增加磁盘的存取(access)速度,如何防止数据因磁盘的故障而失落及如何有效的利用磁盘空间,一直是电脑专业人员和用户的困扰;而大容量磁盘的价格非常昂贵,对用户形成很大的负担。

磁盘阵列技术的产生一举解决了这些问题。

过去十年来,CPU的处理速度增加了五十倍有多,内存(memory)的存取速度亦大幅增加,而数据储存装置--主要是磁盘(hard disk)--的存取速度只增加了三、四倍,形成电脑系统的瓶颈,拉低了电脑系统的整体性能(throughput),若不能有效的提升磁盘的存取速度,CPU、内存及磁盘间的不平衡将使CPU及内存的改进形成浪费。

目前改进磁盘存取速度的的方式主要有两种。

一是磁盘快取控制(disk cache controller),它将从磁盘读取的数据存在快取内存(cache memory)中以减少磁盘存取的次数,数据的读写都在快取内存中进行,大幅增加存取的速度,如要读取的数据不在快取内存中,或要写数据到磁盘时,才做磁盘的存取动作。

这种方式在单工环境(single-tasking environment)如DOS之下,对大量数据的存取有很好的性能(量小且频繁的存取则不然),但在多工(multi-tasking)环境之下(因为要不停的作数据交换(swapping)的动作)或数据库(database)的存取(因为每一记录都很小)就不能显示其性能。

这种方式没有任何安全保障。

其二是使用磁盘阵列的技术。

磁盘阵列是把多个磁盘组成一个阵列,当作单一磁盘使用,它将数据以分段(striping)的方式储存在不同的磁盘中,存取数据时,阵列中的相关磁盘一起动作,大幅减低数据的存取时间,同时有更佳的空间利用率。

磁盘阵列所利用的不同的技术,称为RAID level,不同的level针对不同的系统及应用,以解决数据安全的问题。

一般高性能的磁盘阵列都是以硬件的形式来达成,进一步的把磁盘快取控制及磁盘阵列结合在一个控制器(RAID controller)•或控制卡上,针对不同的用户解决人们对磁盘输出入系统的四大要求:(1)增加存取速度,(2)容错(fault tolerance),即安全性(3)有效的利用磁盘空间;(4)尽量的平衡CPU,内存及磁盘的性能差异,提高电脑的整体工作性能。

raid用法及搭配

raid用法及搭配

RAID(Redundant Array of Independent Disks,独立冗余磁盘阵列)是一种将多块独立的物理硬盘组合成一个硬盘组(逻辑硬盘)的技术,从而提供比单个硬盘更高的存储性能和提供数据备份技术。

常用的RAID级别包括RAID0、RAID1、RAID5、RAID6、RAID1+0等。

RAID0(条带化存储):将N块硬盘并行组合成一个新的逻辑盘,连续以位或字节为单位分割数据,并行读/写于多个硬盘上,因此具有很高的数据传输率,但它没有数据冗余,其中一个磁盘失效将影响到所有数据,不能应用于数据安全性要求高的场所。

RAID1(镜像存储):将N(偶数)块硬盘组合成一组镜像,N/2容量通过磁盘镜像实现数据冗余,在两块硬盘同时出现故障时能保证数据的完整性,需占用双倍的存储空间。

此外,RAID的搭配方式还有RAID5+0、RAID6+0等。

这些不同的RAID级别和搭配方式可以满足不同的存储需求和数据安全要求。

请注意,以上信息仅供参考,如需了解更多关于RAID的用法和搭配信息,建议咨询专业的IT技术人员或查阅相关的技术文档。

磁盘阵列(raid分类介绍)

磁盘阵列(raid分类介绍)

磁盘阵列RAID 概念磁盘阵列(Redundant Arrays of Independent Disks,RAID),有“独立磁盘构成的具有冗余能力的阵列”之意。

磁盘阵列是由很多价格较便宜的磁盘,组合成一个容量巨大的磁盘组,利用个别磁盘提供数据所产生加成效果提升整个磁盘系统效能。

利用这项技术,将数据切割成许多区段,分别存放在各个硬盘上。

[1]磁盘阵列还能利用同位检查(Parity Check)的观念,在数组中任意一个硬盘故障时,仍可读出数据,在数据重构时,将数据经计算后重新置入新硬盘中。

RAID级别1、RAID 0 最少磁盘数量:2Striped Disk Array without Fault Tolerance(没有容错设计的条带磁盘阵列)原理:RAID 0是最早出现的RAID模式,即Data Stripping数据分条技术。

RAID 0是组建磁盘阵列中最简单的一种形式,只需要2块以上的硬盘即可,成本低,可以提高整个磁盘的性能和吞吐量。

优点:极高的磁盘读写效率,没有效验所占的CPU资源,实现的成本低。

缺点:如果出现故障,无法进行任何补救。

没有冗余或错误修复能力,如果一个磁盘(物理)损坏,则所有的数据都无法使用。

用途:RAID 0一般只是在那些对数据安全性要求不高的情况下才被人们使用。

2、RAID 1 最少磁盘数量:2Mirroring and Duplexing (相互镜像)原理:RAID 1称为磁盘镜像,原理是把一个磁盘的数据镜像到另一个磁盘上,也就是说数据在写入一块磁盘的同时,会在另一块闲置的磁盘上生成镜像文件,在不影响性能情况下最大限度的保证系统的可靠性和可修复性上。

优点:理论上两倍的读取效率,系统中任何一对镜像盘中至少有一块磁盘可以使用,甚至可以在一半数量的硬盘出现问题时系统都可以正常运行,当一块硬盘失效时,系统会忽略该硬盘,转而使用剩余的镜像盘读写数据,具备很好的磁盘冗余能力。

缺点:对数据的写入性能下降,磁盘的利用率最高只能达到50%(使用两块盘的情况下),是所有RAID级别中最低的。

磁盘阵列存储系统方案

磁盘阵列存储系统方案

磁盘阵列存储系统方案磁盘阵列存储系统(RAID)是一种将多个硬盘驱动器组合在一起形成一个逻辑存储单元的技术。

RAID系统通过将数据分布在多个磁盘上,提高了数据的容错性和性能。

在本文中,我们将讨论不同的RAID级别及其应用场景,以及一些常见的RAID实施方案。

一、RAID级别及应用场景1. RAID 0RAID 0将数据均衡地分布在多个磁盘上,提高了数据的读写速度。

RAID 0在需要高速数据传输但不需要数据冗余的情况下非常适用,比如视频编辑、数据备份等。

2. RAID 1RAID 1采用镜像数据的方式,将数据同时写入两个磁盘上,提高了数据的冗余性和可靠性。

RAID 1适用于对数据安全性要求较高的场景,比如数据库服务器、关键业务系统等。

3. RAID 5RAID 5将数据进行条带化分布,并在每个数据条带上计算校验信息,提高了数据的容错性。

RAID 5适用于需要高容错性和相对较高读写性能的环境,比如文件服务器、电子邮件服务器等。

4. RAID 6RAID 6在RAID 5的基础上增加了一个额外的校验盘,提供更高的容错性。

RAID 6适用于对数据安全性要求非常高的场景,比如金融交易系统、医疗信息系统等。

5. RAID 10RAID 10将RAID 1和RAID 0结合起来,通过将磁盘分为多组进行数据镜像和条带化分布,提供了高容错性和高性能。

RAID 10适用于对性能和数据安全性都有较高要求的应用,比如虚拟化服务器、数据库集群等。

二、常见的RAID实施方案1. 硬件RAID硬件RAID是通过专用的RAID控制器来实现的,具有自己的处理器和缓存,可以提供更高的性能和可靠性。

硬件RAID通常需要使用指定的RAID控制卡,并且成本较高。

2. 软件RAID软件RAID是利用操作系统提供的RAID功能来实现的,不需要额外的硬件设备,适用于小型企业或个人用户。

软件RAID的性能和可靠性相对较低,但成本较低。

3. 储存阵列网络(SAN)SAN是一种集中式的储存解决方案,将多个服务器连接到共享的存储设备上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

磁盘阵列技术磁盘阵列(DiscArray)是由许多台磁盘机或光盘机按一定的规则,如分条(Striping)、分块(Declustering)、交叉存取(Interleaving)等组成一个快速,超大容量的外存储器子系统。

它在阵列控制器的控制和管理下,实现快速,并行或交叉存取,并有较强的容错能力。

从用户观点看,磁盘阵列虽然是由几个、几十个甚至上百个盘组成,但仍可认为是一个单一磁盘,其容量可以高达几百~上千千兆字节,因此这一技术广泛为多媒体系统所欢迎。

简介盘阵列的全称是:Redundan Array of Inexpensive Disk,简称RAID技术。

它是1988年由美国加州大学Berkeley分校的DavidPatterson教授等人提出来的磁盘冗余技术。

从那时起,磁盘阵列技术发展得很快,并逐步走向成熟。

磁盘阵列技术目前人们逐渐认识了磁盘阵列技术。

磁盘阵列技术可以详细地划分为若干个级别0-5 RAID技术,并且又发展了所谓的RAID Level 10, 30, 50的新的级别。

RAID是廉价冗余磁盘阵列(Redundant Array of Inexpensive Disk)的简称。

用RAID的好处简单的说就是:安全性高,速度快,数据容量超大。

某些级别的RAID技术可以把速度提高到单个硬盘驱动器的400%。

磁盘阵列把多个硬盘驱动器连接在一起协同工作,大大提高了速度,同时把硬盘系统的可靠性提高到接近无错的境界。

这些“容错”系统速度极快,同时可靠性极高。

由磁盘阵列角度来看磁盘阵列的规格最重要就在速度,也就是CPU的种类。

我们知道SCSI的演变是由SCSI 2磁盘阵列技术(Narrow, 8 bits, 10MB/s), SCSI 3 (Wide, 16bits, 20MB/s), Ultra Wide (16bits, 40MB/s), Ultra 2 (Ultra Ultra Wide, 80MB/s), Ultra 3 (Ultra Ultra Ultra Wide, 160MB/s),在由SCSI到Serial I/O,也就是所谓的Fibre Channel (FC-AL, Fibre Channel - Arbitration Loop, 100 – 200MB/s), SSA (Serial Storage Architecture, 80 – 160 MB/s), 在过去使用Ultra Wide SCSI, 40MB/s 的磁盘阵列时,对CPU的要求不须太快,因为SCSI本身也不是很快,但是当SCSI演变到Ultra 2, 80MB/s时,对CPU的要求就非常关键。

一般的CPU, (如586)就必须改为高速的RISC CPU, (如Intel RISC CPU, i960RD 32bits, i960RN 64 bits),不但是RISC CPU, 甚至于还分32bits, 64 bits RISC CPU 的差异。

586 与RISC CPU 的差异可想而知! 这是由磁盘阵列的观点出发来看的。

由服务器的角度来看服务器的结构已由传统的I/O 结构改为I2O ( Intelligent I/O, 简称I2O ) 的结构,其目的就是为了减少服务器CPU的负担,才会将系统的I/O 与服务器CPU负载分开。

Intel 因此提出I2O 的架构,I2O 也是由一颗RISC CPU ( i960RD 或I960RN ) 来负责I/O 的工作。

试想想若服务器内都已是由RISC i960 CPU 来负责I/O,结果磁盘阵列上却仍是用586 CPU,速度会快吗?由操作系统的角度来看SCO OpenServer 5.0 32 bitsMicroSoft Windows NT 32 bitsSCO Unixware 7.x 64 bitsMicroSoft Windows NT 2000 32 bit 64 bitsSUN Solaris 64 bits ……..其他操作系统在操作系统都已由32 bits 转到64 bits,磁盘阵列上的CPU 必须是Intel i960 RISC CPU才能满足速度的要求。

586 CPU 是无法满足的!磁盘阵列的功能磁盘阵列技术磁盘阵列内的硬盘连接方式是用SCA-II整体后背板还是只是用SCSI线连的?在SCA-II整体后背板上是否有隔绝芯片以防硬盘在热插拔时所产生的高/低电压,使系统电压回流,造成系统的不稳定,产生数据丢失的情形。

我们一定要重视这个问题,因为在磁盘阵列内很多硬盘都是共用这同一SCSI总线!一个硬盘热插拔,可不能影响其它的硬盘!什么是热插拔或带电插拔?硬盘有分热插拔硬盘,80针的硬盘是热插拔硬盘,68针的不是热插拔硬盘,有没有热插拔,在电路上的设计差异就在于有没有保护线路的设计,同样的硬盘拖架也是一样有分真正的热插拔及假的热插拔的区别。

磁盘阵列内的硬盘是否有顺序的要求?也就是说硬盘可否不按次序地插回阵列中,数据仍能正常的存取?很多人认为不是很重要,不太会发生,但是可能会发生的,我们就要防止它发生。

假如您用六个硬盘做阵列,在最出初始化时,此六个硬盘是有顺序放置在磁盘阵列内,分为第一、第二……到第六个硬盘,是有顺序的,如果您买的磁盘阵列是有顺序的要求,则您要注意了:有一天您将硬盘取出,做清洁时一定要以原来的摆放顺序插回磁盘阵列中,否则您的数据可能因硬盘顺序与原来的不附,磁盘阵列上的控制器不认而数据丢失!因为您的硬盘的SCSI ID号混乱所致。

现在的磁盘阵列产品都已有这种不要求硬盘有顺序的功能,为了防止上述的事件发生,都是不要求硬盘有顺序的。

我们将讨论这些新技术,以及不同级别RAID的优缺点。

我们并不想涉及那些关键性的技术细节问题,而是将磁盘阵列和RAID技术介绍给对它们尚不熟悉的人们。

相信这将帮助你选用合适的RAID技术。

八种系列现在已基本得到公认的有下面八种系列。

1.RAID0(0级盘阵列)RAID0又称数据分块,即把数据分布在多个盘上,没有容错措施。

其容量和数据传输率是单机容量的N倍,N为构成盘阵列的磁盘机的总数,I/O传输速率高,但平均无故障时间MTTF(Mean Time To Failure)只有单台磁盘机的N分之一,因此零级盘阵列的可靠性最差。

2.RAID1(1级盘阵列)RAID1又称镜像(Mirror)盘,采用镜像容错来提高可靠性。

即每一个工作盘都有一个镜像盘,每次写数据时必须同时写入镜像盘,读数据时只从工作盘读出。

一旦工作盘发生故障立即转入镜像盘,从镜像盘中读出数据,然后由系统再恢复工作盘正确数据。

因此这种方式数据可以重构,但工作盘和镜像盘必须保持一一对应关系。

这种盘阵列可靠性很高,但其有效容量减小到总容量一半以下。

因此RAID1常用于对出错率要求极严的应用场合,如财政、金融等领域。

3.RAID2(2级盘阵列)RAID2又称位交叉,它采用汉明码作盘错检验,无需在每个扇区之后进行CRC(Cyclic ReDundancy check)检验。

汉明码是一种(n,k)线性分组码,n为码字的长度,k为数据的位数,r为用于检验的位数,故有:n=2r-1r=n-k因此按位交叉存取最有利于作汉明码检验。

这种盘适于大数据的读写。

但冗余信息开销还是太大,阻止了这类盘的广泛应用。

4.RAID3(3级盘阵列)bitsCN~comRAID3为单盘容错并行传输阵列盘。

它的特点是将检验盘减小为一个(RAID2校验盘为多个,DAID1检验盘为1比1),数据以位或字节的方式存于各盘(分散记录在组内相同扇区号的各个磁盘机上)。

它的优点是整个阵列的带宽可以充分利用,使批量数据传输时间减小;其缺点是每次读写要牵动整个组,每次只能完成一次5.RAID4(4级盘阵列)RAID4是一种可独立地对组内各盘进行读写的阵列。

其校验盘也只有一个。

RAID4和RAID3的区别是:RAID3是按位或按字节交叉存取,而RAID4是按块(扇区)存取,可以单独地对某个盘进行操作,它无需象RAID3那样,那怕每一次小I/O操作也要涉及全组,只需涉及组中两台磁盘机(一台数据盘,一台检验盘)即可。

从而提高了小量数据的I/O速率。

6.RAID5(5级盘阵列)RAID5是一种旋转奇偶校验独立存取的阵列。

它和RAID1、2、3、4各盘阵列的不同点,是它没有固定的校验盘,而是按某种规则把其冗余的奇偶校验信息均匀地分布在阵列所属的所有磁盘上。

于是在同一台磁盘机上既有数据信息也有校验信息。

这一改变解决了争用校验盘的问题,因此DAID5内允许在同一组内并发进行多个写操作。

所以RAID5即适于大数据量的操作,也适于各种事务处理。

它是一种快速,大容量和容错分布合理的磁盘阵列。

7.RAID6(6级盘阵列)bitsCN~comRAID6是一种双维奇偶校验独立存取的磁盘阵列。

它的冗余的检、纠错信息均匀分布在所有磁盘上,而数据仍以大小可变的块以交叉方式存于各盘。

这类盘阵列可容许双盘出错。

8.RAID7(7级盘阵列)RAID7是在RAID6的基础上,采用了cache技术,它使得传输率和响应速度都有较大的提高。

Cache是一种高速缓冲存储器,即数据在写入磁盘阵列以前,先写入cache中。

一般采用cache分块大小和磁盘阵列中数据分块大小相同,即一块cache分块对应一块磁盘分块。

在写入时将数据分别写入两个独立的cache,这样即使其中有一个cache出故障,数据也不会丢失。

写操作将直接在cache级响应,然后再转到磁盘阵列。

数据从cache写到磁盘阵列时,同一磁道的数据将在一次操作中完成,避免了不少块数据多次写的问题,提高了速度。

在读出时,主机也是直接从cache中读出,而不是从阵列盘上读取,减少与磁盘读操作次数,这样比较充分地利用了磁盘带宽。

这样cache和磁盘阵列技术的结合,弥补了磁盘阵列的不足(如分块写请求响应差等缺陷),从而使整个系统以高效、快速、大容量、高可靠以及灵活、方便的存储系统提供给用户,从而满足了当前的技术发展的需要,尤其是多媒体系统的需要。

硬盘数据跨盘(Spanning)数据跨盘技术使多个硬盘像一个硬盘那样工作,这使用户通过组合已有的资源或增加一些资源来廉价地突破现有的硬盘空间限制。

图2所示为4个300兆字节的硬盘驱动器连结在一起,构成一个SCSI系统。

用户只看到一个有1200兆字节的C盘,而不是看到C, D, E, F, 4个300兆字节的硬盘。

在这样的环境中,系统管理员不必担心某个硬盘上会发生硬盘安全检空间不够的情况。

因为现在1200兆字节的容量全在一个卷(V olume)上(例如硬盘C上)。

系统管理员可以安全地建立所需要的任何层次的文件系统,而不需要在多个单独硬盘环境的限制下,计划他的文件系统。

相关文档
最新文档