一元二次不等式与线性规划
不等式的解法

不等式的解法不等式是数学中常见的一种关系式,用于表示两个数或者两个代数式之间的大小关系。
解不等式是指找出满足不等式条件的未知数的取值范围。
在解不等式的过程中,可以运用一些特定的方法和技巧,以求得精确的解。
一、一元一次在解一元一次不等式时,可以运用以下几种常见的方法和技巧:1.1 加减法法则:对于不等式中的两边都加上或者减去同一个数,不等式的符号不改变。
1.2 乘除法法则:对于不等式中的两边都乘以或者除以同一个正数,不等式的符号不改变;若乘以或者除以同一个负数,不等式的符号则反向。
1.3 移项法:将不等式中的项移动到同一边,形成一个相等的等式,然后根据等式求解的方法得到解的范围。
1.4 区间判定法:通过观察不等式中的系数和常数项的正负关系,判断不等式的解的范围。
二、一元二次在解一元二次不等式时,除了可以运用一元一次不等式的解法外,还可以运用以下方法和技巧:2.1 因式分解法:将一元二次不等式进行因式分解,然后根据因式的正负情况判断不等式的解的范围。
2.2 二次函数图像法:将一元二次不等式所对应的二次函数的图像进行分析,根据图像的凹凸性和与 x 轴的交点来求解不等式。
2.3 完全平方差和平方根法:将一元二次不等式形式化为完全平方差或平方根的形式,然后根据完全平方差和平方根的性质来求解不等式。
三、绝对值绝对值不等式是指含有绝对值符号的不等式,其解的范围一般分成两个部分。
解绝对值不等式时,可以采用以下方法和技巧:3.1 分情况讨论法:根据绝对值的定义,将不等式分成正数和负数的情况讨论,并解出相应的不等式。
3.2 辅助变量法:引入一个辅助变量,使得绝对值不等式可以转化为一元一次或一元二次不等式,然后使用已知的解法来求解。
3.3 图像法:将绝对值不等式所对应的函数图像进行分析,根据图像的凹凸性和与 x 轴的交点来求解不等式。
四、多元多元不等式是指含有多个未知数的不等式,解多元不等式时可以运用以下方法和技巧:4.1 图像法:将多元不等式所对应的多元函数的图像进行分析,根据图像的几何特征来求解不等式。
高一必修一数学知识点梳理

高一必修一数学知识点梳理高中数学是我国中学阶段的一门主要学科,对于培养学生的逻辑思维能力、分析问题的能力和解决问题的能力起着重要作用。
高一必修一数学是高中数学的起点,它主要包括了数列与函数、不等式与线性规划、平面向量和解析几何等内容。
本文将对高一必修一数学的各个知识点进行详细介绍。
一、数列与函数数列是由一定顺序排列的数所组成的序列,是数学中的基本概念之一。
高一必修一数学中主要涉及到等差数列和等比数列。
1. 等差数列等差数列是指数列中相邻两项之差都相等的数列。
其通项公式为:an=a1+(n-1)d,其中an表示第n项,a1表示首项,d表示公差。
等差数列的前n项和公式为:Sn = (a1+an)×n/2 或 Sn = n[2a1+(n-1)d]/2。
等差数列的性质有:等差中项、首项与末项的关系、公差的计算和改变顺序不变公差等。
2. 等比数列等比数列是指数列中相邻两项之比都相等的数列。
其通项公式为:an=a1×q^(n-1),其中an表示第n项,a1表示首项,q表示公比。
等比数列的前n项和公式为:Sn = a1(1-q^n)/(1-q)。
等比数列的性质有:任意项与末项的关系、公比的计算、倒数数列等。
函数是自变量和因变量之间的一种对应关系。
高一必修一数学主要涉及到一次函数、二次函数和反比例函数。
1. 一次函数一次函数是指函数表达式为y = kx+b的函数,其中k和b为常数,k称为斜率,b称为截距。
一次函数的性质有:图象的斜率、过点的一般式方程、函数的单调性和最值等。
2. 二次函数二次函数是指函数表达式为y=ax^2+bx+c的函数,其中a、b、c为常数,且a≠0。
二次函数的图象为抛物线,其开口方向由系数a的正负决定。
二次函数的性质有:判别式与根的关系、顶点坐标、对称轴、零点、单调性和最值等。
3. 反比例函数反比例函数是指函数表达式为y=a/x的函数,其中a为常数。
反比例函数的图象为一条过原点的开口朝右上或右下的双曲线。
一元二次不等式、线性规划、基本不等式及其应用

contents
目录
• 一元二次不等式 • 线性规划 • 基本不等式 • 一元二次不等式、线性规划、基本不等
式的综合应用
01 一元二次不等式
一元二次不等式的定义与性质
定义
形如ax^2+bx+c>0或 ax^2+bx+c<0的不等式,其中 a≠0。
性质
与一元二次方程具有相同的根的判 别式Δ=b^2-4ac,并且不等式的 解集与方程的根有密切关系。
一元二次不等式的解法
判别式法
根据Δ的大小,判断不等式的解集。 当Δ>0时,不等式有两个实根;当 Δ=0时,不等式有一个重根;当Δ<0 时,不等式无实根。
因式分解法
配方法
将不等式左边进行配方处理,然后根 据配方的结果判断不等式的解集。
基本不等式的定义与性质
定义
基本不等式是数学中一个重要的不等式,它反映了两个正数的平方和与它们的 平均数的平方之间的关系。
性质
基本不等式具有传递性、加法性质、乘法性质等。
基本不等式的证明
证明方法
利用数学归纳法、反证法、放缩法等证明方法来证明基本不 等式。
证明过程
通过对不等式的变形、化简等操作,逐步推导出基本不等式 的证明过程。
将不等式左边进行因式分解,然后根 据因式的正负判断不等式的解集。
一元二次不等式的应用
解决实际问题
一元二次不等式在解决实际问题中有 着广泛的应用,如经济问题、工程问 题等。
在数学领域中的应用
一元二次不等式是数学中的基础知识 点,对于后续学习其他数学分支有着 重要的铺垫作用。
02 线性规划
线性规划的基本概念
二元一次不等式及简单的线性规划问题

线性目标函数 关于x,y的_一__次__解析式
可行解 满足线性约束条件的解_(x_,__y_)_
可行域 所有可行解组成的_集__合_
最优解 使目标函数取得_最__大__值_或最__小__值__的可行解
线性规划问题
在线性约束条件下求线性目标函数的_最_大__ 值__或最__小__值__问题
课前·双基落实 课堂·考点突破
部分所示,平移直线y=-2x,当直
线平移到过点A时,目标函数取得最
大值,由
2x-y=0, x+y=3,
可得A(1,2),
此时2x+y取最大值为2×1+2=4.
答案:4
课前·双基落实
课堂·考点突破
课后·三维演练
二元一次不等式(组)及简单的线性规划问题 结 束
1.画出平面区域.避免失误的重要方法就是首先使二元一
课前·双基落实 课堂·考点突破
课后·三维演练
二元一次不等式(组)及简单的线性规划问题 结 束
2.常见的3类目标函数
(1)截距型:形如z=ax+by.
求这类目标函数的最值常将函数z=ax+by转化为
直线的斜截式:y=-
a b
x+
z b
,通过求直线的截距
z b
的最
值间接求出z的最值.
(2)距离型:形如z=(x-a)2+(y-b)2.
课后·三维演练
二元一次不等式(组)及简单的线性规划问题 结 束
[小题体验]
1.下列各点中,不在x+y-1≤0表示的平面区域内的是
()
A.(0,0)
B.(-1,1)
C.(-1,3)
D.(2,-3)
答案:C
课前·双基落实 课堂·考点突破
课后·三维演练
线性规划常见题型及解法 均值不等式(含答案)

线性规划常见题型及解法一.基础知识:(一)二元一次不等式表示的区域二元一次不等式0>++C By Ax 表示直线0=++C By Ax 某一侧的所有点组成的区域,把直线画成虚线表示不包括边界, 0≥++C By Ax 所表示的区域应包括边界,故边界要画成实线.由于在直线0=++C By Ax 同一侧的所有点(x,y ),把它的坐标(x,y )代入C By Ax ++,所得的符号相同,所以只需在此直线的某一侧取一个特殊点(0,0y x ),从C By Ax ++00的正负即可判断0≥++C By Ax 表示直线哪一侧的平面区域。
通常代特殊点(0,0)。
(二)线性规划(1)不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件.z =A x +B y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,我们把它称为目标函数.由于z =A x +B y 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数.另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示.(2)一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.(3)那么,满足线性约束条件的解(x ,y )叫做可行解,由所有可行解组成的集合叫做可行域.在上述问题中,可行域就是阴影部分表示的三角形区域.其中可行解(11,y x )和(22,y x )分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解.线性目标函数的最值常在可行域的顶点处取得;而求最优整数解必须首先要看它们是否在可行(4)用图解法解决简单的线性规划问题的基本步骤:1.首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域).2.设z =0,画出直线l 0.3.观察、分析,平移直线l 0,从而找到最优解.4.最后求得目标函数的最大值及最小值. (5) 利用线性规划研究实际问题的解题思路:首先,应准确建立数学模型,即根据题意找出约束条件,确定线性目标函数.然后,用图解法求得数学模型的解,即画出可行域,在可行域内求得使目标函数取得最值的解. 最后,还要根据实际意义将数学模型的解转化为实际问题的解,即结合实际情况求得最优解.线性规划是新教材中新增的内容之一,由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下常见题型。
第二章 一元二次函数、方程和不等式 考点与题型解析(解析版)

第二章一元二次函数、方程和不等式考点与题型解析一、本章知识体系二、考点与题型解读考点一本章考点方法梳理1.不等式的核心性质(1)a>b⇔b<a;(2)a>b,b>c⇒a>c;(3)a>b⇔a+c>b+c;(4)a>b,c>0⇒ac>bc;(5)a>b,c<0⇒ac<bc;(6)a>b,c>d⇒a+c>b+d;(7)a>b>0,c>d>0⇒ac>bd;(8)a>b>0,n∈N,n≥2⇒an>bn.2.不等式的性质是不等式理论的基础,在应用不等式性质进行论证时,要注意每个性质的条件,不要盲目乱用或错用性质,特别是乘法性质容易出错,要在记忆基础上加强训练,提高应用的灵活性.3.一元二次不等式的解法是根据一元二次方程的根与二次函数图像求解的,在求解含参数的一元二次不等式时,要注意相应方程根的情况的讨论.4.二元一次不等式的平面区域的确定,首先是画出直线(有虚实之分),然后用特殊点,一般选择原点去验证,以帮助选择直线的哪一侧.5.简单线性规划问题的解法称为图解法,针对应用题时,一定要正确地找到目标函数和线性约束条件,另外还应注意最优解问题以及移动直线时在y 轴上截距的正负与所求线性目标函数的最值之间的关系.当目标函数的几何意义为截距的正数倍时,截距最大时目标函数取最大值;而几何意义为截距的负数倍时,截距最大时目标函数取最小值.6.应用基本不等式求函数最值时,有三个条件:一是a 、b 为正;二是a +b 与a ·b 有一个为定值;三是等号要取到.这三个条件缺一不可,为了达到使用基本不等式的目的,常常需要对函数式(代数式)进行通分、分解等变形,构造和为定值或积为定值的模型.考点二 基本不等式及应用基本不等式:ab ≤a +b2(a>0,b>0)是每年高考的热点,主要考查命题判断、不等式证明以及求最值问题,特别是求最值问题往往与实际问题相结合,同时在基本不等式的使用条件上设置一些问题,实际上是考查学生恒等变形的技巧,另外,基本不等式的和与积的转化在高考中也经常出现.【例1】设a >0,b >0,2a +b =1,则1a +2b 的最小值为________.解析 ∵a >0,b >0,且2a +b =1,∴1a +2b =⎝ ⎛⎭⎪⎫1a +2b (2a +b )=4+b a +4ab≥4+2b a ·4ab=8, 当且仅当⎩⎪⎨⎪⎧2a +b =1,b a =4a b ,即⎩⎪⎨⎪⎧a =14,b =12时等号成立.∴1a +2b 的最小值为8.答案 8【变式训练1】已知关于x 的不等式()224300x ax a a -+<>的解集为()12,x x ,则1212ax x x x ++的最小值是______.【答案】433考点三 一元二次不等式的解法对于一元二次不等式的求解,要善于联想两个方面的问题:①相应的二次函数图象及与x 轴的交点,②相应的一元二次方程的实根;反之对于二次函数(二次方程)的问题的求解,也要善于联想相应的一元二次不等式的解与相应的一元二次方程的实根.【例2】若不等式组⎩⎨⎧x 2-x -2>0,2x 2+2k +5x +5k <0,的整数解只有-2,求k 的取值范围.解:由x 2-x -2>0,得x <-1或x >2. 对于方程2x 2+(2k +5)x +5k =0有两个实数解 x 1=-52,x 2=-k .(1)当-52>-k ,即k >52时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-k <x <-52,显然-2∉⎝ ⎛⎭⎪⎫-k ,-52.(2)当-k =-52时,不等式2x 2+(2k +5)x +5k <0的解集为∅.(3)当-52<-k ,即k <52时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-52<x <-k .∴不等式组的解集由⎩⎪⎨⎪⎧x <-1,-52<x <-k 或⎩⎪⎨⎪⎧x >2,-52<x <-k 确定.∵原不等式组整数解只有-2, ∴-2<-k ≤3,故所求k 的范围是-3≤k <2.【变式训练2】二次函数2y ax bx c =++的图象如图所示,反比例函数ay x=与正比例函数()y b c x =+在同一坐标系中的大致图象可能是()A .B .C .D .【答案】B考点四 不等式的恒成立问题不等式中的恒成立问题,既是学习中的难点,又是高考中的热点,在求解不等式中的恒成立问题时,要注意转化,利用数形结合的方法,构造不等式或不等式组进行探讨.常见的解决恒成立问题的方法有:(1)判别式法;(2)数形结合法;(3)分离参数法;(4)分类讨论法.【例3】不等式(m 2-2m -3)x 2-(m -3)x -1<0对一切实数x 恒成立,求m 的取值范围. 解:当m 2-2m -3=0时,m =-1或3. 而m =3时,-1<0符合题意,所以m =3; 当m 2-2m -3≠0时,应有⎩⎨⎧m 2-2m -3<0-m +32+4m 2-2m -3<0⇒⎩⎪⎨⎪⎧-1<m <3-15<m <3⇒-15<m <3.综上可得,m的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪-15<m ≤3. 【变式训练3】已知0,0x y >>且191x y+=,求使不等式x y m +≥恒成立的实数m 的取值范围. 【答案】16<m考点五 线性规划问题1.高考中线性规划主要考查平面区域的表示和图解法的具体应用,命题形式以选择题、填空题为主,命题模式是以线性规划为载体,考查区域的划分、区域的面积,涉及区域的最值问题、决策问题、整点问题、参数的取值范围问题等.2.简单线性规划问题的图解法就是利用数形结合的思想,根据线性目标函数的几何意义,求线性目标函数在线性约束条件下的最优解,一般步骤如下: ①作图:画出约束条件(不等式组)所确定的平面区域; ②找初始直线:列目标函数,找初始直线l 0;③平移:将直线l 0平行移动,以确定最优解所对应的点的位置;④求值:解有关的方程组,求出最优解,再代入目标函数,求出目标函数的最值.【例4】设关于x ,y 的不等式组⎩⎨⎧2x -y +1>0,x +m <0,y -m >0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,求得m 的取值范围是( ) A .⎝ ⎛⎭⎪⎫-∞,43B .⎝ ⎛⎭⎪⎫-∞,13C .⎝ ⎛⎭⎪⎫-∞,-23D .⎝ ⎛⎭⎪⎫-∞,-53【解析】当m ≥0时,若平面区域存在,则平面区域内的点在第二象限,平面区域内不可能存在点P (x 0,y 0)满足x 0-2y 0=2, 因此m <0.如图所示的阴影部分为不等式组表示的平面区域.要使可行域内包含y =12x -1上的点,只需可行域边界点(-m ,m )在直线y =12x -1的下方即可,即m <-12m -1,解得m <-23. 选C【变式训练4】若变量x ,y 满足约束条件11y xx y y ≤⎧⎪+≤⎨⎪≥-⎩,12z x y =+的最大值为m ,212y z x -=+的最小值为n ,则m n +=( ) A .2-B .2C .1D .1-【答案】C考点六 均值不等式的应用均值不等式通常用来求最值问题:一般用a +b ≥2ab (a ≥0,b ≥0)求“定积求和,和最小”问题,用ab ≤⎝⎛⎭⎪⎫a +b 22求“定和求积、积最大”问题.一定要注意适用的范围和条件:“一正、二定、三相等”.特别是利用拆项、添项、配凑、分离变量、减少变元等方法,构造定值条件的方法,及对等号能否成立的验证.若等号不能取到,则应用函数单调性来求最值,还要注意运用均值不等式解决实际问题. 【例5】已知0<x <2,求函数y =x (8-3x )的最大值.解:∵0<x <2,∴0<3x <6,∴8-3x >0,∴y =x (8-3x )=13·3x ·(8-3x )≤13·⎝ ⎛⎭⎪⎫3x +8-3x 22=163, 当且仅当3x =8-3x ,即x =43时,取等号.∴当x =43时,y =x (8-3x )取得最大值,最大值为163.【变式训练5】已知函数()218f x ax bx =++,()0f x >的解集为()3,2-.(1)求()f x 的解析式;(2)当1x >-时,求()211f x y x -=+的最大值.【答案】(1)()23318f x x x =--+;(2)max 3y =-.。
一元二次不等式的求解方法

一元二次不等式的求解方法一元二次不等式是高中数学中的重要知识点之一,掌握其求解方法对于解决数学题目和实际问题非常重要。
本文将介绍一元二次不等式的基本概念及其求解方法,帮助读者更好地理解和应用这一知识。
一、一元二次不等式的基本概念一元二次不等式是形如ax^2 + bx + c > 0(或< 0)的不等式,其中a、b、c为已知实数,且a≠0。
其解集表示x的取值范围,以使得不等式成立。
解一元二次不等式的关键在于确定x的取值范围。
二、一元二次不等式的求解方法1. 图示法通过绘制一元二次函数的图像,可以直观地得到不等式的解集。
首先,将不等式化为等式ax^2 + bx + c = 0,求解得到方程的根,记为x1和x2。
然后,根据抛物线的凹凸性质和与x轴的交点情况,得到不等式的解集。
- 当a > 0时,抛物线开口向上,解集为x ∈ (-∞, x1) ∪ (x2, +∞)。
- 当a < 0时,抛物线开口向下,解集为x ∈ (x1, x2)。
2. 辅助函数法通过引入一个辅助函数来求解一元二次不等式。
根据不等式的性质,我们可以构造一个与原不等式等价的辅助方程。
具体步骤如下:- 对于ax^2 + bx + c > 0,构造辅助函数f(x) = ax^2 + bx + c,将不等式转化为f(x) > 0的形式。
- 求解辅助方程f(x) = 0,得到方程的根,记为x1和x2。
- 根据辅助方程的根和函数的凹凸性质,确定不等式的解集。
3. 判别式法判别式法是一种常用的简化计算的方法,适用于某些特定的一元二次不等式。
通过求解方程ax^2 + bx + c = 0,得到判别式D = b^2 - 4ac。
- 当D > 0时,不等式有两个不相等的实根x1和x2,解集为x ∈ (-∞, x1) ∪ (x2, +∞)。
- 当D = 0时,不等式有两个相等的实根x1 = x2,解集为x ∈ (-∞,x1) ∪ (x1, +∞)。
不等式及线性规划

不等式及线性规划本部分内容在备考时应注意以下几个方面:(1)掌握不等关系与不等式解法、基本不等式的应用.(2)熟练掌握求解线性规划问题的方法,给出线性不等式组可以熟练找出其对应的可行域.(3)关注目标函数的几何意义和参数问题,掌握求目标函数最值的方法.预测2019年命题热点为:(1)不等式的性质、不等关系及不等式解法;利用基本不等式求函数最值.(2)求目标函数的最大值或最小值及求解含有参数的线性规划问题.Z知识整合hi shi zheng he1.不等式的四个性质注意不等式的乘法、乘方与开方对符号的要求,如(1)a>b,c>0⇒ac>bc,a>b,c<0⇒ac<bc.(2)a>b>0,c>d>0⇒ac>bd.(3)a>b>0⇒a n>b n(n∈N,n≥1).(4)a>b>0⇒na>nb(n∈N,n≥2).2.四类不等式的解法(1)一元二次不等式的解法先化为一般形式ax2+bx+c>0(a≠0),再求相应一元二次方程ax2+bx+c=0(a≠0)的根,最后根据相应二次函数图象与x轴的位置关系,确定一元二次不等式的解集.(2)简单分式不等式的解法 f (x )g (x )>0(<0)⇔f (x )g (x )>0(<0). f (x )g (x )≥0(≤0)⇔f (x )g (x )≥0(≤0)且g (x )≠0. (3)简单指数不等式的解法 当a >1时,a f (x )>a g (x )⇔f (x )>g (x ); 当0<a <1时,a f (x )>a g (x )⇔f (x )<g (x ). (4)简单对数不等式的解法当a >1时,log a f (x )>log a g (x )⇔f (x )>g (x )>0; 当0<a <1时,log a f (x )>log a g (x )⇔g (x )>f (x )>0. 3.基本不等式(1)基本不等式的常用变形①a +b ≥2ab (a >0,b >0),当且仅当a =b 时,等号成立.②a 2+b 2≥2ab ,ab ≤(a +b 2)2(a ,b ∈R ),当且仅当a =b 时,等号成立.③b a +ab≥2(a ,b 同号且均不为零),当且仅当a =b 时,等号成立. ④a +1a ≥2(a >0),当且仅当a =1时,等号成立;a +1a ≤-2(a <0),当且仅当a =-1时,等号成立.⑤a >0,b >0,则a 2+b 22≥a +b 2≥≥21a +1b,当且仅当a =b 时取等号. (2)利用基本不等式求最值已知a ,b ∈R ,则①若a +b =S (S 为定值),则ab ≤(a +b 2)2=S 24,当且仅当a =b 时,ab取得最大值S 24.②若ab =T (T 为定值,且T >0),则a +b 2T ,当且仅当a =b 时,a +b 取得最小值2T .4.求目标函数的最优解问题(1)“斜率型”目标函数z =y -bx -a (a ,b 为常数),最优解为点(a ,b )与可行域上点的连线的斜率取最值时的可行解.(2)“两点间距离型”目标函数z =(x -a )2+(y -b )2(a ,b 为常数),最优解为点(a ,b )与可行域上点之间的距离取最值时的可行解.5.线性规划中的参数问题的注意点(1)当最值已知时,目标函数中的参数往往与直线斜率有关,解题时应充分利用斜率这一特征加以转化.(2)当目标函数与最值都已知,且约束条件中含有参数时,因为平面区域是变动的,所以要抓住目标函数及最值已知这一突破口,先确定最优解,然后变动参数范围,使得这样的最优解在该区域内即可.6.重要性质及结论(1)ax 2+bx +c >0(a ≠0)恒成立的条件是⎩⎪⎨⎪⎧ a >0,Δ<0.(2)ax 2+bx +c <0(a ≠0)恒成立的条件是⎩⎪⎨⎪⎧a <0,Δ<0.Y 易错警示i cuo jing shi1.忽略条件应用基本不等式求最值时,要注意“一正、二定、三相等”,三个条件缺一不可,否则会导致结论错误.2.忽视分母不等于零求解分式不等式时应注意正确进行同解变形,不能把f (x )g (x )≥0直接转化为f (x )·g (x )≥0,而忽略g (x )≠0.3.忽略等号成立的条件在连续使用基本不等式求最值时,应特别注意检查等号是否同时成立.1.(2018·天津卷,2)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤5,2x -y ≤4,-x +y ≤1,y ≥0,则目标函数z =3x +5y的最大值为( C )A .6B .19C .21D .45[解析]画出可行域如图中阴影部分所示,由z =3x +5y 得y =-35x +z5.设直线l 0为y =-35x ,平移直线l 0,当直线y =-35x +z5过点P (2,3)时,z 取得最大值,z max=3×2+5×3=21.故选C .2.(2017·全国卷Ⅰ,7)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +3y ≤3,x -y ≥1,y ≥0,则z =x +y 的最大值为( D )A .0B .1C .2D .3[解析] 根据题意作出可行域,如图阴影部分所示,由z =x +y 得y =-x +z .作出直线y =-x ,并平移该直线,当直线y =-x +z 过点A 时,目标函数取最大值. 由图知A (3,0), 故z max =3+0=3. 故选D .3.(2017·全国卷Ⅱ,5)设x ,y 满足约束条件⎩⎪⎨⎪⎧2x +3y -3≤0,2x -3y +3≥0,y +3≥0,则z =2x +y 的最小值是( A )A .-15B .-9C .1D .9[解析] 不等式组表示的可行域如图中阴影部分所示.将目标函数z =2x +y 化为y =-2x +z ,作出直线y =-2x ,并平移该直线,知当直线y =-2x +z 经过点A (-6,-3)时,z 有最小值,且z min =2×(-6)-3=-15.故选A .4.(2018·全国卷Ⅰ,13)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -2y -2≤0,x -y +1≥0,y ≤0,则z=3x +2y 的最大值为6.[解析] 作出满足约束条件的可行域如图阴影部分所示.由z =3x +2y 得y =-32x +z2.作直线l 0:y =-32x .平移直线l 0,当直线y =-32x +z2过点(2,0)时,z 取最大值,z max =3×2+2×0=6.5.(2018·全国卷Ⅱ,14)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -5≥0,x -2y +3≥0,x -5≤0,则z =x +y 的最大值为9.[解析] 由不等式组画出可行域,如图(阴影部分).x +y 取得最大值⇔斜率为-1的直线x +y =z (z 看做常数)的横截距最大,由图可得直线x +y =z 过点C 时z 取得最大值.由⎩⎪⎨⎪⎧x =5,x -2y +3=0得点C (5,4),∴ z max =5+4=9.6.(2018·天津卷,13)已知a ,b ∈R ,且a -3b +6=0,则2a +18b 的最小值为14.[解析] ∵ a -3b +6=0,∴ a -3b =-6,∴ 2a +18b =2a +2-3b ≥22a ·2-3b =22a -3b =22-6=2×2-3=14,当且仅当⎩⎪⎨⎪⎧ a =-3b ,a -3b +6=0时等号成立,即⎩⎪⎨⎪⎧a =-3,b =1时取到等号.7.(2018·江苏卷,13)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC =120°,∠ABC 的平分线交AC 于点D ,且BD =1,则4a +c 的最小值为9.[解析] 方法一:如图(1), ∵ S △ABC =S △ABD +S △BCD , ∴12ac ·sin120°=12c ×1×sin60°+12a ×1×sin60°,∴ ac =a +c . ∴ 1a +1c=1. ∴ 4a +c =(4a +c )⎝⎛⎭⎫1a +1c =c a +4ac +5 ≥2c a ·4ac+5=9. 当且仅当c a =4ac,即c =2a 时取等号.方法二:如图(2),以B 为原点,BD 为x 轴建立平面直角坐标系,则D (1,0), A ⎝⎛⎭⎫c 2,-32c ,C ⎝⎛⎭⎫a 2,32a .又A ,D ,C 三点共线, ∴ c 2-1-32c =a 2-132a ,∴ ac =a +c . 以下同方法一.命题方向1 不等式的性质及解不等式例1 (1)(2018·保定一模)下列三个不等式:①x +1x ≥2(x ≠0);②c a <cb (a >b >c >0);③a +m b +m >a b(a ,b ,m >0且a <b ),恒成立的个数为( B )A .3B .2C .1D .0[解析] 当x <0时,①不成立;由a >b >c >0得1a <1b ,所以c a <cb 成立,所以②恒成立;a +mb +m -a b =m (b -a )b (b +m ),由a ,b ,m >0且a <b 知a +m b +m -a b>0恒成立,故③恒成立. (2)(2018·衡阳一模)已知一元二次不等式f (x )≤9的解集为{x |x ≤12或x ≥3},则f (e x )>0的解集为( D )A .{x |x <-ln 2或x >ln 3}B .{x |ln2<x <ln3}C .{x |x <ln3}D .{x |-ln2<x <ln3}[解析] 由题意可知,一元二次不等式所对应的二次函数的图象开口向下,故f (x )>0的解集为{x |12<x <3},又因为f (e x )>0,所以12<e x <3,解得-ln2<x <ln3.『规律总结』解不等式的策略(1)一元二次不等式:先化为一般形式ax 2+bx +c >0(a >0),再结合相应二次方程的根及二次函数图象确定一元二次不等式的解集.(2)含指数、对数的不等式:利用指数、对数函数的单调性将其转化为整式不等式求解. (3)有函数背景的不等式:灵活利用函数的性质(单调性、奇偶性、对称性等)与图象求解.G 跟踪训练en zong xun lian1.已知x ,y ∈R ,且x >y >0,则( C ) A .1x -1y >0B .sin x -sin y >0C .(12)x -(12)y <0D .ln x +ln y >0[解析] 因为x >y >0,选项A ,取x =1,y =12,则1x -1y =1-2=-1<0,排除A ;选项B ,取x =π,y =π2,则sin x -sin y =sin π-sin π2=-1<0,排除B ;选项D ,取x =2,y =12,则ln x+ln y =ln(x +y )=ln1=0,排除D .故选C .2.已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( D ) A .1x 2+1>1y 2+1B .ln(x 2+1)>ln(y 2+1)C .sin x >sin yD .x 3>y 3[解析] 根据指数函数的性质得x >y ,此时x 2,y 2的大小不确定,故选项A ,B 中的不等式不恒成立;根据三角函数性质,选项C 中的不等式也不恒成立;根据不等式的性质知选项D 中的不等式恒成立.3.设函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2,x ≥0,若f (f (a ))≤2,则实数a 的取值范围是[解析] 由题意⎩⎪⎨⎪⎧f (a )<0,f 2(a )+f (a )≤2或⎩⎪⎨⎪⎧f (a )≥0,-f 2(a )≤2 解得f (a )≥-2,所以⎩⎪⎨⎪⎧ a <0,a 2+a ≥-2或⎩⎪⎨⎪⎧a ≥0,-a 2≥-2解得a ≤ 2.命题方向2 基本不等式及其应用例2 (2018·徐州质检)设a 、b 、c 都是正实数,且a 、b 满足1a +9b=1,则使a +b ≥c 恒成立的c 的范围是( D )A .(0,8]B .(0,10]C .(0,12]D .(0,16][分析] c ≤a +b 恒成立,设a +b 的最小值为m ,则c ≤m .∵a 、b 为正实数,且1a +9b =1,故可用“1的代换”求a +b 的最小值.[解析] ∵a 、b 为正实数,1a +9b =1,∴a +b =(a +b )(1a +9b )=10+b a +9ab≥10+2b a ·9a b =16,当且仅当b a =9ab,即a =4,b =12时等号成立,∴(a +b )min =16,要使c ≤a +b 恒成立,∵c 为正实数,∴0<c ≤16.『规律总结』1.用基本不等式a +b2≥ab 求最值时,要注意“一正、二定、三相等”,一定要明确什么时候等号成立,要注意“代入消元”、“拆、拼、凑”、“1的代换”等技巧的应用.2.不等式恒成立问题一般用分离参数法转化为函数最值求解或用赋值法讨论求解.G 跟踪训练en zong xun lian1.若点A (m ,n )在第一象限,且在直线x 3+y4=1上,则mn 的最大值为3.[解析] 因为点A (m ,n )在第一象限,且在直线x 3+y 4=1上,所以m ,n >0,且m 3+n4=1.所以m 3·n 4≤(m 3+n42)2(当且仅当m 3=n 4=12,即m =32,n =2时,取等号).所以m 3·n 4≤14,即mn ≤3,所以mn 的最大值为3.2.已知关于x 的不等式2x +2x -a ≥7在x ∈(a ,+∞)上恒成立,则实数a 的最小值为( B )A .1B .32C .2D .52[解析] 2x +2x -a =2(x -a )+2x -a +2a ≥2·2(x -a )·2x -a+2a =4+2a ,由题意可知4+2a ≥7,得a ≥32,即实数a 的最小值为32,故选B .命题方向3 线性规划问题例3 (1)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,2x +3y -6≥0,3x +2y -9≤0,则目标函数z =2x +5y 的最小值为( B )A .-4B .6C .10D .17[解析] 如图,已知约束条件⎩⎪⎨⎪⎧x -y +2≥0,2x +3y -6≥0,3x +2y -9≤0所表示的平面区域为图中所示的三角形区域ABC (包含边界),其中A (0,2),B (3,0),C (1,3).根据目标函数的几何意义,可知当直线y =-25x +z5过点B (3,0)时,z 取得最小值2×3+5×0=6.(2)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1x -y ≥-12x -y ≤2,且目标函数z =ax +2y 仅在点(1,0)处取得最小值,则a 的取值范围是( B )A .[-4,2]B .(-4,2)C .[-4,1]D .(-4,1)[解析] 本题主要考查线性规划.作出不等式组表示的区域如图中阴影部分所示,直线z =ax +2y 的斜率为k =-a2,从图中可看出,当-1<-a2<2,即-4<a <2时,仅在点(1,0)处取得最小值.故选B .『规律总结』1.线性规划问题一般有三种题型:一是求最值;二是求区域面积;三是由最优解确定目标函数中参数的取值范围.2.解决线性规划问题首先要画出可行域,再注意目标函数所表示的几何意义,数形结合找到目标函数达到最值时可行域的顶点(或边界上的点),但要注意作图一定要准确,整点问题可通过验证解决.3.确定二元一次不等式组表示的平面区域:①画线,②定侧,③确定公共部分;解线性规划问题的步骤:①作图,②平移目标函数线,③解有关方程组求值,确定最优解(或最值等).G 跟踪训练en zong xun lian1.设x 、y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0x -3y +1≤03x -y -5≥0,则z =2x -y 的最大值为( B )A .10B .8C .3D .2[解析] 作出可行域如图,作直线l :y =2x ,平移直线l ,当经过可行域内的点A 时,-z 取最小值,z 取最大值,由⎩⎪⎨⎪⎧ x -3y +1=0,x +y -7=0,解得⎩⎪⎨⎪⎧x =5,y =2.∴A (5,2),∴z max =2×5-2=8,故选B .2.设z =2x +y ,其中变量x ,y 满足条件⎩⎪⎨⎪⎧x -4y ≤-33x +5y ≤25x ≥m .若z 的最小值为3,则m 的值为( A )A .1B .2C .3D .4[解析] 作出不等式组⎩⎪⎨⎪⎧x -4y ≤-33x +5y ≤25,表示的平面区域,由于z =2x +y 的最小值为3,作直线l 0:x =m 平移l 0可知m =1符合题意.A 组1.若a >b >0,c <d <0,则一定有( D ) A .a c >bdB .a c <b dC .a d >b cD .a d <b c[解析] 令a =3,b =2,c =-3,d =-2, 则a c =-1,bd =-1, 所以A ,B 错误; a d =-32,b c =-23, 所以a d <b c,所以C 错误.故选D .2.下列不等式一定成立的是( C )A .lg(x 2+14)>lg x (x >0)B .sin x +1sin x ≥2(x ≠k π,k ∈Z )C .x 2+1≥2|x |(x ∈R )D .1x 2+1>1(x ∈R )[解析] 应用基本不等式:x ,y >0,x +y2≥xy (当且仅当x =y 时取等号)逐个分析,注意基本不等式的应用条件及取等号的条件.当x >0时,x 2+14≥2·x ·12=x ,所以lg(x 2+14)≥lg x (x >0),故选项A 不正确;运用基本不等式时需保证一正二定三相等,而当x ≠k π,k ∈Z 时,sin x 的正负不定,故选项B 不正确; 由基本不等式可知,选项C 正确;当x =0时,有1x 2+1=1,故选项D 不正确.3.关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1, x 2),且x 2-x 1=15,则a 等于( A ) A .52B .72C .154D .152[解析] 由x 2-2ax -8a 2<0,得(x +2a )(x -4a )<0,因a >0,所以不等式的解集为(-2a,4a ),即x 2=4a ,x 1=-2a ,由x 2-x 1=15,得4a -(-2a )=15,解得a =52.4.(2017·长春一模)已知一元二次不等式f (x )<0的解集为{x |x <-1或x >13},则f (e x )>0的解集为( D )A .{x |x <-1或x >-ln3}B .{x |-1<x 或x >-ln3}C .{x |x >-ln3}D .{x |x <-ln3}[解析] f (x )>0的解集为{x |-1<x <13},则由f (e x )>0得-1<e x <13,解得x <-ln3,即f (e x )>0的解集为{x |x <-ln3}. 5.若变量x ,y 满足⎩⎪⎨⎪⎧x +y ≤2,2x -3y ≤9,x ≥0,则x 2+y 2的最大值是( C )A .4B .9C .10D .12[解析] 作出不等式组所表示的平面区域如图中阴影部分所示,设P (x ,y )为平面区域内任意一点,则x 2+y 2表示|OP |2.显然,当点P 与点A 重合时,|OP |2取得最大值.由⎩⎪⎨⎪⎧x +y =22x -3y =9,解得⎩⎪⎨⎪⎧x =3y =-1,故A (3,-1).所以x 2+y 2的最大值为32+(-1)2=10.故选C .6.(文)若实数x 、y 满足不等式组⎩⎪⎨⎪⎧y ≥0,x -y ≥0,2x -y -2≥0,则w =y -1x +1的取值范围是( D )A .[-1,13]B .[-12,13]C .[-12,+∞)D .[-12,1)[解析] 作出不等式组表示的平面区域如图所示.据题意,即求点M (x ,y )与点P (-1,1)连线斜率的取值范围.由图可知w min =1-0-1-1=-12,w max <1,∴w ∈[-12,1).(理)已知O 是坐标原点,点A (-1,2),若点M (x ,y )为平面区域⎩⎪⎨⎪⎧x +y ≥2x ≤1y ≤2上的一个动点,则OA →·OM →的取值范围是( D )A .[-1,0]B .[0,1]C .[1,3]D .[1,4][解析] 作出点M (x ,y )满足的平面区域,如图阴影部分所示,易知当点M 为点C (0,2)时,OA →·OM →取得最大值,即为(-1)×0+2×2=4,当点M 为点B (1,1)时,OA →·OM →取得最小值,即为(-1)×1+2×1=1,所以OA →·OM →的取值范围为[1,4],故选D .7.某企业生产甲、乙两种新产品均需用A ,B 两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( D )A .12万元D .18万元[解析] 设企业每天生产甲产品x 吨、乙产品y 吨,每天获得的利润为z 万元,则有z =3x +4y ,由题意得x ,y 满足:⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,不等式组表示的可行域是以O (0,0),A (4,0),B (2,3),C (0,4)为顶点的四边形及其内部.根据线性规划的有关知识,知当直线3x +4y -z =0过点B (2,3)时,z 取最大值18,故该企业每天可获得最大利润为18万元.8.已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增,若实数a 满足f (log 2a )+f (log 12a )≤2f (1),则a 的取值范围是( C )A .[1,2]B .(0,12]C .[12,2]D .(0,2][解析] 因为log 12a =-log 2a ,所以f (log 2a )+f (log 12a )=f (log 2a )+f (-log 2a )=2f (log 2a ),原不等式变为2f (log 2a )≤2f (1),即f (log 2a )≤f (1),又因为f (x )是定义在R 上的偶函数,且在[0,+∞)上递增,所以|log 2a |≤1,即-1≤log 2a ≤1,解得12≤a ≤2,故选C .9.已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3),若z =2x +y 的最小值为1,则a =( B )A .14B .12C .1D .2[解析] 画出可行域,如图所示,由⎩⎪⎨⎪⎧x =1,y =a (x -3), 得A (1,-2a ),则直线y =z -2x 过点A (1,-2a )时,z =2x +y 取最小值1,故2×1-2a =1,解得a =12.10.已知x ∈(0,+∞)时,不等式9x -m ·3x +m +1>0恒成立,则m 的取值范围是( C ) A .2-22<m <2+2 2 B .m <2 C .m <2+2 2D .m ≥2+22[解析] 令t =3x (t >1),则由已知得函数f (t )=t 2-mt +m +1的图象在t ∈(1,+∞)上恒在x 轴的上方,则对于方程f (t )=0,有Δ=(-m )2-4(m +1)<0或⎩⎪⎨⎪⎧Δ≥0,m2≤1,f (1)=1-m +m +1≥0,解得m <2+2 2.11.已知AC ,BD 为圆O :x 2+y 2=4的两条互相垂直的弦,且垂足为M (1,2),则四边形ABCD 面积的最大值为( A )A .5B .10C .15D .20[解析] 如图,作OP ⊥AC 于P ,OQ ⊥BD 于Q ,则OP 2+OQ 2=OM 2=3,∴AC 2+BD 2=4(4-OP 2)+4(4-OQ 2)=20.又AC 2+BD 2≥2AC ·BD ,则AC ·BD ≤10,∴S 四边形ABCD =12AC ·BD ≤12×10=5,当且仅当AC =BD =10时等号成立.12.函数f (x )=⎩⎪⎨⎪⎧2x ,x ∈[0,1),4-2x ,x ∈[1,2],若f (x 0)≤32,则x 0的取值范围是( C )A .(log 232,54)B .(0,log 232]∪[54,+∞)C .[0,log 232]∪[54,2]D .(log 232,1)∪[54,2][解析] ①当0≤x 0<1时,2x 0≤32,x 0≤log 232,∴0≤x 0≤log 232.②当1≤x 0≤2时,4-2x 0≤32,x 0≥54,∴54≤x 0≤2,故选C . 13.(2018·衡水中学高三调研)已知f (x )是R 上的减函数,A (3,-1),B (0,1)是其图象上两点,则不等式|f (1+ln x )|<1的解集是(1e,e 2).[解析] ∵|f (1+ln x )|<1,∴-1<f (1+ln x )<1, ∴f (3)<f (1+ln x )<f (0), 又∵f (x )在R 上为减函数, ∴0<1+ln x <3,∴-1<ln x <2,∴1e<x <e 2. 14.若x ,y 满足条件⎩⎪⎨⎪⎧x -y ≤0,x +y ≥0,y ≤a ,且z =2x +3y 的最大值是5,则实数a 的值为1.[解析] 画出满足条件的可行域如图阴影部分所示,则当直线z =2x +3y 过点A (a ,a )时,z =2x +3y 取得最大值5,所以5=2a +3a ,解得a =1.15.(2018·赣州六校高三期末联考)若点A (1,1)在直线2mx +ny -2=0上,其中mn >0,则1m +1n 的最小值为2[解析] ∵点A (1,1)在直线2mx +ny -2=0上, ∴2m +n =2,∵1m +1n =(1m +1n )2m +n 2=12(2+2m n +n m +1)≥12(3+22m n ·n m )=32+2, 当且仅当2m n =nm ,即n =2m 时取等号,∴1m +1n 的最小值为32+ 2. 16.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+x ,x ≤1,log 13x ,x >1,若对任意的x ∈R ,不等式f (x )≤m 2-34m 恒成立,则实数m 的取值范围是(-∞,-14)∪[1,+∞).[解析] 对于函数f (x )=⎩⎪⎨⎪⎧-x 2+x ,x ≤1,log 13x ,x >1,当x ≤1时,f (x )=-(x -12)2+14≤14;当x >1时,f (x )=log 13x <0.则函数f (x )的最大值为14.则要使不等式f (x )≤m 2-34m 恒成立,则m 2-34m ≥14恒成立,即m ≤-14或m ≥1.B 组1.(2018·山东菏泽一模)已知直线ax +by +c -1=0(b ,c >0)经过圆x 2+y 2-2y -5=0的圆心,则4b +1c的最小值是( A )A .9B .8C .4D .2[解析] 圆x 2+y 2-2y -5=0化成标准方程,得x 2+(y -1)2=6, 所以圆心为C (0,1).因为直线ax +by +c -1=0经过圆心C , 所以a ×0+b ×1+c -1=0,即b +c =1. 因此4b +1c =(b +c )(4b +1c )=4c b +b c +5.因为b ,c >0, 所以4c b +b c≥24c b ·b c=4. 当且仅当4c b =bc时等号成立.由此可得b =2c ,且b +c =1,即b =23,c =13时,4b +1c取得最小值9. 2.(2018·天津二模)已知函数f (x )=⎩⎪⎨⎪⎧2,x >1(x -1)2+2,x ≤1,则不等式f (1-x 2)>f (2x )的解集是( D )A .{x |-1<x <-1+2}B .{x |x <-1或x >-1+2}C .{x |-1-2<x <1}D .{x |x <-1-2或x >2-1}[解析] 由f (x )=⎩⎪⎨⎪⎧2,x >1(x -1)2+2,x ≥1,可得当x ≤1时,函数f (x )为减函数,则由f (1-x 2)>f (2x )可得⎩⎪⎨⎪⎧ 1-x 2<2x ,2x ≤1,或⎩⎪⎨⎪⎧1-x 2<1,2x >1,解得x <-1-2或2-1<x ≤12或x >12,所以不等式f (1-x 2)>f (2x )的解集是{x |x <-1-2或x >2-1}.3.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≤2,y ≥0. 若z =ax +y 的最大值为4,则a =( B )A . 3B . 2C . -2D . -3[解析] 由约束条件可画可行域如图,解得A (2,0),B (1,1).若过点A (2,0)时取最大值4,则a =2,验证符合条件;若过点B (1,1)时取最大值4,则a =3,而若a =3,则z =3x +y 最大值为6(此时A (2,0)是最大值点),不符合题意. (也可直接代入排除)4.(2018·德州模拟)若a =ln 22,b =ln 33,c =ln 55,则( C )A .a <b <cB .c <b <aC .c <a <bD .b <a <c[解析] 易知a ,b ,c 均为正数, b a =2ln 33ln 2=ln 9ln 8=log 89>1,所以b >a , a c =5ln 22ln 5=ln 32ln 25=log 2532>1,所以a >c , 故b >a >c .5.已知正项等比数列{a n }满足:a 7=a 6+2a 5,若存在两项a m ,a n 使得a m a n =4a 1,则1m +4n的最小值为( A ) A .32B .53C .256D .不存在[解析] 由a n >0,a 7=a 6+2a 5,设{a n }的公比为q , 则a 6q =a 6+2a 6q ,所以q 2-q -2=0.因为q >0,所以q =2,因为a m a n =4a 1,所以a 21·qm+n -2=16a 21,所以m +n -2=4, 所以m +n =6,所以1m +4n =16(m +n )(1m +4n )=16(5+n m +4m n )≥16(5+2n m ·4m n )=32,等号在n m =4mn,即n =2m =4时成立.6.若变量x ,y 满足⎩⎪⎨⎪⎧x -2y +1≤0,2x -y ≥0,x ≤1,则点P (2x -y ,x +y )表示区域的面积为( D )A .34B .43C .12D .1[解析] 令2x -y =a ,x +y =b ,解得⎩⎨⎧x =a +b 3,y =2b -a3,代入x ,y 的关系式得⎩⎪⎨⎪⎧a -b +1≤0,a ≥0,a +b -3≤0,画出不等式组表示的平面区域如图.易得阴影区域面积S =12×2×1=1.7.(2018·临沂模拟)若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a 表示的平面区域是一个三角形,则a 的取值范围是( D )A .[43,+∞)B .(0,1]C .[1,43)D .(0,1]∪[43,+∞)[解析] 不等式组表示区域如图.由图可知,0<a ≤1或a ≥43.8.(2018·青岛一模)已知x ∈(0,π2),且函数f (x )=1+2sin 2x sin2x的最小值为b ,若函数g (x )=⎩⎨⎧8x 2-6bx +4,0<x ≤π4,-1,π4<x <π2,则不等式g (x )≤1的解集为( B )A .(π4,π2)B .[34,π2) C .[34,32] D .(π4,32][解析] 依题意知,当x ∈(0,π2)时,f (x )=3sin 2x +cos 2x 2sin x cos x =12(3tan x +1tan x )≥3tan x ·1tan x=3,当且仅当3tan x =1tan x ,即tan x =33,x =π6时取等号,因此b =3,不等式g (x )≤1等价于⎩⎪⎨⎪⎧0<x ≤π48x 2-63x +4≤1①,或π4<x <π2解①得34≤x ≤π4,因此不等式g (x )≤1的解集是[34,π4]∪(π4,π2)=[34,π2). 9.已知一元二次不等式f (x )<0的解集为{x |x <-1或x >12},则f (10x )>0的解集为{x |x <-lg_2}.[解析] 由题意知,一元二次不等式f (x )<0的解集为{x |x <-1或x >12},因为f (10x )>0,所以-1<10x <12,即x <lg 12=-lg 2.10.设f (x )=⎩⎪⎨⎪⎧-x +a ,x ≤0,x +1x ,x >0.若f (0)是f (x )的最小值,则a 的取值范围为(-∞,2].[解题提示] 根据分段函数的定义找出f (0)的表达形式,再利用f (0)是f (x )的最小值,求出a 的取值范围.[解析] 当x >0时,f (x )=x +1x≥2,若f (0)是f (x )的最小值,则f (0)=a ≤2.11.已知f (x )是定义在[-1,1]上的奇函数且f (1)=2,当x 1、x 2∈[-1,1],且x 1+x 2≠0时,有f (x 1)+f (x 2)x 1+x 2>0,若f (x )≥m 2-2am -5对所有x ∈[-1,1]、a ∈[-1,1]恒成立,则实数m的取值范围是[-1,1].[解析] ∵f (x )是定义在[-1,1]上的奇函数,∴当x 1、x 2∈[-1,1]且x 1+x 2≠0时, f (x 1)+f (x 2)x 1+x 2>0等价于f (x 1)-f (-x 2)x 1-(-x 2)>0,∴f (x )在[-1,1]上单调递增.∵f (1)=2,∴f (x )min =f (-1)=-f (1)=-2.要使f (x )≥m 2-2am -5对所有x ∈[-1,1],a ∈[-1,1]恒成立, 即-2≥m 2-2am -5对所有a ∈[-1,1]恒成立, ∴m 2-2am -3≤0,设g (a )=m 2-2am -3,则⎩⎪⎨⎪⎧ g (-1)≤0,g (1)≤0,即⎩⎪⎨⎪⎧-3≤m ≤1,-1≤m ≤3.∴-1≤m ≤1. ∴实数m 的取值范围是[-1,1].12.(2017·天津卷,16)电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x ,y 表示每周计划播出的甲、乙两套连续剧的次数.(1)用x ,y 列出满足题目条件的数学关系式,并画出相应的平面区域; (2)问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多? [解析] (1)由已知x ,y 满足的数学关系式为⎩⎪⎨⎪⎧70x +60y ≤600,5x +5y ≥30,x ≤2y ,x ≥0,x ∈N ,y ≥0,y ∈N ,即⎩⎪⎨⎪⎧7x +6y ≤60,x +y ≥6,x -2y ≤0,x ≥0,x ∈N ,y ≥0,y ∈N ,该二元一次不等式组所表示的平面区域为图①中的阴影部分中的整数点.(2)设总收视人次为z 万,则目标函数为z =60x +25y .考虑z =60x +25y ,将它变形为y =-125x +z 25,这是斜率为-125,随z 变化的一族平行直线.z25为直线在y 轴上的截距,当z25取得最大值时,z 的值就最大. 又因为x ,y 满足约束条件,所以由图②可知,当直线z =60x +25y 经过可行域上的点M 时,截距z25最大,即z 最大.解方程组⎩⎪⎨⎪⎧7x +6y =60,x -2y =0,得⎩⎪⎨⎪⎧x =6,y =3, 则点M 的坐标为(6,3).所以,电视台每周播出甲连续剧6次、乙连续剧3次时,才能使总收视人次最多.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教辅旗舰
华翰教辅
教辅旗舰
教 材 面 面 观 基础知识常梳理 自主探究强记忆
华翰教辅
教辅旗舰
1.二元一次不等式表示________(直线定边界、选点定区域). 一般地,若 Ax+By+C>0,则当 B>0 时,表示直线 Ax+By +C=0 的________;当 B<0 时,表示直线 Ax+By+C=0 的 ________.若 Ax+By+C<0,与上述情况相反.
答案 平面区域
上方
下方
华翰教辅
教辅旗舰
2.线性规划 (1)约束条件、线性约束条件:变量 x、y 满足的一组条件叫做对 变量 x、y 的约束条件,如果约束条件都是________,则约束条件又 称为线性约束条件; (2)目标函数、线性目标函数:欲达到__________,叫做目标函 数.如果这个解析式是____________________,则目标函数又称为 线性目标函数; (3)线性规划:求线性目标函数在__________的问题,统称为线 性规划问题; (4)可行域:____________________叫做可行解,________叫做 可行域; (5)最优解:分别使目标函数取得__________的解,叫做这个问 题的最优解.
华翰教辅
教辅旗舰
典 例 对 对 碰 反思例题有法宝 变式迁移有技巧
华翰教辅
教辅旗舰
题型一二元一次不等式组表示的平面区域 例 1 在△ABC 中,A(3,-1),B(-1,1),C(1,3),写出△ABC 区域所表示的二元一次不等式组.
分析 首先写出△ABC 三边所在直线方程, 然后再根据区域确 定不等式组. 解析 解法一:如图,由两点式得 AB、BC、CA 的直线方程 并化简为: AB:x+2y-1=0,BC:x-y+2=0, AC:2x+y-5=0.
华翰教辅
教辅旗舰
∴原点(0,0)不在各直线上,将原点坐标代入到各直线方程左端, 结合式子的符号可得不等式组为
3x+8y+15=0, 由 5x+3y-6=0, 3x+8y+15=0, 由 2x-5y+10=0,
得 B(3,-3), 得 A(-5,0).
华翰教辅
教辅旗舰
当 z 为常数时,-z 表示直线 z=x-y 在 y 轴上的截距,当点(x, y)位于 A 点时,-z 取最大值,∴zmin=-5-0=-5; 当点(x,y)位于 B 点时,-z 取最小值; ∴zmax=3-(-3)=6. 综上所述,目标函数 z 的取值范围是[-5,6]. 答案 [-5,6] 点评 线性目标函数的最优解一般在可行域的顶点或边界上取 得,具体方法是:将表示目标函数的直线平行移动,最先(或最后) 通过的区域内的点便是最优解.特别地,当表示线性目标函数的直 线与可行域的某边重合时,其最优解可能有无数个.
华翰教辅
教辅旗舰
3.线性规划的实际应用 (1)在线性规划的实际问题中,主要掌握两种类型:①在人力、 物力、资金等资源一定的条件下,如何使用它们来完成最多的任 务.②给定一项任务,如何合理安排和规划,能以最少的人力、物 力、资金等资源来完成该项任务. (2)线性规划中的常见问题: ①物资调运问题 ; ②产品安排问题; ③合理下料问题;④配方问题. (3)利用线性规划解决实际问题的一般步骤为:①模型建立;② 模型求解; ③模型应用. (4)关于线性规划的实际应用的几点说明: ①解线性规划问题的关键步骤是在图上完成的,所以作图应尽 可能地准确,图上操作尽可能规范. ②因作图有误差,若图上的最优点并不明显易辨,则求不出可 能是最优点的坐标.
华翰教辅
教辅旗舰
2.线性规划 (1)线性规划的有关概念 ①约束条件:由 x、y 的不等式(或方程)组成的不等式或等式混 合组,是 x,y 的约束条件. ②线性约束条件:关于 x、y 的一次不等式(或方程)组成的不等 式或等式混合组,是 x,y 的线性约束条件. ③目标函数:欲达到最大值或最小值所涉及的变量 x、y 的解析 式. ④线性目标函数:目标函数为 x、y 的一次解析式. ⑤线性规划问题:求线性目标函数在线性约束条件下的最大值 或最小值问题. ⑥可行解:满足线性约束条件的解(x,y). ⑦可行域:所有可行解组成的集合. ⑧最优解:使目标函数取得最大值或最小值的可行解.
华翰教辅
教辅旗舰
变式迁移 3 求不等式|x|+|y|≤2 表示的平面区域的面积.
华翰教辅
华翰教辅
教辅旗舰
变式迁移 1
x-2y+1>0, 画出不等式组x+2y+1≥0, 表示的平面区域. 1<|x-2|≤3
华翰教辅
教辅旗舰
解析 不等式 x-2y+1>0 表示直线 x-2y+1=0 右下方的点 的集合; 不等式 x+2y+1≥0 表示直线 x+2y+1=0 上及其右上方的点 的集合; 不等式 1<|x-2|≤3,可化为-1≤x<1 或 3<x≤5,它表示夹 在两平行线 x=-1 和 x=1 之间或在两平行线 x=3 和 x=5 之间的 带状区域,但不包括直线 x=1 和 x=3 上的点. 所以,原不等式组表示的区域如图所示.
华翰教辅
教辅旗舰
(5)线性规划的图解法及其应用. 图解法的步骤: ①求可行解——即可行域. 将约束条件中的每一个不等式,当作等式作出相应的直线,并 确定原不等式表示的半平面,然后求出所有半平面的交集,即为可 行解(可行域). ②作出目标函数的等值线. 目标函数 z=ax+by(a、b∈R 且 a、b 为常数),当 z 是一个指定 的常数时,就表示一条直线.位于这条直线上的点,具有相同的目 标函数值 z, 因此称之为等值线. z 为参数时, 当 就得到一组平行线, 这一组平行线完全刻画出目标函数 z 的变化状态. ③求出最终结果. 在可行域内平行移动目标函数等值线,从图中能判定问题是有 唯一最优解,或是有无穷最优解,或是无最优解.
华翰教辅
教辅旗舰
(2)求线性目标函数在约束条件下的最值问题的求解步骤: ①作图:画出约束条件所确定的平面区域和目标函数所表示的 平行直线系中的任意一条直线 l. ②平移:将直线 l 平行移动,以确定最优解所对应的点的位置. ③求值:解有关的方程组求出最优解,再代入目标函数,求出 目标函数的最值. (3)关于线性规划的几点说明: ①最优解有时唯一,有时不唯一,甚至是无穷多. ②对于二元一次不等式组所表示的区域,如果存在使线性目标 函数达到最大或最小的点,那么最值一定是在该区域的顶点或边界 上达到. a z (4)求目标函数 z=ax+by 的最值,要把 z 与直线 y=-bx+b的 截距联系起来去理解.
u=x+y, 令 v=x-y,
解析
u≤1, ∴ u+v≥0, u-v≥0,
通过画图不难得知不等
1 式组对应的平面区域的面积 S= ×2×1=1.故选 B. 2 答案 B
华翰教辅
教辅旗舰
点评 求线性平面区域的面积可以先根据不等式组画出相应的 平面区域,再求出相应的顶点坐标,根据图形的特点解决问题.若 图形是不规则的多边形,一般是划分为几个三角形分别求面积再相 加.在划分时尽量多构造直角三角形,这样可以降低运算难度.
华翰教辅
教辅旗舰
题型二线性目标函数的最值问题
3x+8y+15≥0, 例 2 已知 x,y 满足5x+3y-6≤0, 则 z=x-y 的取值范围 2x-5y+10≥0,
是________.
华翰教辅
解析
教辅旗舰
先画出约束条件的可行域,如图所示,
作直线 l:2y-2x=t, 当 l 经过点 A(0,2)时,zmax=2×2-2×0+4=8; 当 l 经过点 B(1,1)时,zmin=2×1-2×1+4=4.
华翰教辅
教辅旗舰
题型三平面区域的面积问题 例 3 在平面直角坐标系 xOy 中,已知平面区域 A={(x,y)|x+ y≤1,且 x≥0,y≥0},则平面区域 B={(x+y,x-y)|(x,y)∈A}的 面积为( ) A.2 B.1 1 1 C. D. 2 4
x+2y-1≥0, x-y+2≥0, 2x+y-5≤0.
解法二:由 AB 的方程及三角形区域在 AB 上方, 根据“同号在上”原则,得不等式 x+2y-1≥0. 由 BC 的方程及三角形区域在 BC 下方, 根据“异号在下”原则,得不等式 x-y+2≥0. 同理得 2x+y-5≤0,从而得不等式组. 点评 判断二元一次不等式组表示的平面区域可直接利用上述 “同号在上,异号在下”的结论直接判断.
华翰教辅
教辅旗舰
1.二元一次不等式表示平面区域 (1)一般地,二元一次不等式 Ax+By+C>0 在平面直角坐标系 中表示直线 Ax+By+C=0 某一侧所有点组成的平面区域.我们把 直线画成虚线,表示区域不包括边界直线.当我们在坐标系中画不 等式 Ax+By+C≥0 所表示的平面区域时,此区域应包括边界直线, 则把边界直线画成实线. (2)用二元一次不等式表示平面区域,常有一定的规律性,大致 可分为以下四种情况(如图所示).
华翰教辅
教辅旗舰
3.求解线性规划问题的基本程序是作________,画________, 解________,求________.
答案 可行域
平行线
方程组 最值
华翰教辅
教辅旗舰
考 点 串 串 讲 考点归纳与解析 思维拓展与迁移
华翰教辅
教辅旗舰
(3)关于二元一次不等式表示平面区域的几点说明: ①用集合的观点和语言分析直线和二元一次不等式所表示的平 面区域,能使问题更加清楚、准确、便于理解. ②Ax+By+C>0 表示的是直线 Ax+By+C=0 的某一侧的平面 区域,一定要注意不包括边界;Ax+By+C≥0 表示的是直线 Ax+ By+C=0 及直线某一侧的平面区域,一定要注意包括边界. ③画二元一次不等式表示的平面区域常采用“直线定界,特殊 点定域”的方法.特别地,当 C≠0 时,常把原点作为此特殊点. ④画二元一次不等式组所表示的平面区域要注意寻找各个不等 式所表示的平面点集的交集,即它们的平面区域的公共部分. ⑤在直线 l:Ax+By+C=0 外任取两点 P(x1,y1),Q(x2,y2).若 P、Q 在直线 l 的同一侧,则 Ax1+By1+C 与 Ax2+By2+C 同号;若 P、Q 在直线 l 异侧,则 Ax1+By1+C 与 Ax2+By2+C 异号.这个规 律可概括为“同侧同号,异侧异号”.