第4讲 圆锥曲线中的综合问题

合集下载

圆锥曲线的综合课件

圆锥曲线的综合课件

PPT学习交流
15
课堂互动讲练
【思路点拨】 由已知易得动点 Q的轨迹方程,然后找出P点与Q点的 坐标关系,代入即可.
【解】 法一:设 Q(x,y),
则Q→A=(-1-x,-y), Q→B=(1-x,4-y),
→→
故 由QA·QB= 4⇒ (- 1- x)(1- x) +(-y)(4-y)=4,
PPT学习交流
D.9π
答案:B
PPT学习交流
8
三基能力强化
3.直线
y=kx-k+1
与椭圆x2+y2 94
=1 的位置关系为( )
A.相交 C.相离 答案:A
B.相切 D.不确定
PPT学习交流
9
三基能力强化
4.(2009 年高考上海卷)过点 A(1,0)
作倾斜角为π的直线,与抛物线 4
y2=2x
交于 M、N 两点,则|MN|=________.
PPT学习交流
4
基础知识梳理
(1)若a≠0,Δ=b2-4ac,则 ①Δ>0,直线l与圆锥曲线有 两交点. ②Δ=0,直线l与圆锥曲线有一 公共点. ③(2)Δ若<a0=,0直,线当l与圆圆锥锥曲曲线线为无双曲公线共时点,.l与双 曲 与抛线物的线渐的近对线称平轴行;平当行圆.锥曲线为抛物线时,l
PPT学习交流
5
基础知识梳理
3.弦长公式
直线 l:y=kx+b,与圆锥曲线 C:F(x,y)=0
交于 A(x1,y1),B(x2,y2)两点,则|AB|= 1+k2 |x1- x2|= 1+k2· (x1+x2)2-4x1x2或 |AB|=
1+k12|y1-y2|=
1+k12 (y1+y2)2-4y1y2.

4 第二部分 专题五 第4讲 圆锥曲线中的定点、定值、存在性问题

4 第二部分 专题五 第4讲 圆锥曲线中的定点、定值、存在性问题

上一页
返回导航
下一页
第二部分 专题五 解析几何
15
解:(1)由题意知,直线 AB 的方程为 y=x+p2.
由y=x+p2,得 x2=2py
y2-3py+p42=0.
设 A(x3,y3),B(x4,y4),则 y3+y4=3p. 所以|AB|=y3+y4+p=4p=16,所以 p=4. 所以抛物线 C 的方程为 x2=8y.
上一页
返回导航
下一页
第二部分 专题五 解析几何
12
因为|D→A+D→B|=|D→A-D→B|,所以D→A⊥D→B,即D→A·D→B=0, 即(x1+2,y1)·(x2+2,y2)=x1x2+2(x1+x2)+4+y1y2=0, 所以43m+2-4k122+2×3-+84mkk2+4+3m32+-41k22k2=0, 所以 7m2-16mk+4k2=0, 解得 m1=2k,m2=27k,且均满足 3+4k2-m2>0, 当 m1=2k 时,l 的方程为 y=kx+2k=k(x+2),直线恒过点(-2,0),与已知矛盾; 当 m2=27k 时,l 的方程为 y=kx+27k=kx+27,直线恒过点-27,0. 综上,直线 l 过定点,定点坐标为-27,0.
上一页
返回导航
下一页
第二部分 专题五 解析几何
8
思维方法 解得 k=-m+2 1.【关键 2:设出直线 l 的方程,并与椭圆方程联立消去 y 得到关于 x 的一元二次方程,利用根与系数的关系及条件找到直线 l 中两个参数的关系】 当且仅当 m>-1 时,Δ >0,于是 l:y=-m+2 1x+m,即 y+1=-m+2 1(x-2),所以 l 过定点(2,-1). 【关键 3:将 k=-m+2 1代入直线 l 的方程,变形得到直线所过定点(2,-1)】

4圆锥曲线的弦长面积问题-中等难度-讲义

4圆锥曲线的弦长面积问题-中等难度-讲义

圆锥曲线的弦长面积问题知识讲解一、弦长问题设圆锥曲线C ∶(),0f x y =与直线:l y kx b =+相交于()11,A x y ,()22,B x y 两点, 则弦长AB 为:()2221212121141x AB k x x k x x x x k a∆=+-=++-=+()1212122221111141y AB y y y y y y k k ka∆=+-=++-=+或二、面积问题1.三角形面积问题直线AB 方程:y kx m =+ 0021kx y md PH k-+==+002211122a1x ABPkx y mS AB d k k∆∆-+=⋅=+⋅+2.焦点三角形的面积直线AB 过焦点21,F ABF ∆的面积为112121212y ABF c S F F y y c y y a∆∆=⋅-=-=H OyxPBA3.平行四边形的面积直线AB 为1y kx m =+,直线CD 为2y kx m =+d CH ==12AB x =-=ABCDSAB d =⋅==三、范围问题方法:首选均值不等式或对勾函数,其实用二次函数配方法,最后选导数思想 均值不等式 :222(,)a b ab a b R +≥∈变式:2,);()(,)2a b a b a b R ab a b R ++++≥∈≤∈ 作用:当两个正数的积为定值时求出这两个正数的和的最小值;当两个正数的和为定值时求出这两个正数的积的最大值注意:应用均值不等式求解最值时,应注意“一”正“二”定“三”相等圆锥曲线经常用到的均值不等式形式:1)2226464t S t t t==++(注意分0,0,0t t t =><三种情况讨论) 2)224222121212333196123696k AB t k k k=+=+≤+++⨯+++当且仅当2219k k =时,等号成立3)222002200259342593464925y x PQ x y =+⋅+⋅≥+ 当且仅当22002200259259925y x x y ⋅=⋅时等号成立. 4)2282m m S -+===当且仅当228m m =-+时,等号成立 5)2221121k m m S -++==≤=当且仅当221212k m +=时等号成立.经典例题一.选择题(共9小题)1.(2018•德阳模拟)设点P为椭圆C:x249+y224=1上一点,F1、F2分别是椭圆C的左、右焦点,且△PF1F2的重心为点G,若|PF1|:|PF2|=3:4,那么△GPF1的面积为()A.24B.12C.8D.6【解答】解:∵点P为椭圆C:x 249+y224=1上一点,|PF1|:|PF2|=3:4,|PF1|+|PF2|=2a=14∴|PF1|=6,|PF2|=8,又∵F1F2=2c=10,∴△PF1F2是直角三角形,S△PF1F2=12×PF1⋅PF2=24,∵△PF1F2的重心为点G.∴S△PF1F2=3S△GF1F2,∴△GPF1的面积为8,故选:C.2.(2018•邵阳三模)已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为2√1313,且两焦点与短轴端点构成的三角形的面积为6,则椭圆C的标准方程是()A .x 216+y 29=1B .x 216+y 213=1C .x 213+y 29=1D .x 213+y 24=1【解答】解:设椭圆半焦距为c ,则{c a=2√131312×2c ×b =6a 2−b 2=c 2,解得a=√13,b=3,c=2.故椭圆方程为:x 213+y 29=1.故选:C .3.(2018•齐齐哈尔三模)已知双曲线x 22−y 2=1的左焦点为F ,抛物线y 2=12x 与双曲线交于A ,B 两点,则△FAB 的面积为( ) A .2B .1+√2C .2+√2D .2+√3【解答】解:双曲线x 22−y 2=1的左焦点为F (﹣√3,0),由{x 22−y2=1y 2=12x可得:A (2,1),B (2,﹣1),则△FAB 的面积为:12×(2+√3)×2=2+√3.故选:D .4.(2018•珠海二模)已知F 是双曲线C :x 2a 2﹣y 2b2=1(a >0,b >0)的右焦点,P是y 轴正半轴上一点,以OP 为直径的圆在第一象限与双曲线的渐近线交于点M ,若点P ,M ,F 三点共线,且△MFO 的面积是△PMO 面积的4倍,则双曲线C 的离心率为( )A .√3B .√5C .√6D .√7【解答】解:如图以OP 为直径的圆在第一象限与双曲线的渐近线y=bax 交于点M ,由△MFO 的面积是△PMO 面积的4倍,可得|MF |=4|MP |, 由OM ⊥PF ,设F (c ,0),可得|MF |=√a 2+b 2=b ,则|PM |=b4,在直角三角形POF 中,由射影定理可得, |OF |2=|MF |•|FP |,即为c 2=b•54b=54(c 2﹣a 2),则c 2=5a 2,即有e=ca=√5.故选:B .5.(2018•重庆模拟)已知抛物线y 2=4x 的焦点为F ,以F 为圆心的圆与抛物线交于M 、N 两点,与抛物线的准线交于P 、Q 两点,若四边形MNPQ 为矩形,则矩形MNPQ 的面积是( ) A .16√3B .12√3C .4√3D .3【解答】解:根据题意画出示意图:依题意,抛物线抛物线y 2=4x 的焦点为F (1,0), ∴圆的圆心坐标为F (1,0).∵四边形MNPQ 是矩形,且PM 为直径,QN 为直径,F (1,0)为圆的圆心, ∴点F 为该矩形的两条对角线的交点,∴点F 到直线PQ 的距离与点F 到MN 的距离相等.∵点F 到直线MN 的距离d=2, ∴直线MN 的方程为:x=3, ∴M (3,2√3),∴则矩形MNPQ 的面积是:4×4√3=16√3. 故选:A .6.(2018•武汉模拟)过点P (2,﹣1)作抛物线x 2=4y 的两条切线,切点分别为A ,B ,PA ,PB 分别交x 轴于E ,F 两点,O 为坐标原点,则△PEF 与△OAB 的面积之比为( )A .√32B .√33 C .12D .34【解答】解:设过P 点的直线方程为:y=k (x ﹣2)﹣1,代入x 2=4y 可得x 2﹣4kx +8k +4=0,①令△=0可得16k 2﹣4(8k +4)=0,解得k=1±√2.∴PA ,PB 的方程分别为y=(1+√2)(x ﹣2)﹣1,y=(1﹣√2)(x ﹣2)﹣1, 分别令y=0可得E (√2+1,0),F (1﹣√2,0),即|EF |=2√2.∴S △PEF =12×2√2×1=√2,解方程①可得x=2k ,∴A (2+2√2,3+2√2),B (2﹣2√2,3﹣2√2), ∴直线AB 方程为y=x +1,|AB |=8,原点O 到直线AB 的距离d=√22,∴S △OAB =12×8×√22=2√2.∴△PEF 与△OAB 的面积之比为12.故选:C .7.(2018•马鞍山三模)已知抛物线C :y 2=4√3x 的准线为l ,过C 的焦点F 的直线交l 于点A ,与抛物线C 的一个交点为B ,若F 为线段AB 的中点,BH ⊥AB 交l 于H ,则△BHF 的面积为( ) A .12√3B .16√3C .24√3D .32√3【解答】解:抛物线C :y 2=4√3x 的准线为为x=﹣√3,焦点F (√3,0), 设直线AB 的方程为y=k (x ﹣√3), 由{y =k(x −√3)x =−√3,解得x=﹣√3,y=﹣2√3k ,∴A (﹣√3,﹣2√3k ), ∵F 为线段AB 的中点, ∴x B ﹣√3=2√3,y B ﹣2√3k=0, ∴x B =3√3,y B =2√3k将点B 坐标代入y 2=4√3x ,可得12k 2=4√3×3√3, 解得k=±√3,不妨令k=√3,∴A (﹣√3,﹣6),B (3√3,6), ∵k BH •k BA =﹣1, ∴k BH =﹣√33, 设H (﹣√3,y H ),∴H −√3−3√3=﹣√33, 解得y H =10,∴|BH |=√(−√3−3√3)2+(10−6)2=8, |BF |=√(3√3−√3)3+62=4√3,∴S △BHF =12|BH |•|BF |=12×8×4√3=16√3,故选:B .8.(2018•新课标Ⅰ)已知双曲线C :x 23﹣y 2=1,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若△OMN 为直角三角形,则|MN |=( )A .32B .3C .2√3D .4【解答】解:双曲线C :x 23﹣y 2=1的渐近线方程为:y=±√33x ,渐近线的夹角为:60°,不妨设过F (2,0)的直线为:y=√3(x −2),则:{y =−√33xy =√3(x −2)解得M (32,−√32),{y =√33x y =√3(x −2)解得:N (3,√3), 则|MN |=(3−32)+(√3+√32)=3.故选:B .9.(2008秋•中山区校级月考)斜率为2的直线l 经过抛物线x 2=8y 的焦点,且与抛物线相交于A ,B 两点,则线段AB 的长为( ) A .8B .16C .32D .40【解答】解:设直线l 的倾斜解为α,则l 与y 轴的夹角θ=90°﹣α, cotθ=tanα=2, ∴sinθ=√5,|AB |=8sin 2θ=815=40.故选:D .二.填空题(共6小题)10.(2018•邵阳三模)已知Q 为椭圆C :x 23+y 2=1上一动点,且Q 在y 轴的右侧,点M (2,0),线段QM 的垂直平分线交y 轴于点N ,则当四边形OQMN的面积取最小值时,点Q 的横坐标为32. 【解答】解:设直线MQ 的中点为D ,由题意知ND ⊥MQ ,直线ND 的斜率存在,设Q (x 0,y 0),(y 0≠0,x 0>0),∴点D 的坐标为(x 0+22,y 02),且直线MQ 的斜率k MQ =y 0x 0−2,∴k ND =﹣1k MQ =2−x 0y 0,∴直线ND 的方程为y ﹣y 02=2−x 0y 0(x ﹣x 0+22),令x=0,可得y=x 02+y 02−42y 0,∴N (0,x 02+y 02−42y 0),由x 023+y 02=1可得x 02=3﹣3y 02, ∴N (0,−2y 02−12y 0),∴S四边形OQMN =S△OQM +S△OMN =12×2×|y 0|+12×2×|−2y 02−12y 0|=|y 0|+|2y 02+12y 0|=2|y 0|+12|y 0|,即y 0=±12,x 0=32等号成立,故Q 的横坐标为32,故答案为:3211.(2018•齐齐哈尔二模)已知点P 是双曲线x 22﹣y 2=1 上的一点,F 1,F 2是双曲线的两个焦点,若|PF 1|+|PF 2|=4√2,则△PF 1F 2的面积为 √5 . 【解答】解:不妨设P 在双曲线的右支上,由双曲线的定义可知|PF 1|﹣|PF 2|=2√2,又|PF 1|+|PF 2|=4√2, ∴|PF 1|=3√2,|PF 2|=√2,又|F 1F 2|=2c=2√3,∴cos ∠F 1PF 2=PF 12+PF 22−F 1F 222PF 1⋅PF 2=23,sin ∠F 1PF 2=√53,∴△PF 1F 2的面积为12×3√2×√2×√53=√5.故答案为:√5.12.(2018•沈阳一模)已知正三角形△AOB (O 为坐标原点)的顶点A 、B 在抛物线y 2=3x 上,则△AOB 的边长是 6√3 . 【解答】解:由抛物线的对称性可得∠AOx=30°,∴直线OA 的方程为y=√33x ,联立{y =√33x y 2=3x,解得A (9,3√3).∴|AO |=√81+27=6√3. 故答案为:6√3.13.(2018•甘肃模拟)抛物线C :y 2=4x 的焦点为F ,过准线上一点N 作NF 的垂线交y 轴于点M ,若抛物线C 上存在点E ,满足2NE →=NM →+NF →,则△MNF 的面积为 3√22.【解答】解:准线方程为x=﹣1,焦点为F (1,0), 不妨设N 在第三象限, ∵2NE →=NM →+NF →, ∴E 是MF 的中点,∴NE=12MF=EF ,∴NE ∥x 轴,又E 为MF 的中点,E 在抛物线y 2=4x 上,∴E (12,﹣√2),∴N (﹣1,﹣√2),M (0,﹣2√2),∴NF=√6,MN=√3,∴S △MNF =12×√6×√3=3√22故答案为:3√2214.(2016秋•九龙坡区校级期中)如图所示,过抛物线C :y 2=2px (p >0)的焦点F 作直线交C 于A 、B 两点,过A 、B 分别向C 的准线l 作垂线,垂足为A′,B′,已知四边形AA′B′F 与BB′A′F 的面积分别为15和7,则△A′B′F 的面积为 6 .【解答】解:设△A′B′F 的面积为S ,直线AB :x=my +p2,代入抛物线方程,消元可得y 2﹣2pmy ﹣p 2=0设A (x 1,y 1) B (x 2,y 2),则y 1y 2=﹣p 2,y 1+y 2=2pmS △AA'F =12|AA'|×|y 1|=12|x 1+p 2||y 1|=12(y 122p +p 2)|y 1|S △BB'F =12|BB'|×|y 2|=12|x 2+p 2||y 2|=12(y 222p +p 2)|y 2|∴12(y 122p +p 2)|y 1|×12(y 222p +p 2)|y 2|=p 24(p 22+y 124+y 224)=p 44(m 2+1) S △A′B′F =p2|y 1﹣y 2|=p 2√m 2+1=S∵四边形AA′B′F 与BB′A′F 的面积分别为15和7∴p 44(m 2+1)=(15﹣S )(7﹣S ) ∴14S 2=(15﹣S )(7﹣S ) ∴34S 2﹣22S +105=0 ∴S=6 故答案为:615.(2016春•芒市校级期中)斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |得最大值为 4√105.【解答】解:设直线l 的方程为y=x +t ,代入椭圆x 24+y 2=1消去y 得54x 2+2tx +t 2﹣1=0,由题意得△=(2t )2﹣5(t 2﹣1)>0,即t 2<5. 弦长|AB |=4√2×√5−t 25≤4√105.当t=0时取最大值. 故答案为:4√105.三.解答题(共5小题)16.(2018•焦作四模)已知椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的离心率为√32,椭圆的四个顶点围成的四边形的面积为4. (Ⅰ)求椭圆Γ的标准方程;(Ⅰ)直线l 与椭圆Γ交于A ,B 两点,AB 的中点M 在圆x 2+y 2=1上,求△AOB (O为坐标原点)面积的最大值.【解答】解:(Ⅰ)根据题意,椭圆Γ:x 2a2+y2b2=1(a>b>0)的离心率为√32,则c a =√32,得c=√32a,b=12a,所以3x 24c2+3y2c2=1,由椭圆Γ的四个顶点围成的四边形的面积为4,得2ab=4,所以a=2,b=1,椭圆Γ的标准方程为x 24+y2=1.(Ⅰ)根据题意,直线l与椭圆Γ交于A,B两点,当直线l的斜率不存在时,令x=±1,得y=±√32,S△AOB=12×1×√3=√32,当直线l的斜率存在时,设l:y=kx+m,A(x1,y1),B(x2,y2),M(x0,y0),由{y=kx+mx2+4y2=4,得(1+4k2)x2+8kmx+4m2﹣4=0,则x1+x2=−8km1+4k2,x1x2=4m2−41+4k2,所以x0=−4km1+4k2,y=kx0+m=−4k2m1+4k2+m=m1+4k2,将(−4km1+4k2,m1+4k2)代入x2+y2=1,得m2=(1+4k2)216k2+1,又因为|AB|=√1+k2⋅√(x1+x2)2−4x1x2=√1+k2⋅41+4k2√1+4k2−m2,原点到直线l的距离d=√1+k2,所以S△AOB=12×|m|√1+k2×√1+k2⋅41+4k2√1+4k2−m2=2|m|1+4k2√1+4k2−m2=21+4k2×2√16k2+1×√1+4k2×√1−1+4k216k2+1=2√12k 2(1+4k 2)(16k 2+1)2=216k 2+1×√12k 2(1+4k 2)≤216k 2+1×1+16k 22=1.当且仅当12k 2=1+4k 2,即k =±√24时取等号.综上所述,△AOB 面积的最大值为1.17.(2018•南通一模)如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b2=1(a>b >0)的离心率为√22,两条准线之间的距离为4√2.(1)求椭圆的标准方程;(2)已知椭圆的左顶点为A ,点M 在圆x 2+y 2=89上,直线AM 与椭圆相交于另一点B ,且△AOB 的面积是△AOM 的面积的2倍,求直线AB 的方程.【解答】解:(1)设椭圆的焦距为2c ,由题意得,c a =√22,2a 2c=4√2,解得a=2,c=b=√2.∴椭圆的方程为:x 24+y 22=1.(2)△AOB 的面积是△AOM 的面积的2倍,∴AB=2AM , ∴点M 为AB 的中点.∵椭圆的方程为:x 24+y 22=1.∴A (﹣2,0).设M (x 0,y 0),则B (2x 0+2,2y 0).由x 02+y 02=89,(2x 0+2)24+(2y 0)22=1, 化为:9x 02﹣18x 0﹣16=0,−2√23≤x 0≤2√23.解得:x0=﹣23.代入解得:y0=±23,∴k AB=±1 2,因此,直线AB的方程为:y=±12(x+2).18.(2018•衡阳一模)已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1、F2,离心率为12,直线y=1与C的两个交点间的距离为4√63.(Ⅰ)求椭圆C的方程;(Ⅰ)分别过F1、F2作l1、l2满足l1∥l2,设l1、l2与C的上半部分分别交于A、B 两点,求四边形ABF2F1面积的最大值.【解答】解:(Ⅰ)易知椭圆过点(2√63,1),所以83a2+1b2=1,①…(2分)又c a =12,②…(3分)a2=b2+c2,③…(4分)①②③得a2=4,b2=3,所以椭圆的方程为x 24+y23=1.…(6分)(Ⅰ)设直线l1:x=my﹣1,它与C的另一个交点为D.与C联立,消去x,得(3m2+4)y2﹣6my﹣9=0,…(7分)△=144(m2+1)>0.|AD|=√1+m2⋅12√1+m23m2+4,…(9分)又F2到l1的距离为d=2√1+m,…(10分)所以S△ADF2=12√1+m23m2+4.…(11分)令t=√1+m2≥1,则S△ADF2=123t+1t,所以当t=1时,最大值为3.…(14分)又S四边形ABF2F1=12(|BF2|+|AF1|)⋅d=12(|AF1|+|DF1|)⋅d=12|AB|⋅d=S△ADF2所以四边形ABF2F1面积的最大值为3.…(15分)19.(2018•江苏二模)如图,在平面直角坐标系xOy中,B1,B2是椭圆x2a2+y2b2=1(a>b>0)的短轴端点,P是椭圆上异于点B1,B2的一动点.当直线PB1的方程为y=x+3时,线段PB1的长为4√2.(1)求椭圆的标准方程;(2)设点Q满足:QB1⊥PB1,QB2⊥PB2,求证:△PB1B2与△QB1B2的面积之比为定值.【解答】解:设P(x0,y0),Q(x1,y1).(1)在y=x+3中,令x=0,得y=3,从而b=3.……(2分)由{x 2a 2+y 29=1,y =x +3得x 2a 2+(x+3)29=1. 所以x 0=−6a 29+a 2. ……(4分)因为PB 1=√x 02+(y 0−3)2=√2|x 0|,所以4√2=√2⋅6a 29+a2,解得a 2=18. 所以椭圆的标准方程为x 218+y 29=1. ……(6分)(2)方法一:直线PB 1的斜率为k PB 1=y 0−3x 0,由QB 1⊥PB 1,所以直线QB 1的斜率为k QB 1=−x 0y 0−3. 于是直线QB 1的方程为:y =−x 0y 0−3x +3.同理,QB 2的方程为:y =−x 0y 0+3x −3. ……(8分)联立两直线方程,消去y ,得x 1=y 02−9x 0. …(10分)因为P (x 0,y 0)在椭圆x 218+y 29=1上,所以x 0218+y 029=1,从而y 02−9=−x 022. 所以x 1=−x 02. ……(12分) 所以S △PB 1B 2S △QB 1B 2=|x 0x 1|=2. ……(14分)方法二:设直线PB 1,PB 2的斜率为k ,k',则直线PB 1的方程为y=kx +3.由QB 1⊥PB 1,直线QB 1的方程为y =−1k x +3.将y=kx +3代入x 218+y 29=1,得(2k 2+1)x 2+12kx=0,因为P 是椭圆上异于点B 1,B 2的点,所以x 0≠0,从而x 0=−12k2k 2+1.…(8分)因为P (x 0,y 0)在椭圆x 218+y 29=1上,所以x 0218+y 029=1,从而y 02−9=−x 022. 所以k ⋅k′=y 0−3x 0⋅y 0+3x 0=y 02−9x 02=−12,得k′=−12k . ……(10分)由QB 2⊥PB 2,所以直线QB 2的方程为y=2kx ﹣3.联立{y =−1k x +3,y =2kx −3则x =6k 2k 2+1,即x 1=6k 2k 2+1. ……(12分) 所以S △PB 1B 2S △QB 1B 2=|x 0x 1|=|−12k 2k 2+16k 2k 2+1|=2. ……(14分)20.(2018•黄州区校级模拟)如图,从椭圆C :x 2a 2+y 2b 2=1(a >b >0)上一点P 向x 轴作垂线,垂足恰为左焦点F ,又点A 是椭圆与x 轴正半轴的交点,点B 是椭圆与y 轴正半轴的交点,且AB ∥OP ,|FA |=2√2+2,(Ⅰ)求C 的方程;(Ⅰ)过F 且斜率不为0的直线l 与C 相交于M ,N 两点,线段MN 的中点为E ,直线OE 与直线x=﹣4相交于点D ,若△MDF 为等腰直角三角形,求l 的方程.【解答】解:(Ⅰ)令x=﹣c ,得y =±b 2a .所以P (−c ,b 2a ).直线OP 的斜率k 1=−b 2ac .直线AB 的斜率k 2=−b a .故b 2ac =b a 解得b=c ,a =√2c .由已知及|FA |=a +c ,得a +c =2√2+2, 所以(1+√2)c =2√2+2,解得c=2.所以,a =2√2,b=2所以C 的方程为x 28+y 24=1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(Ⅰ)易得F (﹣2,0),可设直线l 的方程为x=ky ﹣2,A (x 1,y 1),B (x 2,y 2), 联立方程组x=ky ﹣2和x 2+2y 2=8,消去x,整理得(k2+2)y2﹣4ky﹣4=0,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)由韦达定理,得y1+y2=4k2+k2,y1y2=﹣42+k2,所以y1+y22=2k2+k2,x1+x22=k(y1+y2)2−2=﹣42+k2,即C(﹣42+k2,2k2+k2),所以直线OC的方程为y=﹣k2x,令x=﹣4,得y=2k,即D(﹣4,2k),所以直线DF的斜率为2k−0−4+2=﹣k,所以直线DF与l恒保持垂直关系,故若△ADF为等腰直角三角形,只需|AF|=|DF|,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)即√4+4k2=√(x1+2)2+y12=√(1+k2)y12,解得y1=±2,又x128+y124=1,所以x1=0,所以k=±1,从而直线l的方程为:x﹣y+2=0或x+y+2=0.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)。

专题04 圆锥曲线与四心问题(重心、垂心、内心、外心)(原卷版)

专题04 圆锥曲线与四心问题(重心、垂心、内心、外心)(原卷版)

专题04 圆锥曲线与四心问题(内心、重心、垂心、外心)从近几年圆锥曲线的命题风格看,既注重知识又注重能力,既突出圆锥曲线的本质特征。

而现在圆锥曲线中面积、弦长、最值等几乎成为研究的常规问题。

“四心”问题进入圆锥曲线,让我们更是耳目一新。

因此在高考数学复习中,通过让学生研究三角形的“四心”与圆锥曲线的结合问题,快速提高学生的数学解题能力,增强学生的信心,备战高考. 专题目录:第1讲、圆锥曲线与内心问题 第2讲、圆锥曲线与重心问题 第3讲、圆锥曲线与垂心问题 第4讲、圆锥曲线与外心问题第1讲、圆锥曲线与内心问题(三角形的内心:三角形三条角平分线的交点)例1、(2020年湖北省高三联考12题)过双曲线2222:1(0,0)x y C a b a b-=>>的右焦点F 作直线l ,且直线l 与双曲线C 的一条渐近线垂直,垂足为A ,直线l 与另一条渐近线交于点B ,已知O 为坐标原点,若OAB ∆,则双曲线C 的离心率为( )A .3B 1C .3D .3或2例2、(2019年四川省绵阳市高三模拟12题)点1F 、2F 分别是双曲线2213y x -=的左、右焦点,点P 在双曲线上,则12PF F ∆的内切圆半径r 的取值范围是( )A .(B .()0,2C .(D .()0,1例3、(2020年山东省济南市高三二模16题)已知1F ,2F 分别是双曲线2222:1(0,0)x y C a b a b-=>>的左,右焦点,过点1F 向一条渐近线作垂线,交双曲线右支于点P ,直线2F P 与y 轴交于点Q (P ,Q 在x 轴同侧),连接1QF ,若1PQF △的内切圆圆心恰好落在以12F F 为直径的圆上,则12F PF ∠的大小为________;双曲线的离心率为________.例4、已知点P 是双曲线22221x y a b-=上除顶点外的任意一点,12,F F 分别为左、右焦点,c 为半焦距,12PF F ∠的内切圆与12F F 切于点M ,则12FM F M ⋅=_________.例5、(2020年浙江省新高考名校联考10题)已知椭圆22122:1(0)x y C a b a b+=>>的左、右焦点分别是,M N ,过点M 作圆222:O x y b +=的一条切线,切点为P ,延长MP 交椭圆于点Q ,且||||MP PQ =,双曲线22222:1x y C a b-=的左、右焦点分别为12,,F F E 是2C 右支上一点,1EF 与y 轴交于点A ,2EAF 的内切圆与2AF 的切点为F ,若||3AF =,则双曲线2C 的方程为( )A .22134x y -= B .22143x y -= C .22193x y -=D .223134x y -=例6、(2019年成都七中高三模拟16题)已知双曲线22:13y M x -=的左,右焦点F 1,F 2,点P 在双曲线上左支上动点,则三角形PF 1F 2的内切圆的圆心为G ,若△GPF 1与△GF 1F 2的面积分别为,'S S ,则'SS 取值范围是例7、(2020年河北省石家庄市一模12题)已知1F ,2F 分别为双曲线22221(0,0)x y a b a b-=>>的左焦点和右焦点,过2F 的直线l 与双曲线的右支交于A ,B 两点,12AF F ∆的内切圆半径为1r ,12BF F ∆的内切圆半径为2r ,若122r r =,则直线l 的斜率为( )A .1 BC .2D .内心课后变式:(共10个题)变式1、(2020届绵阳中学二诊模拟12题)设F 是双曲线222:1(0,0)x y C a b a b-=>>的右焦点,O 为坐标原点,过F 作C 的一条渐近线的垂线,垂足为H 若FOH ∆的内切圆与x 轴切于点B ,且OB BF 2=,则C 的离心率为4173.+A 4174.+B 81733.+C41733.+D变式3、(2019年衡水金卷(一)11题)点P 是双曲线22:1916x y C -=的上支上的一点,F 1,F 2分别为双曲线的上、下焦点,则△PF 1F 2的内切圆圆心M 的坐标一定适合的方程是( ) A .y=-3 B .y=3 C .x 2+y 2=5 D .y=3x 2-2 A .2212+ B .231- C .21+ D .21-变式5、如图,已知双曲线22221x y a b-=(0a >,0b >)的左右焦点分别为1F 、2F ,12||8F F =,P 是双曲线右支上的一点,直线2F P 与y 轴交于点A ,△1APF 的内切圆在边1PF 上的切点为Q ,若||2PQ =,则该双曲线的离心率为( )A B C .2 D .3变式6、已知点P 为双曲线:C 22221(00)x y a b a b-,=>>右支上一点,12,F F 分别为左右焦点,若双曲线C 12PF F ∆的内切圆圆心为I ,半径为2,若12PF I PF I S S ∆∆=+b 的值是( )A .2B CD .6变式7、(2018山东省潍坊市三模11题)点P 是双曲线22221x y a b-=右支上一点,12F F 、分别为左、右焦点.12PF F ∆的内切圆与x 轴相切于点N .若点N 为线段2OF 中点,则双曲线离心率为( )A 1B .2CD .3变式8、如图,已知椭圆22221(0)x y a b a b+=>>的左,右焦点分别为12,F F ,12F F =P 是y 轴正半轴上一点,1PF 交椭圆于A ,若21AF PF ⊥,且2APF ∆的内切圆半径为2)A B C D变式9、(2020年湖北省高三联考改编)过双曲线22221x y a b-=(0a b >>)右焦点F 的直线交两渐近线于A 、B 两点,若0OA AB ⋅=,O 为坐标原点,且OAB ∆,则该双曲线的离心率为A B C D 1变式10、(2017福建省漳州市模拟)已知双曲线C :的左右焦点为,为双曲线C 右支上异于顶点的一点,的内切圆与轴切于点,且与点关于直线对称,则双曲线方程为 .第2讲、圆锥曲线与重心问题(三角形的重心:三角形三条中线的交点)例1、(2019年衡水中学高三半期11题)在双曲线C :22221(0,0)x y a b a b-=>>的右支上存在点A ,使得点A与双曲线的左、右焦点1F ,2F 形成的三角形的内切圆P 的半径为a ,若12AF F ∆的重心G 满足12//PG F F ,则双曲线C 的离心率为( )A B C .2 D例2、(2020年绵阳南山中学高三月考16题)已知P 为双曲线C :221412x y -=上一点,1F 、2F 为双曲线C 的左、右焦点,M 、I 分别为12PF F △的重心、内心,若M I x ⊥轴,则12PF F △内切圆的半径为 。

2022版高考数学大一轮复习第10章圆锥曲线与方程第4讲圆锥曲线的综合应用1

2022版高考数学大一轮复习第10章圆锥曲线与方程第4讲圆锥曲线的综合应用1

第十章 圆锥曲线与方程第四讲 圆锥曲线的综合问题拓展变式1。

[2017浙江,21,15分]如图10—4—2,已知抛物线x 2=y ,点A (−12,14),B (32,94),抛物线上的点P (x ,y )(−12<x 〈32)。

过点B 作直线AP 的垂线,垂足为Q.图10—4-2(1)求直线AP 斜率的取值范围; (2)求|PA |·|PQ |的最大值。

2。

[2020全国卷Ⅰ,21,12分][文]已知A ,B 分别为椭圆E :x 2a 2+y 2=1(a 〉1)的左、右顶点,G 为E 的上顶点,AG ⃗⃗⃗⃗⃗ ·GB⃗⃗⃗⃗⃗ =8。

P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D.(1)求E 的方程;(2)证明:直线CD 过定点。

3.[2021武汉四地六校高三联考]已知椭圆C:x2a2+y2b2=1(a〉b〉0)的离心率为12,以原点为圆心,椭圆的短半轴为半径的圆与直线√7x−√5y+12=0相切。

(1)求椭圆C的方程.(2)已知A(-4,0),过点R(3,0)作与x轴不重合的直线l交椭圆C于P,Q两点,连接AP,AQ,分别交直线x=163于M,N两点,若直线MR,NR的斜率分别为k1,k2,问:k1k2是否为定值?若是,求出该定值;若不是,请说明理由.4。

[2021湖北省部分重点中学摸底联考]已知点A(1,−√32)在椭圆C:x2a2+y2b2=1(a〉b>0)上,O为坐标原点,直线l:xa2−√3y2b2=1的斜率与直线OA的斜率之积为−14.(1)求椭圆C的方程。

(2)不经过点A的直线m:y=√32x+t(t≠0)与椭圆C交于P,Q两点,P关于原点的对称点为R(与点A不重合),直线AQ,AR与y轴分别交于点M,N,求证:|AM|=|AN|.5。

[2020山西大同一联]已知椭圆C的中心在原点,焦点在坐标轴上,直线y=32x与椭圆C在第一象限内的交点是M,点M在x 轴上的射影恰好是椭圆C的右焦点F2,椭圆C的另一个焦点是F1,且MF1⃗⃗⃗⃗⃗⃗⃗⃗ ·MF2⃗⃗⃗⃗⃗⃗⃗⃗ =94。

第4讲+圆锥曲线之张直角弦及应用+讲义——2024届高三数学一轮复习

第4讲+圆锥曲线之张直角弦及应用+讲义——2024届高三数学一轮复习

第4讲圆锥曲线论之张直角弦及其应用一、知识点1.张直角弦(1)与中心的张角为直角的弦(倾斜角);(2)与中心的张角为直角的弦(离心角);(3)与顶点的张角为直角的弦(倾斜角);(4)与顶点的张角的直角的弦(离心角);2.其他:互相垂直的弦中点所在直线过定点【题型1 与中心的张角为直角的弦(倾斜角)】例1设椭圆E:,过点,两点,O为坐标原点(1)求椭圆E的方程(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且,若存在,写出该圆的方程,若不存在说明理由;(3)求的取值范围;(4)求的取值范围;【题型2 与中心的张角为直角的弦(离心角)】(1)例2 已知椭圆,过原点的两条直线和分别与椭圆交于A,B和C,D,记得到的平行四边形ACBD的面积为S,设和的斜率之积为,求面积S的值。

(2)已知椭圆C:的离心率为,短轴长为2,若A,B是椭圆上两个动点,O为坐标原点,OA,OB的斜率分别为,问是否存在非零常数,使得时,的面积为定值,若存在,求的值,若不存在,请说明理由。

(3)已知椭圆C:的右顶点为N,长轴长为,P 为椭圆上一点,O 为坐标原点,且重心的横坐标为,的面积为,直线与椭圆C交于A,B两点,以OA,OB为邻边作平行四边形OAMB,且,试判断是否为定值,若是,求出定值,若不是,请说明理由。

例3 已知椭圆C:,动圆P:(圆心P 为椭圆C上异于左右顶点的任意一点),过原点O作两条射线与圆P相切,分别交椭圆于M,N两点,且切线长的最小值为(1)求椭圆C的方程(2)求证:的面积为定值(3)求证:为定值例 4 已知直线与椭圆C:交于两不同点,且的面积,其中O为坐标原点。

(1)证明:和均为定值;(2)设线段PQ的中点为M,求的最大值(3)椭圆C上是否存在点D,E,G,使得,若存在,判断三角形DEG的形状,若不存在,请说明理由。

例5 已知椭圆C:的离心率为,为椭圆上一点,A,B为椭圆上不同两点,O 为坐标原点(1)求椭圆C 的方程(2)线段AB的中点为M,当面积取最大值时,是否存在两定点G,H,使得为定值?若存在,求出这个定值;若不存在,请说明理由。

圆锥曲线(选填题)压轴题系列专题(一):圆锥曲线与“四心”问题(第4讲)(解析版)

圆锥曲线(选填题)压轴题系列专题(一):圆锥曲线与“四心”问题(第4讲)(解析版)

专题一:圆锥曲线与四心问题(内心、重心、垂心、外心)从近几年圆锥曲线的命题风格看,既注重知识又注重能力,既突出圆锥曲线的本质特征。

而现在圆锥曲线中面积、弦长、最值等几乎成为研究的常规问题。

“四心”问题进入圆锥曲线,让我们更是耳目一新。

因此在高考数学复习中,通过让学生研究三角形的“四心”与圆锥曲线的结合问题,快速提高学生的数学解题能力,增强学生的信心,备战高考.专题目录:第1讲、圆锥曲线与内心问题第2讲、圆锥曲线与重心问题第3讲、圆锥曲线与垂心问题第4讲、圆锥曲线与外心问题第4讲、圆锥曲线与外心问题:三角形的外心:三角形三条垂直平分线的交点 知识储备:(1)、O 是ABC ∆的外心||||||OC OB OA ==⇔(或222OC OB OA ==);(2)、若点O 是ABC △的外心,则()()()OA OB AB OB OC BC OA OC AC +⋅=+⋅=+⋅=0.(3)、若O 是ABC ∆的外心,则sin 2sin 2B sin 02A OA OB C OC ⋅+⋅+⋅=; (4)、多心组合:ABC ∆的外心O 、重心G 、垂心H 共线,即OG ∥OH 经典例题例1.(2019年成都七中半期16题)1F ,2F 分别为双曲线22221(,0)x y a b a b-=>的左、右焦点,点P 在双曲线上,满足120PF PF ⋅=,若12PF F ∆的内切圆半径与外接圆半径之比为12,则该双曲线的离心率为_______ .1 【解析】∵120PF PF ⋅=,∴12PF PF ⊥,即12PF F ∆为直角三角形,∴222212124PF PF F F c +==,122PF PF a -=,则()()2222212121224PF PF PF PF PF PF c a ⋅=+--=-,()()2222121212484PFPF PFPF PF PF c a +=-+⋅=-.所以12PF F ∆内切圆半径12122PF PF F F r c +-==,外接圆半径R c =,=,整理得24c a ⎛⎫=+ ⎪⎝⎭1e =. 【点睛】本小题主要考查双曲线的定义,考查向量数量积为零的意义,考查双曲线离心率的求法,考查方程的思想,考查运算求解能力,属于中档题.例2.(2018全国高中数学联赛(湖北预赛))已知点P 的双曲线()222210,0x y a b a b-=>>上,12F F 、为双曲线的两个焦点,且210PF PF ⋅=,则12PF F ∆的内切圆半径r 与外接圆半径R 之比为____.1- 【解析】由120PF PF ⋅=,知1290PPF ∠=︒.设12,PF m PF n ==, 又122F F c =,则可得()1,22R c r m n c ==+-, 2224m n c +=, ① 2m n a -=. ②设rk R=,则()122r kR kc m n c ===+-,即有()22m n k c +=+. ③由①②③可得()22222248k c a c ++=,所以()22222213122c a k c e -+==-=,解得1k =-.故12PF F ∆的内切圆半径r 与外接圆半径R1- 例3.(2020年河南省质量检测(二)改编)已知椭圆22143x y +=的左、右焦点分别为12,F F ,过2F 的直线l 交椭圆C 于,A B 两点,过A 作x 轴的垂线交椭圆C 与另一点Q (Q 不与,A B 重合).设ABQ ∆的外心为G ,则2ABGF 的值为 .【答案】4【解析】由题意知,直线AB 的斜率存在,且不为0,设直线AB 为1x my =+, 代入椭圆方程得()2234690m y my ++-=. 设()()1122,,,A x y B x y ,则12122269,3434m y y y y m m --+==++, 所以AB 的中点坐标为2243,3434m m m -⎛⎫⎪++⎝⎭,所以()212221213434m AB y m m +=-=-++. 因为G 是ABQ ∆的外心,所以G 是线段AB 的垂直平分线与线段AQ 的垂直平分线的交点,AB 的垂直平分线方程为22343434m y m x m m ⎛⎫+=-- ⎪++⎝⎭,令0y =,得2134x m =+,即21,034G m ⎛⎫⎪+⎝⎭,所以222213313434m GF m m +=-=++,所以()22222121||1234433334m AB m m GF m ++===++,所以2||AB GF 值为4. 【点睛】本题主要考查了椭圆的标准方程,直线与椭圆的位置关系,属于难题.例4.(2020年湖北省宜昌市高三调研12题)设(),0F c 为双曲线2222:1(0,0)x y E a b a b-=>>的右焦点,以F 为圆心,b 为半径的圆与双曲线在第一象限的交点为P ,线段FP 的中点为D ,∆POF 的外心为I ,且满足()0OD OI λλ=≠,则双曲线E 的离心率为( ) ABC .2D【答案】D【解析】由题,因为()0OD OI λλ=≠,所以O 、D 、I 三点共线,因为点D 为线段FP 的中点,∆POF 的外心为I ,所以DI PF ⊥,即OD PF ⊥, 设双曲线的左焦点为(),0F c '-,则点O 为线段F F '的中点,则在PFF '中,//PF OD ',即PF PF '⊥,所以PFF '是直角三角形,所以222F F F P PF ''=+,因为PF b =,由双曲线定义可得2PF PF a '-=,所以2PF a b '=+, 则()()22222c a b b =++,因为222c a b =+,整理可得2b a =,所以c =,则ce a==,故选:D 【点睛】本题考查求双曲线的离心率,考查双曲线的定义的应用.例5.(2019年衡水中学联考12题)已知坐标平面xOy 中,点1F ,2F 分别为双曲线222:1x C y a-=(0a >)的左、右焦点,点M 在双曲线C 的左支上,2MF 与双曲线C 的一条渐近线交于点D ,且D 为2MF 的中点,点I 为2OMF △的外心,若O 、I 、D 三点共线,则双曲线C 的离心率为( )AB .3CD .5【答案】C【解析】不妨设点M 在第二象限,设(,)M m n ,2(,0)F c ,由D 为2MF 的中点,O 、I 、D 三点共线知直线OD 垂直平分2MF ,则:1OD y x a=,故有n a m c =--,且1122m c n a +⋅=⋅,解得21a m c-=,2n a c =, 将212,a a M c c ⎛⎫-⎪⎝⎭,即2222,a c a c c ⎛⎫- ⎪⎝⎭,代入双曲线的方程可得()2222222241aca a c c--=,化简可得225c a =,即e =当点M 在第三象限时,同理可得e =故选:C.【点睛】本题主要考查双曲线的标准方程,双曲线的简单性质的应用,运用平面几何的知识分析出直线OD 垂直平分2MF ,并用a c ,表示出点M 的坐标是解决此题的难点,属于中档题.例6.(2019云南省曲靖市二模16题)已知斜率为1的直线与抛物线24y x =交于,A B 两点,若OAB ∆的外心为(M O 为坐标原点),则当AB MO最大时,AB =____.【答案】.【解析】由题意知,MO 为OAB 外接圆的半径,在OAB 中,由正弦定理可知,2sin AB R AOB=∠(R 为OAB 外接圆的半径),当sin 1AOB ∠=,即90AOB ∠=︒时,AB MO取得最大值2.设()11,A x y ,()22,B x y ,易知10y ≠,20y ≠,则12120x x y y +=,得221212016y y y y ⋅+=,即12160y y +=.设直线AB 的方程为y x t =+,即x y t =-,代入24y x =得,2440y y t -+=,则124y y +=,124y y t =,所以4160t +=,解得4t =-.故12AB y y =-==.故答案为:【点睛】本题主要考查了正弦定理,直线与抛物线的关系,弦长公式,属于中档题.课后训练:变式1.P 为双曲线()2222:1,0x y C a b a b-=>上一点,12,F F 分别为C 的左、右焦点,212PF F F ⊥,若12PF F ∆外接圆半径与其内切圆半径之比为52,则C 的离心率为( ) AB .2CD .2或3【答案】D【解析】不妨设P 为右支上的点,则122PF PF a -=,设双曲线的半焦距为c ,则22b PF a=,212b PF a a =+,又12Rt PF F 外接圆半径为21122b PF a a=+. 12Rt PF F 内切圆的半径为222222-22b bc ac a a a r c a+---===, 因为12PF F ∆外接圆半径与其内切圆半径之比为52,故252=2b aac a +-, 故22560c ac a -+=,所以2c a =或3c a =,即2e =或3e =.故选:D.【点睛】圆锥曲线中的离心率的计算,关键是利用题设条件构建关于,,a b c 的一个等式关系.而离心率的取值范围,则需要利用坐标的范围、几何量的范围或点的位置关系构建关于,,a b c 的不等式或不等式组.变式2.(2018上海市高三模拟)已知椭圆22116x y m +=和双曲线221412x y m-=-,其中012m <<,若两者图像在第二象限的交点为A ,椭圆的左右焦点分别为B 、C ,T 为△ABC 的外心,则•AT BC 的值为_____. 【答案】16.【解析】已知椭圆22116x y m +=和双曲线221412x y m-=-,焦距相等所以焦点相同,设(,0),(,0),B c C c c -=A 为两曲线在第二象限的交点,||||AB AC <,84AB AC AB AC ⎧+=⎪⎨-=-⎪⎩,||2AB =, 设000(,),42A x y x -<<-,220016m y m x =-,||AB ==0424c x ===+=,08x c ∴=-,因为O 为BC 中点,△ABC 的外心T 在y 轴上,0OT BC ⋅=,08()(,)(2,0•)16AT B OT OA BC OA BC y c cC =-⋅=-⋅=--⋅=【点睛】本题考查求椭圆与双曲线交点的坐标,考查向量数量积运算,考查计算求解能力,属于中档题.变式3. P 为双曲线()2222:10,0x y C a b a b-=>>右支上的一点,12,F F 分别为左、右焦点,212PF F F ⊥,若12PF F ∆的外接圆半径是其内切圆半径的3倍,则双曲线C 的离心率为( )A.3 B.4 C.3或3 D.4或4-【答案】C【解析】212PF F F ⊥,∴点P 的坐标为2,b c a ⎛⎫ ⎪⎝⎭22b PF a =,则212b PF a a =+12PF F ∆的外接圆半径21122PF b r a a==+ 其内切圆半径222222b bc a a a r c a +--==- 12PF F ∆的外接圆半径是其内切圆半径的3倍,123r r ∴=,即()232b a c a a+=-化简可得22670c ac a --=即2670e e --=解得3e =±C【点睛】本题主要考查了计算双曲线的离心率,结合题意先计算出外接圆和内切圆的半径,然后结合数量关系求出结果,属于中档题.变式4.(2018年四川省棠湖中学三诊16题)已知点1(,0)F c -,2(,0)(0)F c c >是椭圆22221(0)x y a b a b+=>>的左、右焦点,点P 是这个椭圆上位于x 轴上方的点,点G 是12PF F ∆的外心,若存在实数λ,使得120GF GF GP λ++=,则当12PF F ∆的面积为8时,a 的最小值为__________. 【答案】4【解析】由G 是△PF 1F 2的外心,则G 在y 轴的正半轴上,120GF GF GP λ++=, 则1212()GP GF GF GO λλ=-+=-,则P ,G ,O 三点共线,即P 位于上顶点,则△PF 1F 2的面积S=12×b×2c=bc=8,由a 2=b 2+c 2≥2bc=16,则a ≥4,当且仅当时取等号, ∴a 的最小值为4,故答案为4.【点睛】(1)本题主要考查平面向量的共线定理和基本不等式,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答本题的关键是分析出1212()GP GF GF GO λλ=-+=-,得到P ,G ,O 三点共线,即P 位于上顶点.变式5.F 1,F 2分别为双曲线22221x y a b-=(a ,b >0)的左、右焦点,点P 在双曲线上,满足12PF PF ⋅=0,若△PF 1F 2的内切圆半径与外接圆半径之比为13,则该双曲线的离心率为_____.【答案】2【解析】120PF PF =,12PF PF ∴⊥.∴12PF F ∆的外接圆半径为1212F F c =,∴12PF F ∆的内切圆的半径为3c.设12PF F ∆的内切圆的圆心为M ,过M 作x 轴的垂线MN ,连接1MF ,2MF ,则3cMN =,设1NF m =,2NF n =,则2m n c +=,①不妨设P 在第一象限,由双曲线的定义可知122PF PF m na -=-=,② 由①②可得m a c =+,n c a =-,12PF PF ⊥,且1MF ,2MF 分别是12PF F ∠,21PF F ∠的角平分线,12214MF F MF F π∴∠+∠=,又121tan 33()MN c c MF F NF m a c ∠===+,2123()MN cMF F NF c a ∠==-, ∴2223()3()119()c c c a c a c c a ++-=--,化简可得2292a c =,故292e =,32e ∴=.故答案为:322.【点睛】本题考查了双曲线的性质,直线与圆的位置关系,属于中档题变式6. 数学家欧拉在1765年提出定理:三角形的外心、重心、垂心,依次在同一条直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线后人称为三角形的欧拉线.已知ABC ∆的顶点)4,0(),0,2(B A ,若其欧拉线方程为02=+-y x ,则顶点C 的坐标是 .【答案】()4,0-【解析】设(),C m n ,由重心坐标公式得,ABC ∆的重心为24,33m n ++⎛⎫⎪⎝⎭, 代入欧拉线方程得:242033m n++-+=,整理得:40m n -+= ① AB 的中点为()1,2,40202AB k -==--,AB 的中垂线方程为()1212y x -=-,即230x y -+=. 联立23020x y x y -+=⎧⎨-+=⎩,解得11x y =-⎧⎨=⎩..ABC ∴∆的外心为()1,1-.则()()22221131m n ∴++-=+,整理得:22228m n m n ++-= ②联立①②得:4,0m n =-=或0,4m n ==.当0,4m n ==时,B C 重合,舍去.∴顶点C 的坐标是()4,0-. 考点:1新概念问题;2三角形的外心,重心,垂心.。

2023届高三数学一轮复习专题 直线与圆锥曲线的综合运用 讲义 (解析版)

2023届高三数学一轮复习专题  直线与圆锥曲线的综合运用  讲义 (解析版)

直线与圆锥曲线的综合运用一、知识梳理1.直线与圆锥曲线的位置关系的判断将直线方程与圆锥曲线方程联立,消去一个变量得到关于x(或y)的一元方程:ax2+bx+c=0(或ay2+by+c=0).(1)若a≠0,可考虑一元二次方程的判别式Δ,有①Δ>0①直线与圆锥曲线相交;①Δ=0①直线与圆锥曲线相切;①Δ<0①直线与圆锥曲线相离.(2)若a=0,b≠0,即得到一个一元一次方程,则直线l与圆锥曲线E相交,且只有一个交点.①若E为双曲线,则直线l与双曲线的渐近线的位置关系是平行;①若E为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点,则AB=1+k2|x2-x1|=1+1k2|y2-y1|.3.过一点的直线与圆锥曲线的位置关系(1)过椭圆外一点总有两条直线与椭圆相切;过椭圆上一点有且只有一条直线与椭圆相切;过椭圆内一点的直线与椭圆相交.(2)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条与对称轴平行或重合的直线;过抛物线上一点总有两条直线与抛物线有且只有一个公共点:一条切线和一条与对称轴平行或重合的直线;过抛物线内一点只有一条直线与抛物线有且只有一个公共点:一条与对称轴平行或重合的直线.(3)过双曲线外不在渐近线上的一点总有四条直线与双曲线有且只有一个交点:两条切线和两条与渐近线平行的直线;过双曲线上条直线与双曲线有且只有一个交点:一条切线和两条与渐近线平行的直线; 过双曲线内一点总有两条直线与双曲线有且只有一个交点:两条与渐近线平行的直线.二、课前预习1.若直线y =kx +1与椭圆x 25+y 2m =1总有公共点,则m 的取值范围是____.2.斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为____.3.直线mx +ny =4与①O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数是____个.4.已知A 1,A 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右顶点,P 是椭圆C 上异于A 1,A 2的任意一点,若直线P A 1,P A 2的斜率的乘积为-49,则椭圆C 的离心率为____.5.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点)23,1(P ,离心率为12.(1) 求椭圆C 的方程. (2) 若斜率为32的直线l 与椭圆C 交于A ,B 两点,试探究OA 2+OB 2是否为定值?若为定值,求出此定值;若不是定值,请说明理由.三、典型例题题型一. 直线与圆锥曲线的位置关系例1已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点; (2)有且只有一个公共点; (3)没有公共点.变式 在平面直角坐标系xOy 中,已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1(-1,0),且点P (0,1)在C 1上. (1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=4x 相切,求直线l 的方程.例2 如图,在平面直角坐标系xOy 中,已知焦点在x 轴上,离心率为12的椭圆E 的左顶点为A ,点A 到右准线的距离为6. (1)求椭圆E 的标准方程; (2)过点A 且斜率为32的直线与椭圆E 交于点B ,过点B 与右焦点F 的直线交椭圆E 于M 点,求M 点的坐标.题型二 弦长问题例3 如图,在平面直角坐标系xOy中,已知椭圆x 2a 2+y 2b 2=1(a >b >0) 的离心率e =22,右焦点F 到左准线l 的距离为3.(1)求椭圆的标准方程;(2)过F 的直线交椭圆于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若PC =2AB ,求直线AB 的方程.变式 如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,过椭圆右焦点F 作两条互相垂直的弦AB 与CD .当直线AB 斜率为0时,AB =4. (1)求椭圆的方程;(2)若|AB |+|CD |=487,求直线AB 的方程.BAOxy lP C题型三 定点问题例4 如图,在平面直角坐标系xOy中,离心率为2的椭圆:C 22221(0)x y a b a b+=>>的左顶点为A ,过原点O 的直线(与坐标轴不重合)与椭圆C 交于,P Q 两点,直线,PA QA 分别与y 轴交于,M N 两点.若直线PQ斜率为2时,PQ = (1)求椭圆C 的标准方程;(2)试问以MN 为直径的圆是否经过定点(与直线PQ 的斜率无关)?请证明你的结论.例5 已知椭圆C :x 2a 2+y 2=1(a >1)的上顶点为A ,右焦点为F ,直线AF 与圆M :x 2+y 2-6x -2y +7=0相切.(1)求椭圆C 的方程;(2)若不过点A 的动直线l 与椭圆C 相交于P 、Q 两点,且AP →·AQ →=0,求证:直线l 过定点,并求出该定点N 的坐标.变式1 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点1P (1,1),2P (0,1),)23,1(3 P ,)23,1(4P 中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.变式2 如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,椭圆上动点P 到一个焦点的距离的最小值为3(2-1).(1) 求椭圆C 的标准方程;(2) 已知过点M (0,-1)的动直线l 与椭圆C 交于A ,B 两点,试判断以线段AB 为直径的圆是否恒过定点,并说明理由.题型四 定值问题例6 已知椭圆)(:012222>>=+b a by a x C 的离心率为23,且过点),(12-P .(1)求椭圆C 的方程;(2)设点Q 在椭圆C 上,且PQ 与x 轴平行,过P 点作两条直线分别交椭圆C 于),(11y x A),(22y x B 两点,若直线PQ 平分APB ∠,求证:直线AB 的斜率是定值,并求出这个定值.变式 在平面直角坐标系xOy 中,已知椭圆22221(0)x y a b a b+=>>的焦距为2,离心率为22,椭圆的右顶点为A . (1)求该椭圆的方程;(2)过点(2,2)D -作直线PQ 交椭圆于两个不同点,P Q ,求证:直线,AP AQ 的斜 率之和为定值.例7 如图,在平面直角坐标系xOy 中,已知椭圆22221x y a b+=(0)a b >>,焦点到相应准线的距离为1. (1)求椭圆的标准方程;(2)若P 为椭圆上的一点,过点O 作OP 的垂线交直线y =于点Q ,求2211OP OQ +的值.变式在平面直角坐标系xOy 中,已知圆222:O x y b +=经过椭圆222:14x y E b +=(02)b <<的焦点.(1)求椭圆E 的标准方程;(2)设直线:l y kx m =+交椭圆E 于,P Q 两点,T 为弦PQ 的中点,(1,0),(1,0)M N -,记直线,TM TN 的斜率分别为12,k k ,当22221m k -=时,求12k k ⋅的值.题型五 最值、范围问题例8 已知椭圆C :22221(0)x y a b a b+=>>的左焦点为F (-1,0),左准线方程为x =-2.(1) 求椭圆C 的标准方程;(2) 若椭圆C 上有A ,B 两点,满足OA ①OB (O 为坐标原点),求①AOB 面积的取值范围.例9 如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的左顶点为A ,点B 是椭圆C 上异于左、右顶点的任一点,P 是AB 的中点,过点B 且与AB 垂直的直线与直线OP 交于点Q ,已知椭圆C 的离心率为12,点A 到右准线的距离为6。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4讲圆锥曲线中的综合问题圆与圆锥曲线的综合问题训练提示:充分挖掘题目条件,寻找圆心与圆锥曲线焦点的位置关系,圆的半径与给定线段长度之间的关系,充分利用“圆的直径所对圆周角为直角”等性质解决问题.1.已知圆心为F1的圆的方程为(x+2)2+y2=32,F2(2,0),C是圆F1上的动点,F2C的垂直平分线交F1C于M.(1)求动点M的轨迹方程;(2)设N(0,2),过点P(-1,-2)作直线l,交M的轨迹于不同于N的A,B两点,直线NA,NB的斜率分别为k1,k2,证明:k1+k2为定值.(1)解:由线段的垂直平分线的性质得|MF2|=|MC|.又|F 1C|=4,所以|MF 1|+|MC|=4,所以|MF 2|+|MF1|=4>4.所以M点的轨迹是以F 1,F2为焦点,以4为长轴长的椭圆.由c=2,a=2得b=2.故动点M的轨迹方程为+=1.(2)证明:当直线l的斜率存在时,设其方程为y+2=k(x+1),由得(1+2k2)x2+4k(k-2)x+2k2-8k=0.设A(x1,y1),B(x2,y2),则x1+x2=-,x1x2=.从而k1+k2=+==2k-(k-4)³=4.当直线l的斜率不存在时,得A(-1,),B(-1,-),得k1+k2=4.综上,恒有k1+k2=4.2.设椭圆M:+=1(a>)的右焦点为F 1,直线l:x=与x轴交于点A,若=2(其中O为坐标原点).(1)求椭圆M的方程;(2)设P是椭圆M上的任意一点,EF为圆N:x2+(y-2)2=1的任意一条直径(E,F为直径的两个端点),求²的最大值.解:(1)由题设知,A(,0),F1(,0),由=2.得=2(-),解得a2=6.所以椭圆M的方程为+=1.(2)设圆N:x2+(y-2)2=1的圆心为N,则²=(-)²(-)=(--)²(-)=-=-1. 从而求²的最大值转化为求的最大值.因为P是椭圆M上的任意一点,设P(x0,y0),所以+=1,即=6-3,因为点N(0,2),所以=+(y0-2)2=-2(y0+1)2+12.因为y0∈[-,],所以当y0=-1时,取得最大值12.所以²的最大值为11.圆锥曲线中的定点、定值问题训练提示:由直线方程确定定点,若得到直线方程的点斜式:y-y0=k(x-x0),则直线必过定点(x0,y0);若得到了直线方程的斜截式:y=kx+m,则直线必过定点(0,m).证明定值,有时可直接证明定值,有时将问题转化为代数式,可证明该代数式与参数(某些变量)无关;也可令系数等于零,得出定值.3.如图,等边三角形OAB的边长为8,且其三个顶点均在抛物线E:x2=2py(p>0)上.(1)求抛物线E的方程;(2)设动直线l与抛物线E相切于点P,与直线y=-1相交于点Q.证明以PQ为直径的圆恒过y轴上某定点.(1)解:依题意,|OB|=8,∠BOy=30°.设B(x,y),则x=|OB|sin 30°=4,y=|OB|cos 30°=12.因为点B(4,12)在x2=2py上,所以(4)2=2p³12,解得p=2.故抛物线E的方程为x2=4y.(2)证明:由(1)知y=x2,y′=x.设P(x0,y0),则x0≠0,且l的方程为y-y0=x0(x-x0),即y=x0x-.由得所以Q(,-1).设M(0,y1),令²=0对满足y0=(x0≠0)的x0,y0恒成立.由于=(x0,y0-y1),=(,-1-y1),由²=0,得-y 0-y0y1+y1+=0,即(+y 1-2)+(1-y1)y0=0.(*)由于(*)式对满足y0=(x0≠0)的y0恒成立,所以解得y1=1.故以PQ为直径的圆恒过y轴上的定点M(0,1).4.已知直线l:y=x+,圆O:x2+y2=5,椭圆E:+=1(a>b>0)的离心率e=,直线l 被圆O截得的弦长与椭圆的短轴长相等.(1)求椭圆E的方程;(2)过圆O上任意一点P作椭圆E的两条切线,若切线都存在斜率,求证两切线斜率之积为定值.解:(1)设椭圆半焦距为c,圆心O到l的距离d==,则l被圆O截得的弦长为2,所以b=.由题意得又b=,所以a2=3,b2=2.所以椭圆E的方程为+=1.(2)证明:设点P(x0,y0),过点P的椭圆E的切线l0的方程为y-y0=k(x-x0),整理得y=kx+y0-kx0,联立直线l0与椭圆E的方程得消去y得2[kx+(y0-kx0)]2+3x2-6=0,整理得(3+2k2)x2+4k(y0-kx0)x+2(kx0-y0)2-6=0,因为l0与椭圆E相切,所以Δ=[4k(y0-kx0)]2-4(3+2k2)[2(kx0-y0)2-6]=0,整理得(2-)k2+2x 0y0k-(-3)=0,设满足题意的椭圆E的两条切线的斜率分别为k1,k2,则k1k2=-.因为点P在圆O上,所以+=5,所以k1k2=-=-1.所以两条切线斜率之积为常数-1.圆锥曲线中的存在性问题训练提示:存在性问题,先假设存在,进行一系列推理,若推理正确则存在,若得出矛盾则不存在.5.已知椭圆C:+=1(a>b>0)的右焦点为F,离心率为,过点F且与x轴垂直的直线被椭圆截得的线段长为,O为坐标原点.(1)求椭圆C的方程;(2)设椭圆的上顶点为N,是否存在直线l交椭圆于P,Q两点,使点F为△PQN的垂心?若存在,求出直线l的方程;若不存在,请说明理由.解:(1)设F(c,0),则=,知a= c.过点F且与x轴垂直的直线方程为x=c,代入椭圆方程,有+=1,解得y=± b.于是b=,解得b=1.又a2-c2=b2,从而a=,c=1.所以椭圆C的方程为+y2=1.(2)假设存在直线l交椭圆于P,Q两点,且F为△PQN的垂心.设P(x1,y1),Q(x2,y2),因为N(0,1),F(1,0),所以k NF=-1.由NF⊥PQ,知k PQ=1.设直线l的方程为y=x+m,由得3x2+4mx+2m2-2=0.由Δ>0,得m2<3,且x1+x2=-,x1x2=.由题意,有²=0.因为=(x1,y1-1),=(x2-1,y2),所以x1(x2-1)+y2(y1-1)=0,即x1(x2-1)+(x2+m)(x1+m-1)=0,所以2x1x2+(x1+x2)(m-1)+m2-m=0,于是2³-m(m-1)+m2-m=0,解得m=-或m=1.经检验,当m=1时,△PQN不存在,故舍去m=1.当m=-时符合,直线l的方程为y=x-.6.(2015河北沧州4月质检)已知点M在椭圆G:+=1(a>b>0)上,H(-2,0)是M在x轴上的射影.F1是椭圆G的左焦点,且=(O为坐标原点),²=.(1)求椭圆G的方程;(2)在x轴上是否存在定点P0,过P0任意作直线l交椭圆G于A,B两点,使得直线HM始终平分∠AHB?若存在,则求出P0;若不存在,请说明理由.解:(1)依题可设M(-2,y0),由=得F1为HO的中点,于是F1(-1,0),又由²=得(0,-y0)²(1,-y0)=,解得=,于是有+=1,整理得5a4-29a2+20=(5a2-4)(a2-5)=0,解得a2=5或a2=(舍去).所以椭圆G的方程是+=1.(2)设P0(m,0),A(x1,y1),B(x2,y2),若直线l的斜率不等于零时,可设直线l为x=ty+m,联立+=1,消去x得(4t2+5)y2+8mty+4m2-20=0,有y1+y2=,y1y2=,注意到HM平分∠AHB⇒k AH=,k BH=满足k AH+k BH=0,即+=0⇒y1(x2+2)+y2(x1+2)=0⇒y1(ty2+m+2)+y2(ty1+m+2)=2ty1y2+(m+2)(y1+y2)=0⇒2t²+(m+2)²=0⇒t(2m+5)=0,故m=-,定点P0(-,0).若直线l的斜率为零,定点P0(-,0)也满足条件,故定点P0(-,0)为所求.类型一:圆锥曲线中的最值(范围)问题1.在平面直角坐标系xOy中,已知点A(0,-1),B点在直线y=-3上,M点满足∥,²=²,M点的轨迹为曲线C.(1)求C的方程;(2)P为C上的动点,l为C在P点处的切线,求O点到l距离的最小值.解:(1)设M(x,y),由已知得B(x,-3),又A(0,-1),所以=(-x,-1-y),=(0,-3-y),=(x,-2).再由题意可知(+)²=0,即(-x,-4-2y)²(x,-2)=0.所以曲线C的方程为y=x2-2.(2)设P(x0,y0)为曲线C:y=x2-2上一点.因为y′=x,所以l的斜率为x0.因此直线l的方程为y-y0=x0(x-x0),即x 0x-2y+2y0-=0.所以O点到l的距离d=.又y0=-2,所以d==(+)≥2.当x0=0时取等号,所以O点到l距离的最小值为2.2.(2015云南模拟)如图,已知椭圆E:+=1(a>b>0)的离心率为,且过点(2,),四边形ABCD的顶点在椭圆E上,且对角线AC,BD过原点O, k AC²k BD=-.求²的取值范围.解:⇒所以椭圆E的方程为+=1.当直线AB的斜率存在时,设l AB:y=kx+m,A(x1,y1),B(x2,y2),由⇒(1+2k2)x2+4kmx+2m2-8=0,所以x1+x2=,x1x2=,y1y2=(kx1+m)(kx2+m)=k2()+km()+m2=.由k OA²k OB=-得²=-.所以=-²⇒m2=4k2+2,²=x1x2+y1y2=+==2-,所以-2≤²<2,当k=0时,²=-2,当k不存在即AB⊥x轴时,²=2,所以²的取值范围是[-2,2].3.(2015郑州第一次质量预测)已知动点P到定点F(1,0)和到直线x=2的距离之比为,设动点P的轨迹为曲线E,过点F作垂直于x轴的直线与曲线E相交于A,B 两点,直线l:y=mx+n与曲线E交于C,D两点,与线段AB相交于一点(与A,B不重合).(1)求曲线E的方程;(2)当直线l与圆x2+y2=1相切时,四边形ACBD的面积是否有最大值,若有,求出其最大值及对应的直线l的方程;若没有,请说明理由.解:(1)设点P(x,y),由题意可得=,整理可得+y2=1,曲线E的方程是+y2=1.(2)有最大值,设C(x1,y1),D(x2,y2),由已知可得|AB|=.当m=0时,不合题意.当m≠0时,由直线l与圆x2+y2=1相切,可得=1,即m2+1=n2.联立消去y得(m2+)x2+2mnx+n2-1=0.Δ=4m2n2-4(m2+)(n2-1)=2m2>0,x1+x2=,x1x2=,S四边形ACBD=|AB||x2-x1|===≤.当且仅当2|m|=,即m=±时等号成立,此时四边形ABCD面积的最大值为,n=±,经检验可知,直线y=x-和直线y=-x+符合题意.4.如图,过x轴上动点A(a,0)引抛物线y=x2+1的两条切线AP,AQ.切线斜率分别为k1和k2,切点分别为P,Q.(1)求证:k1²k2为定值,并且直线PQ过定点;(2)记△APQ的面积为S△APQ,当最小时,求²的值.(1)证明:设过A点的直线为y=k(x-a),与抛物线联立得整理得x2-kx+ka+1=0,Δ=k2-4ak-4=0,所以k1+k2=4a,k1²k2=-4为定值.抛物线方程y=x2+1,求导得y′=2x,设切点P,Q的坐标分别为(x p,y p),(x q,y q),则k1=2x p,k2=2x q,所以x p+x q=+=2a,x p x q=²=-1.直线PQ的方程:y-y p=(x-x p),由y p=+1,y q=+1,得到y=(x p+x q)x-x p x q+1,整理可得y=2ax+2,所以直线PQ过定点(0,2).(2)解:设A到PQ的距离为d.S△APQ=|PQ|³,所以===,设t=≥1,所以==(t+)≥,当且仅当t=时取等号,此时a=±.因为²=(x p-a,y p)²(x q-a,y q)=x p x q-a(x p+x q)+a2+y p y q,y p y q=(2x p a+2)(2x q a+2)=4a2x p x q+4+4a(x p+x q)=4a2+4,所以²=3a2+3=.类型二:证明问题5.如图,已知点A(1,)是离心率为的椭圆C:+=1(a>b>0)上的一点,斜率为的直线BD交椭圆C于B,D两点,且A,B,D三点互不重合.(1)求椭圆C的方程;(2)求证:直线AB,AD的斜率之和为定值.(1)解:由题意,可得e==,将(1,)代入椭圆方程,得+=1,又a2=b2+c2,解得a=2,b=,c=.所以椭圆C的方程为+=1.(2)证明:设直线BD的方程为y=x+m,又A,B,D三点不重合,所以m≠0,设D(x1,y1),B(x2,y2),由得4x2+2mx+m2-4=0.所以Δ=-8m2+64>0⇒-2<m<2.x1+x2=-m,①x1x2=,②设直线AB,AD的斜率分别为k AB,k AD,则k AD+k AB=+=+=2+m²(*)将①、②式代入(*),整理得2+m²=2-2=0,所以k AD+k AB=0,即直线AB,AD的斜率之和为定值0.6.已知曲线C:(5-m)x2+(m-2)y2=8(m∈R).(1)若曲线C是焦点在x轴上的椭圆,求m的取值范围;(2)设m=4,曲线C与y轴的交点为A,B(点A位于B的上方),直线y=kx+4与曲线C交于不同的两点M,N,直线y=1与直线BM交于点G,求证:A,G,N三点共线. 解:(1)曲线C是焦点在x轴上的椭圆,当且仅当解得<m<5,所以m的取值范围是(,5).(2)当m=4时,曲线C的方程为x2+2y2=8,点A,B的坐标分别为(0,2),(0,-2).由得(1+2k2)x2+16kx+24=0.因为直线y=kx+4与曲线C交于不同的两点,所以Δ=(16k)2-4(1+2k2)³24>0,即k2>.设点M,N的坐标分别为(x1,y1),(x2,y2), 则y1=kx1+4,y2=kx2+4,x1+x2=,x1x2=.直线BM的方程为y+2=x,点G的坐标为(,1).因为直线AN和直线AG的斜率分别为k AN=,k AG=-,所以k AN-k AG=+=+=k+=k+=0.即k AN=k AG.故A,G,N三点共线.。

相关文档
最新文档