高中数学排列与组合知识点

合集下载

高中数学排列组合知识点

高中数学排列组合知识点

排列组合复习巩固1.分类计数原理(加法原理)完成一件事,有类办法,在第1类办法中有种不同的方法,在第2类办法中有种不同的方法,…,在第类办法中有种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成个步骤,做第1步有种不同的方法,做第2步有种不同的方法,…,做第步有种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有然后排首位共有最后排其它位置共有由分步计数原理得练习题:7种不同的花种在排成一列的xx,若两种葵花不种在中间,也不种在两端的xx,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

由分步计数原理可得共有种不同的排法乙甲丁丙三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?解:分两步进行第一步排2个相声和3个独唱共有种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种不同的方法,由分步计数原理,节目的不同顺序共有种四.定序问题倍缩空位插入策略例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有种方法,其余的三个位置甲乙丙共有 1种坐法,则共有种方法。

高中数学排列组合

高中数学排列组合

1、排列定义
一般地,从n个不同元素中取出m(m≤n) 个元素按照一定顺序排成一列,叫做从n个不同 元素中取出m个元素的一个排列.
排列的定义中包含两个基本内容: 一是“取出元素”;二是“按照一定顺序排列”.“一定 顺序”就是与位置有关,这也是判断一个问题是不是排列问 题的重要标志.
根据排列的定义,两个排列相同,当且仅当这两个排 列的元素完全相同,而且元素的排列顺序也完全相同.
思考 上述问题1,2 的共同特点是什么?你能将它 们推广到一般情形吗?
一般地,从n个不同的元素中取出m(m n)个元素, 按 照 一 定 顺 序 排 成 一 列,叫 做 从n个 不 同 元 素 中 取
出m个元素的一个排列 (arrangement).
思考 你能归纳一下排列的特征吗?
根据排列的定义,两个排列相同,当且仅当两个排 列的元素完全相同,且元素的排列顺序也相同.例 如在问题2中,123与134的元素不完全相同,它们 是 不 同 的 排 列;123与132虽 然 元 素 完 全 相 同, 但 元 素的排列顺序不同,它们也是不同的排列.
(5)20位同学互通一次电话 (6)20位同学互通一封信
(7)以圆上的10个点为端点作弦 (8)以圆上的10个点中的某一点为起点,作 过另一个点的射线
(9)有10个车站,共需要多少种车票? (10)有10个车站,共需要多少种不同的票价?
例2.某年全国足球甲级 A组 联赛有14
个队参加, 每队要与其余各队在主、客场 分别比赛一次, 共进行多少场比赛?
nn
1n
2 n n m
m 1n
2 1
m
2
1
n! nm!
A
n n
A nm nm
.

高中数学选修2-3-排列与组合

高中数学选修2-3-排列与组合

排列与组合知识集结知识元排列与排列数公式知识讲解1.排列及排列数公式【考点归纳】1.定义(1)排列:一般地,从n个不同的元素中任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.(其中被取的对象叫做元素)(2)排列数:从n个不同的元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号表示.2.相关定义:(1)全排列:一般地,n个不同元素全部取出的一个排列,叫做n个不同元素的一个全排列.(2)n的阶乘:正整数由1到n的连乘积,叫做n的阶乘,用n!表示.(规定0!=1)3.排列数公式(1)排列计算公式:=.m,n∈N+,且m≤n.(2)全排列公式:=n•(n﹣1)•(n﹣2)•…•3•2•1=n!.例题精讲排列与排列数公式例1.(x-2)(x-3)(x-4)…(x-15)(x∈N+,x>15)可表示为()A.A B.A C.A D.A例2.若=12,则n=()A.8B.7C.6D.4例3.已知=15,那么=()A.20B.30C.42D.72组合与组合数公式知识讲解1.组合及组合数公式【考点归纳】1.定义(1)组合:一般地,从n个不同元素中,任意取出m(m≤n)个元素并成一组,叫做从n个元素中任取m个元素的一个组合.(2)组合数:从n个不同元素中,任意取出m(m≤n)个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m个元素的组合数,用符号表示.2.组合数公式:=.m,n∈N+,且m≤n.3.组合数的性质:性质1性质2.例题精讲组合与组合数公式例1.'排球单循环赛南方球队比北方球队多9支南方球队总得分是北方球队的9倍求证冠军是一支南方球队(胜得1分败得0分).'例2.'一个袋子里装有大小相同且标有数字1~5的若干个小球,其中标有数字1的小球有1个,标有数字2的小球有2个,…,标有数字5的小球有5个.(Ⅰ)从中任意取出1个小球,求取出的小球标有数字3的概率;(Ⅱ)从中任意取出3个小球,求其中至少有1个小球标有奇数数字的概率;(Ⅲ)从中任意取出2个小球,求小球上所标数字之和为6的概率.'例3.'求C3n38-n+C21+n3n的值.'排列组合的简单计数问题知识讲解1.排列、组合及简单计数问题【知识点的知识】1、排列组合问题的一些解题技巧:①特殊元素优先安排;②合理分类与准确分步;③排列、组合混合问题先选后排;④相邻问题捆绑处理;⑤不相邻问题插空处理;⑥定序问题除法处理;⑦分排问题直排处理;⑧“小集团”排列问题先整体后局部;⑨构造模型;⑩正难则反、等价转化.对于无限制条件的排列组合问题应遵循两个原则:一是按元素的性质分类,二是按时间发生的过程进行分步.对于有限制条件的排列组合问题,通常从以下三个途径考虑:①以元素为主考虑,即先满足特殊元素的要求,再考虑其他元素;②以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;③先不考虑限制条件,计算出排列或组合数,再减去不符合要求的排列或组合数.2、排列、组合问题几大解题方法:(1)直接法;(2)排除法;(3)捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列.它主要用于解决“元素相邻问题”;(4)插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”;(5)占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则;(6)调序法:当某些元素次序一定时,可用此法;(7)平均法:若把kn个不同元素平均分成k组,每组n个,共有;(8)隔板法:常用于解正整数解组数的问题;(9)定位问题:从n个不同元素中每次取出k个不同元素作排列规定某r个元素都包含在内,并且都排在某r个指定位置则有;(10)指定元素排列组合问题:①从n个不同元素中每次取出k个不同的元素作排列(或组合),规定某r个元素都包含在内.先C后A策略,排列;组合;②从n个不同元素中每次取出k个不同元素作排列(或组合),规定某r个元素都不包含在内.先C后A策略,排列;组合;③从n个不同元素中每次取出k个不同元素作排列(或组合),规定每个排列(或组合)都只包含某r个元素中的s个元素.先C后A策略,排列;组合.例题精讲排列组合的简单计数问题例1.的展开式中,x的系数为___(用数字作答)例2.在的展开式中,x4的系数是____.例3.若,则n的展开式中,含x2项的系数为_______.当堂练习单选题练习1.计算2+3的值是()A.72B.102C.5070D.5100练习2.=()A.30B.24C.20D.15练习3.6本不同的书在书桌上摆成一排,要求甲,乙两本书必须放在两端,丙、丁两本书必须相邻,则不同的摆放方法有()种。

高中数学中的排列与组合

高中数学中的排列与组合

高中数学中的排列与组合在高中数学中,排列与组合是重要的概念和技巧。

它们在不同领域中都有着广泛的应用,尤其是在概率论、统计学和计算机科学中。

本文将介绍排列与组合的基本概念、原理和应用。

一、排列在数学中,排列是指从给定的元素中选取一部分,按照一定的顺序进行排列的方式。

下面我们来介绍排列的几个常见概念和公式。

1. 基本概念首先,我们引入排列的基本概念。

(1)全排列:从给定的n个元素中选取n个,按照一定的顺序进行排列,叫做全排列。

(2)k排列:从给定的n个元素中选取k个(k≤n),按照一定的顺序进行排列,叫做k排列。

2. 公式接下来,我们介绍排列的计算公式。

(1)全排列的计算公式:全排列的个数为n!(n的阶乘)。

(2)k排列的计算公式:k排列的个数为A(n,k) = n!/(n-k)!二、组合在数学中,组合是指从给定的元素中选取一部分,不考虑其顺序的方式。

下面我们来介绍组合的几个常见概念和公式。

1. 基本概念首先,我们引入组合的基本概念。

(1)全组合:从给定的n个元素中选取0个、1个、2个...直到n个元素的所有情况,叫做全组合。

(2)k组合:从给定的n个元素中选取k个(k≤n),不考虑顺序的所有情况,叫做k组合。

2. 公式接下来,我们介绍组合的计算公式。

(1)全组合的计算公式:全组合的个数为2^n。

(2)k组合的计算公式:k组合的个数为C(n,k) = n!/(k!(n-k)!)。

三、排列与组合的应用排列与组合有着广泛的应用,下面我们来介绍一些常见的应用领域。

1. 概率论与统计学在概率论和统计学中,排列与组合是计算事件的可能性的重要工具。

通过排列与组合的计算,我们可以确定事件的样本空间、计算事件的概率和进行统计推断等。

2. 计算机科学在计算机科学中,排列与组合是算法设计和分析的基础。

例如,在密码学中,排列与组合被用于生成和破解密码。

在图论和网络分析中,排列与组合是解决路径问题和网络优化问题的重要手段。

高中数学排列与组合知识点

高中数学排列与组合知识点

高中数学排列与组合知识点排列组合是高中数学教学内容的一个重要组成部分,但由于排列组合极具抽象性,使之成为高中数学课本中教与学的难点.加之高中学生的认知水平和思维能力在一定程度上受到限制,所以在解题中经常出现错误.以下本人搜集整合了高中数学排列与组合相关知识点,希望可以帮助大家更好的学习这些知识。

高中数学排列与组合知识点汇编如下:一、排列1 定义(1)从n个不同元素中取出m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一排列。

(2)从n个不同元素中取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为 Amn.2 排列数的公式与性质(1)排列数的公式: Amn=n(n-1)(n-2)…(n-m+1)特例:当m=n时, Amn=n!=n(n-1)(n-2)…×3×2×1规定:0!=1二、组合1 定义(1)从n个不同元素中取出 m个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合(2)从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号 Cmn表示。

2 比较与鉴别由排列与组合的定义知,获得一个排列需要“取出元素”和“对取出元素按一定顺序排成一列”两个过程,而获得一个组合只需要“取出元素”,不管怎样的顺序并成一组这一个步骤。

排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。

因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。

三、排列组合与二项式定理知识点1.计数原理知识点①乘法原理:N=n1·n2·n3·…nM (分步) ②加法原理:N=n1+n2+n3+…+nM (分类)2. 排列(有序)与组合(无序)Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)! Ann =n!Cnm = n!/(n-m)!m!Cnm= Cnn-m Cnm+Cnm+1= Cn+1m+1 k?k!=(k+1)!-k!3.排列组合混合题的解题原则:先选后排,先分再排排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素. 以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑)插空法(解决相间问题) 间接法和去杂法等等在求解排列与组合应用问题时,应注意:(1)把具体问题转化或归结为排列或组合问题;(2)通过分析确定运用分类计数原理还是分步计数原理;(3)分析题目条件,避免“选取”时重复和遗漏;(4)列出式子计算和作答.经常运用的数学思想是:①分类讨论思想;②转化思想;③对称思想.4.二项式定理知识点:①(a+b)n=Cn0ax+Cn1an-1b1+ Cn2an-2b2+ Cn3an-3b3+…+ Cnran-rbr+-…+ Cn n-1abn-1+ Cnnbn特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn②主要性质和主要结论:对称性Cnm=Cnn-m最大二项式系数在中间。

高中数学知识点总结排列组合问题的应用与计算

高中数学知识点总结排列组合问题的应用与计算

高中数学知识点总结排列组合问题的应用与计算高中数学知识点总结:排列组合问题的应用与计算在高中数学中,排列组合是一个重要的概念和工具,用于解决各种实际问题。

本文将总结排列组合的基本概念以及其在实际问题中的应用和计算方法。

一、排列与组合的基本概念排列和组合都是从一组对象中选择若干个对象进行排列或组合,以求解不同的问题。

1. 排列:从n个不同元素中选取r个元素,按照一定顺序排列的方式称为排列。

排列的数目用符号P表示,计算公式为P(n,r) = n! / (n-r)!2. 组合:从n个不同元素中选取r个元素,不考虑排列顺序的方式称为组合。

组合的数目用符号C表示,计算公式为C(n,r) = n! / (r!*(n-r)!)二、排列组合问题的应用排列组合在实际问题中的应用非常广泛,涉及到各个领域,以下是一些典型的应用场景。

1. 选组委会:从n个人中选取r个人作为组委会成员,这是一个典型的组合问题。

2. 分配座位:在一列座位中,n个人按照一定顺序坐下,这是一个排列问题。

3. 分配任务:将n项任务分配给r个人来完成,这是一个组合问题。

4. 排队问题:n个人按照一定规则排成一列,这是一个排列问题。

5. 抽奖问题:从n个参与者中抽取r个人作为获奖者,这是一个组合问题。

三、排列组合问题的计算方法在计算排列和组合的数目时,可以借助计算机软件、公式或者计算器来简化计算过程。

下面将介绍一些常用的计算方法。

1. 阶乘计算:n!表示n的阶乘,即从1到n的连乘积。

可以使用计算器来计算阶乘,或者使用编程语言中的阶乘函数。

2. 计算排列数:根据排列的定义,可以通过阶乘计算公式来求解排列数。

3. 计算组合数:根据组合的定义,可以利用排列的公式来求解组合数。

四、排列组合问题的解题步骤解决排列组合问题的关键是确定问题类型以及适用的计算方法,以下是一些解题的基本步骤。

1. 确定问题类型:首先要明确问题是一个排列还是组合问题,根据问题中的条件来判断。

排列与组合的概念与计算

排列与组合的概念与计算

排列与组合的概念与计算排列与组合是高中数学中重要的组合数学概念。

在现实生活中,我们经常会遇到需要计算某种排列或组合情况的问题,比如从一组元素中选取若干个进行组合或者按照特定的顺序进行排列等。

本文将介绍排列与组合的基本概念与计算方法,以及在实际问题中的应用。

一、排列与组合的基本概念1. 排列的概念:排列是指从一组元素中按照一定的顺序选取若干个元素进行排列。

对于一个有n个元素的集合,如果选取r个元素进行排列,那么排列的种类数可以表示为P(n, r)。

排列的计算公式为:P(n, r) = n! / (n-r)!2. 组合的概念:组合是指从一组元素中选取若干个元素进行组合,不考虑元素的顺序。

对于一个有n个元素的集合,如果选取r个元素进行组合,那么组合的种类数可以表示为C(n, r)。

组合的计算公式为:C(n, r) = n! / (r!(n-r)!)二、排列与组合的计算方法1. 排列的计算方法:对于排列问题,我们首先需要确定所选元素的个数和集合的大小,然后根据排列的计算公式进行计算。

以下是一些常见的排列问题的计算方法:(1) 全排列:即将集合中的所有元素按照不同的顺序进行排列。

全排列的种类数为n!,其中n为集合的大小。

(2) 循环排列:即将集合中的元素进行循环排列。

循环排列的种类数为(n-1)!。

(3) 选取部分元素进行排列:根据题目条件确定所选元素的个数和集合的大小,然后应用排列的计算公式进行计算。

2. 组合的计算方法:对于组合问题,我们需要确定所选元素的个数和集合的大小,然后根据组合的计算公式进行计算。

以下是一些常见的组合问题的计算方法:(1) 从n个元素中选取r个元素进行组合:根据组合的计算公式C(n, r)进行计算。

(2) 组合中包含特定元素的情况:根据题目条件确定所选元素中包含的特定元素个数和集合的大小,然后应用组合的计算公式进行计算。

三、排列与组合的应用举例排列与组合在现实问题中有广泛应用,以下是一些常见的应用举例:1. 抽奖问题:某抽奖活动有10位中奖者,从100个参与者中随机抽取10位中奖者,其中排列或组合方法都可以用来计算中奖的种类数。

高中数学组合数学与排列数学知识点总结

高中数学组合数学与排列数学知识点总结

高中数学组合数学与排列数学知识点总结组合数学和排列数学都是高中数学中的重要内容,它们不仅在学科内部有深入的应用,还在许多实际问题中发挥着重要的作用。

本文将对高中数学中的组合数学与排列数学知识点进行总结和归纳。

一、组合数学知识点总结1.1 定义及性质组合数学是研究离散结构的一门学科,其中组合数是其中的一个重要概念。

组合数表示从n个不同元素中选取r个元素的所有可能情况的个数,记作C(n,r)或者(nCr)。

组合数有以下性质:- C(n,0) = 1,表示从n个元素中选取0个元素,只有一种情况,即空集。

- C(n,n) = 1,表示从n个元素中选取n个元素,只有一种情况,即全集。

- C(n,r) = C(n,n-r),表示从n个元素中选取r个元素与选取剩下的n-r个元素是等价的。

1.2 组合的计算方法计算组合数可以使用以下方法:- 递推公式:C(n,r) = C(n-1,r-1) + C(n-1,r),即组合数等于上一层的左上方和正上方的组合数之和。

- 公式法:C(n,r) = n! / [(n-r)! * r!],即组合数等于n的阶乘除以剩下的n-r个元素的阶乘和r个元素的阶乘的乘积。

1.3 组合数的应用组合数在实际问题中的应用非常广泛,以下是一些常见的应用场景:- 概率计算:组合数可以用于计算事件发生的概率。

- 集合的子集计数:组合数可以计算集合的子集个数。

- 礼物分配问题:组合数可以用于计算礼物分配的方式。

- 编码组合问题:组合数可以用于计算编码方式的组合数。

二、排列数学知识点总结2.1 定义及性质排列数学是研究有序排列的一门学科,其中排列数是其中的一个重要概念。

排列数表示从n个不同元素中选取r个元素按照一定的顺序排列的所有可能情况的个数,记作P(n,r)。

排列数有以下性质:- P(n,1) = n,表示从n个元素中选取1个元素进行排列,排列结果个数等于元素个数。

- P(n,n) = n!,表示从n个元素中选取n个元素进行排列,排列结果个数等于n的阶乘。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学排列与组合知识点
排列组合是高中数学教学内容的一个重要组成部分,但由
于排列组合极具抽象性,使之成为高中数学课本中教与学
的难点.加之高中学生的认知水平和思维能力在一定程度上受
到限制,所以在解题中经常出现错误.以下本人搜集整合了高中数学排列与组合相关知识点,希望可以帮助大家更好的学习这些知识。

高中数学排列与组合知识点汇编如下:
一、排列
1 定义
(1)从n个不同元素中取出m个元素,按照一定的顺
序排成一列,叫做从n个不同元素中取出m个元素的一排列。

(2)从n个不同元素中取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为 Amn.
2 排列数的公式与性质
(1)排列数的公式: Amn=n(n-1)(n-2)…(n-m+1)
特例:当m=n时, Amn=n!=n(n-1)(n-2)…×3×2×1
规定:0!=1
二、组合
1 定义
(1)从n个不同元素中取出 m个元素并成一组,叫做
从n个不同元素中取出m个元素的一个组合
(2)从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号Cmn表示。

2 比较与鉴别
由排列与组合的定义知,获得一个排列需要“取出元素”和“对取出元素按一定顺序排成一列”两个过程,而获得一个组合只需要“取出元素”,不管怎样的顺序并成一组这一个步骤。

排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。

因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。

三、排列组合与二项式定理知识点
1.计数原理知识点
①乘法原理:N=n1·n2·n3·…nM (分步) ②加法原理:N=n1+n2+n3+…+nM (分类)
2. 排列(有序)与组合(无序)
Anm=n(n-1)(n-2)(n-3)­…(n-m+1)=n!/(n-m)! Ann =n!
Cnm = n!/(n-m)!m!
Cnm= Cnn-m Cnm+Cnm+1= Cn+1m+1 k•k!=(k+1)!-k!
3.排列组合混合题的解题原则:先选后排,先分再排
排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素. 以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.
捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑)
插空法(解决相间问题) 间接法和去杂法等等
在求解排列与组合应用问题时,应注意:
(1)把具体问题转化或归结为排列或组合问题;
(2)通过分析确定运用分类计数原理还是分步计数原理;
(3)分析题目条件,避免“选取”时重复和遗漏;
(4)列出式子计算和作答.
经常运用的数学思想是:
①分类讨论思想;②转化思想;③对称思想.
4.二项式定理知识点:
①(a+b)n=Cn0ax+Cn1an-1b1+ Cn2an-2b2+ Cn3an-
3b3+…+ Cnran-rbr+­…+ Cn n-1abn-1+ Cnnbn
特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn
②主要性质和主要结论:对称性Cnm=Cnn-m
最大二项式系数在中间。

(要注意n为奇数还是偶数,答案是中间一项还是中间两项)
所有二项式系数的和:Cn0+Cn1+Cn2+ Cn3+
Cn4+…+Cnr+…+Cnn=2n
奇数项二项式系数的和=偶数项而是系数的和
Cn0+Cn2+Cn4+ Cn6+ Cn8+…=Cn1+Cn3+Cn5+ Cn7+ Cn9+…=2n -1
③通项为第r+1项:Tr+1= Cnran-rbr 作用:处理与指定项、特定项、常数项、有理项等有关问题。

5.二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。

6.注意二项式系数与项的系数(字母项的系数,指定项的系数等,指运算结果的系数)的区别,在求某几项的系数的和时注意赋值法的应用。

;。

相关文档
最新文档