直长风管压力分布测定

合集下载

管道风压、风速、风量测定

管道风压、风速、风量测定
仪器的测量部分采用电子放大线路和运算放大器,并用 数字显示测量结果。测量的范围为0.05~19.0m/s(必要时 可扩大至40m/s)
仪器中还设有P-N结温度测头,可以在测量风速的同时, 测定气流的温度。这种仪器适用于气流稳定输送清洁空 气,流速小于4m/s的场合。
管道风压、风速、风量测定
四、风道内流量的计算
天竹夭的店
2020年6月27日
管道风压、风速、风量测定
管道风压、风速、风量测定
一、测定位置和测定点
(一) 通风管道内风速及风量的测定,是通过测量压力换算得到。测得管道中气体的
真实压力值,除了正确使用测压仪器外,合理选择测量断面、减少气流扰动对 测量结果的影响很大。
测量断面应尽量选择在气流平稳的直管段上。测量断面设在弯头、三通等异形 部件前面(相对气流流动方向)时,距这些部件的距离应大于2倍管道直径。
1 在同一断面设置两个彼此垂直的测孔,并将管道断面分成一定数量的等面积同 心环。 对于圆形风道,测点越多,测量精度越高。
2 矩形风道 可将风道断面划分为若干等面积的小矩形,测点布置在每个小矩形的中心,小 矩形每边的长度为200mm左右,圆风管测点与管壁距离系数(以管径为基数)。
管道风压、风速、风量测定
当测量断面设在上述部件后面时,距这些部件的距离应大于4~5倍管道直径。 当测试现场难于满足要求时,为减少误差可适当增加测点。 但是,测量断面位置距异形部件的最小距离至少是管道直径的1.5
管道风压、风速、风量测定
一、测定位置和测定点
(一)
测定动压时如发现任何一个测点出现零值或负值,表明气流不稳定,该断面 不宜作为测定断面。
如果气流方向偏出风管中心线15°以上,该断面也不宜作测量断面 (检查方法:毕托管端部正对气流方向,慢慢摆动毕托管,使动压值最大,这

通风系统风量、风压的测量

通风系统风量、风压的测量

实验一风管风压、风速、风量的测定一、实验目的在通风除尘工程中,需要对系统中风压、风速及风量进行测定调整,使系统能在正常运行工况下工作。

测量风压、风速及风量的方法有许多种,现场测定一般采用毕托测压管和不同种类的微压计或U型管来进行测量。

通过实验,使学生掌握风管截面的测点布置方法,熟悉风压、风速及风量测量仪表的结构及工作原理,掌握风压、风速及风量的测量方法和计算公式,为专业测试打下基础。

二、实验装置通风系统综合测定实验装置如图1-1所示,该装置由风管、风机及测量箱组成。

图1-1 通风系统综合测定实验装置实验系统的正压管段与负压管段均设有测压孔,可用毕托管直接在测量断面上进行测量。

在风机入口,出口侧各安装有测量风量的测量箱,在箱内安装有标准空气流量喷嘴,为了使测量段的空气流速场较为均匀、在喷咀前后各设有整流板,其穿孔率约为40%,测量箱断面尺寸按空气流速不大于O.76m/s考虑。

I号测量箱,安装有标准喷嘴计3个,其规格为:D100 2个 D50 1个实验系统风量可通过调节多叶调节阀来改变其大小。

三、实验原理及实验方法(一) 毕托管与微压计测量风压、风速及风量空气在风管中流动时,管内空气与管外空气存在有压力差,这个压力差是直接由风管管壁来承受的,称为静压P j ,就空气某一质点来说,所承受的静压的方向为四面八方。

由于空气在风管内流动,形成一定的动压d P ,即为气流的动能。

动压数学表达式 22ρν=d P (Pa )或 gP d 22γν='P (O mmH 2)动压的方向为空气流动的方向。

静压与动压之和称为总压,数学表达式为d j q P P P +=(Pa )在毕托管上有测量总压、静压的测孔,与微压计配合使用,就可测出流体的静压、总压与动压。

静压和总压有正负之分,动压只为正值。

在测量总压和静压时,如数值超过微压计的量程,则采用U 型管压力计。

测出空气动压值后,即可求得相应的空气流速。

空气流速 ρdP v 2=(m/s )或 γd P g v '=2(m/s )测出测量断面面积F 及计算出空气的平均流速v 后即可计算空气体积流量L 。

浅述通风系统风管的测量与计算

浅述通风系统风管的测量与计算

浅述通风系统风管的测量与计算摘要:通风是借助换气稀释或通风排除等手段,控制空气污染物的传播与危害,实现室内外空气环境质量保障的一种建筑环境控制技术。

通风系统就是实现通风这一功能,包括进风口、排风口、送风管道、风机、降温及采暖、过滤器、控制系统以及其他附属设备在内的一整套装置。

而随着国家、社会的不断发展进步,人们对生活水平不断提高,从而引发了人们对生活质量的要求不断提高。

因此,风管的测量与计算尤为重要,是控制成本和现场施工的重要依据。

关键词:通风系统、风管、测量、计算、成本一、术语1.通风工程:送风、排风、防排烟、除尘和气力输送系统工程的总称。

2.空调工程:舒适性空调、恒温恒湿空调和洁净室空气净化及空气调节系统工程的总称。

3.风管:采用金属、非金属薄板或其他材料制作而成,用于空气流通的管道。

4.防火风管:采用不燃和耐火绝热材料组合制成,能满足一定耐火极限时间的风管。

5.风管配件:风管系统中的弯管、三通、四通、异形管、导流叶片和法兰等构件。

6.风管部件:风管系统中的各类风口、阀门、风罩、风帽、消声器、空气过滤器、检查。

门和测定孔等功能件。

7.通风系统:SF送风、PF排风、PY排烟、P(F)Y排风兼排烟。

系统中一般包含:通风机、防火阀(70°或280°)、止回阀、风量调节阀(手动对开多叶调节阀)、电动风阀、单层、双层、防雨百叶风口,防火风口,排烟口(板式排烟口(带远程控制机构)、多叶排烟口);正压送风口(多叶送风口),排烟阀(手动和电动)。

8.轴流风机:叶轮做轴向运动(如电风扇),轴流式风机通常用在流量要求较高而压力要求较低的场合,安装比较简单,一般是直接安装在墙上或者连接风管。

9.离心风机:叶轮做离心运动,体积大、安装比较复杂,流量小,压力大。

10.混流风机:混合轴流与离心两种运动形式,介于轴流风机和离心风机之间。

风压系数比轴流风机高,流量系数比离心风机大,用在风压和流量都“不大不小”的场合。

第二节风管内的压力分布

第二节风管内的压力分布
工业通风
第六章 通风管道的
设计计算
第六章 通风管道的设计计算
• 本章主要阐述通风管道的设计原理和计算方法 • 设计计算的目的:在保证要求的风量分配前提下,
合理确定风管布置和尺寸,使系统的初投资和运行 费用综合最优。
第一节 风管内的空气流动阻力
• 风管内空气流动阻力有两种:摩擦阻力(沿程阻力) 和局部阻力
Pq3 Pq 2 Rm l 23 23
Pq4 Pq3 Z34 Z34 渐缩管的局部阻力
• 点5(风机进口):
Pq 5
Pq 4
(Rm l 45 45
Z

5
Z5 风机进口处90度弯头的阻力
• 点11(风管出口):
Pq11
v112
2
Z1'1
(1
' 11
)
v112 2
11
v112
2
v11 风管出口处空气流速
Rj Ry
0.49(a b)1.25 (a b)0.625
R j 矩形风管的比摩阻
Ry 圆形风管的比摩阻
• 2.管道定型化 • 四.风管材料的选择 • 五.风管的保温 • 六.进排风口 • 七.防爆及防火
第六节 气力输送系统的管道计算
• 气力输送系统的特点 • 分类:吸送式 压送式 混合式 循环式 • 1.吸送式系统(负压气力输送系统)结构简单,
• 摩擦阻力计算公式
Pm
1 4 Rs
v2
2
l
摩檫阻力系数
v 风管内空气的平均流速m / s
空气的密度kg / m3
l 风管长度m
RS 风管的水力半径m
• 水力半径计算
RS
ห้องสมุดไป่ตู้

风道风压、风速和风量的测定

风道风压、风速和风量的测定

风道风压、风速和风量的测定一、实验的目的了解和掌握通风系统风道内风压、风速和风量的测点布置方法及测定方法,测定数据的处理和换算。

从而对通风系统气流分布是否均匀作出理论判断。

二、实验仪器和设备1.U型压力计一台(测量范围在10000Pa)2.倾斜式微压计一台(测量范围在250Pa)3.热球式风速仪一台(测量范围在0.05-30.0m/s)4.毕托管一支5.外径φ10mm,壁后1mm的橡胶管或乳胶管数米。

6.蒸馏水500ml7.纯酒精500ml8.钢卷尺一把,长度值不小于2m三、测试原理及方法1.测试原理风道风压、风速和风量的测定,可以通过毕托管、U型压力计、倾斜式微压计、热球式风速仪等仪器来完成。

毕托管、U型压力计可以测试风道内的全压、动压和静压,由测出的全压可以知道风机工作状况,通风系统的阻力等。

由测出的风道动压可以换算出风道的风量。

也可以用热球式风速仪直接测量风道内风速,由风速换算出风道内风量。

2.测量位置的确定由于风管内速度分布是不均匀的,一般管中心风速最大,越靠近管壁风速越小。

在工程实践中所指的管内气流速度大都是指平均风速。

为了得到断面的平均风速,可采用等截面分环法进行测定。

对圆形风管可将圆管断面划分若干个等面积的同心环,测点布置在等分各小环面积的中心线上,如图1所示,把圆面积分成m个等面积的环形,则:,然后将每个等分环面积再二等分,则此圆周距中心为Y n,与直径交点分别为1、2、3,…n点,这些点就是测点位置。

各小环划分的原则是:环数取决于风管直径,划分的环数越多,测得的结果越接近实际,但不能太多,否则将给测量和计算工作带来极大麻烦,一般参照表5分环。

表5 测量时不同管径所分环数n 表6 圆管测点位置值图2测压管标定测点位置 图3 矩形风管测点位置为了将测压管准确地放在风管中预定的位置,必须在测压管上作出标志。

由测压端中心线向管柄方向取风管直径的一半即等于R 为刻度中心,如图2所示,再根据计算出来的Y 1、Y 2、Y 3…Y n 值在管柄上逐次标出测点位置。

通风系统风量风压的测量

通风系统风量风压的测量

通风系统风量风压的测量SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#实验一风管风压、风速、风量的测定一、实验目的在通风除尘工程中,需要对系统中风压、风速及风量进行测定调整,使系统能在正常运行工况下工作。

测量风压、风速及风量的方法有许多种,现场测定一般采用毕托测压管和不同种类的微压计或U型管来进行测量。

通过实验,使学生掌握风管截面的测点布置方法,熟悉风压、风速及风量测量仪表的结构及工作原理,掌握风压、风速及风量的测量方法和计算公式,为专业测试打下基础。

二、实验装置通风系统综合测定实验装置如图1-1所示,该装置由风管、风机及测量箱组成。

图1-1 通风系统综合测定实验装置实验系统的正压管段与负压管段均设有测压孔,可用毕托管直接在测量断面上进行测量。

在风机入口,出口侧各安装有测量风量的测量箱,在箱内安装有标准空气流量喷嘴,为了使测量段的空气流速场较为均匀、在喷咀前后各设有整流板,其穿孔率约为40%,测量箱断面尺寸按空气流速不大于O.76m/s考虑。

I号测量箱,安装有标准喷嘴计3个,其规格为:D100 2个 D50 1个实验系统风量可通过调节多叶调节阀来改变其大小。

三、实验原理及实验方法(一) 毕托管与微压计测量风压、风速及风量空气在风管中流动时,管内空气与管外空气存在有压力差,这个压力差是直接由风管管壁来承受的,称为静压P j ,就空气某一质点来说,所承受的静压的方向为四面八方。

由于空气在风管内流动,形成一定的动压d P ,即为气流的动能。

动压数学表达式 22ρν=d P (Pa )或 gP d 22γν='P (O mmH 2)动压的方向为空气流动的方向。

静压与动压之和称为总压,数学表达式为d j q P P P +=(Pa )在毕托管上有测量总压、静压的测孔,与微压计配合使用,就可测出流体的静压、总压与动压。

静压和总压有正负之分,动压只为正值。

在测量总压和静压时,如数值超过微压计的量程,则采用U 型管压力计。

通风管道风压、风速、风量测定(精)

通风管道风压、风速、风量测定(精)

第八节通风管道风压、风速、风量测定(p235)(熟悉)一、测定位置和测定点(一测定位置的选择通风管道内风速及风量的测定,是通过测量压力换算得到。

测得管道中气体的真实压力值,除了正确使用测压仪器外,合理选择测量断面、减少气流扰动对测量结果的影响很大。

测量断面应尽量选择在气流平稳的直管段上。

测量断面设在弯头、三通等异形部件前面(相对气流流动方向时,距这些部件的距离应大于2倍管道直径。

当测量断面设在上述部件后面时,距这些部件的距离应大于4~5倍管道直径。

测量断面位置示意图见p235图2.8-1。

当测试现场难于满足要求时,为减少误差可适当增加测点。

但是,测量断面位置距异形部件的最小距离至少是管道直径的1.5倍。

测定动压时如发现任何一个测点出现零值或负值,表明气流不稳定,该断面不宜作为测定断面。

如果气流方向偏出风管中心线15°以上,该断面也不宜作测量断面(检查方法:毕托管端部正对气流方向,慢慢摆动毕托管,使动压值最大,这时毕托管与风管外壁垂线的夹角即为气流方向与风管中心线的偏离角。

选择测量断面,还应考虑测定操作的方便和安全。

(二测试孔和测定点由于速度分布的不均匀性,压力分布也是不均匀的。

因此,必须在同一断面上多点测量,然后求出该断面的平均值。

1 圆形风道在同一断面设置两个彼此垂直的测孔,并将管道断面分成一定数量的等面积同心环,同心环的划分环数按(236)表2.8-1确定。

对于圆形风道,同心环上各测点距风道内壁距离列于表2.8—2。

测点越多,测量精度越高。

图2.8-2是划分为三个同心环的风管的测点布置图,其他同心环的测点可参照布置。

2 矩形风道可将风道断面划分为若干等面积的小矩形,测点布置在每个小矩形的中心,小矩形每边的长度为200mm左右,如(p236)图2.8-3矩形风道测点布置图所示。

圆风管测点与管壁距离系数(以管径为基数表2.8-2 二、风道内压力的测定(一原理测量风道中气体的压力应在气流比较平稳的管段进行。

解读GB50243-2016《通风与空调工程施工质量验收规范》(3)

解读GB50243-2016《通风与空调工程施工质量验收规范》(3)

解读GB50243-2016《通风与空调⼯程施⼯质量验收规范》(3)接上…D.6 室内空⽓温度和相对湿度的检测本附录温、湿度的检测主要应⽤于洁净室,也可以适⽤于⼀般舒适性空调系统。

D.6.1洁净室(区)的温、湿度测试可分为⼀般温、湿度测试和功能温、湿度测试。

D.6.2温度测试可采⽤玻璃温度计、电阻温度检测装置、数字式温度计等;湿度测试可采⽤通风⼲湿球温度计、数字式温湿度计、电容式湿度计、⽑发式湿度计等。

D.6.3温度和相对湿度测试应在洁净室(区)净化空调系统通过调试,⽓流均匀性测试完成,并应在系统连续运⾏24h以上时进⾏。

D.6.4 应根据温度和相对湿度允许波动范围,采⽤相应适⽤精度的仪表进⾏测定。

每次测定时间隔不应⼤于30 min。

D.6.5室内测点布置应符合下列原则:1 送回风⼝处;2 恒温⼯作区具有代表性的地点(如沿着⼯艺设备周围布置或等距离布置);3 没有恒温要求的洁净室中⼼;4 测点应布置在距外墙表⾯⼤于0.5m,离地⾯0.8m的同⼀⾼度上,也可以根据恒温区的⼤⼩,分别布置在离地不同⾼度的⼏个平⾯上。

D.6.6 温、湿度测点数应符合表D.6.6的规定。

表D.6.6 温、湿度测点数D.6.7有恒温恒湿要求的洁净室(房间),应进⾏室温波动范围的检测:并应测定并计算室内各测点的记录温度与控制点温度的差值,分别统计⼩于等于某⼀温差的测点数占测点总数的百分⽐,整理成温差累积统计曲线。

当90%以上测点偏差值在室温波动范围内,应判定为合格。

D.6.8区域温度应以各测点中最低(或最⾼的)的⼀次测试温度为基准,并应计算各测点平均温度与上述基准的偏差值,分别统计⼩于等于某⼀温差的测点数占测点总数的百分⽐,整理成偏差累计统计曲线,90%以上测点所达到的偏差值应为区域温差。

D.6.9相对湿度波动范围及区域相对湿度差的测定,可按室温波动范围及区域温差的测定规定执⾏。

D.7 ⽓流流型的检测D.7.1⽓流流型的检测宜采⽤⽓流⽬测和⽓流流向的⽅法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一 通风管道风压的测定
一、实验目的及内容
1.了解压力计、皮托管的构造原理,掌握使用方法。

2. 掌握风管中点压测定方法,验证不同状态(压入式通风与抽出式通风)下,全压、动压、静压间的关系。

(即)
二、实验方法及仪器
1.试验方法:采用皮托管压差计法。

每组试验设备可同时容纳两组,每组15人,每套装置两侧各一组,每组使用抽出段、压入段测点各一个。

2.每组仪器:
皮托管(4mm) 胶皮管 u形管
3.实验步骤:
(1)将皮托管传压置于中心点处,管头迎着风流方向。

(2)将仪器控制阀门置于“校正”位置后,调平仪器底盘。

(将底盘上的水准泡调至圆环中央)
(3)根据测定压力值大小,选定仪器倾斜系数。

(选定时要有足够余量,以免酒精溢出)
(4)旋动零位调节装置,调节斜管中酒精液面,使之刚好与零刻度相切。

(5)按所测压力,用胶管连接仪器端口和皮托管相应端。

(6)开动风机读取相应压力值。

(7)测定上述压力后,将仪器控制开关置于校正位置后,更换胶管连接法,按上述方法测其余压力。

四、实验报告内容
1.绘出不同通风方式时,测定风管中心点风流的静压、动压、全压所用的仪器连接示意图及斜管压力计水面位置关系(斜管计用U形管表示)。

相关文档
最新文档