4.1.1生活中的立体图形

合集下载

七年级数学上册 4.1 生活中的立体图形 如巧妙确定立体图中小立方块的个数素材 (新版)华东师大版

七年级数学上册 4.1 生活中的立体图形 如巧妙确定立体图中小立方块的个数素材 (新版)华东师大版

最新Word 欢送下载巧妙确定立体图中小立方块的个数学习了三视图后我们可以按照它所提供的信息来推断透视图的关系,在实际生产中它是我们生产和加工物体的标准和依据.例1:用小立方块搭一个几何体,使得它的主视图和俯视图如图1所示.这样的几何体只有一种吗?它最少需要多少立方块,最多需要多少个小立方块?最少需几块 最多需几块 第一层〔从下往上数〕 77 第二层2 6 第三层1 3 总计 10 16 由上表可知,主视图和俯视图求解几何体立方块数的个数是有一定规律的,即:⑴第一层需要的最少和最多小立方块的个数都等于俯视图中小正方形的个数;⑵第n 层〔n ≥2〕需要的最少的小立方块的个数等于主视图中第n 层小正方形的个数;⑶第n 层〔n ≥2〕需要的最多的小立方块的个数等于主视图中第n 层小正方形的个数; ⑷求总个数,只要把每层最少的个数和每层最多的个数分别相加就可以得到几何体最少需要的小立方块的个数和最多需要下立方块的个数。

运用上述规律,我们很容易求得此题最少需要立方块10个,最多需要小立方块16个。

以上是主视图和俯视图的“行〞这个角度思考得出的规律.那么我们是否也可以从主视图和俯视图的“列〞的角度无考虑呢?当然能,下面我们来看看此题的另一种解法:⑴最少需要的小立方块个数:〔主视图中小立方块的个数〕+〔俯视图中小立方块的个数〕-〔主视图第一层小立方块的个数〕,如此题中最少需要的小立方块的个数为〔6+7-3〕=10; ⑵最多需要的小立方块个数:〔主视图中第一列小正方形个数〕×〔俯视图中第一列小正方形个数〕+主视图中第二列小正方形个数〕×〔俯视图中第二列小正方形个数〕+……+〔主视图中第n 列小正方形个数〕×〔俯视图中第n 列小正方形个数〕,比方该题最多需要的小立方块个数为3×3+2×3+1×1=16. 于是可以答复此题不止一种,最少需要10个小立方块,最多需要16个小立方块.交流探讨:运用视图的“行〞和“列“的角度都可以求出此题中小立方块数的值,显然,后一种方法比前一种方法更为简捷方便,怎么样,你学会了吗?牛刀小试: 用小立方块搭一个几何体,使得它的主视图和俯视图如图2所示.这样的几何体只有一种吗?它最少需要多少立方块,最多需要多少个小立方块?答案:最少8个,最多12个. 俯视图 主视图 图1 俯视图主视图 图2。

七年级数学上册4.1生活中的立体图形基础知识素材

七年级数学上册4.1生活中的立体图形基础知识素材

4。

1 生活中的立体图形1.常见的立体图形(1)柱体①棱柱:有两个面互相平行,其余各面都是四边形,并且每两个相邻的四边形的公共边互相平行,由这些面围成的几何体叫棱柱.如三棱柱、四棱柱、五棱柱等;②圆柱:以矩形的一边所在的直线为旋转轴,其余各边围绕它旋转形成的几何体叫做圆柱.(2)锥体①棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面围成的几何体叫棱锥.如三棱锥、四棱锥、五棱锥等;②圆锥:以直角三角形一边所在的直线为旋转轴,其余各边围绕它旋转形成的几何体叫做圆锥.(3)球体:半圆以它的直径为旋转轴,旋转而成的几何体叫做球体.【例1】判断下列说法是否正确:(1)柱体的上、下两个面不一样大().(2)圆柱、圆锥的底面都是圆().(3)棱柱的底面不一定是四边形().(4)圆柱的侧面是平面().(5)棱锥的侧面不一定是三角形().解析:柱体的上、下底面是平行且相等的(形状相同、大小相等),所以(1)错误;圆柱的上、下两个底面都是圆,圆锥的底面是圆,所以(2)正确;棱柱可以是三棱柱、四棱柱、五棱柱等,即棱柱的底面不一定是四边形,所以(3)正确;圆柱的侧面是曲面不是平面,所以(4)错误;棱锥的侧面一定是三角形,所以(5)错误.答案:(1)×(2)√(3)√(4)×(5)×2.立体图形的分类立体图形错误!为便于理解与识记,形象地总结立体图形的分类如下:【例2】下列图形中柱体的个数为().A.1 B.2 C.3 D.4解析:柱体的特点是它们的上、下底面是平行且相等的(形状相同、大小相等),由此判断①和②是柱体.答案:B3.多面体(1)多面体的概念:围成棱柱和棱锥的面是平的面,像这样的立体图形叫做多面体.如图,下列图形分别为:棱柱(长方体)、棱锥(三棱锥),它们均为多面体.(2)正四面体:由四个完全一样的正三角形围成的空间图形称为正四面体,这些三角形的顶点、边分别称为正四面体的顶点、棱(相邻的三角形的公共边只算一条棱).(3)正六面体:类似的,组成正方体的每个正方形的顶点、边分别称为正六面体的顶点、棱(相邻的正方形的公共边只算一条棱).此外,还有正八面体、正十二面体和正二十面体,如图.谈重点常见的多面体棱柱和棱锥都是多面体,圆柱、圆锥和球不是多面体.【例3】一个棱柱的底面是五边形,它有几条侧棱,几个顶点?共有几个面?分析:由已知易知该立体图形是五棱柱,结合图形回答问题即可.解:它有5条侧棱,10个顶点,共有7个面.析规律棱柱棱数、顶点数和面数的确定底面为n边形的棱柱有n条侧棱,2n个顶点,(n+2)个面.。

4.1.1立体图形与平面图形 教案-人教版七年级数学上册

4.1.1立体图形与平面图形 教案-人教版七年级数学上册

用活动一:创设情境导入新课【课堂引入】同学们,祝贺你们步入了一个新的学习起点,你们会越来越走近数学,感受它的多姿多彩!观察我们周围的世界,你会找到许许多多的图形,它们美化了我们生活的空间.欣赏下面的图片时,不妨用数学的眼光观察一下,你发现它们都是由哪些你熟悉的图形构成的?(教师同时用课件展示图片)图4-1-11接下来,我带领大家走进小明的简易书房,看一看哪些物体的形状与你在小学学过的立体图形类似?通过图片的展示使学生能够在丰富多彩的现实生活中辨认出特征鲜明的立体图形.活动二:实践探究交流新知【探究】1.常见的立体图形及其分类图4-1-12内容:在小明的书房中,哪些物知道立体图形的特征是我们认识不同立体图形、区别不同立体图形的金钥匙,鼓励学生用自己的语言进行表述与交流,在交流中发现棱柱面的个数、顶点个数、棱的条数的规律.实践探究交流新知看成由一些常见的立体图形组合而成,你能找出其中常见的立体图形吗?你还能举出其他组合图形的例子吗?图4-1-13处理方式:学生独立思考并进行回答,在学生回答的过程中引导学生分析复杂组合体的构成,并进行补充.6.平面图形教师举出一些几何图形的例子,如线段、角、三角形、长方形、圆,让学生观察这些几何图形有什么共同特点.处理方式:学生独立思考并进行回答,教师可以提示性地提问:这些几何图形的各部分都在同一平面内吗?总结:各部分都在同一平面内的几何图形是平面图形.平面图形和立体图形是有联系的:立体图形的某些部分是平面图形,例如长方体的侧面是长方形.基础训练1.学生完成课本115页思考题。

2.课本116页练习巩固本节课所学知识,加深对立体图形中相应平面图形的认识。

K小结归纳师生共同回顾本节课所学内容。

梳理内容,掌握本节课的核心。

J练习与检测绩优学案96页巩固训练97页达标测评选择题填空题板书设计4.1.1立体图形与平面图形立体图形(部分都不在同一平面内)几何图形平面图形(部分都在同一平面内)媒体在教学中的作用分为:A.提供事实,建立经验;B.创设情境,引发动机;C.举例验证,建立概念;D.提供示范,正确操作;E.呈现过程,形成表象;F.演绎原理,启发思维;G.设难置疑,引起思辨;H.展示事例,开阔视野;I.欣赏审美,陶冶情操;J.归纳总结,复习巩固;K.其它。

2019-2020年七年级数学上册4.1生活中的立体图形4.1.1认识立体图形跟踪训练含解析新版华东师大版

2019-2020年七年级数学上册4.1生活中的立体图形4.1.1认识立体图形跟踪训练含解析新版华东师大版

2019-2020年七年级数学上册4.1生活中的立体图形4.1.1认识立体图形跟踪训练含解析新版华东师大版一.选择题(共9小题)1.如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.如图是一个四棱柱和一个六棱锥,它们各有12条棱.下列棱柱中和九棱锥的棱数相等的是()A.五棱柱B.六棱柱C.七棱柱D.八棱柱2.如图的长方体是由A,B,C,D四个选项中所示的四个几何体拼接而成的,而且这四个几何体都是由4个同样大小的小正方体组成的,那么长方体中,第四部分所对应的几何体应是()A.B.C.D.3.如图,在长方体ABCD﹣EFGH中,与棱AD平行的平面共有()A.1个B.2个C.3个D.4个4.直四棱柱,长方体和正方体之间的包含关系是()A. B C. D.5.下列物体的形状类似于球体的是()A.茶杯B.羽毛球C.乒乓球D.白炽灯泡6.由棱长为1的小正方体组成新的大正方体,如果不允许切割,至少要几个小正方体()A.4个B.8个C.16个D.27个7.如图,正方体ABCD﹣A′B′C′D′中,面ABB′A′上△AOA′的实际图形是()A.B.C.D.8.如图,立体图形由小正方体组成,这个立体图形有小正方体()A.9个B.10个C.11个D.12个9.下列立体图形中,是多面体的是()A.B. C.D.二.填空题(共6小题)10.如图,在长方体ABCD﹣EFGH中,与平面ADHE垂直的棱共有_________ 条.11.如图,在长方体中,面ABCD与面_________ 平行.12.圆柱上下两个面是_________ 的圆形;圆锥的底面是一个_________ 形,侧面是一个_________ 面.13.从棱长为4a的正方体中,挖去一个棱长为2a的小正方体,则该几何体的体积是_________ .14.下列说法中正确的有_________ 个.①棱锥的底面边数和侧面数相等;②正方体和长方体是特殊的四棱柱,也是特殊的四面体;③长方体是四棱柱,四棱柱也是长方体.15.如图,在每个几何体下面写出它们的名称_________ .三.解答题(共6小题)16.如图是由一个正方体和一个长方体组成的组合体.(1)请你用代数式表示这个组合体的体积;(2)请你说出它是几次几项式.17.如图,画出8个立体图形,请你找出与图②具有相同特征的图形,并说出相同的特征是什么?18.观察图中的圆柱和棱柱,通过想象回答下列问题:(1)该圆柱和棱柱各由几个面组成?这些面是平面还是曲面?(2)该圆柱的侧面与底面相交形成几条线?这些线是直线还是曲线?(3)该棱柱的侧面与下底面相交形成几条线?(4)该棱柱共有几个顶点?经过一个顶点有几条棱?19.观察如图所示的直四棱柱.(1)它有几个面?几个底面?底面与侧面分别是什么图形?(2)侧面的个数与底面多边形的边数有什么关系?(3)若底面的周长为20cm,侧棱长为8cm,则它的侧面积为多少?20.将下列几何体与它的名称连接起来.21.一位画家有若干个边长为1cm的正方体,他在地面上把它们摆成如图(三层)的形式,然后,他把露出的表面都涂上颜色.(1)图中的正方体一共有多少个?(2)一点颜色都没涂上颜色的正方体有多少个?(3)如果画家摆按此方式摆成七层,那又要多少个正方体?同样涂上颜色,又有多少个正方体没有涂上一点颜色?第四章图形的认识4.1.1认识立体图形参考答案与试题解析一.选择题(共10小题)1.如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.如图是一个四棱柱和一个六棱锥,它们各有12条棱.下列棱柱中和九棱锥的棱数相等的是()A.五棱柱B.六棱柱C.七棱柱D.八棱柱考点:认识立体图形.专题:几何图形问题.分析:根据棱锥的特点可得九棱锥侧面有9条棱,底面是九边形,也有9条棱,共9+9=18条棱,然后分析四个选项中的棱柱棱的条数可得答案.解答:解:九棱锥侧面有9条棱,底面是九边形,也有9条棱,共9+9=18条棱,A、五棱柱共15条棱,故A误;B、六棱柱共18条棱,故B正确;C、七棱柱共21条棱,故C错误;D、八棱柱共24条棱,故D错误;故选:B.点评:此题主要考查了认识立体图形,关键是掌握棱柱和棱锥的形状.2如图的长方体是由A,B,C,D四个选项中所示的四个几何体拼接而成的,而且这四个几何体都是由4个同样大小的小正方体组成的,那么长方体中,第四部分所对应的几何体应是()A.B.C.D.考点:认识立体图形.分析:观察长方体,可知第四部分所对应的几何体在长方体中,前面有一个正方体,后面有三个正方体,前面一个正方体在后面三个正方体的中间.解答:解:由长方体和第一、二、三部分所对应的几何体可知,第四部分所对应的几何体一排有一个正方体,一排有三个正方体,前面一个正方体在后面三个正方体的中间.故选A.点评:本题考查了认识立体图形,找到长方体中,第四部分所对应的几何体的形状是解题的关键.3.如图,在长方体ABCD﹣EFGH中,与棱AD平行的平面共有()A.1个B.2个C.3个D.4个考点:认识立体图形.分析:根据图示,我们可以看出,与AD相交的面有前面、后面、左面、下面四个面,只有上面和右面与其平行,解答即可.解答:解:观察可知,AD平行的平面有BCGF、EFGH两个面,故选B.点评:正确理解平行的概念是解题的关键.4.直四棱柱,长方体和正方体之间的包含关系是()A B. C.D.考点:认识立体图形.分析:根据正方体,长方体,直四棱柱的概念和定义即可解.解答:解:正方体是特殊的长方体,长方体又是特殊的直四棱柱故选:A.点评:本题考查了直四棱柱,长方体和正方体之间的包含关系.5.下列物体的形状类似于球体的是()A.茶杯B.羽毛球C.乒乓球D.白炽灯泡考点:认识立体图形.分析:根据球的形状与特点即可解答.解答:解:根据日常生活常识可知乒乓球是球体.故选:C.点评:熟练掌握常见立体图形的特征,是解决此类问题的关键.6.由棱长为1的小正方体组成新的大正方体,如果不允许切割,至少要几个小正方体()A.4个B.8个C.16个D.27个考点:认识立体图形.专题:压轴题.分析:本题要求所得到的正方体最小,则每条棱是由两条小正方体的边组成.解答:解:根据以上分析要组成新的正方体至少要2×2×2=8个.故选B.点评:本题主要考查空间想象能力,解决的关键是要能想象出正方体的形状.7.如图,正方体ABCD﹣A′B′C′D′中,面ABB′A′上△AOA′的实际图形是()A.B.C.D.考点:认识立体图形.分析:结合正方体的特点,根据围成正方体6个面都是正方形,再由正方形的性质判断△AOA′的实际图形.解答:解:因为围成正方体6个面都是正方形,且正方形的对角线垂直平分,所以△AOA′是等腰直角三角形.故选B.点评:本题考查了立体图形的认识,属于基础题型.解题的关键是熟记正方体和正方形的性质.8.如图,立体图形由小正方体组成,这个立体图形有小正方体()A.9个B.10个C.11个D.12个考点:认识立体图形.分析:仔细观察图,从左向右依次相加即解.注意被挡住的一个.解答:解:这个立体图形有小正方体5+2+1+3=11个.故选:C.点评:解决此类问题,注意不要忽略了被挡住的小正方体.9.下列立体图形中,是多面体的是()A.B. C. D.考点:认识立体图形.分析:多面体指四个或四个以上多边形所围成的立体图形.解答:解:A、只有一个面是曲面;B、有6个面故是多面体;C、有3个面,一个曲面两个平面;D、有2个面,一个曲面,一个平面.故选B.点评:本题考查的是多面体的定义,关键点在于:多面体指四个或四个以上多边形所围成的立体图形.二.填空题(共6小题)10.如图,在长方体ABCD﹣EFGH中,与平面ADHE垂直的棱共有 4 条.考点:认识立体图形.分析:在长方体,棱与面之间的关系有平行和垂直两种.解答:解:与平面ADHE垂直的棱有:AB,DC,HG,EF.共4条.故答案为4.点评:本题考查的知识点为:与一个平面内的一条直线垂直的直线就与这个平面垂直.11.如图,在长方体中,面ABCD与面A1B1C1D1平行.考点:认识立体图形.分析:根据图形可直接得到答案.解答:解:根据图形可得面ABCD与面A1B1C1D1平行,故答案为:A1B1C1D1.点评:此题主要考查了认识立体图形,题目比较简单.12.圆柱上下两个面是相等的圆形;圆锥的底面是一个圆形,侧面是一个扇形面.考点:认识立体图形.分析:根据圆柱和圆锥的特征,即可进行解答.解答:解:由圆柱和圆锥的特征可以得知:圆柱的底面都是圆,并且大小一样,侧面是曲面;圆锥的底面也是圆形,侧面是扇形面,则圆柱上下两个面是相等的圆形;圆锥的底面是一个圆形,侧面是一个扇形面.故答案为:相等;圆;扇形.点评:此题考查了对圆柱体和圆锥体的认识,正确记忆重点图形的形状是解题关键.13.从棱长为4a的正方体中,挖去一个棱长为2a的小正方体,则该几何体的体积是56a .考点:认识立体图形.分析:根据正方体的体积减去正方体的体积,可得答案.解答:解:V=(4a)3﹣(2a)3=64a3﹣8a3=56a3,故答案为:56a3.点评:本题考查了认识立体图形,利用了正方体的体积.14.下列说法中正确的有 1 个.①棱锥的底面边数和侧面数相等;②正方体和长方体是特殊的四棱柱,也是特殊的四面体;③长方体是四棱柱,四棱柱也是长方体.考点:认识立体图形.分析:根据棱锥的特点,可判断①;根据长方体的特点,可判断②③.解答:解:①棱锥的底面边数和侧面数相等,故①说法正确;②正方体和长方体是特殊的四棱柱,也是特殊的六面体,故②说法错误;③长方体是四棱柱,四棱柱不一定是长方体,故③说法错误;故答案为:1.点评:本题考查了认识立体图形,利用了长方体和四棱柱的关系.15.如图,在每个几何体下面写出它们的名称长方体、圆柱、三棱锥.考点:认识立体图形.分析:根据所给图形的特征进行判断.解答:解:从左向右三个几何体的名称是:长方体、圆柱、三棱锥.故答案为长方体、圆柱、三棱锥.点评:熟记常见立体图形的特征,是解决此类问题的关键,此题属于简单题型.三.解答题(共6小题)16.如图是由一个正方体和一个长方体组成的组合体.(1)请你用代数式表示这个组合体的体积;(2)请你说出它是几次几项式.考点:认识立体图形;多项式.分析:(1)根据正方体的体积公式,长方体的体积公式,可得组合体的体积;(2)根据多项式的项与次数,可得多项式的表示方法.解答:解;(1)由题意,得这个组合体的体积是:a3+a2b;(2)a3+a2b是三次二项式.点评:本题考查了认识立体图形,利用了正方体的体积公式,长方体的体积公式.17.如图,画出8个立体图形,请你找出与图②具有相同特征的图形,并说出相同的特征是什么?考点:认识立体图形.分析:根据立体图形的特点从形状的特征考虑.解答:解:图④、⑦与图②,相同的特征是:它们都是锥体.点评:本题考查了认识立体图形,题目简单但不容易解答,需熟悉立体图形的特点,找出与题目已经提供的特征不相同的共同特征.18.观察图中的圆柱和棱柱,通过想象回答下列问题:(1)该圆柱和棱柱各由几个面组成?这些面是平面还是曲面?(2)该圆柱的侧面与底面相交形成几条线?这些线是直线还是曲线?(3)该棱柱的侧面与下底面相交形成几条线?(4)该棱柱共有几个顶点?经过一个顶点有几条棱?考点:认识立体图形.分析:根据立体图形可得圆柱有3个面,六棱柱有8个面,圆柱的侧面与底面相交形成曲线,棱柱的侧面与下底面相交形成6条线.解答:解:(1)圆柱有3个面,上下底为平面,侧面为曲面;六棱柱有8个面,都是平面;(2)圆柱的侧面与底面相交形成2条线,是曲线;(3)该棱柱的侧面与下底面相交形成6条线;(4)棱柱共有12个顶点,经过一个顶点有3条棱.点评:此题主要考查了认识立体图形,根据图形的形状进行解答即可.19.观察如图所示的直四棱柱.(1)它有几个面?几个底面?底面与侧面分别是什么图形?(2)侧面的个数与底面多边形的边数有什么关系?(3)若底面的周长为20cm,侧棱长为8cm,则它的侧面积为多少?考点:认识立体图形;几何体的表面积.分析:(1)(2)(3)根据直四棱柱的特征直接解答即可.(4)根据棱柱的侧面积公式:底面周长×高,进行计算.解答:解:(1)它有6个面, 2个底面,底面是梯形,侧面是长方形;(2)侧面的个数与底面多边形的边数相等都为4;(3)它的侧面积为20×8=160cm2.点评:本题考查了立体图形.解题时勿忘记四棱柱的特征及展开图的特征.四棱柱是由四个长方形的侧面和上下两个底面组成.20.将下列几何体与它的名称连接起来.考点:认识立体图形.分析:根据常见立体图形的特征直接连线即可.注意正确区分各个几何体的特征.解答:解:如图所示:点评:考查了认识立体图形,熟记常见立体图形的特征是解决此类问题的关键.此题属于简单题型.21.一位画家有若干个边长为1cm的正方体,他在地面上把它们摆成如图(三层)的形式,然后,他把露出的表面都涂上颜色.(1)图中的正方体一共有多少个?(2)一点颜色都没涂上颜色的正方体有多少个?(3)如果画家摆按此方式摆成七层,那又要多少个正方体?同样涂上颜色,又有多少个正方体没有涂上一点颜色?考点:认识立体图形.分析:(1)图中的正方体一共的个数=三层的个数的和;(2)观察图形可知最底层正中间一个没涂上颜色;(3)观察图形可知最底层有72个正方体,第2层有62个正方体,第3层有52个正方体,第4层有42个正方体,第5层有32个正方体,第6层有22个正方体,第7层有12个正方体,相加即可求出摆成七层的正方体一共的个数;没有涂上一点颜色的正方体第5层有12个正方体,第4层有22个正方体,第3层有32个正方体,第4层有42个正方体,最底层有52个正方体,相加即可求出.解答:解:(1)图中的正方体一共有1+4+9=14个;(2)一点颜色都没涂上颜色的正方体有1个;(3)七层的正方体一共的个数12+22+32+42+52+62+72=140个;没有涂上一点颜色的正方体12+22+32+42+52=55个.答:(1)图中的正方体一共有14个.(2)一点颜色都没涂上颜色的正方体有1个.(3)如果画家摆按此方式摆成七层,要140个正方体,同样涂上颜色,有55个正方体没有涂上一点颜色.点评:本题考查学生对简单几何图形的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.2019-2020年七年级数学上册4.1生活中的立体图形4.1.2跟踪训练含解析新版华东师大版一.选择题(共8小题)1.如图所示,将平面图形绕轴旋转一周,得到的几何体是()A.球B.圆柱C.半球D.圆锥2.将一个长方形绕它的一条边旋转一周,所得的几何体是()A.圆柱B.三棱柱C.长方体D.圆锥3.小军将一个直角三角板(如图)绕它的一条直角边所在的直线旋转一周形成一个几何体,将这个几何体的侧面展开得到的大致图形是()A.B.C.D.4.将如图放置的含30°角的直角三角形,绕点A旋转90°所得的图形是()A. B.C.D.5.图中的几何体,由两个正方体组合而成,大正方体的棱长为a,小正方体的棱长是b,则这个几何体的表面积等于()A.6a2+4b2B.6a2+6b2C.5a2+6b2D.6(a+b)(a﹣b)6.李强同学用棱长为l的正方体在桌面上堆成如图所示的图形,然后把露出的表面都染成红色,则表面被他染成红色的面积为()A.37 B.33 C.24 D.217.正四面体的顶点数和棱数分别是()A.3,4 B.3,6 C.4,4 D.4,68.一个画家有14个边长为1m的正方体,他在地面上把它们摆成如下图的形状,然后他把露出的表面都涂上颜色,那么被涂上颜色的总面积为()A.19m2B.21m2C.33m2D.34m2二.填空题(共6小题)9.5个棱长为1的正方体组成,如图的几何体,该几何体的表面积是_________ .10.如图,正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的主视图的面积是_________ .11.矩形绕其一边旋转一周形成的几何体叫_________ ,直角三角形绕其中一条直角边旋转一周形成的几何体叫_________ .12.如图所示的图形可以被折成一个长方体,则该长方体的表面积为_________ cm2.13.长方体有_________ 个顶点,_________ 条棱,_________ 个面.14.把一块学生使用的三角板以一条直角边为轴旋转成的形状是_________ 形状.三.解答题(共6小题)15.将下列平面图形绕直线AB旋转一周,所得的几何体分别是什么?16.一个长方形的两边分别是2cm、3cm,若将这个长方形绕一边所在直线旋转一周后是一个什么几何体?请求出这个几何体的底面积和侧面积.17.如图,上面的平面图形绕轴旋转一周,可以得出下面的立方图形,请你把有对应关系的平面图形与立体图形连接起来.18.如图,一个棱长为10cm的正方体,在它的一个角上挖掉一个棱长是2cm的正方体,求出剩余部分的表面积和体积.19.棱长为a的正方体摆放成如图的形状:(1)试求其表面积(含底面);(2)若如此摆放10层,其表面积是多少?若如此摆放n层呢?20.下列各图是棱长为1cm的小正方体摆成的,如图①中,共有1个小正方体,从正面看有1个正方形,表面积为6cm2;如图②中,共有4个小正方体,从正面看有3个正方形,表面积为18cm2;如图③,共有10个小正方体,从正面看有6个正方形,表面积为36cm2;…(1)第6个图中,共有多少个小正方体?从正面看有多少个正方形?表面积是多少?(2)第n个图形中,从正面看有多少个正方形?表面积是多少?第四章图形的初步认识4.1.2参考答案与试题解析一.选择题(共8小题)1.如图所示,将平面图形绕轴旋转一周,得到的几何体是()A.球B.圆柱C.半球D.圆锥考点:点、线、面、体.分析:根据半圆绕直径旋转一周,结合几何体的特点可得答案.解答:解:将平面图形绕轴旋转一周,得到的几何体是球,故选:A.点评:本题考查了点、线、面、体,半圆绕直径旋转一周得到的几何体是球.2.将一个长方形绕它的一条边旋转一周,所得的几何体是()A.圆柱B.三棱柱C.长方体D.圆锥考点:点、线、面、体.分析:一个长方形围绕它的一条边为中为对称轴旋转一周,根据面动成体的原理即可解.解答:解:一个长方形绕着它的一条边旋转一周,围成一个光滑的曲面是圆柱体.故选A.点评:本题考查了平面图形旋转可以得到立体图形,体现了面动成体的运动观点.3.小军将一个直角三角板(如图)绕它的一条直角边所在的直线旋转一周形成一个几何体,将这个几何体的侧面展开得到的大致图形是()A.B.C.D.考点:点、线、面、体.分析:先根据面动成体得到圆锥,进而可知其侧面展开图是扇形.解答:解:直角三角板(如图)绕它的一条直角边所在的直线旋转一周形成一个圆锥,那么它的侧面展开得到的图形是扇形.故选:D.点评:主要考查了圆锥的侧面展开图和面动成体的道理.4.将如图放置的含30°角的直角三角形,绕点A旋转90°所得的图形是()A. B.C.D.考点:点、线、面、体.分析:图形的旋转关键是对应点的旋转,根据三角形其他两点绕点A旋转90°的位置,即可得出所得的图形的位置.解答:解:根据三角形其他两点绕点A旋转90°的位置,即可得出所得的图形的位置如图所示:故选:C.点评:此题主要考查了图形绕点旋转:考查学生图形的空间想象能力及分析问题,解决问题的能力.5.图中的几何体,由两个正方体组合而成,大正方体的棱长为a,小正方体的棱长是b,则这个几何体的表面积等于()A.6a2+4b2B.6a2+6b2C.5a2+6b2D.6(a+b)(a﹣b)考点:几何体的表面积;整式的混合运算.分析:分大正方体的表面积为六个正方形的面积减去重叠部分小正方形的面积,小正方体的五个表面的面积,然后根据正方形的面积公式列式进行计算即可得解.解答:解:∵大正方体的棱长为a,小正方体的棱长是b,∴大正方体的表面积为6a2﹣b2,小正方体可看见的面的面积为5b2,所以,这个几何体的表面积等于6a2﹣b2+5b2=6a2+4b2.故选A.点评:本题考查了几何体的表面积,以及整式的加减运算,要注意重叠部分的面积为小正方形的面积,需要在大正方体与小正方体分别减去一次.6.李强同学用棱长为l的正方体在桌面上堆成如图所示的图形,然后把露出的表面都染成红色,则表面被他染成红色的面积为()A.37 B.33 C.24 D.21考点:几何体的表面积.专题:压轴题.分析:此题可根据表面积的计算分层计算得出红色部分的面积再相加.解答:解:根据题意得:第一层露出的表面积为:1×1×6﹣1×1=5;第二层露出的表面积为:1×1×6×4﹣1×1×13=11;第,三层露出的表面积为:1×1×6×9﹣1×1×37=17.所以红色部分的面积为:5+11+17=33.故选B.点评:此题考查的知识点是几何体的表面积,关键是在计算表面积时减去不露的或重叠的面积.7.正四面体的顶点数和棱数分别是()A.3,4 B.3,6 C.4,4 D.4,6考点:欧拉公式.分析:正四面体也就是正三棱锥,根据三棱锥的侧面是三个三角形围成和底面是一个三角形的特征,可以判断它的顶点数和棱数.解答:解:正四面体的顶点数和棱数分别是4,6.故选D.点评:掌握三棱锥的侧面是三个三角形围成和底面是一个三角形的特征,即三棱锥共有4个面,三个侧面,一个底面.8.一个画家有14个边长为1m的正方体,他在地面上把它们摆成如下图的形状,然后他把露出的表面都涂上颜色,那么被涂上颜色的总面积为()A.19m2B.21m2C.33m2D.34m2考点:几何体的表面积.专题:压轴题.分析:解此类题首先要计算表面积即从上面看到的面积+四个侧面看到的面积.解答:解:根据分析其表面积=4×(1+2+3)+9=33m2,即涂上颜色的为33m2.故选C.点评:本题的难点在于理解露出的表面的算法.二.填空题(共6小题)9.5个棱长为1的正方体组成,如图的几何体,该几何体的表面积是22 .考点:几何体的表面积.分析:先根据正方体的棱长为1,求出1个正方形的面积为1,再根据该几何体的表面有22个正方形构成,即可得出答案.解答:解:∵正方体的棱长为1,∴1个正方形的面积为1,∵该几何体的表面有22个正方形构成,∴该几何体的表面积22.故答案为:22.点评:此题考查了几何体的表面积,解决这类题的关键是找出该几何体的表面有多少个正方形构成.10.如图,正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的主视图的面积是18cm2.考点:点、线、面、体;简单几何体的三视图.分析:首先根据题意可得将正方形旋转一周可得圆柱体,圆柱的高为3cm,底面直径为6cm,再找出主视图的形状可得答案.解答:解:直线AB为轴,将正方形旋转一周可得圆柱体,圆柱的高为3cm,底面直径为6cm,几何体的主视图是长6cm,宽3cm的矩形,因此面积为:6×3=18(cm2),故答案为:18cm2.点评:此题主要考查了点、线、面、体,以及三视图,关键是掌握主视图是从几何体的正面看所得到的图形.11.矩形绕其一边旋转一周形成的几何体叫圆柱,直角三角形绕其中一条直角边旋转一周形成的几何体叫圆锥.考点:点、线、面、体.分析:根据线动成面的知识可判断矩形及三角形旋转后的图形.解答:解:长方形绕它的一边旋转一周可形成圆柱,直角三角形绕它的直角边旋转一周可形成圆锥.故答案为圆柱,圆锥.点评:本题考查线动成面的知识,难度不大,解决本题的关键是掌握各种面动成体的特征.12.如图所示的图形可以被折成一个长方体,则该长方体的表面积为88 cm2.考点:几何体的表面积;展开图折叠成几何体.专题:计算题;几何图形问题.分析:由图形可知,这是一个长方体图形的展开图,先得出长方体的长、宽、高,根据长方体的表面积计算公式即可求解.解答:解:长方体的表面积是:2×(6×4+6×2+4×2)=88m2.故答案为:88.点评:本题考查了几何体的展开图和表面积,长方体的表面积=2(长×宽+长×高+宽×高).13.长方体有8 个顶点,12 条棱, 6 个面.考点:欧拉公式.。

华师版七年级上册数学4.1【说课稿】生活中的立体图形

华师版七年级上册数学4.1【说课稿】生活中的立体图形

生活中的立体图形
课程标准分析
本节要求学生能通过具体的图形进行识别,通过对生活中立体图形的认识,培养他们的空间观念.让他们学会观察,从周围熟悉的物体入手,对物体形状的认识逐步由感性认识上升到抽象的数学图形.
教材分析
1.地位与作用:本节从学生的周围生活入手,通过观察,认识到生活的周围存在着规则和不规则的物体,规则的物体是我们进一步学习和研究的对象,从而为以后的学习提供必要的基础.
2.重点与难点:本节的重点是观察和认识生活中简单的立体图形,难点是会将生活中的实物抽象为某一类的立体图形.
教法分析
教材中出现的一些概念,如圆柱、棱柱等,都不是定义,仅是描述性的说法,教学中不要求学生掌握严格的概念,只要求能通过具体图形进行识别或判断,要注意引导学生观察、体验数学概念的抽象和形成的过程,在进行具体教学的过程中,要尽可能的让学生多观察各种几何体或实物图,通过大量例子形成对各种几何体的直观认识.教师可以与学生一起利用身边的材料做一些几何体,从而形成正确的概念.对于圆柱、棱柱、圆锥、棱锥这几个名称,也可以从字面上解释“柱”“锥”“棱”等字的直观意义,以方便学生在名称和图形之间建立正确的联系. 学法分析
学习本节要善于观察,忽略细节,才能将生活中的实物与数学上抽象的立体图形联系起来,如苹果,忽略苹果把儿及形状上的稍扁,就可与数学上的球体联系起来.要勤于思考,在生活中要多用数学眼光审视常见的物体和现象,这样才能把立体图形和平面图形联系起来,为学好数学积累生活素材,逐渐培养数学想象力和数学素养.
1。

2019-2020年七年级数学上册4.1生活中的立体图形4.1.1认识立体图形跟踪训练含解析新版华东师大版

2019-2020年七年级数学上册4.1生活中的立体图形4.1.1认识立体图形跟踪训练含解析新版华东师大版

2019-2020年七年级数学上册4.1生活中的立体图形4.1.1认识立体图形跟踪训练含解析新版华东师大版一.选择题(共9小题)1.如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.如图是一个四棱柱和一个六棱锥,它们各有12条棱.下列棱柱中和九棱锥的棱数相等的是()A.五棱柱B.六棱柱C.七棱柱D.八棱柱2.如图的长方体是由A,B,C,D四个选项中所示的四个几何体拼接而成的,而且这四个几何体都是由4个同样大小的小正方体组成的,那么长方体中,第四部分所对应的几何体应是()A.B.C.D.3.如图,在长方体ABCD﹣EFGH中,与棱AD平行的平面共有()A.1个B.2个C.3个D.4个4.直四棱柱,长方体和正方体之间的包含关系是()A. B C. D.5.下列物体的形状类似于球体的是()A.茶杯B.羽毛球C.乒乓球D.白炽灯泡6.由棱长为1的小正方体组成新的大正方体,如果不允许切割,至少要几个小正方体()A.4个B.8个C.16个D.27个7.如图,正方体ABCD﹣A′B′C′D′中,面ABB′A′上△AOA′的实际图形是()A.B.C.D.8.如图,立体图形由小正方体组成,这个立体图形有小正方体()A.9个B.10个C.11个D.12个9.下列立体图形中,是多面体的是()A.B. C.D.二.填空题(共6小题)10.如图,在长方体ABCD﹣EFGH中,与平面ADHE垂直的棱共有_________ 条.11.如图,在长方体中,面ABCD与面_________ 平行.12.圆柱上下两个面是_________ 的圆形;圆锥的底面是一个_________ 形,侧面是一个_________ 面.13.从棱长为4a的正方体中,挖去一个棱长为2a的小正方体,则该几何体的体积是_________ .14.下列说法中正确的有_________ 个.①棱锥的底面边数和侧面数相等;②正方体和长方体是特殊的四棱柱,也是特殊的四面体;③长方体是四棱柱,四棱柱也是长方体.15.如图,在每个几何体下面写出它们的名称_________ .三.解答题(共6小题)16.如图是由一个正方体和一个长方体组成的组合体.(1)请你用代数式表示这个组合体的体积;(2)请你说出它是几次几项式.17.如图,画出8个立体图形,请你找出与图②具有相同特征的图形,并说出相同的特征是什么?18.观察图中的圆柱和棱柱,通过想象回答下列问题:(1)该圆柱和棱柱各由几个面组成?这些面是平面还是曲面?(2)该圆柱的侧面与底面相交形成几条线?这些线是直线还是曲线?(3)该棱柱的侧面与下底面相交形成几条线?(4)该棱柱共有几个顶点?经过一个顶点有几条棱?19.观察如图所示的直四棱柱.(1)它有几个面?几个底面?底面与侧面分别是什么图形?(2)侧面的个数与底面多边形的边数有什么关系?(3)若底面的周长为20cm,侧棱长为8cm,则它的侧面积为多少?20.将下列几何体与它的名称连接起来.21.一位画家有若干个边长为1cm的正方体,他在地面上把它们摆成如图(三层)的形式,然后,他把露出的表面都涂上颜色.(1)图中的正方体一共有多少个?(2)一点颜色都没涂上颜色的正方体有多少个?(3)如果画家摆按此方式摆成七层,那又要多少个正方体?同样涂上颜色,又有多少个正方体没有涂上一点颜色?第四章图形的认识4.1.1认识立体图形参考答案与试题解析一.选择题(共10小题)1.如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.如图是一个四棱柱和一个六棱锥,它们各有12条棱.下列棱柱中和九棱锥的棱数相等的是()A.五棱柱B.六棱柱C.七棱柱D.八棱柱考点:认识立体图形.专题:几何图形问题.分析:根据棱锥的特点可得九棱锥侧面有9条棱,底面是九边形,也有9条棱,共9+9=18条棱,然后分析四个选项中的棱柱棱的条数可得答案.解答:解:九棱锥侧面有9条棱,底面是九边形,也有9条棱,共9+9=18条棱,A、五棱柱共15条棱,故A误;B、六棱柱共18条棱,故B正确;C、七棱柱共21条棱,故C错误;D、八棱柱共24条棱,故D错误;故选:B.点评:此题主要考查了认识立体图形,关键是掌握棱柱和棱锥的形状.2如图的长方体是由A,B,C,D四个选项中所示的四个几何体拼接而成的,而且这四个几何体都是由4个同样大小的小正方体组成的,那么长方体中,第四部分所对应的几何体应是()A.B.C.D.考点:认识立体图形.分析:观察长方体,可知第四部分所对应的几何体在长方体中,前面有一个正方体,后面有三个正方体,前面一个正方体在后面三个正方体的中间.解答:解:由长方体和第一、二、三部分所对应的几何体可知,第四部分所对应的几何体一排有一个正方体,一排有三个正方体,前面一个正方体在后面三个正方体的中间.故选A.点评:本题考查了认识立体图形,找到长方体中,第四部分所对应的几何体的形状是解题的关键.3.如图,在长方体ABCD﹣EFGH中,与棱AD平行的平面共有()A.1个B.2个C.3个D.4个考点:认识立体图形.分析:根据图示,我们可以看出,与AD相交的面有前面、后面、左面、下面四个面,只有上面和右面与其平行,解答即可.解答:解:观察可知,AD平行的平面有BCGF、EFGH两个面,故选B.点评:正确理解平行的概念是解题的关键.4.直四棱柱,长方体和正方体之间的包含关系是()A B. C.D.考点:认识立体图形.分析:根据正方体,长方体,直四棱柱的概念和定义即可解.解答:解:正方体是特殊的长方体,长方体又是特殊的直四棱柱故选:A.点评:本题考查了直四棱柱,长方体和正方体之间的包含关系.5.下列物体的形状类似于球体的是()A.茶杯B.羽毛球C.乒乓球D.白炽灯泡考点:认识立体图形.分析:根据球的形状与特点即可解答.解答:解:根据日常生活常识可知乒乓球是球体.故选:C.点评:熟练掌握常见立体图形的特征,是解决此类问题的关键.6.由棱长为1的小正方体组成新的大正方体,如果不允许切割,至少要几个小正方体()A.4个B.8个C.16个D.27个考点:认识立体图形.专题:压轴题.分析:本题要求所得到的正方体最小,则每条棱是由两条小正方体的边组成.解答:解:根据以上分析要组成新的正方体至少要2×2×2=8个.故选B.点评:本题主要考查空间想象能力,解决的关键是要能想象出正方体的形状.7.如图,正方体ABCD﹣A′B′C′D′中,面ABB′A′上△AOA′的实际图形是()A.B.C.D.考点:认识立体图形.分析:结合正方体的特点,根据围成正方体6个面都是正方形,再由正方形的性质判断△AOA′的实际图形.解答:解:因为围成正方体6个面都是正方形,且正方形的对角线垂直平分,所以△AOA′是等腰直角三角形.故选B.点评:本题考查了立体图形的认识,属于基础题型.解题的关键是熟记正方体和正方形的性质.8.如图,立体图形由小正方体组成,这个立体图形有小正方体()A.9个B.10个C.11个D.12个考点:认识立体图形.分析:仔细观察图,从左向右依次相加即解.注意被挡住的一个.解答:解:这个立体图形有小正方体5+2+1+3=11个.故选:C.点评:解决此类问题,注意不要忽略了被挡住的小正方体.9.下列立体图形中,是多面体的是()A.B. C. D.考点:认识立体图形.分析:多面体指四个或四个以上多边形所围成的立体图形.解答:解:A、只有一个面是曲面;B、有6个面故是多面体;C、有3个面,一个曲面两个平面;D、有2个面,一个曲面,一个平面.故选B.点评:本题考查的是多面体的定义,关键点在于:多面体指四个或四个以上多边形所围成的立体图形.二.填空题(共6小题)10.如图,在长方体ABCD﹣EFGH中,与平面ADHE垂直的棱共有 4 条.考点:认识立体图形.分析:在长方体,棱与面之间的关系有平行和垂直两种.解答:解:与平面ADHE垂直的棱有:AB,DC,HG,EF.共4条.故答案为4.点评:本题考查的知识点为:与一个平面内的一条直线垂直的直线就与这个平面垂直.11.如图,在长方体中,面ABCD与面A1B1C1D1平行.考点:认识立体图形.分析:根据图形可直接得到答案.解答:解:根据图形可得面ABCD与面A1B1C1D1平行,故答案为:A1B1C1D1.点评:此题主要考查了认识立体图形,题目比较简单.12.圆柱上下两个面是相等的圆形;圆锥的底面是一个圆形,侧面是一个扇形面.考点:认识立体图形.分析:根据圆柱和圆锥的特征,即可进行解答.解答:解:由圆柱和圆锥的特征可以得知:圆柱的底面都是圆,并且大小一样,侧面是曲面;圆锥的底面也是圆形,侧面是扇形面,则圆柱上下两个面是相等的圆形;圆锥的底面是一个圆形,侧面是一个扇形面.故答案为:相等;圆;扇形.点评:此题考查了对圆柱体和圆锥体的认识,正确记忆重点图形的形状是解题关键.13.从棱长为4a的正方体中,挖去一个棱长为2a的小正方体,则该几何体的体积是56a .考点:认识立体图形.分析:根据正方体的体积减去正方体的体积,可得答案.解答:解:V=(4a)3﹣(2a)3=64a3﹣8a3=56a3,故答案为:56a3.点评:本题考查了认识立体图形,利用了正方体的体积.14.下列说法中正确的有 1 个.①棱锥的底面边数和侧面数相等;②正方体和长方体是特殊的四棱柱,也是特殊的四面体;③长方体是四棱柱,四棱柱也是长方体.考点:认识立体图形.分析:根据棱锥的特点,可判断①;根据长方体的特点,可判断②③.解答:解:①棱锥的底面边数和侧面数相等,故①说法正确;②正方体和长方体是特殊的四棱柱,也是特殊的六面体,故②说法错误;③长方体是四棱柱,四棱柱不一定是长方体,故③说法错误;故答案为:1.点评:本题考查了认识立体图形,利用了长方体和四棱柱的关系.15.如图,在每个几何体下面写出它们的名称长方体、圆柱、三棱锥.考点:认识立体图形.分析:根据所给图形的特征进行判断.解答:解:从左向右三个几何体的名称是:长方体、圆柱、三棱锥.故答案为长方体、圆柱、三棱锥.点评:熟记常见立体图形的特征,是解决此类问题的关键,此题属于简单题型.三.解答题(共6小题)16.如图是由一个正方体和一个长方体组成的组合体.(1)请你用代数式表示这个组合体的体积;(2)请你说出它是几次几项式.考点:认识立体图形;多项式.分析:(1)根据正方体的体积公式,长方体的体积公式,可得组合体的体积;(2)根据多项式的项与次数,可得多项式的表示方法.解答:解;(1)由题意,得这个组合体的体积是:a3+a2b;(2)a3+a2b是三次二项式.点评:本题考查了认识立体图形,利用了正方体的体积公式,长方体的体积公式.17.如图,画出8个立体图形,请你找出与图②具有相同特征的图形,并说出相同的特征是什么?考点:认识立体图形.分析:根据立体图形的特点从形状的特征考虑.解答:解:图④、⑦与图②,相同的特征是:它们都是锥体.点评:本题考查了认识立体图形,题目简单但不容易解答,需熟悉立体图形的特点,找出与题目已经提供的特征不相同的共同特征.18.观察图中的圆柱和棱柱,通过想象回答下列问题:(1)该圆柱和棱柱各由几个面组成?这些面是平面还是曲面?(2)该圆柱的侧面与底面相交形成几条线?这些线是直线还是曲线?(3)该棱柱的侧面与下底面相交形成几条线?(4)该棱柱共有几个顶点?经过一个顶点有几条棱?考点:认识立体图形.分析:根据立体图形可得圆柱有3个面,六棱柱有8个面,圆柱的侧面与底面相交形成曲线,棱柱的侧面与下底面相交形成6条线.解答:解:(1)圆柱有3个面,上下底为平面,侧面为曲面;六棱柱有8个面,都是平面;(2)圆柱的侧面与底面相交形成2条线,是曲线;(3)该棱柱的侧面与下底面相交形成6条线;(4)棱柱共有12个顶点,经过一个顶点有3条棱.点评:此题主要考查了认识立体图形,根据图形的形状进行解答即可.19.观察如图所示的直四棱柱.(1)它有几个面?几个底面?底面与侧面分别是什么图形?(2)侧面的个数与底面多边形的边数有什么关系?(3)若底面的周长为20cm,侧棱长为8cm,则它的侧面积为多少?考点:认识立体图形;几何体的表面积.分析:(1)(2)(3)根据直四棱柱的特征直接解答即可.(4)根据棱柱的侧面积公式:底面周长×高,进行计算.解答:解:(1)它有6个面, 2个底面,底面是梯形,侧面是长方形;(2)侧面的个数与底面多边形的边数相等都为4;(3)它的侧面积为20×8=160cm2.点评:本题考查了立体图形.解题时勿忘记四棱柱的特征及展开图的特征.四棱柱是由四个长方形的侧面和上下两个底面组成.20.将下列几何体与它的名称连接起来.考点:认识立体图形.分析:根据常见立体图形的特征直接连线即可.注意正确区分各个几何体的特征.解答:解:如图所示:点评:考查了认识立体图形,熟记常见立体图形的特征是解决此类问题的关键.此题属于简单题型.21.一位画家有若干个边长为1cm的正方体,他在地面上把它们摆成如图(三层)的形式,然后,他把露出的表面都涂上颜色.(1)图中的正方体一共有多少个?(2)一点颜色都没涂上颜色的正方体有多少个?(3)如果画家摆按此方式摆成七层,那又要多少个正方体?同样涂上颜色,又有多少个正方体没有涂上一点颜色?考点:认识立体图形.分析:(1)图中的正方体一共的个数=三层的个数的和;(2)观察图形可知最底层正中间一个没涂上颜色;(3)观察图形可知最底层有72个正方体,第2层有62个正方体,第3层有52个正方体,第4层有42个正方体,第5层有32个正方体,第6层有22个正方体,第7层有12个正方体,相加即可求出摆成七层的正方体一共的个数;没有涂上一点颜色的正方体第5层有12个正方体,第4层有22个正方体,第3层有32个正方体,第4层有42个正方体,最底层有52个正方体,相加即可求出.解答:解:(1)图中的正方体一共有1+4+9=14个;(2)一点颜色都没涂上颜色的正方体有1个;(3)七层的正方体一共的个数12+22+32+42+52+62+72=140个;没有涂上一点颜色的正方体12+22+32+42+52=55个.答:(1)图中的正方体一共有14个.(2)一点颜色都没涂上颜色的正方体有1个.(3)如果画家摆按此方式摆成七层,要140个正方体,同样涂上颜色,有55个正方体没有涂上一点颜色.点评:本题考查学生对简单几何图形的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.。

4.1.1折叠、展开与从不同方向观察立体图形(教案)-2023-2024学年七年级上册数学(人教版)

4.1.1折叠、展开与从不同方向观察立体图形(教案)-2023-2024学年七年级上册数学(人教版)
4.1.1折叠、展开与从不同方向观察立体图形(教案)-2023-2024学年七年级上册数学(人教版)
一、教学内容
本节课选自人教版七年级上册数学第4章《几何图形初步》中的4.1.1节“折叠、展开与从不同方向观察立体图形”。教学内容主要包括以下三个方面:
1.折叠:通过实际操作,让学生掌握正方体、长方体等简单立体图形的折叠方法,并理解其展开图形的特征。
此外,在小组讨论环节,学生们表现出了很高的积极性。他们围绕立体图形在实际生活中的应用展开了热烈的讨论,并提出了一些有趣的观点。这表明,学生们能够将所学知识与现实生活联系起来,这对于他们理解抽象的几何概念具有重要意义。
在今后的教学中,我需要关注以下几个方面:
1.对于教学难点,要设计更多的实例和练习,帮助学生巩固所学知识,提高解决问题的能力。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考,如“你们认为这些立体图形的折叠和展开在哪些场合下最有用?”
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(3)解决实际问题时,难以将所学知识灵活运用。
举例:在计算立体图形的表面积和体积时,部分学生可能会忘记使用正确的公式或方法。
在教学过程中,教师应针对教学难点进行有效指导,通过实际操作、示例讲解、讨论交流等方式,帮助学生突破难点,确保学生能够理解透彻本节课的核心知识。
四、教学流程
(一)导入新课(用时5分钟)
(2)从不同方向观察立体图形,学会用简单的几何语言描述观察到的形状。
举例:从正面、侧面、上面等不同方向观察正方体和长方体,让学生能够用“有几个面、面的形状和大小”等几何语言进行描述。

七年级上册数学课件《4.1.1生活中的立体图形》

七年级上册数学课件《4.1.1生活中的立体图形》

我们可以看到截面的形状是正方形
我们可以看到截面的形状是长方形
我们可以看到截面的形状是梯形
我们可以看到截面的形状是五边形
我们可以看到截面的形状是六边形
由前面的知识知道,“面与面相交得到 线”,用平面去截几何体,所得到的截面 就是这个平面与几何体每个面相交所围成 的图形。正方体只有六个面,截面最多有 六条边,即截面的边数最多的是六边形。
A
实 物
B
C
D
E
立 体 图 形
1
2
3
4
5
3.写一写:写出下列立体图形的名称。
( 圆柱 )
( 棱柱 ) ( 棱锥 ) ( 圆锥 )
圆柱
柱体
三棱柱
棱柱
四棱柱
五棱柱 六棱柱

圆 锥


棱 锥
三棱锥
四棱锥 五棱锥
六棱锥

4.议一议:比较这些图形,看看相互之间有 什么相似的地方,有什么不同的地方
诊断技术.它的原理是用射线透射人体,然后用检
测器测定
透射后的放射
量.通
过计算机
进行 处理,重
建人体
断层图像,
并作出诊断.CT
的发明
是医学史
上具有划时代
意义的
一 件大事,
它的 设计、发
明者和
理论研N究.Housfiel者d 因此 获得 CT机原型 1979
年诺贝尔(Nobel)医学奖.
小结:
今天我们学习了圆柱、圆锥、棱柱、 棱锥、球等基本立体图形,这些图形在 日常生活中随处可见,希望同学们平时 留意观察事物,认识它们,能够正确画 出这些基本立体图形。
〗体锥. 〖
〗体球.其中柱体又可分为〖
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆柱
棱柱
底面是圆;只有 一个侧面且为曲 都有两个底 面;没有顶点。 面,且上、 下两相底面 底面是多边形; 形状和大小 侧面是平面; 完全一样。 有多个顶点。
认一认
1.说出下列几何体的名称
长方体
三棱柱
正方体
五棱柱
2.观察下面的几何体,哪些是棱柱?
答案(1)(3)(5)
圆锥 圆柱 棱柱 棱锥

想一想
面图形的边数相等. 4、棱柱的侧棱的长度都 相等。
5.n棱柱的顶点的个数、面的个数、棱 的条数之间的关系 :
顶点的个数: 面的个数: 棱的条数 : 2n n+2 3n
6.棱柱按底面多边形的
边数分为三棱柱、四棱柱等.
长方体、正方体都是四棱柱
同学们观查一下下面 的两个棱柱,它们有 什么不同之处:
本册书只讨 论直棱柱简 称棱柱

平 面 几 线 ——面与面相交而成 何 图 形
三角形
长方形 正方形 圆 圆柱
•••
面 ——包围着体的部分 立

圆锥 棱柱 球
•••
体 ——物体的图形


围成下面这些立体图形的各个面中,哪些 面是平的?哪些面是曲的?
动态探究:点动成——
线 线动成—— 面 面动成—— 体
图形的构成元素及其关系 点动成线
生活中的立体图形
1.圆柱是由 三 其中两个面是 曲的 面是 。
个面围成的, 平的 ,一个
2.圆柱的侧面和底面相交 两 成 条线,它们 是 曲的 ,是 圆 。
我们常见的立体图形有那些?
长方体、正方体、圆柱、圆锥、球、棱柱、 棱锥等,我们把它们称为几何体也简称体
1. 正方体从正面、左面、 上面看都是什么图形? 六个 2. 正方体把它展开就是由____ 正方形组成的平面图形.
总结:体是由面围成
静态探究:1. 说出它们各由几个面组成? 2.面可分为平面和曲面 3.你能举出一些平面与曲面的实际例子吗? (注:数学中的面没有厚薄之分的) 4.面和面相交的地方形成了线. 线分直的和曲的,但数学里面的线是 没有粗细之分的. 5.线和线相交的地方是点
点——线与线相交而成

何 图
笔筒
漏斗
魔方

月饼包装盒

知识点1
生活中常见的几何体
圆锥
正方体
长方体
圆柱
棱柱

笔筒
你肯定想到了: 笔筒
圆柱
生活中还有哪些物体是圆柱体?
圆柱的特征: 1、圆柱的上、下两底 认识圆柱 面平行且形状都是圆
形,大小一样;
2、圆柱的侧面都 是曲面,展开后 为长方形;
底 面
侧面
棱柱的特征: 1、棱柱的上、下两底 认识棱柱 面平行且形状相同,大 小一样; 底面 2、棱柱的侧面形状 都是长方形; 侧 侧 3、侧面的个数和底 面 棱
直棱柱 (棱柱)
斜棱柱
魔方 你错不了: 魔方 正方体
生活中还有哪些物体是正方体?
书 你还是错不了: 长方体 书
生活中还有哪些物体是长方体?
月饼包装盒
你肯定错不了:
月饼包 装盒
棱柱
生活中还有哪些物体是棱柱体?
漏斗 你也想到了: 圆锥 漏斗
生活中还有哪些物体是圆锥体?
篮球
这更没问题: 篮球

生活中还有哪些物体是球体?
小组讨论
(1)正方体是由几个面围成的? 圆柱是由几个面围成的? 它们都是平的吗? (2)圆柱的侧面和底面相交成几条线? 它们是直的还是曲的? (3)正方体有几个顶点?经过每个 顶点有几条边?
生活中的立体图形
1.正方体是由 六个 面围 成的,它们都是 平的 。
2.正方体有 八 个顶点, 经过每个顶点有 三 条边。
生活中的立体图形

下列图片中有哪些你熟悉的几何体呢?
北京天安门
北京天坛
神 舟 六 号 发 射 场 景
学习目标
认识常见几何体的基本特征; 正确识别简单的几何体; 简单几何体的分类; 说出圆柱与圆锥、圆柱与棱柱 的相同点与不同点;


进一步认识点、线、面、体,感
想一想: 在生活中,我们身边有丰富多 彩的物体,你能从下列实物中想 象出我们曾经学过的几何体吗?
简单立体图形的分类:
圆柱
棱柱
柱体
简单的立体图形
锥体 球体
圆锥
棱锥
小组讨论:
圆柱与圆锥的相同点与不同点。
几何体 图形 圆柱 不同点 相同点
有两个大小相 同的底面,无 底面都有 是圆, 顶点。 侧面都有 有一个底面, 是曲面。 有一个顶点。
圆锥
小组讨论:
圆柱与棱柱的相同点与不同点。
几何体 图形 不同点 相同点
作业布置:
1.课本P5 1、3 ; P9 1
2.练习册:1.1生活中的立体图形;
3.阅读教材P1~10并记录下问题.
寄语:
简单的几何体,构成了复杂的、 形形色色、丰富多彩的生活空间。
愿同学们运用今天学到的几 何体的知识去妆点自己;妆点你 的空间;妆点那属于你的世界。
愿在不久的将来,在世界知 名的某一场所,能看到出自你的 手的几何体。
线动成面
面动成体
面旋转
知识点 图形是由点、线、面构成的。 线有直线和曲线之分。 面有平面和曲面之分。
线与线相交得到点。
面与面相交得到线。 点动成线,线动成面,面动成体。
综合演练
如图,第二行的图形围绕红线旋转 一周,便能形成第一行的某个几何 体,用线连一连.
A
B
C
D
我有疑问我质疑
同学们还有什么疑问吗?
相关文档
最新文档