最新整理巧解分数应用题的方法.docx
分数应用题的解题方法

分数应用题的解题方法1、引言在数学学习中,分数应用题是经常出现的题型之一。
解答这类题目需要掌握一定的解题方法和技巧。
本文将为大家介绍几种常见的解题方法,以帮助大家更好地解决分数应用题。
2、换算法在分数应用题中,经常需要将一个分数表达成另一种形式,这就需要用到换算法。
换算法的基本原理是乘以一个合适的分式,使得原分数的分母变化为所需的分母。
例如,将分数$\frac{2}{3}$转换成分母为6的分数,我们可以乘以$\frac{6}{2}$,得到$\frac{2}{3}\times\frac{6}{2}=\frac{12}{6}$,即$\frac{2}{3}=\frac{12}{6}$。
通过换算法,我们可以灵活地将分数转换为需要的形式,便于进行计算和分析。
3、化简法有时,分数应用题给出的分数较为复杂,需要进行化简才能得到准确的结果。
化简法是一种常见的解题方法。
化简法的关键在于找到分子和分母的最大公约数,并将分子分母同时除以最大公约数,从而将分数化简为最简形式。
例如,将分数$\frac{15}{25}$化简为最简形式,我们可以找到15和25的最大公约数为5,然后将分子分母同时除以5,得到$\frac{15}{25}=\frac{3}{5}$。
通过化简法,我们可以得到最简分数,便于进行计算和比较。
4、分数的加减法在分数应用题中,经常需要进行分数的加减运算。
分数的加减法需要找到相同的分母,然后按照相同的分母进行计算。
具体步骤如下:(1)找到两个分数的最小公倍数,作为相同的分母;(2)将分子按照相同的分母进行放大或缩小;(3)按照相同的分母进行分子的加减运算;(4)化简得到最简分数形式。
例如,计算$\frac{2}{3}+\frac{1}{4}$:(1)相同的分母为12,即$\frac{2}{3}\times\frac{4}{4}=\frac{8}{12}$,$\frac{1}{4}\times\frac{3}{3}=\frac{3}{12}$;(2)按照相同的分母进行计算,$\frac{8}{12}+\frac{3}{12}=\frac{11}{12}$;(3)化简得到最简分数形式,$\frac{11}{12}$。
分数应用题解题技巧4则

分数应用题解题技巧4则分数应用题是数学中的一大类题目,涉及的概念和计算方法较为抽象,对于很多学生来说是一个难题。
但只要我们掌握了一些基本的解题技巧,这类题目便会迎刃而解。
下面,就为大家介绍四种实用的分数应用题解题技巧。
技巧一:明确题目中的分数表示的是什么很多学生在解分数应用题时,首先就被分数给弄糊涂了。
实际上,我们需要明白,分数只是一个表示比例或者部分的形式。
因此,首要任务就是明确题目中的分数到底表示的是什么。
例如,它可能表示一个整体中的部分,也可能是两个量之间的比例关系。
只有明确了分数的具体意义,我们才能进行下一步的计算。
技巧二:合理转化分数形式在明确了分数的具体意义后,下一步就是进行合理的分数形式转化。
有些分数应用题中,给出的分数形式可能并不适合直接计算,这时就需要我们将其转化为更容易计算的形式。
例如,可以将带分数转化为假分数,或者将复杂的分数化简为更简单的形式。
这样,计算过程就会变得更加简便。
技巧三:利用线段图进行分析对于一些较为复杂的分数应用题,我们可以尝试利用线段图进行分析。
线段图可以直观地表示出各个量之间的关系,使我们更容易理解题目的意思。
通过线段图,我们可以清晰地看出各个部分之间的关系,进而找出解决问题的方法。
技巧四:注意检验答案的合理性在解完分数应用题后,很多学生都忽视了检验答案这一重要步骤。
实际上,检验答案的合理性是非常必要的。
我们可以通过逆运算或者代入原题等方法,检验我们的答案是否正确。
如果答案不合理,那么我们就需要重新审视自己的解题过程,找出错误所在。
以上就是四种实用的分数应用题解题技巧。
当然,要想真正掌握这些技巧,还需要大量的练习和思考。
只有通过不断的实践,我们才能更加熟练地运用这些技巧,解决各种复杂的分数应用题。
希望这些技巧能对大家有所帮助,祝大家在数学学习中取得更大的进步!。
分数应用题的解题方法(可编辑修改word版)

分数应用题的解题方法一定背过解题方法一找二定三列式1'找准单位"1"的量。
("的‘字前面・"比”、"是" ' "占’字后面的量为单位r)2、确定单位是已知还是未知?(单位是已知的用乘法.未知的用除法)3、单位"1”的Bx分率=分率对应量分率对应■(已知数)占对应分率二单位"1"的H4 '比单位T 多就用(1 + ...).比单位T 少就用(1・…)。
分数应用题解题技巧•转化单位"1〃方法一:将一个数的几分之几的几分之几转化为这个数的几分之几。
例:读了一本故事书,第一天读了全书肚,第二天读了余下曲。
第二天读了全 5 4 书的儿分之儿?全书还剩儿分之儿?方法二:甲数是乙数的几分之几•转化为乙数是甲数的几分之几。
4例:屮数是乙数的-。
求乙数是屮数的儿分之儿?9方法三:甲数比乙数多(少)几分之几转化为乙数比甲数少(多)几分之几。
例:四年级人数比五年级人数少丄五年级人数比四年级人数多儿分之儿?4方法四:甲数的几分之几等于乙数的几分之几转化为甲数是乙数的几分之几(或乙数是甲数的几分之几)。
9 3例:屮数的_等于乙数的」屮数是乙数的儿分之儿?乙数是屮数的儿分之儿?3 4方法五:假设左解题中的妙用:有些应用题数fi矣系比较复杂隐蔽-按一般的方法•难以找到数fi间的尖系及内在联系。
但是通a假定某个条件或现象成立• 往往可以找到解答的途径。
例:有两筐苹果共重220千克,从中筐取ni,从乙筐取ai共重5o千克。
两筐5 4苹果原来各有多少千克?方法六:找已知量对应的分率,用已知量除以它所对应的分率就可以得到单位的a O 例:“一批煤用去了三正好是24吨。
这批煤共有多少吨?”在这个问题中,“93 3与“24吨”表示的同一个数量,都是用去的煤的数量。
一个是具体的量,一个2 2是分数量,这们把叫做“24吨”所对应的分率,解题时用“24一「得到3 3的就是单位“1”的量,在本题中也就是煤的总量。
(完整版)分数应用题的解题方法

(完整版)分数应用题的解题方法分数应用题是数学中的一种常见题型,需要运用分数的运算和应用知识解答问题。
解决分数应用题的方法可以分为以下几个步骤:理解问题、分析问题、制定计划、解决问题和检验答案。
首先,理解问题是解决任何数学问题的第一步。
我们需要仔细读题,理解题目中的条件和要求。
在解决分数应用题时,我们需要明确题目中涉及的分数运算和应用概念,比如加减乘除、最大公约数和最小公倍数等。
同时,我们还要注意题目中可能存在的隐藏信息或特殊要求。
其次,分析问题是指对题目中的条件进行分析和归纳,找出解决问题的关键要素。
在分析问题过程中,我们可以将题目中给出的信息进行拆分和整理,以便更好地理解问题的本质。
我们还可以利用图表、模型或其他辅助工具帮助我们直观地展示问题,并更好地发现问题的规律和特点。
接下来,制定计划是指根据问题的条件和要求,选择适当的解题方法和步骤。
在制定计划时,我们可以考虑使用分数的基本运算规则和性质,运用相关的分数概念和技巧来解决问题。
根据题目的特点,我们可以选择适当的解题策略,比如化简分数、通分、约分、比较大小等方法。
然后,解决问题是指根据制定的计划,进行具体的计算和推理,得出问题的解答。
在解决问题过程中,我们需要准确地运用所学的分数知识和方法,进行计算和推导。
同样重要的是,我们需要保持清晰的思路和正确的操作,避免犯错和忽略细节。
最后,检验答案是指对解决问题的结果进行核对和验证,确保解答的准确性和合理性。
在检验答案时,我们可以用不同的方法或角度来验证解答的正确性。
比如,我们可以利用逆运算来检验解答的准确性,或者将解答带入原题中进行验证。
综上所述,解决分数应用题的方法可以概括为理解问题、分析问题、制定计划、解决问题和检验答案。
通过充分理解题目的条件和要求,合理分析问题的关键要素,制定适当的解题计划,运用所学的分数知识和方法进行解答,并进行有效的答案检验,我们就能够高效地解决分数应用题。
分数的除法应用题解题技巧

分数的除法应用题解题技巧分数的除法是数学中的一个重要概念,也是我们在日常生活中经常会遇到的问题。
解决分数的除法应用题需要一些技巧和方法,下面我将介绍一些解题技巧。
首先,我们需要了解分数的除法运算规则。
当我们计算两个分数相除时,可以先将除号变为乘号,然后将除数的倒数乘以被除数。
例如,计算1/2 ÷ 1/3,可以将除号变为乘号,得到1/2 × 3/1,然后将两个分数相乘,得到3/2。
其次,我们需要掌握分数的化简方法。
在解决分数的除法应用题时,我们经常需要将分数化简为最简形式。
化简分数的方法是找到分子和分母的最大公约数,然后将分子和分母同时除以最大公约数。
例如,将6/8化简为最简形式,可以找到6和8的最大公约数为2,然后将6和8同时除以2,得到3/4。
另外,我们还需要注意分数的整数部分。
当分数的分子大于或等于分母时,我们可以将分数化简为带分数的形式。
带分数由一个整数部分和一个真分数部分组成。
例如,将7/4化简为带分数的形式,可以先计算出整数部分为1,然后将分数化简为真分数部分3/4,最终得到带分数1 3/4。
在解决分数的除法应用题时,我们还需要注意问题中的关键信息。
有时候,问题中给出的分数可能是一个比例关系,我们需要根据这个比例关系来计算其他分数。
例如,问题中给出了一个比例关系为1/2 =3/6,我们可以根据这个比例关系来计算其他分数的值。
此外,我们还可以通过绘制图形来解决分数的除法应用题。
有时候,问题中给出的分数可以表示为一个图形的面积或长度,我们可以通过绘制图形来计算其他分数的值。
例如,问题中给出了一个长方形的面积为3/4平方米,我们可以通过绘制一个长方形来计算其他分数的面积。
最后,我们需要进行反复练习和巩固。
解决分数的除法应用题需要一定的技巧和方法,只有通过反复练习和巩固,我们才能够熟练掌握这些技巧和方法,并能够灵活运用到实际问题中。
总之,解决分数的除法应用题需要一些技巧和方法。
分数除法应用题的解题技巧

分数除法应用题的解题技巧
1. 嘿呀,大家注意啦!找单位“1”可是关键哦!比如这道题:小明吃了一堆苹果的四分之一,这“一堆苹果”不就是单位“1”嘛!你可别找错了呀!
2. 哇塞,看到分数除法应用题,先想想等量关系式呀!就像“速度×时间=路程”这样的,一旦找到等量关系,解题就容易多啦!比如:小红每分钟走50 米,10 分钟走了多远?不就是有了等量关系嘛!
3. 哎呀呀,把除法转化成乘法有时候超好用的呀!例如:五分之一除以三分之二,不就可以变成五分之一乘二分之三嘛,这样是不是简单多了?
4. 嘿,要学会画图呀!把题目中的关系用图表示出来,那可就清晰明了。
比如:有 10 个苹果,分了一半给别人,画个图立马就清楚啦!
5. 哈哈,有些题目里隐藏的条件可要找出来哦!就像那道题,说小明比小红高 10 厘米,这里面不就藏着信息嘛,能帮助你解题呀!
6. 哇哦,一定要看清题目中的陷阱呀!有时候一个小细节就能决定对错呢。
比如题目说“提高了”和“提高到”那可完全不一样呀!
7. 哟呵,做完题检查一下很有必要呀!万一粗心算错了呢。
你想想,要是因为粗心丢分,那多可惜呀!
8. 嘿,有时候可以从问题入手倒着推呀!比如问你一共多少个,那你就想想根据哪些信息可以求出总数呀!
9. 哈哈,分数除法应用题其实并不难呀,只要掌握了这些技巧,还怕解不出来题吗?大家加油哦!
我的观点:掌握好这些解题技巧,分数除法应用题就能轻松拿下!。
分数除法的应用题解题技巧

分数除法的应用题解题技巧
1. 嘿,遇到分数除法的应用题不要慌!先找到关键信息呀!比如说,小明有 2/3 个苹果,要分给 4 个人,那每个人分到多少呀?这不就是求平均
数嘛,先搞清楚总数和份数,问题就迎刃而解啦!
2. 哇塞,要注意单位“1”哦!就像小红有一堆糖果,这堆糖果就是单位“1”。
如果告诉你她分出去了 1/4,那剩下多少不就好算了嘛!比如她有12 颗糖果,分出去多少颗是不是一下就知道啦?
3. 哎呀呀,分数除法里画图很重要呀!像小李要把一块蛋糕的 3/5 平均分
给 3 个朋友,你画个图,一目了然,是不是瞬间清楚怎么算了!
4. 嘿,别忘了等量关系式哦!就好像说小王跑了一段路的 2/3 是 10 千米,那这段路全长多少?找到那个等量关系呀,这种题就难不倒你啦!
5. 哇哦,约分和约分后的处理也很关键呀!比如计算 4/8 除以 2,约分后就简单很多啦,最后结果一下子就出来了,是不是很神奇?
6. 哈哈,把复杂的问题简单化呀!像小张有一堆书,其中 3/8 是故事书,
故事书有15 本,那这堆书一共有多少本?别想得太复杂,一步一步来就行!
7. 哎哟喂,有时候要转换一下思路哦!就好比小赵要把一块地的 4/5 种上
蔬菜,那没种蔬菜的占多少?换个角度想,是不是一下子就清楚啦?
8. 呀,仔细审题很重要的呀!如果题目说小芳把1/2 个蛋糕平均分成4 份,你可别看成整个蛋糕啦,那可就闹笑话啦!
9. 嘿嘿,掌握了这些技巧,分数除法应用题就不难啦!遇到问题多想想这些方法呀,肯定没问题的!
我的观点结论就是:只要你用心去掌握这些解题技巧,分数除法应用题绝对不再是难题!。
解决分数应用题的一些技巧

解决分数应用题的一些技巧----摘自绿茶老师的总结在多年的教学中,笔者发现分数应用题是小学六年级数学学习的一个难点也是重点。
为了提高学生的学习效率,特总结了以下几点,以便和同仁们商讨。
1、解题步骤:一找二判三作四列一找:找准标准量(单位“1”的量)、比较量、分率。
二判:判断标准量(比较量)是否已知、分率是几分之几(或者多几分之几、少几分之几)。
三作:根据一找二判的情况作出题目中所反映信息的线段图。
四列:根据线段图反映的数量关系列出相应的算式并计算。
2、找标准量的方法:有些学生的理解能力强,通过读题目中的信息就能找出,但有些学生理解力就不那么强了。
为了准确快速找出标准量,不妨让学生抓住几个重点字(数)——“的”字、“是”字前面的量就是标准量;或者分率(多、少几分之几)前面最靠近的量就是标准量。
* 减少、降低、节约、降价、提高、增多、涨价等不做标准量,有些学生把这些就看成标准量了,老师在教学中要做特别强调说明。
例1 2000年第五次全国人口普查结果表明,我国人口最多的两个省份是河南和山东。
河南约有9200万人,山东约比河南少1/46。
山东大约有多少人?标准量:“少1/46”前面最靠近的是河南,所以河南的人口数就是标准量,即9200万人。
(已知)比较量:山东的人口数,即要求的量。
分率:少1/46。
列式并计算:9200 ×(1-1/46)= 9200 ×45/46= 9000(万人)答:山东约有9000万人。
3、解题方法:分数百分数应用题的解题方法可以概括成八个字——“已乘未除,多加少减”。
具体说,标准量(单位“1”的量)已知用乘法,标准量(单位“1”的量)未知用除法;多了括号里面用“1+几分之几”,少了括号里面用“1-几分之几”* 减少、降低、节约、降价等表示少了;提高、增多、涨价等表示多了。
例2 五年级植树150棵,比四年级多植了2/3,四年级植树多少棵?比四年级多植了2/3。
四年级植树棵树为标准量——未知多植了2/3——多2/3列式:150 ÷(1+2/3)当然了,如果标准量(单位“1”的量)是未知的,也可以根据分数乘法的意义,用方程解决。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新整理巧解分数应用题的方法
最近我们学习了分数应用题,通过学习,我发现了有些分数应用题,我们可以用倒推的方法,也就是按照题目中叙述过程的相反顺序来思考、分析,从而比较顺利地求出了结果。
例如:一只猴子在山上摘桃子吃。
第一天吃了一棵树上桃子数的1/10,以后两天分别吃了当天这棵树上剩下桃子数的1/5、1/3。
这样,这棵树上还留下48个桃子。
这棵树上原有多少个桃子?
我想:从已知条件的最后结果出发,倒推过去思考。
由猴子在第三天吃剩下桃子数的1/3后,树上还有48个桃子这个条件出发,可以知道,猴子吃了2天后树上的桃子数为:
48÷(1-1/3)=72(个)
同理推出,猴子第一天吃了以后树上的桃子数为:
72÷(1-1/5)=90(个)
树上原有的桃子数为:
90÷(1-1/10)=100(个)
答:这棵树上原有桃子100个。
比如:小明看一本书,第一天看了这本书的1/2还多6页,第二天看了余下的1/3,这时还剩下42页。
这本书一共有多少页?
我是这样想的:由第二天看了余下的1/3后,还剩42页,可知:余下的页为:42÷(1-1/3)=63(页)
全书页数的1/2为:63+6=69(页)
全书的页数为:69÷1/2=138(页)
解:42÷(1-1/3)=63(页)
(63+6)÷(1-1/2)=138(页)
答:这本书一共有138页。
还有这样一题:白兔、黑兔各采蘑菇若干千克,白兔拿出1/5给黑兔,黑兔再拿出现有蘑菇的1/4给白兔,这时它们都有蘑菇18千克。
它们原来各采蘑菇多少千克?
这道题我是这样想的:从题目中的最后一个条件去想,黑兔拿出现有蘑菇的1/4后还剩18千克,那么它在未拿出之前应有蘑菇是:18÷(1-1/4)=24(千克)。
这也就是说,黑兔拿出了24-18=6(千克)蘑菇给白兔,白兔在得到黑兔蘑菇之前应有蘑菇是:18-6=12(千克)。
而这12千克实际上是白兔拿出它原有蘑菇的1/5给黑兔后的蘑菇,这样白兔原有的蘑菇就是:12÷(1-1/5)=15(千克)。
那么,黑兔原有的蘑菇应是多少呢?把它算出来,
再验算,看看对不对。
通过这三道题的解答,使我明白了,能用倒推法解答的分数应用题通常具备以下的特点:
(1)已知最后的结果;
(2)已知在到达最终结果时的每一步的具体过程(或具体做法),都能够还原;
(3)要求的是最初的数据。