英文文献及翻译(Servlet和JSP技术简述)

合集下载

在线图书管理系统外文文献原文及译文

在线图书管理系统外文文献原文及译文

毕业设计说明书英文文献及中文翻译班姓 名:学 院:专指导教师:2014 年 6 月软件学院 软件工程An Introduction to JavaThe first release of Java in 1996 generated an incredible amount of excitement, not just in the computer press, but in mainstream media such as The New York Times, The Washington Post, and Business Week. Java has the distinction of being the first and only programming language that had a ten-minute story on National Public Radio. A $100,000,000 venture capital fund was set up solely for products produced by use of a specific computer language. It is rather amusing to revisit those heady times, and we give you a brief history of Java in this chapter.In the first edition of this book, we had this to write about Java: “As a computer language, Java’s hype is overdone: Java is certainly a good program-ming language. There is no doubt that it is one of the better languages available to serious programmers. We think it could potentially have been a great programming language, but it is probably too late for that. Once a language is out in the field, the ugly reality of compatibility with existing code sets in.”Our editor got a lot of flack for this paragraph from someone very high up at Sun Micro- systems who shall remain unnamed. But, in hindsight, our prognosis seems accurate. Java has a lot of nice language features—we examine them in detail later in this chapter. It has its share of warts, and newer additions to the language are not as elegant as the original ones because of the ugly reality of compatibility.But, as we already said in the first edition, Java was never just a language. There are lots of programming languages out there, and few of them make much of a splash. Java is a whole platform, with a huge library, containing lots of reusable code, and an execution environment that provides services such as security, portability across operating sys-tems, and automatic garbage collection.As a programmer, you will want a language with a pleasant syntax and comprehensible semantics (i.e., not C++). Java fits the bill, as do dozens of other fine languages. Some languages give you portability, garbage collection, and the like, but they don’t have much of a library, forcing you to roll your own if you want fancy graphics or network- ing or database access. Well, Java has everything—a good language, a high-quality exe- cution environment, and a vast library. That combination is what makes Java an irresistible proposition to so many programmers.SimpleWe wanted to build a system that could be programmed easily without a lot of eso- teric training and which leveraged t oday’s standard practice. So even though wefound that C++ was unsuitable, we designed Java as closely to C++ as possible in order to make the system more comprehensible. Java omits many rarely used, poorly understood, confusing features of C++ that, in our experience, bring more grief than benefit.The syntax for Java is, indeed, a cleaned-up version of the syntax for C++. There is no need for header files, pointer arithmetic (or even a pointer syntax), structures, unions, operator overloading, virtual base classes, and so on. (See the C++ notes interspersed throughout the text for more on the differences between Java and C++.) The designers did not, however, attempt to fix all of the clumsy features of C++. For example, the syn- tax of the switch statement is unchanged in Java. If you know C++, you will find the tran- sition to the Java syntax easy. If you are used to a visual programming environment (such as Visual Basic), you will not find Java simple. There is much strange syntax (though it does not take long to get the hang of it). More important, you must do a lot more programming in Java. The beauty of Visual Basic is that its visual design environment almost automatically pro- vides a lot of the infrastructure for an application. The equivalent functionality must be programmed manually, usually with a fair bit of code, in Java. There are, however, third-party development environments that provide “drag-and-drop”-style program development.Another aspect of being simple is being small. One of the goals of Java is to enable the construction of software that can run stand-alone in small machines. The size of the basic interpreter and class support is about 40K bytes; adding the basic stan- dard libraries and thread support (essentially a self-contained microkernel) adds an additional 175K.This was a great achievement at the time. Of course, the library has since grown to huge proportions. There is now a separate Java Micro Edition with a smaller library, suitable for embedded devices.Object OrientedSimply stated, object-oriented design is a technique for programming that focuses on the data (= objects) and on the interfaces to that object. To make an analogy with carpentry, an “object-oriented” carpenter would be mostly concerned with the chair he was building, and secondari ly with the tools used to make it; a “non-object- oriented” carpenter would think primarily of his tools. The object-oriented facilities of Java are essentially those of C++.Object orientation has proven its worth in the last 30 years, and it is inconceivable that a modern programming language would not use it. Indeed, the object-oriented features of Java are comparable to those of C++. The major difference between Java and C++ lies in multiple inheritance, which Java has replaced with the simpler concept of interfaces, and in the Java metaclass model (which we discuss in Chapter 5). NOTE: If you have no experience with object-oriented programming languages, you will want to carefully read Chapters 4 through 6. These chapters explain what object-oriented programming is and why it is more useful for programming sophisticated projects than are traditional, procedure-oriented languages like C or Basic.Network-SavvyJava has an extensive library of routines for coping with TCP/IP protocols like HTTP and FTP. Java applications can open and access objects across the Net via URLs with the same ease as when accessing a local file system.We have found the networking capabilities of Java to be both strong and easy to use. Anyone who has tried to do Internet programming using another language will revel in how simple Java makes onerous tasks like opening a socket connection. (We cover net- working in V olume II of this book.) The remote method invocation mechanism enables communication between distributed objects (also covered in V olume II).RobustJava is intended for writing programs that must be reliable in a variety of ways.Java puts a lot of emphasis on early checking for possible problems, later dynamic (runtime) checking, and eliminating situations that are error-prone. The single biggest difference between Java and C/C++ is that Java has a pointer model that eliminates the possibility of overwriting memory and corrupting data.This feature is also very useful. The Java compiler detects many problems that, in other languages, would show up only at runtime. As for the second point, anyone who has spent hours chasing memory corruption caused by a pointer bug will be very happy with this feature of Java.If you are coming from a language like Visual Basic that doesn’t explicitly use pointers, you are probably wondering why this is so important. C programmers are not so lucky. They need pointers to access strings, arrays, objects, and even files. In Visual Basic, you do not use pointers for any of these entities, nor do you need to worry about memory allocation for them. On the other hand, many data structures are difficult to implementin a pointerless language. Java gives you the best of both worlds. You do not need point- ers for everyday constructs like strings and arrays. You have the power of pointers if you need it, for example, for linked lists. And you always have complete safety, because you can never access a bad pointer, make memory allocation errors, or have to protect against memory leaking away.Architecture NeutralThe compiler generates an architecture-neutral object file format—the compiled code is executable on many processors, given the presence of the Java runtime sys- tem. The Java compiler does this by generating bytecode instructions which have nothing to do with a particular computer architecture. Rather, they are designed to be both easy to interpret on any machine and easily translated into native machine code on the fly.This is not a new idea. More than 30 years ago, both Niklaus Wirth’s original implemen- tation of Pascal and the UCSD Pascal system used the same technique.Of course, interpreting bytecodes is necessarily slower than running machine instruc- tions at full speed, so it isn’t clear that this is even a good idea. However, virtual machines have the option of translating the most frequently executed bytecode sequences into machine code, a process called just-in-time compilation. This strategy has proven so effective that even Microsoft’s .NET platform relies on a virt ual machine.The virtual machine has other advantages. It increases security because the virtual machine can check the behavior of instruction sequences. Some programs even produce bytecodes on the fly, dynamically enhancing the capabilities of a running program.PortableUnlike C and C++, there are no “implementation-dependent” aspects of the specifi- cation. The sizes of the primitive data types are specified, as is the behavior of arith- metic on them.For example, an int in Java is always a 32-bit integer. In C/C++, int can mean a 16-bit integer, a 32-bit integer, or any other size that the compiler vendor likes. The only restriction is that the int type must have at least as many bytes as a short int and cannot have more bytes than a long int. Having a fixed size for number types eliminates a major porting headache. Binary data is stored and transmitted in a fixed format, eliminating confusion about byte ordering. Strings are saved in a standard Unicode format. The libraries that are a part of the system define portable interfaces. For example,there is an abstract Window class and implementations of it for UNIX, Windows, and the Macintosh.As anyone who has ever tried knows, it is an effort of heroic proportions to write a pro- gram that looks good on Windows, the Macintosh, and ten flavors of UNIX. Java 1.0 made the heroic effort, delivering a simple toolkit that mapped common user interface elements to a number of platforms. Unfortunately, the result was a library that, with a lot of work, could give barely acceptable results on different systems. (And there were often different bugs on the different platform graphics implementations.) But it was a start. There are many applications in which portability is more important than user interface slickness, and these applications did benefit from early versions of Java. By now, the user interface toolkit has been completely rewritten so that it no longer relies on the host user interface. The result is far more consistent and, we think, more attrac- tive than in earlier versions of Java.InterpretedThe Java interpreter can execute Java bytecodes directly on any machine to which the interpreter has been ported. Since linking is a more incremental and lightweight process, the development process can be much more rapid and exploratory.Incremental linking has advantages, but its benefit for the development process is clearly overstated. Early Java development tools were, in fact, quite slow. Today, the bytecodes are translated into machine code by the just-in-time compiler.MultithreadedThe benefits of multithreading are better interactive responsiveness and real-time behavior.If you have ever tried to do multithreading in another language, you will be pleasantly surprised at how easy it is in Java. Threads in Java also can take advantage of multi- processor systems if the base operating system does so. On the downside, thread imple- mentations on the major platforms differ widely, and Java makes no effort to be platform independent in this regard. Only the code for calling multithreading remains the same across machines; Java offloads the implementation of multithreading to the underlying operating system or a thread library. Nonetheless, the ease of multithread- ing is one of the main reasons why Java is such an appealing language for server-side development.Java程序设计概述1996年Java第一次发布就引起了人们的极大兴趣。

jsp技术网站设计外文翻译--将Servlet和JSP组合使用

jsp技术网站设计外文翻译--将Servlet和JSP组合使用

Combining JSP and ServletsThe technology of JSP and Servlet is the most important technology which use Java technology to exploit request of server, and it is also the standard which exploit business application .Java developers prefer to use it for a variety of reasons, one of which is already familiar with the Java language for the development of this technology are easy to learn Java to the other is "a preparation, run everywhere" to bring the concept of Web applications, To achieve a "one-prepared everywhere realized." And more importantly, if followed some of the principles of good design, it can be said of separating and content to create high-quality, reusable, easy to maintain and modify the application. For example, if the document in HTML embedded Java code too much (script), will lead the developed application is extremely complex, difficult to read, it is not easy reuse, but also for future maintenance and modification will also cause difficulties. In fact, CSDN the JSP / Servlet forum, can often see some questions, the code is very long, can logic is not very clear, a large number of HTML and Java code mixed together. This is the random development of the defects.Early dynamic pages mainly CGI (Common Gateway Interface, public Gateway Interface) technology, you can use different languages of the CGI programs, such as VB, C / C + + or Delphi, and so on. Though the technology of CGI is developed and powerful, because of difficulties in programming, and low efficiency, modify complex shortcomings,it is gradually being replaced by the trend. Of all the new technology, JSP / Servlet with more efficient and easy to program, more powerful, more secure and has a good portability, they have been many people believe that the future is the most dynamic site of the future development of technology.Similar to CGI, Servlet support request / response model. When a customer submit a request to the server, the server presented the request Servlet, Servlet responsible for handling requests and generate a response, and then gave the server, and then from the server sent to the customer. And the CGI is different, Servlet not generate a new process, but with HTTP Server at the same process. It threads through the use of technology, reduce the server costs. Servlet handling of the request process is this: When received from the client's request, calling service methods, the method of Servlet arrival of the first judgement is what type of request (GET / POST / HEAD…), then calls the appropriate treatment (DoGet / doP ost / doHead…) and generate a response.Although such a complex, in fact, simply said to Servlet is a Java class. And the general category of the difference is that this type operating in a Servlet container, which can provide session management and targeted life-cycle management. So that when you use the Servlet, you can get all the benefits of the Java platform, including the safety of the management, use JDBC access the database and cross-platform capability. Moreover, Servlet using thread, and can develop more efficient Web applications.JSP technology is a key J2EE technology, it at a higher level of abstraction of a Servlet.It allows conventional static and dynamic HTML content generated by combining an HTML page looks like, but as a Servlet to run. There are many commercial application server support JSP technology, such as BEA WebLogic, IBM WebSphere, JRun, and so on. JSP and Servlet use more than simple. If you have a JSP support for Web servers, and a JSP document, you can put it Fangdao any static HTML files can be placed, do not have to compile, do not have to pack, do not have to ClassPath settings, you can visit as ordinary Web It did visit, the server will automatically help you to do other work.JSP document looks like an ordinary static HTML document, but inside contains a number of Java code. It uses. Jsp the suffix, used to tell the server this document in need of special treatment. When we visit a JSP page, the document will first be translated into a JSP engine Java source files, is actually a Servlet, and compiler, and then, like other Servlet, from Servlet engine to handle. Servlet engine of this type loading, handling requests from customers, and the results returned to the customer, as shown below:Figure 1: Calling the process of JSP pagesAfter another visit this page to the customer, as long as the paper there have been no changes, JSP engine has been loaded directly call the Servlet. If you have already been modified, it will be once again the implementation of the above process, translate, compile and load. In fact, this is the so-called "first person to punishment." Because when the first visit to the implementation of a series of the above process, so will spend some time after such a visit would not.Java servlets offer a powerful API that provides access to all the information about the request, the session, and the application. combining JSP with servlets lets you clearly separate the application logic from the presentation of the application; in other words, it lets you use the most appropriate component type for the roles of Model, View and Controller.Servlets, Filters, and ListenersA servlet is a Java class that extends a server with functionality for processing a request and producing a response. It's implemented using the classes and interfaces defined by the Servlet API. The API consists of two packages: the javax.servlet package contains classes and interfaces that are protocol-independent, while the javax.servlet.http package provides HTTP-specific extensions and utility classes.What makes a servlet a servlet is that the class implements an interface named javax.servlet.Servlet, either directly or by extending one of the support classes. This interface defines the methods used by the web container to manage and interact with theservlet. A servlet for processing HTTP requests typically extends the javax.servlet.http.HttpServlet class. This class implements the Servlet interface and provides additional methods suitable for HTTP processing.Servlet LifecycleThe web container manages all aspects of the servlet's lifecycle. It creates an instance of the servlet class when needed, passes requests to the instance for processing, and eventually removes the instance. For an HttpServlet, the container calls the following methods at the appropriate times in the servlet lifecycle.Besides the doGet( ) and doPost( ) methods, there are methods corresponding to the other HTTP methods: doDelete( ), doHead( ), doOptions( ), doPut( ), and doTrace( ). Typically you don't implement these methods; the HttpServlet class already takes care of HEAD, OPTIONS, and TRACE requests in a way that's suitable for most servlets, and the DELETE and PUT HTTP methods are rarely used in a web application.It's important to realize that the container creates only one instance of each servlet. This means that the servlet must be thread safe -- able to handle multiple requests at the same time, each executing as a separate thread through the servlet code. Without getting lost in details, you satisfy this requirement with regards to instance variables if you modify the referenced objects only in the init( ) and destroy( ) methods, and just read them in the request processing methods.Compiling and Installing a ServletTo compile a servlet, you must first ensure that you have the JAR file containing all Servlet API classes in the CLASSPATH environment variable. The JAR file is distributed with all web containers. Tomcat includes it in a file called servlet.jar, located in the common/lib directory. On a Windows platform, you include the JAR file in the CLASSPATH.. Reading a RequestOne of the arguments passed to the doGet( ) and doPost( ) methods is an object that implements the HttpServletRequest interface. This interface defines methods that provide access to a wealth of information about the request.Generating a ResponseBesides the request object, the container passes an object that implements the HttpServletResponse interface as an argument to the doGet( ) and doPost( ) methods. This interface defines methods for getting a writer or stream for the response body. It also defines methods for setting the response status code and headers.Using Filters and ListenersThe servlet specification defines two component types beside servlets: filters and listeners. These two types were introduced in the Servlet 2.3 specification, so if you're using a container that doesn't yet support this version of the specification, I'm afraid you'reout of luck.FiltersA filter is a component that can intercept a request targeted for a servlet, JSP page, or static page, as well as the response before it's sent to the client. This makes it easy to centralize tasks that apply to all requests, such as access control, logging, and charging for the content or the services offered by the application. A filter has full access to the body and headers of the request and response, so it can also perform various transformations. One example is compressing the response body if the Accept-Language request header indicates that the client can handle a compressed response.A filter can be applied to either a specific servlet or to all requests matching a URL pattern, such as URLs starting with the same path elements or having the same extension. ListenersListeners allow your application to react to certain events. Prior to Servlet 2.3, you could handle only session attribute binding events (triggered when an object was added or removed from a session). You could do this by letting the object saved as a sessionattribute(using the HttpSession.setAttribute() method)implement the HttpSessionBindingListener interface. With the new interfaces introduced in the 2.3 version of the specification, you can create listeners for servlet context and session lifecycle events as well as session activation and passivation events (used by a container that temporarily saves session state to disk or migrates a session to another server). A newsession attribute event listener also makes it possible to deal with attribute binding events for all sessions in one place, instead of placing individual listener objects in each session.The new types of listeners follow the standard Java event model. In other words, a listener is a class that implements one or more of the listener interfaces. The interfaces define methods that correspond to events. The listener class is registered with the container when the application starts, and the container then calls the event methods at the appropriate times.Initializing Shared Resources Using a ListenerBeans like this typically need to be initialized before they can be used. For instance, they may need a reference to a database or some other external data source and may create an initial information cache in memory to provide fast access even to the first request for data. You can include code for initialization of the shared resources in the servlet and JSP pages that need them, but a more modular approach is to place all this code in one place and let the other parts of the application work on the assumption that the resources are already initialized and available. An application lifecycle listener is a perfect tool for this type of resource initialization. This type of listener implements the javax.servlet.ServletContextListener interface, with methods called by the container when the application starts and when it shuts down.Picking the Right Component Type for Each TaskThe Project Billboard application introduced is a fairly complex application. Half thepages are pure controller and business logic processing, it accesses a database to authenticate users, and most pages require access control. In real life, it would likely contain even more pages, for instance, pages for access to a shared document archive, time schedules, and a set of pages for administration. As the application evolves, it may become hard to maintain as a pure JSP application. It's easy to forget to include the access control code in new pages.This is clearly an application that can benefit from using a combination of JSP pages and the component types defined by the servlet specification for the MVC roles. Let's look at the main requirements and see how we can map them to appropriate component types:●Database access should be abstracted, to avoid knowledge of a specific dataschema or database engine in more than one part of the application: beans in therole of Model can be used to accomplish this.●The database access beans must be made available to all other parts of theapplication when it starts: an application lifecycle event listener is the perfectcomponent type for this task.●Only authenticated users must be allowed to use the application: a filter canperform access control to satisfy this requirement.●Request processing is best done with Java code: a servlet, acting as the Controller,fits the bill.●It must be easy to change the presentation: this is where JSP shines, acting as theView.Adding servlets, listeners, and filters to the mix minimizes the need for complex logic in the JSP pages. Placing all this code in Java classes instead makes it possible to use a regular Java compiler and debugger to fix potential problems.Centralized Request Processing Using a ServletWith a servlet as the common entry point for all application requests, you gain control over the page flow of the application. The servlet can decide which type of response to generate depending on the outcome of the requested action, such as returning a common error page for all requests that fail, or different responses depending on the type of client making the request. With the help from some utility classes, it can also provide services such as input validation, I18N preparations, and in general, encourage a more streamlined approach to request handling.When you use a servlet as a Controller, you must deal with the following basic requirements:●All requests for processing must be passed to the single Controller servlet.●The servlet must be able to distinguish requests for different types of processing.Here are other features you will want support for, even though they may not be requirements for all applications:● A strategy for extending the application to support new types of processingA mechanism for changing the page flow of the application without modifyingcode.Mapping Application Requests to the ServletThe first requirement for using a Controller servlet is that all requests must pass through it. This can be satisfied in many ways. If you have played around a bit with servlets previously, you're probably used to invoking a servlet with a URI that starts with /myApp/servlet. This is a convention introduced by Suns Java Web Server (JWS), the first product to support servlets before the API was standardized. Most servlet containers support this convention today, even though it's not formally defined in the servlet specification.将Servlet和JSP组合使用Servlet和JSP技术是用Java开发服务器端应用的主要技术,是开发商务应用表示端的标准。

JAVA外文文献+翻译

JAVA外文文献+翻译

Java and the InternetIf Java is, in fact, yet another computer programming language, you may question why it is so important and why it is being promoted as a revolutionary step in computer programming. The answer isn’t immediately obvious if you’re coming from a traditional programming perspective. Although Java is very useful for solving traditional stand-alone programming problems, it is also important because it will solve programming problems on the World Wide Web.1.Client-side programmingThe Web’s initial server-browser design provided for interactive content, but the interactivity was completely provided by the server. The server produced static pages for the client browser, which would simply interpret and display them. Basic HTML contains simple mechanisms for data gathering: text-entry boxes, check boxes, radio boxes, lists and drop-down lists, as well as a button that can only be programmed to reset the data on the form or “submit” the data on the form back to the server. This submission passes through the Common Gateway Interface (CGI) provided on all Web servers. The text within the submission tells CGI what to do with it. The most common action is to run a program located on the server in a directory that’s typically called “cgi-bin.” (If you watch the address window at the top of your browser when you push a button on a Web page, you can sometimes see “cgi-bin” within all the gobbledygook there.) These programs can be written in most languages. Perl is acommon choice because it is designed for text manipulation and is interpreted, so it can be installed on any server regardless of processor or operating system. Many powerful Web sites today are built strictly on CGI, and you can in fact do nearly anything with it. However, Web sites built on CGI programs can rapidly become overly complicated to maintain, and there is also the problem of response time. The response of a CGI program depends on how much data must be sent, as well as the load on both the server and the Internet. (On top of this, starting a CGI program tends to be slow.) The initial designers of the Web did not foresee how rapidly this bandwidth would be exhausted for the kinds of applications people developed. For example, any sort of dynamic graphing is nearly impossible to perform with consistency because a GIF file must be created and moved from the server to the client for each version of the graph. And you’ve no doubt had direct experience with something as simple as validating the data on an input form. You press the submit button on a page; the data is shipped back to the server; the server starts a CGI program that discovers an error, formats an HTML page informing you of the error, and then sends the page back to you; you must then back up a page and try again. Not only is this slow, it’s inelegant.The solution is client-side programming. Most machines that run Web browsers are powerful engines capable of doing vast work, and with the original static HTML approach they are sitting there, just idly waiting for the server to dish up the next page. Client-side programming means that the Web browser is harnessed to do whatever work it can, and the result for the user is a much speedier and more interactive experience at your Web site.The problem with discussions of client-side programming is that they aren’t very different from discussions of programming in general. The parameters are almost the same, but the platform is different: a Web browser is like a limited operating system. In the end, you must still program, and this accounts for the dizzying array of problems and solutions produced by client-side programming. The rest of this section provides an overview of the issues and approaches in client-side programming.2.Plug-insOne of the most significant steps forward in client-side programming is the development of the plug-in. This is a way for a programmer to add new functionality to the browser by downloading a piece of code that plugs itself into the appropriate spot in the browser. It tells the browser “from now on you can perform this new activity.” (You ne ed to download the plug-in only once.) Some fast and powerful behavior is added to browsers via plug-ins, but writing a plug-in is not a trivial task, and isn’t something you’d want to do as part of the process of building a particular site. The value of the plug-in for client-side programming is that it allows an expert programmer to develop a new language and add that language to a browser without the permission of the browser manufacturer. Thus, plug-ins provide a “back door” that allows the creation of new client-side programming languages (although not all languages are implemented as plug-ins).3.Scripting languagesPlug-ins resulted in an explosion of scripting languages. With a scripting language you embed the source code for your client-side program directly into the HTML page, and the plug-in that interprets that language is automatically activated while the HTML page is being displayed. Scripting languages tend to be reasonably easy to understand and, because they are simply text that is part of an HTML page, they load very quickly as part of the single server hit required to procure that page. The trade-off is that your code is exposed for everyone to see (and steal). Generally, however, you aren’t doing amazingly sophisticated things with scripting languages so this is not too much of a hardship.This points out that the scripting languages used inside Web browsers are really intended to solve specific types of problems, primarily the creation of richer and more interactive graphical user interfaces (GUIs). However, a scripting language might solve 80 percent of the problems encountered in client-side programming. Your problems might very well fit completely withinthat 80 percent, and since scripting languages can allow easier and faster development, you should probably consider a scripting language before looking at a more involved solution such as Java or ActiveX programming.The most commonly discussed browser scripting languages are JavaScript (which has nothing to do with Java; it’s named that way just to grab some of Java’s marketing momentum), VBScript (which looks like Visual Basic), and Tcl/Tk, which comes from the popular cross-platform GUI-building language. There are others out there, and no doubt more in development.JavaScript is probably the most commonly supported. It comes built into both Netscape Navigator and the Microsoft Internet Explorer (IE). In addition, there are probably more JavaScript books available than there are for the other browser languages, and some tools automatically create pages using JavaScript. However, if you’re already fluent in Visual Basic or Tcl/Tk, you’ll be more productive using those scripting languages rather than learning a new one. (You’ll have your hands full dealing with the Web issues already.)4.JavaIf a scripting language can solve 80 percent of the client-side programming problems, what about the other 20 percent—the “really hard stuff?” The most popular solution today is Java. Not only is it a powerful programming language built to be secure, cross-platform, and international, but Java is being continually extended to provide language features and libraries that elegantly handle problems that are difficult in traditional programming languages, such as multithreading, database access, network programming, and distributed computing. Java allows client-side programming via the applet.An applet is a mini-program that will run only under a Web browser. The applet is downloaded automatically as part of a Web page (just as, for example, a graphic is automatically downloaded). When the applet is activated it executes a program. This is part of its beauty—it provides you with a way to automatically distribute the client software from the server at the time the user needs the client software, and no sooner. The user gets the latest version of the client software without fail and without difficult reinstallation. Because of theway Java is designed, the programmer needs to create only a single program, and that program automatically works with all computers that have browsers with built-in Java interpreters. (This safely includes the vast majority of machines.) Since Java is a full-fledged programming language, you can do as much work as possible on the client before and after making requests of the server. F or example, you won’t need to send a request form across the Internet to discover that you’ve gotten a date or some other parameter wrong, and your client computer can quickly do the work of plotting data instead of waiting for the server to make a plot and ship a graphic image back to you. Not only do you get the immediate win of speed and responsiveness, but the general network traffic and load on servers can be reduced, preventing the entire Internet from slowing down.One advantage a Java applet has ove r a scripted program is that it’s in compiled form, so the source code isn’t available to the client. On the other hand, a Java applet can be decompiled without too much trouble, but hiding your code is often not an important issue. Two other factors can be important. As you will see later in this book, a compiled Java applet can comprise many modules and take multiple server “hits” (accesses) to download. (In Java 1.1 and higher this is minimized by Java archives, called JAR files, that allow all the required modules to be packaged together and compressed for a single download.) A scripted program will just be integrated into the Web page as part of its text (and will generally be smaller and reduce server hits). This could be important to the responsiveness of your Web site. Another factor is the all-important learning curve. Regardless of what you’ve heard, Java is not a trivial language to learn. If you’re a Visual Basic programmer, moving to VBScript will be your fastest solution, and since it will probably solve most typical client/server problems you might be hard pressed to justify learning Java. If you’re experienced with a scripting language you will certainly benefit from looking at JavaScript or VBScript before committing to Java, since they might fit your needs handily and you’ll be more productive sooner.to run its applets withi5.ActiveXTo some degree, the competitor to Java is Microsoft’s ActiveX, although it takes a completely different approach. ActiveX was originally a Windows-only solution, although it is now being developed via an independent consortium to become cross-platform. Effectively, ActiveX says “if your program connects to its environment just so, it can be dropped into a Web page and run under a browser that supports ActiveX.” (I E directly supports ActiveX and Netscape does so using a plug-in.) Thus, ActiveX does not constrain you to a particular language. If, for example, you’re already an experienced Windows programmer using a language such as C++, Visual Basic, or Borland’s Del phi, you can create ActiveX components with almost no changes to your programming knowledge. ActiveX also provides a path for the use of legacy code in your Web pages.6.SecurityAutomatically downloading and running programs across the Internet can sound like a virus-builder’s dream. ActiveX especially brings up the thorny issue of security in client-side programming. If you click on a Web site, you might automatically download any number of things along with the HTML page: GIF files, script code, compiled Java code, and ActiveX components. Some of these are benign; GIF files can’t do any harm, and scripting languages are generally limited in what they can do. Java was also designed to run its applets within a “sandbox” of safety, which prevents it from wri ting to disk or accessing memory outside the sandbox.ActiveX is at the opposite end of the spectrum. Programming with ActiveX is like programming Windows—you can do anything you want. So if you click on a page that downloads an ActiveX component, that component might cause damage to the files on your disk. Of course, programs that you load onto your computer that are not restricted to running inside a Web browser can do the same thing. Viruses downloaded from Bulletin-Board Systems (BBSs) have long been a problem, but the speed of the Internet amplifies the difficulty.The solution seems to be “digital signatures,” whereby code is verified to show who the author is. This is based on the idea that a virus works because its creator can be anonymous, so if you remove the anonymity individuals will be forced to be responsible for their actions. This seems like a good plan because it allows programs to be much more functional, and I suspect it will eliminate malicious mischief. If, however, a program has an unintentional destructive bug it will still cause problems.The Java approach is to prevent these problems from occurring, via the sandbox. The Java interpreter that lives on your local Web browser examines the applet for any untoward instructions as the applet is being loaded. In particular, the applet cannot write files to disk or erase files (one of the mainstays of viruses). Applets are generally considered to be safe, and since this is essential for reliable client/server systems, any bugs in the Java language that allow viruses are rapidly repaired. (It’s worth noting that the browser software actually enforces these security restrictions, and some browsers allow you to select different security levels to provide varying degrees of access to your system.) You might be skeptical of this rather draconian restriction against writing files to your local disk. For example, you may want to build a local database or save data for later use offline. The initial vision seemed to be that eventually everyone would get online to do anything important, but that was soon seen to be impractical (although low-cost “Internet appliances” might someday satisfy the needs of a significant segment of users). The solution is the “signed applet” that uses public-key encryption to verify that an applet does indeed come from where it claims it does. A signed applet can still trash your disk, but the theory is that since you can now hold the applet creator accountable they won’t do vicious things. Java provides a framework for digital signatures so that you will eventually be able to allow an applet to step outside the sandbox if necessary. Digital signatures have missed an important issue, which is the speed that people move around on the Internet. If you download a buggy program and it does something untoward, how long will it be before you discover the damage? It could be days or even weeks. By then, how will you track down the program that’s done it? And what good will it do you at that point?7.Internet vs. intranetThe Web is the most general solution to the client/server problem, so it makes sense that you can use the same technology to solve a subset of the problem, in particular the classic client/server problem within a company. With traditional client/server approaches you have the problem of multiple types of client computers, as well as the difficulty of installing new client software, both of which are handily solved with Web browsers and client-side programming. When Web technology is used for an information network that is restricted to a particular company, it is referred to as an intranet. Intranets provide much greater security than the Internet, since you can physically control access to the servers within your company. In terms of training, it seems that once people und erstand the general concept of a browser it’s much easier for them to deal with differences in the way pages and applets look, so the learning curve for new kinds of systems seems to be reduced.The security problem brings us to one of the divisions that seems to be automatically forming in the world of client-side programming. If your program is running on the Internet, you don’t know what platform it will be working under, and you want to be extra careful that you don’t disseminate buggy code. You need something cross-platform and secure, like a scripting language or Java.If you’re running on an intranet, you might have a different set of constraints. It’s not uncommon that your machines could all be Intel/Windows platforms. On an intranet, you’re respon sible for the quality of your own code and can repair bugs when they’re discovered. In addition, you might already have a body of legacy code that you’ve been using in a more traditional client/server approach, whereby you must physically install client programs every time you do an upgrade. The time wasted in installing upgrades is the most compelling reason to move to browsers, because upgrades are invisible and automatic. If you are involved in such an intranet, the most sensible approach to take is the shortest path that allows you to use your existing code base, rather than trying to recode your programs in a new language.When faced with this bewildering array of solutions to the client-side programming problem, the best plan of attack is a cost-benefit analysis. Consider the constraints of your problem and what would be the shortest path to your solution. Since client-side programming is still programming, it’s always a good idea to take the fastest development approach for your particular situation. This is an aggressive stance to prepare for inevitable encounters with the problems of program development.8.Server-side programmingThis whole discussion has ignored the issue of server-side programming. What happens when you make a request of a server? Most of the time the request is simply “send me this file.” Your browser then interprets the file in some appropriate fashion: as an HTML page, a graphic image, a Java applet, a script program, etc. A more complicated request to a server generally involves a database transaction. A common scenario involves a request for a complex database search, which the server then formats into an HTML page and sends to you as the result. (Of course, if the client has more intelligence via Java or a scripting language, the raw data can be sent and formatted at the client end, which will be faster and less load on the server.) Or you might want to register your name in a database when you join a group or place an order, which will involve changes to that database. These database requests must be processed via some code on the server side, which is generally referred to as server-side programming. Traditionally, server-side programming has been performed using Perl and CGI scripts, but more sophisticated systems have been appearing. These include Java-based Web servers that allow you to perform all your server-side programming in Java by writing what are called servlets. Servlets and their offspring, JSPs, are two of the most compelling reasons that companies who develop Web sites are moving to Java, especially because they eliminate the problems of dealing with differently abled browsers.9. separate arena: applicationsMuch of the brouhaha over Java has been over applets. Java is actually a general-purpose programming language that can solve any type of problem—at least in theory. And as pointed out previously, there might be more effective ways to solve most client/server problems. When you move out of the applet arena (and simultaneously release the restrictions, such as the one against writing to disk) you enter the world of general-purpose applications that run standalone, without a Web browser, just like any ordinary program does. Here, Java’s strength is not only in its portability, but also its programmability. As you’l l see throughout this book, Java has many features that allow you to create robust programs in a shorter period than with previous programming languages. Be aware that this is a mixed blessing. You pay for the improvements through slower execution speed (although there is significant work going on in this area—JDK 1.3, in particular, introduces the so-called “hotspot” performance improvements). Like any language, Java has built-in limitations that might make it inappropriate to solve certain types of programming problems. Java is a rapidly evolving language, however, and as each new release comes out it becomes more and more attractive for solving larger sets of problems.Java和因特网既然Java不过另一种类型的程序设计语言,大家可能会奇怪它为什么值得如此重视,为什么还有这么多的人认为它是计算机程序设计的一个里程碑呢?如果您来自一个传统的程序设计背景,那么答案在刚开始的时候并不是很明显。

Web信息系统毕业论文中英文资料外文翻译文献

Web信息系统毕业论文中英文资料外文翻译文献

Web信息系统毕业论文中英文资料外文翻译文献中英文资料翻译With the popularity of the Inter NET applications, a variety of Web Information System Has become a pressing issue. Establish the essence of Web information systems Development of a Web repository (database as the core of a variety of Web letter Information storage) as the core Web applications. Currently, the Web repositorydevelopment technologyOperation of a wide range of different characteristics. Various periods at all levels, a variety of purposes Technology co-exist, dizzying mirror chaos, it is difficult to choose. More popular Java of Ser vet Web repository development program a more practical Of choice.Servlet is running the applet on the Web server, can be completed Xu Multi-client Applet can not complete the work, which runs on the server and clients No end, do not download do not by the client security restrictions, the running speed Greatly increasedAnd Applet running in a browser and extend the browser's ability similar Like, Serv the let run in the Web server to enable Java Serv the let engine And expand the capacity of the server. Therefore, we can say Serv the let is run in Applet on a Web server, Serv the let Jav a Ser vlet API And Jav a program of classes and packages.1 Servlet access model2 Serv the let, there are three access models:(1) an access model1 browser to Web server to issue a retrieval request.2 the Web server after receipt of the request, the requestforwarded tothe Servle tengine.3 Serlet engine to perform the requested the Ser vlet and directly throughJDBC4Servlet throughJDBC toretrieve searchresults to generate the html page and Page back to the Web server.5 the Web server the page is sent back to the browser.(2)The second access model1 browser to Web server to issue a retrieval request.2 the Web server receives the request after the request forwardedto the of Ser v the letengine.3 Serv let engine to perform the request the the Ser vlet and retrieve sentJa, vabean access to the data.4data access the Ja vabean searchable database throughJDBC informationAnd from the search results stored in itself.5Servlet remove search results from the data access Javabean generate Html page and Ht ml of page back to the w eb server.6 the Web server the page is sent back to the browser.(3) The third access model1 A browser issue a retrieval request to the Web server.2 Web server receives the request after the request forwarded to the ofSer v the let engine.Of Ser vlet engine to perform the requested Servlet directlythroughJDBC inspection3 The cable database and search results are stored in the result isstored the Jav abean into.Javabean,4. Ser v the let from the results are stored to remove the search results and JSP files to format the output page.2 Servlet functionality and life cycle2.1Servlet functions(1) Create and return dynamic Web pages based on customer requests.(2) create can be embedded into existing HTML pages as part of HTML Page (HT fragment) of the ML.(3) and other server resources (including databases and applications based on the Jav a Program) to communicate.(4) to handle multiple client connections, receiving the input of more than one client, and The results broadcast to multiple clients. For example, Ser vlet is a multi-participant Game server.(5) of MIM E type filter information on the special handling, such as image Conversion and server-side include (SSI).(6) custom processing available to all servers in the standard routine.2.2Servlet lifecycleServlet life cycle begins with it into the Web server's memory And end in the termination or re-loaded Serv the let.(1) load.Load the servlet at the following times:1. If you have configured automatic load option, and then start the Webserver automatically loaded2.After the start of the Web server, the client Serv the let issued for the first time, pleaseDemand.3.Reload Serv the let.Loaded Servlet, Web servers to create a servlet instance, and Servlet's init () method is called. Servlet initialization parameters in the initialization phase, The number is passed to the Servlet configuration object.(2) terminateWhen the Web server no longer needs the servlet, or reload Servlet A new instance of the server calls Serv the let's destroy () method, remove it from the Memory deleted.3 How to call ServletMethod of Ser vlet is called Total five kinds: call in the URL in the formT ag call, call, in HT the ML page in the JSP files Call, call in an ASP file. The following itemized to be introduced.(1) call the servlet in the URL.Simply input format in the browser as http: ∥yo ur webser ver the same the ser vlet name name / servlet path / servlet the URL to The site canbe. Ofwhich:your webser ver name is to refer to the Servlet where theWeb server name, the servlet path is the path refers to the Servlet, the servletThe name refers to the Servlet real name or an alias.(2) call the Servlet tagsCall of Ser the let the the tag allows users to input data on the Web page, andinput data submitted to the vlet of Ser.Serv the let will be submitted to receive data in different ways.For example: {place the text input area tags, buttons and other logos} (3) in the HTML page to call the servlet.Use mark tags, no need to create a complete HTML page.Instead,the servlet output isonly part of the HTMLpage (HTML fragment) and dynamicallyembedded into the static text in the original HTML page.All this happened on the server andsent to the user only the resulting HTML page. tag contained in the original HTML page.Servlet will be invoked in these two markers and the Ser vlet response will cover these two markersbetween all things and mark itself, for example: 〈SERVLET NAME= “my serv let ”CODE= “my serv let .class”CODEBASE= “u r l”initpar am= “v alue”〉〈PARAM NAME= “parm1”VALU E= “v alue1”〉〈PARAM NAME= “parm2”VALU E= “v alue2”〉〈/SERVLET 〉(4) call the servlet in the JSP files.Call in the JSP file format used by the Servlet and HTML page to call exactly the same.Andthe principles are identical. Only reconcile its dynamic JSP file is not a static HTML page.(5) in an ASP file calls the servlet.If you Micr oso ft I nt ernet Informatio n-Ser ver (II S) on the legacy of the ASP file, and can not be ASP files transplanted into a JSP file, you can use the ASP file to of Ser vlet iscalled.But it must be through a special ActiveX control, an ASP file is only through it can callthe servlet.4 Servlet Howto use ConnectionManager toefficiently manage the database connection (1) the functionality of the Connection Manager.For non-Web applications, Web-based application access tothe database will lead tohigher and unpredictable overhead, which is due to more frequent Web users connect anddisconnect.Normally connected to the resourcesused and disconnect from the databasewill farexceed the resources used in the retrieval.Connection Manager function is to minimize the additional occupancy of the users of the database resources to achieve thebest performance of database access.Connection Manager sharing overhead through the establishmentof the connection poolwill connect users Servlet available to multipleusers request.In other words, each userrequest only the connect/ disconnect with a small portion of the overhead costs.Initialresources to establish the connection of the buffer pool, the rest of the connect/ disconnectoverhead is not big, because this isonly reuse the existing connection.Serv the let in the following manner using the connectionpool: When a user throughRequest Web Serv the let the let Serv use an existing connection from the buffer poolNext, this means that the user requests do not cause the connection to the databasesystem overhead. InAfter the termination of serv the let it connect to return to the pool forits Connection ManagerThe Ser vlet. Thus, the user request does not cause the database is disconnectedOf system overhead.Connection Manager also allows users to be able tocontrol the concurrency of thedatabase products evenThen the number. When the database license agreement limit the number ofusers, this feature isVery useful. Create a buffer pool for the database, and connection managementBuffering pool "maximum number of connections" parameter setto the database product license limitGiven maximum number of users. If you use otherprograms without Connection ManagerconnectionsDatabase, you can not guarantee that the method is effective.(2) the structure of the Connection Manager.(3) Connection Manager connection pool to maintain a connection to a specificdatabase is open. Step 1: When the first Serv the let trying to Connection Manager communications is loaded by the Java Application ServerConnection Manager. As long as the Java application server running the Connection Manager has been loaded. Step 2: The Java application server passes the request to a servlet. Step 3: Servlet Connection Managerrequests a connection from the pool. Step four: the buffer pool to Ser vlet allocated a pool of existing idle connection. Step 5: servlet to use toconnect a direct dialogue with the database, this process is the standard API for a particular database. Step 6: the database through Ser vlet the connection returns data. Step 7: When theServlet end to communicate with the database, servlet connections returned to the connection manager pool for other servlet uses. Step 8: Servlet Jav a application server to the user sends back response.Servlet requests a connection, if the buffer pool, there is no idle connection, then the connection manager directlycommunicate with the database. Connection Manager will: Step 9: to the database requests a new connection. Step 10: Add connections to thebuffer pool. If the buffer pool is connected to the prescribed ceiling, connect to the serverWill not be a new connection to join the buffer pool(3) the performance characteristics of the Connection Manager.Buffer pool to create a new connection is a high overhead tasks, newconnections will use the resources on the database. Therefore, theConnection Manager the best use of existing connections of the buffer pool to meet the request of the Servlet. Meanwhile, the connecting tubeThe processor must be as much as possible to minimize the buffer pool idle connections, because this is a great waste of systemresources. Connection Manager Serv the let with the implementation of these minimize and maximize task. Connection Manager to maintain each connection verification time stamp, and recently used tags and use the logo. When the a Ser vlet first the connection, connection verification time stamp, and most recent time stamp is set to the current time, theconnection is being used flag is set to true.Connection Manager can be removed from a Serv the let a long-unused connections, this length of time specified by the Connection Manager, the longest cycleparameters.Connection Manager can view recently used mark is beingused to connect. If the time between the most recently used time and time difference is greater than the longest cycle configuration parameters, the connection will be considered to be a residual connection, which indicates Serv the let take its discontinued or no response. Residual connection will be returned to the pool for other Ser vlet, it is being used flag is set to false, authentication and time stamp is set to the current time.If Ser vlet is ready within a longer period of time to use the connection with the database several timesCommunications, you must code to the Serv the let, so that each time you use to connectConfirm that it still occupies this connection.Connection Manager can be removed from the buffer pool idle connections, because theyWould be a waste of resources. In order to determine which connection is idle, Connection Manager will checkInvestigation connected the sign and time stamp, this operation isconnected by periodic access toBuffer pool information. Connection Manager checks have not been any Ser vlet makeWith the connections (these connections is to use the logo is false). If you have recently usedBetween time and the current time difference exceeds amaximum idle time configuration parameters, theThat the connection is idle. Idle connection will be removed from the buffer pool, down toMinimum number of connections configuration parameter specifies thelower limit value.翻译:随着Inter net 的普及应用, 各种Web 信息系统的建立已成为一个迫在眉睫的问题。

javaweb英文参考文献

javaweb英文参考文献

javaweb英文参考文献以下是关于JavaWeb的英文参考文献的相关参考内容:1. Deepak Vohra. Pro XML Development with Java Technology. Apress, 2006.This book provides a comprehensive guide to XML development with Java technology. It covers topics such as XML basics, XML parsing using Java, XML validation, DOM and SAX APIs, XSLT transformation, XML schema, and SOAP-based web services. The book also includes numerous code examples and case studies to illustrate the concepts.2. Robert J. Brunner. JavaServer Faces: Introduction by Example. Prentice Hall, 2004.This book introduces the JavaServer Faces (JSF) framework, which is a part of the Java EE platform for building web applications. It provides a step-by-step guide to building JSF applications using various components and features such as user interface components, data validation, navigation handling, and backing beans. The book also covers advanced topics such as internationalization and security.3. Brett McLaughlin. Head First Servlets and JSP: Passing the Sun Certified Web Component Developer Exam. O'Reilly Media, 2008. This book is a comprehensive guide to the development of Java web applications using Servlets and JavaServer Pages (JSP). It covers topics such as HTTP protocol, Servlet lifecycle, request andresponse handling, session management, JSP syntax and directives, JSTL and EL expressions, deployment descriptors, and web application security. The book also includes mock exam questions to help readers prepare for the Sun Certified Web Component Developer exam.4. Hans Bergsten. JavaServer Pages, 3rd Edition. O'Reilly Media, 2011.This book provides an in-depth guide to JavaServer Pages (JSP) technology, which is used for creating dynamic web content. It covers topics such as JSP syntax, scriptlets and expressions, JSP standard actions, JSP custom tag libraries, error handling, JSP with databases, JSP and XML, and internationalization. The book also includes examples and best practices for using JSP effectively.5. Marty Hall, Larry Brown. Core Servlets and JavaServer Pages, 2nd Edition. Prentice Hall, 2003.This book is a comprehensive guide to building Java web applications using Servlets and JavaServer Pages (JSP). It covers topics such as Servlet API, HTTP protocol, session management, request and response handling, JSP syntax and directives, JSP custom tag libraries, database connectivity, and security. The book also includes numerous code examples and case studies to demonstrate the concepts.6. Michael Ernest. Java Web Services in a Nutshell. O'Reilly Media, 2003.This book provides a comprehensive reference to Java-based web services technology. It covers topics such as SOAP, WSDL, UDDI, and XML-RPC protocols, as well as Java API for XML-based web services (JAX-WS) and Java API for RESTful web services (JAX-RS). The book also includes examples and best practices for developing and deploying web services using Java technology. Please note that the above references are just a selection of some of the available books on the topic of JavaWeb. There are numerous other resources available that can provide more detailed information on specific aspects of JavaWeb development.。

计算机java外文翻译外文文献英文文献

计算机java外文翻译外文文献英文文献

英文原文:Title: Business Applications of Java. Author: Erbschloe, Michael, Business Applications of Java -- Research Starters Business, 2008DataBase: Research Starters - BusinessBusiness Applications of JavaThis article examines the growing use of Java technology in business applications. The history of Java is briefly reviewed along with the impact of open standards on the growth of the World Wide Web. Key components and concepts of the Java programming language are explained including the Java Virtual Machine. Examples of how Java is being used bye-commerce leaders is provided along with an explanation of how Java is used to develop data warehousing, data mining, and industrial automation applications. The concept of metadata modeling and the use of Extendable Markup Language (XML) are also explained.Keywords Application Programming Interfaces (API's); Enterprise JavaBeans (EJB); Extendable Markup Language (XML); HyperText Markup Language (HTML); HyperText Transfer Protocol (HTTP); Java Authentication and Authorization Service (JAAS); Java Cryptography Architecture (JCA); Java Cryptography Extension (JCE); Java Programming Language; Java Virtual Machine (JVM); Java2 Platform, Enterprise Edition (J2EE); Metadata Business Information Systems > Business Applications of JavaOverviewOpen standards have driven the e-business revolution. Networking protocol standards, such as Transmission Control Protocol/Internet Protocol (TCP/IP), HyperText Transfer Protocol (HTTP), and the HyperText Markup Language (HTML) Web standards have enabled universal communication via the Internet and the World Wide Web. As e-business continues to develop, various computing technologies help to drive its evolution.The Java programming language and platform have emerged as major technologies for performing e-business functions. Java programming standards have enabled portability of applications and the reuse of application components across computing platforms. Sun Microsystems' Java Community Process continues to be a strong base for the growth of the Java infrastructure and language standards. This growth of open standards creates new opportunities for designers and developers of applications and services (Smith, 2001).Creation of Java TechnologyJava technology was created as a computer programming tool in a small, secret effort called "the Green Project" at Sun Microsystems in 1991. The Green Team, fully staffed at 13 people and led by James Gosling, locked themselves away in an anonymous office on Sand Hill Road in Menlo Park, cut off from all regular communications with Sun, and worked around the clock for18 months. Their initial conclusion was that at least one significant trend would be the convergence of digitally controlled consumer devices and computers. A device-independent programming language code-named "Oak" was the result.To demonstrate how this new language could power the future of digital devices, the Green Team developed an interactive, handheld home-entertainment device controller targeted at the digital cable television industry. But the idea was too far ahead of its time, and the digital cable television industry wasn't ready for the leap forward that Java technology offered them. As it turns out, the Internet was ready for Java technology, and just in time for its initial public introduction in 1995, the team was able to announce that the Netscape Navigator Internet browser would incorporate Java technology ("Learn about Java," 2007).Applications of JavaJava uses many familiar programming concepts and constructs and allows portability by providing a common interface through an external Java Virtual Machine (JVM). A virtual machine is a self-contained operating environment, created by a software layer that behaves as if it were a separate computer. Benefits of creating virtual machines include better exploitation of powerful computing resources and isolation of applications to prevent cross-corruption and improve security (Matlis, 2006).The JVM allows computing devices with limited processors or memory to handle more advanced applications by calling up software instructions inside the JVM to perform most of the work. This also reduces the size and complexity of Java applications because many of the core functions and processing instructions were built into the JVM. As a result, software developersno longer need to re-create the same application for every operating system. Java also provides security by instructing the application to interact with the virtual machine, which served as a barrier between applications and the core system, effectively protecting systems from malicious code.Among other things, Java is tailor-made for the growing Internet because it makes it easy to develop new, dynamic applications that could make the most of the Internet's power and capabilities. Java is now an open standard, meaning that no single entity controls its development and the tools for writing programs in the language are available to everyone. The power of open standards like Java is the ability to break down barriers and speed up progress.Today, you can find Java technology in networks and devices that range from the Internet and scientific supercomputers to laptops and cell phones, from Wall Street market simulators to home game players and credit cards. There are over 3 million Java developers and now there are several versions of the code. Most large corporations have in-house Java developers. In addition, the majority of key software vendors use Java in their commercial applications (Lazaridis, 2003).ApplicationsJava on the World Wide WebJava has found a place on some of the most popular websites in the world and the uses of Java continues to grow. Java applications not only provide unique user interfaces, they also help to power the backend of websites. Two e-commerce giants that everybody is probably familiar with (eBay and Amazon) have been Java pioneers on the World Wide Web.eBayFounded in 1995, eBay enables e-commerce on a local, national and international basis with an array of Web sites-including the eBay marketplaces, PayPal, Skype, and -that bring together millions of buyers and sellers every day. You can find it on eBay, even if you didn't know it existed. On a typical day, more than 100 million items are listed on eBay in tens of thousands of categories. Recent listings have included a tunnel boring machine from the Chunnel project, a cup of water that once belonged to Elvis, and the Volkswagen that Pope Benedict XVI owned before he moved up to the Popemobile. More than one hundred million items are available at any given time, from the massive to the miniature, the magical to the mundane, on eBay; the world's largest online marketplace.eBay uses Java almost everywhere. To address some security issues, eBay chose Sun Microsystems' Java System Identity Manager as the platform for revamping its identity management system. The task at hand was to provide identity management for more than 12,000 eBay employees and contractors.Now more than a thousand eBay software developers work daily with Java applications. Java's inherent portability allows eBay to move to new hardware to take advantage of new technology, packaging, or pricing, without having to rewrite Java code ("eBay drives explosive growth," 2007).Amazon (a large seller of books, CDs, and other products) has created a Web Service application that enables users to browse their product catalog and place orders. uses a Java application that searches the Amazon catalog for books whose subject matches a user-selected topic. The application displays ten books that match the chosen topic, and shows the author name, book title, list price, Amazon discount price, and the cover icon. The user may optionally view one review per displayed title and make a buying decision (Stearns & Garishakurthi, 2003).Java in Data Warehousing & MiningAlthough many companies currently benefit from data warehousing to support corporate decision making, new business intelligence approaches continue to emerge that can be powered by Java technology. Applications such as data warehousing, data mining, Enterprise Information Portals (EIP's), and Knowledge Management Systems (which can all comprise a businessintelligence application) are able to provide insight into customer retention, purchasing patterns, and even future buying behavior.These applications can not only tell what has happened but why and what may happen given certain business conditions; allowing for "what if" scenarios to be explored. As a result of this information growth, people at all levels inside the enterprise, as well as suppliers, customers, and others in the value chain, are clamoring for subsets of the vast stores of information such as billing, shipping, and inventory information, to help them make business decisions. While collecting and storing vast amounts of data is one thing, utilizing and deploying that data throughout the organization is another.The technical challenges inherent in integrating disparate data formats, platforms, and applications are significant. However, emerging standards such as the Application Programming Interfaces (API's) that comprise the Java platform, as well as Extendable Markup Language (XML) technologies can facilitate the interchange of data and the development of next generation data warehousing and business intelligence applications. While Java technology has been used extensively for client side access and to presentation layer challenges, it is rapidly emerging as a significant tool for developing scaleable server side programs. The Java2 Platform, Enterprise Edition (J2EE) provides the object, transaction, and security support for building such systems.Metadata IssuesOne of the key issues that business intelligence developers must solve is that of incompatible metadata formats. Metadata can be defined as information about data or simply "data about data." In practice, metadata is what most tools, databases, applications, and other information processes use to define, relate, and manipulate data objects within their own environments. It defines the structure and meaning of data objects managed by an application so that the application knows how to process requests or jobs involving those data objects. Developers can use this schema to create views for users. Also, users can browse the schema to better understand the structure and function of the database tables before launching a query.To address the metadata issue, a group of companies (including Unisys, Oracle, IBM, SAS Institute, Hyperion, Inline Software and Sun) have joined to develop the Java Metadata Interface (JMI) API. The JMI API permits the access and manipulation of metadata in Java with standard metadata services. JMI is based on the Meta Object Facility (MOF) specification from the Object Management Group (OMG). The MOF provides a model and a set of interfaces for the creation, storage, access, and interchange of metadata and metamodels (higher-level abstractions of metadata). Metamodel and metadata interchange is done via XML and uses the XML Metadata Interchange (XMI) specification, also from the OMG. JMI leverages Java technology to create an end-to-end data warehousing and business intelligence solutions framework.Enterprise JavaBeansA key tool provided by J2EE is Enterprise JavaBeans (EJB), an architecture for the development of component-based distributed business applications. Applications written using the EJB architecture are scalable, transactional, secure, and multi-user aware. These applications may be written once and then deployed on any server platform that supports J2EE. The EJB architecture makes it easy for developers to write components, since they do not need to understand or deal with complex, system-level details such as thread management, resource pooling, and transaction and security management. This allows for role-based development where component assemblers, platform providers and application assemblers can focus on their area of responsibility further simplifying application development.EJB's in the Travel IndustryA case study from the travel industry helps to illustrate how such applications could function. A travel company amasses a great deal of information about its operations in various applications distributed throughout multiple departments. Flight, hotel, and automobile reservation information is located in a database being accessed by travel agents worldwide. Another application contains information that must be updated with credit and billing historyfrom a financial services company. Data is periodically extracted from the travel reservation system databases to spreadsheets for use in future sales and marketing analysis.Utilizing J2EE, the company could consolidate application development within an EJB container, which can run on a variety of hardware and software platforms allowing existing databases and applications to coexist with newly developed ones. EJBs can be developed to model various data sets important to the travel reservation business including information about customer, hotel, car rental agency, and other attributes.Data Storage & AccessData stored in existing applications can be accessed with specialized connectors. Integration and interoperability of these data sources is further enabled by the metadata repository that contains metamodels of the data contained in the sources, which then can be accessed and interchanged uniformly via the JMI API. These metamodels capture the essential structure and semantics of business components, allowing them to be accessed and queried via the JMI API or to be interchanged via XML. Through all of these processes, the J2EE infrastructure ensures the security and integrity of the data through transaction management and propagation and the underlying security architecture.To consolidate historical information for analysis of sales and marketing trends, a data warehouse is often the best solution. In this example, data can be extracted from the operational systems with a variety of Extract, Transform and Load tools (ETL). The metamodels allow EJBsdesigned for filtering, transformation, and consolidation of data to operate uniformly on datafrom diverse data sources as the bean is able to query the metamodel to identify and extract the pertinent fields. Queries and reports can be run against the data warehouse that contains information from numerous sources in a consistent, enterprise-wide fashion through the use of the JMI API (Mosher & Oh, 2007).Java in Industrial SettingsMany people know Java only as a tool on the World Wide Web that enables sites to perform some of their fancier functions such as interactivity and animation. However, the actual uses for Java are much more widespread. Since Java is an object-oriented language like C++, the time needed for application development is minimal. Java also encourages good software engineering practices with clear separation of interfaces and implementations as well as easy exception handling.In addition, Java's automatic memory management and lack of pointers remove some leading causes of programming errors. Most importantly, application developers do not need to create different versions of the software for different platforms. The advantages available through Java have even found their way into hardware. The emerging new Java devices are streamlined systems that exploit network servers for much of their processing power, storage, content, and administration.Benefits of JavaThe benefits of Java translate across many industries, and some are specific to the control and automation environment. For example, many plant-floor applications use relatively simple equipment; upgrading to PCs would be expensive and undesirable. Java's ability to run on any platform enables the organization to make use of the existing equipment while enhancing the application.IntegrationWith few exceptions, applications running on the factory floor were never intended to exchange information with systems in the executive office, but managers have recently discovered the need for that type of information. Before Java, that often meant bringing together data from systems written on different platforms in different languages at different times. Integration was usually done on a piecemeal basis, resulting in a system that, once it worked, was unique to the two applications it was tying together. Additional integration required developing a brand new system from scratch, raising the cost of integration.Java makes system integration relatively easy. Foxboro Controls Inc., for example, used Java to make its dynamic-performance-monitor software package Internet-ready. This software provides senior executives with strategic information about a plant's operation. The dynamic performance monitor takes data from instruments throughout the plant and performs variousmathematical and statistical calculations on them, resulting in information (usually financial) that a manager can more readily absorb and use.ScalabilityAnother benefit of Java in the industrial environment is its scalability. In a plant, embedded applications such as automated data collection and machine diagnostics provide critical data regarding production-line readiness or operation efficiency. These data form a critical ingredient for applications that examine the health of a production line or run. Users of these devices can take advantage of the benefits of Java without changing or upgrading hardware. For example, operations and maintenance personnel could carry a handheld, wireless, embedded-Java device anywhere in the plant to monitor production status or problems.Even when internal compatibility is not an issue, companies often face difficulties when suppliers with whom they share information have incompatible systems. This becomes more of a problem as supply-chain management takes on a more critical role which requires manufacturers to interact more with offshore suppliers and clients. The greatest efficiency comes when all systems can communicate with each other and share information seamlessly. Since Java is so ubiquitous, it often solves these problems (Paula, 1997).Dynamic Web Page DevelopmentJava has been used by both large and small organizations for a wide variety of applications beyond consumer oriented websites. Sandia, a multiprogram laboratory of the U.S. Department of Energy's National Nuclear Security Administration, has developed a unique Java application. The lab was tasked with developing an enterprise-wide inventory tracking and equipment maintenance system that provides dynamic Web pages. The developers selected Java Studio Enterprise 7 for the project because of its Application Framework technology and Web Graphical User Interface (GUI) components, which allow the system to be indexed by an expandable catalog. The flexibility, scalability, and portability of Java helped to reduce development timeand costs (Garcia, 2004)IssueJava Security for E-Business ApplicationsTo support the expansion of their computing boundaries, businesses have deployed Web application servers (WAS). A WAS differs from a traditional Web server because it provides a more flexible foundation for dynamic transactions and objects, partly through the exploitation of Java technology. Traditional Web servers remain constrained to servicing standard HTTP requests, returning the contents of static HTML pages and images or the output from executed Common Gateway Interface (CGI ) scripts.An administrator can configure a WAS with policies based on security specifications for Java servlets and manage authentication and authorization with Java Authentication andAuthorization Service (JAAS) modules. An authentication and authorization service can bewritten in Java code or interface to an existing authentication or authorization infrastructure. Fora cryptography-based security infrastructure, the security server may exploit the Java Cryptography Architecture (JCA) and Java Cryptography Extension (JCE). To present the user with a usable interaction with the WAS environment, the Web server can readily employ a formof "single sign-on" to avoid redundant authentication requests. A single sign-on preserves user authentication across multiple HTTP requests so that the user is not prompted many times for authentication data (i.e., user ID and password).Based on the security policies, JAAS can be employed to handle the authentication process with the identity of the Java client. After successful authentication, the WAS securitycollaborator consults with the security server. The WAS environment authentication requirements can be fairly complex. In a given deployment environment, all applications or solutions may not originate from the same vendor. In addition, these applications may be running on different operating systems. Although Java is often the language of choice for portability between platforms, it needs to marry its security features with those of the containing environment.Authentication & AuthorizationAuthentication and authorization are key elements in any secure information handling system. Since the inception of Java technology, much of the authentication and authorization issues have been with respect to downloadable code running in Web browsers. In many ways, this had been the correct set of issues to address, since the client's system needs to be protected from mobile code obtained from arbitrary sites on the Internet. As Java technology moved from a client-centric Web technology to a server-side scripting and integration technology, it required additional authentication and authorization technologies.The kind of proof required for authentication may depend on the security requirements of a particular computing resource or specific enterprise security policies. To provide such flexibility, the JAAS authentication framework is based on the concept of configurable authenticators. This architecture allows system administrators to configure, or plug in, the appropriate authenticatorsto meet the security requirements of the deployed application. The JAAS architecture also allows applications to remain independent from underlying authentication mechanisms. So, as new authenticators become available or as current authentication services are updated, system administrators can easily replace authenticators without having to modify or recompile existing applications.At the end of a successful authentication, a request is associated with a user in the WAS user registry. After a successful authentication, the WAS consults security policies to determine if the user has the required permissions to complete the requested action on the servlet. This policy canbe enforced using the WAS configuration (declarative security) or by the servlet itself (programmatic security), or a combination of both.The WAS environment pulls together many different technologies to service the enterprise. Because of the heterogeneous nature of the client and server entities, Java technology is a good choice for both administrators and developers. However, to service the diverse security needs of these entities and their tasks, many Java security technologies must be used, not only at a primary level between client and server entities, but also at a secondary level, from served objects. By using a synergistic mix of the various Java security technologies, administrators and developers can make not only their Web application servers secure, but their WAS environments secure as well (Koved, 2001).ConclusionOpen standards have driven the e-business revolution. As e-business continues to develop, various computing technologies help to drive its evolution. The Java programming language and platform have emerged as major technologies for performing e-business functions. Java programming standards have enabled portability of applications and the reuse of application components. Java uses many familiar concepts and constructs and allows portability by providing a common interface through an external Java Virtual Machine (JVM). Today, you can find Java technology in networks and devices that range from the Internet and scientific supercomputers to laptops and cell phones, from Wall Street market simulators to home game players and credit cards.Java has found a place on some of the most popular websites in the world. Java applications not only provide unique user interfaces, they also help to power the backend of websites. While Java technology has been used extensively for client side access and in the presentation layer, it is also emerging as a significant tool for developing scaleable server side programs.Since Java is an object-oriented language like C++, the time needed for application development is minimal. Java also encourages good software engineering practices with clear separation of interfaces and implementations as well as easy exception handling. Java's automatic memory management and lack of pointers remove some leading causes of programming errors. The advantages available through Java have also found their way into hardware. The emerging new Java devices are streamlined systems that exploit network servers for much of their processing power, storage, content, and administration.中文翻译:标题:Java的商业应用。

英文文献及中文翻译_ASP.NET概述ASP.NETOverview

英文文献及中文翻译_ASP.NET概述ASP.NETOverview

英文文献及中文翻译 Overview is a unified Web development model that includes the services necessary for you to build enterprise-class Web applications with a minimum of is part of the .NET Framework, and when coding applications you have access to classes in the .NET Framework.You can code your applications in any language compatible with the common language runtime (CLR), including Microsoft Visual Basic and C#. These languages enable you to develop applications that benefit from the common language runtime, type safety, inheritance, and so on.If you want to try , you can install Visual Web Developer Express using the Microsoft Web Platform Installer, which is a free tool that makes it simple to download, install, and service components of the Microsoft Web Platform.These components include Visual Web Developer Express, Internet Information Services (IIS), SQL Server Express, and the .NET Framework. All of these are tools that you use to create Web applications. You can also use the Microsoft Web Platform Installer to install open-source and PHP Web applications.Visual Web DeveloperVisual Web Developer is a full-featured development environment for creating Web applications. Visual Web Developer provides an ideal environment in which to build Web sites and then publish them to a hosting site. Using the development tools in Visual Web Developer, you can develop Web pages on your own computer. Visual Web Developer includes a local Web server that provides all the features you need to test and debug Web pages, without requiring Internet Information Services (IIS) to be installed.Visual Web Developer provides an ideal environment in which to build Web sitesand then publish them to a hosting site. Using the development tools in Visual Web Developer, you can develop Web pages on your own computer. Visual Web Developer includes a local Web server that provides all the features you need to test and debug Web pages, without requiring Internet Information Services (IIS) to be installed.When your site is ready, you can publish it to the host computer using the built-in Copy Web tool, which transfers your files when you are ready to share them with others. Alternatively, you can precompile and deploy a Web site by using the Build Web Site command. The Build Web Sitecommand runs the compiler over the entire Web site (not just the code files) and produces a Web site layout that you can deploy to a production server.Finally, you can take advantage of the built-in support for File Transfer Protocol (FTP).Using the FTP capabilities of Visual Web Developer, you can connect directly to the host computer and then create and edit files on the server. Web Sites and Web Application ProjectsUsing Visual Studio tools, you can create different types of projects, which includes Web sites, Web applications, Web services, and AJAX server controls.There is a difference between Web site projects and Web application projects. Some features work only with Web application projects, such as MVC and certain tools for automating Web deployment. Other features, such as Dynamic Data, work with both Web sites and Web application projects.Page and Controls FrameworkThe page and controls framework is a programming framework that runs on a Web server to dynamically produce and render Web pages. Web pages can be requested from any browser or client device, and renders markup (such as HTML) to the requesting browser. As a rule, you can use the samepage for multiple browsers, because renders the appropriate markup for the browser making the request. However, you can design your Web page to target a specific browser and take advantage of the features of that browser. Web pages are completely object-oriented. Within Web pages you can work with HTML elements using properties, methods, and events. The page framework removes the implementation details of the separation of client and server inherent in Web-based applications by presenting a unified model for responding to client events in code that runs at the server. The framework also automatically maintains the state of a page and the controls on that page during the page processing life cycle.The page and controls framework also enables you to encapsulate common UI functionality in easy-to-use, reusable controls. Controls are written once, can be used in many pages, and are integrated into the Web page that they are placed in during rendering.The page and controls framework also provides features to control the overall look and feel of your Web site via themes and skins. You can define themes and skins and then apply them at a page level or at a control level.In addition to themes, you can define master pages that you use to create a consistent layout for the pages in your application. A single master page defines the layout and standard behavior that you want for all the pages (or a group of pages) in your application. You can then create individual content pages that contain the page-specific content you want to display. When users request the content pages, they merge with the master page to produce output that combines the layout of the master page with the content from the content page. The page framework also enables you to define the pattern for URLs that will be used in your site. This helps with search engine optimization (SEO) and makes URLs more user-friendly.The page and control framework is designed to generate HTML thatconforms to accessibility guidelines. CompilerAll code is compiled, which enables strong typing, performance optimizations, and early binding, among other benefits. Once the code has been compiled, the common language runtime further compiles code to native code, providing improved performance. includes a compiler that will compile all your application components including pages and controls into an assembly that the hosting environment can then use to service user requests.Security InfrastructureIn addition to the security features of .NET, provides an advanced security infrastructure for authenticating and authorizing user access as well as performing other security-related tasks. You can authenticate users using Windows authentication supplied by IIS, or you can manage authentication using your own user database using forms authentication and membership. Additionally, you can manage the authorization to the capabilities and information of your Web application using Windows groups or your own custom role database using roles. You can easily remove, add to, or replace these schemes depending upon the needs of your application. always runs with a particular Windows identity so you can secure your application using Windows capabilities such as NTFS Access Control Lists (ACLs),database permissions, and so on.State-Management Facilities provides intrinsic state management functionality that enables you to store information between page requests, such as customer information or the contents of a shopping cart. You can save and manage application-specific, session-specific, page-specific, user-specific, and developer-defined information. This information can beindependent of any controls on the page. offers distributed state facilities, which enable you to manage state information across multiple instances of the same application on one computer or on several computers. 概述是一个统一的Web开发模型,它包括您使用尽可能少的代码生成企业级Web应用程序所必需的各种服务。

javaweb英文参考文献

javaweb英文参考文献

javaweb英文参考文献Title: The Evolution of Java Web Development: A Comprehensive Review of Related LiteratureAbstract:This literature review aims to provide a comprehensive analysis of the evolution of Java web development. The review covers the various aspects of Java web development, including its history, core technologies, frameworks, and tools. The analysis draws upon a wide range of scholarly articles and research papers to provide an in-depth understanding of the subject matter.1. IntroductionJava is a widely used programming language that has played a significant role in web development since its inception. This section provides an overview of the importance of Java in web development and highlights the need for a comprehensive review of the subject.2. History of Java Web DevelopmentThis section delves into the history of Java web development, starting from the introduction of Java applets in the mid-1990s to the development of modern web applications using Java Enterprise Edition (Java EE). It explores the evolution of Java Servlets, JavaServer Pages (JSP), and JavaServer Faces (JSF) technologies, highlighting their contributions to web development.3. Core Technologies in Java Web DevelopmentThis section presents an overview of the core technologies involved in Java web development, such as Servlets, JSP,JavaServer Faces (JSF), Java Database Connectivity (JDBC), and Java Persistence API (JPA). The section examines their features, functionalities, and usage scenarios, emphasizing their role in building dynamic and interactive web applications.4. Java Web FrameworksThis section explores the evolution of various Java web frameworks, such as Spring MVC, Struts, JSF, and Play Framework. It analyzes the features and benefits of each framework, providing insights into their strengths and weaknesses. The section also discusses the emergence of lightweight frameworks like Spring Boot and Micronaut, which simplify web application development using Java.5. Java Web Development ToolsThis section presents a comprehensive overview of popular Java web development tools, including Integrated Development Environments (IDEs) like Eclipse and IntelliJ IDEA, build tools like Apache Maven and Gradle, and version control systems like Git. The review assesses the functionalities and usability of these tools, showcasing their importance in streamlining the web development process.6. Challenges and Solutions in Java Web DevelopmentThis section discusses the challenges faced in Java web development, including performance issues, scalability, security, and cross-platform compatibility. It explores the solutions proposed by developers and researchers, such as caching mechanisms, load balancing techniques, secure coding practices, and containerization using Docker.7. ConclusionThis literature review provides a comprehensive analysis of the evolution of Java web development. It covers the history of Java web development, core technologies, frameworks, tools, and challenges faced by developers. The review highlights the significance of Java in web development and serves as a valuable resource for researchers, developers, and practitioners in the field.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

An Overview of Servlet and JSP TechnologyNagle ,WiegleyAbstract: Servlet program running in the server-side, dynamically generated Web page with the traditional CGI and many other similar compared to CGI technology, Java Servlet with a more efficient, easier to use, more powerful and has better portability, more savings to invest. .Keywords: JSP Technology;Servlet;HTTP server1. A Servlet's JobServlets are Java programs that run on Web or application servers, acting as a middle layer between requests coming from Web browsers or other HTTP clients and databases or applications on the HTTP server. Their job is to perform the following tasks, as illustrated in Figure 1-1.Figure 1-1Web middleware role1.1 Read the explicit data sent by the client.The end user normally enters this data in an HTML form on a Web page. However, the data could also come from an applet or a custom HTTP client program.1.2 Read the implicit HTTP request data sent by the browser.Figure 1-1 shows a single arrow going from the client to the Web server (the layer where servlets and JSP execute), but there are really two varieties of data: the explicit data that the end user enters in a form and the behind-the-scenes HTTP information. Both varieties are critical. The HTTP information includes cookies, information about media types and compression schemes the browser understands, and so on.1.3 Generate the results.This process may require talking to a database, executing an RMI or EJB call, invoking a Web service, or computing the response directly. Your real data may be in a relational database. Fine. But your database probably doesn't speak HTTP or return results in HTML, so the Web browser can't talk directly to the database. Even if it could, for security reasons, you probably would not want it to. The same argument applies to most other applications.You need the Web middle layer to extract the results inside a document.1.4 Send the explicit data (i.e., the document) to the client.This document can be sent in a variety of formats, including text (HTML or XML), binary (GIF images), or even a compressed format like gzip that is layered on top of some other underlying format. But, HTML is by far the most common format, so an important servlet/JSP task is to wrap the results inside of HTML.1.5 Send the implicit HTTP response data.Figure 1-1 shows a single arrow going from the Web middle layer (the servlet or JSP page) to the client. But, there are really two varieties of data sent: the document itself and the behind-the-scenes HTTP information. Again, both varieties are critical to effective development. Sending HTTP response data involves telling the browser or other client what type of document is being returned (e.g., HTML), setting cookies and caching parameters, and other such tasks.2 Why Build Web Pages Dynamically?many client requests can be satisfied by prebuilt documents, and the server would handle these requests without invoking servlets. In many cases, however, a static result is not sufficient, and a page needs to be generated for each request. There are a number of reasons why Web pages need to be built on-the-fly:2.1 The Web page is based on data sent by the client.For instance, the results page from search engines and order-confirmation pages at online stores are specific to particular user requests. You don't know what to display until you read the data that the user submits. Just remember that the user submits two kinds of data: explicit (i.e., HTML form data) and implicit (i.e., HTTP request headers). Either kind of input can be used to build the output page. In particular, it is quite common to build a user-specific page based on a cookie value.2.2 The Web page is derived from data that changes frequently.If the page changes for every request, then you certainly need to build the response at request time. If it changes only periodically, however, you could do it two ways: you could periodically build a new Web page on the server (independently of client requests), or you could wait and only build the page when the user requests it. The right approach depends on the situation, but sometimes it is more convenient to do the latter: wait for the user request. For example, a weather report or news headlines site might build the pages dynamically, perhaps returning a previously built page if that page is still up to date.2.3 The Web page uses information from corporate databases or other server-side sources.If the information is in a database, you need server-side processing even if the client is using dynamic Web content such as an applet. Imagine using an applet by itself for a search engine site:"Downloading 50 terabyte applet, please wait!" Obviously, that is silly; you need to talk to the database. Going from the client to the Web tier to the database (a three-tier approach) instead of from an applet directly to a database (a two-tier approach) provides increased flexibility and security with little or no performance penalty. After all, the database call is usually the rate-limiting step, so going through the Web server does not slow things down. In fact, a three-tier approach is often faster because the middle tier can perform caching and connection pooling.In principle, servlets are not restricted to Web or application servers that handle HTTP requests but can be used for other types of servers as well. For example, servlets could be embedded in FTP or mail servers to extend their functionality. And, a servlet API for SIP (Session Initiation Protocol) servers was recently standardized (see /en/jsr/detail?id=116). In practice, however, this use of servlets has not caught on, and we'll only be discussing HTTP servlets.3 The Advantages of Servlets Over "Traditional" CGIJava servlets are more efficient, easier to use, more powerful, more portable, safer, and cheaper than traditional CGI and many alternative CGI-like technologies. 3.1 EfficientWith traditional CGI, a new process is started for each HTTP request. If the CGI program itself is relatively short, the overhead of starting the process can dominate the execution time. With servlets, the Java virtual machine stays running and handles each request with a lightweight Java thread, not a heavyweight operating system process. Similarly, in traditional CGI, if there are N requests to the same CGI program, the code for the CGI program is loaded into memory N times. With servlets, however, there would be N threads, but only a single copy of the servlet class would be loaded. This approach reduces server memory requirements and saves time by instantiating fewer objects. Finally, when a CGI program finishes handling a request, the program terminates. This approach makes it difficult to cache computations, keep database connections open, and perform other optimizations that rely on persistent data. Servlets, however, remain in memory even after they complete a response, so it is straightforward to store arbitrarily complex data between client requests.3.2 ConvenientServlets have an extensive infrastructure for automatically parsing and decoding HTML form data, reading and setting HTTP headers, handling cookies, tracking sessions, and many other such high-level utilities. In CGI, you have to do much of this yourself. Besides, if you already know the Java programming language, why learn Perl too? You're already convinced that Java technology makes for more reliable and reusable code than does Visual Basic, VBScript, or C++. Why go back to those languages for server-side programming?3.3 PowerfulServlets support several capabilities that are difficult or impossible to accomplishwith regular CGI. Servlets can talk directly to the Web server, whereas regular CGI programs cannot, at least not without using a server-specific API. Communicating with the Web server makes it easier to translate relative URLs into concrete path names, for instance. Multiple servlets can also share data, making it easy to implement database connection pooling and similar resource-sharing optimizations. Servlets can also maintain information from request to request, simplifying techniques like session tracking and caching of previous computations.3.4 PortableServlets are written in the Java programming language and follow a standard API. Servlets are supported directly or by a plugin on virtually every major Web server. Consequently, servlets written for, say, Macromedia JRun can run virtually unchanged on Apache Tomcat, Microsoft Internet Information Server (with a separate plugin), IBM WebSphere, iPlanet Enterprise Server, Oracle9i AS, or StarNine WebStar. They are part of the Java 2 Platform, Enterprise Edition (J2EE; see /j2ee/), so industry support for servlets is becoming even more pervasive.3.5 InexpensiveA number of free or very inexpensive Web servers are good for development use or deployment of low- or medium-volume Web sites. Thus, with servlets and JSP you can start with a free or inexpensive server and migrate to more expensive servers with high-performance capabilities or advanced administration utilities only after your project meets initial success. This is in contrast to many of the other CGI alternatives, which require a significant initial investment for the purchase of a proprietary package.Price and portability are somewhat connected. For example, Marty tries to keep track of the countries of readers that send him questions by email. India was near the top of the list, probably behind the U.S. Marty also taught one of his JSP and servlet training courses (see /) in Manila, and there was great interest in servlet and JSP technology there.Now, why are India and the Philippines both so interested? We surmise that the answer is twofold. First, both countries have large pools of well-educated software developers. Second, both countries have (or had, at that time) highly unfavorable currency exchange rates against the U.S. dollar. So, buying a special-purpose Web server from a U.S. company consumed a large part of early project funds.But, with servlets and JSP, they could start with a free server: Apache Tomcat (either standalone, embedded in the regular Apache Web server, or embedded in Microsoft IIS). Once the project starts to become successful, they could move to a server like Caucho Resin that had higher performance and easier administration but that is not free. But none of their servlets or JSP pages have to be rewritten. If their project becomes even larger, they might want to move to a distributed (clustered) environment. No problem: they could move to Macromedia JRun Professional, whichsupports distributed applications (Web farms). Again, none of their servlets or JSP pages have to be rewritten. If the project becomes quite large and complex, they might want to use Enterprise JavaBeans (EJB) to encapsulate their business logic. So, they might switch to BEA WebLogic or Oracle9i AS. Again, none of their servlets or JSP pages have to be rewritten. Finally, if their project becomes even bigger, they might move it off of their Linux box and onto an IBM mainframe running IBM WebSphere. But once again, none of their servlets or JSP pages have to be rewritten.3.6 SecureOne of the main sources of vulnerabilities in traditional CGI stems from the fact that the programs are often executed by general-purpose operating system shells. So, the CGI programmer must be careful to filter out characters such as backquotes and semicolons that are treated specially by the shell. Implementing this precaution is harder than one might think, and weaknesses stemming from this problem are constantly being uncovered in widely used CGI libraries.A second source of problems is the fact that some CGI programs are processed by languages that do not automatically check array or string bounds. For example, in C and C++ it is perfectly legal to allocate a 100-element array and then write into the 999th "element," which is really some random part of program memory. So, programmers who forget to perform this check open up their system to deliberate or accidental buffer overflow attacks.Servlets suffer from neither of these problems. Even if a servlet executes a system call (e.g., with Runtime.exec or JNI) to invoke a program on the local operating system, it does not use a shell to do so. And, of course, array bounds checking and other memory protection features are a central part of the Java programming language.3.7 MainstreamThere are a lot of good technologies out there. But if vendors don't support them and developers don't know how to use them, what good are they? Servlet and JSP technology is supported by servers from Apache, Oracle, IBM, Sybase, BEA, Macromedia, Caucho, Sun/iPlanet, New Atlanta, ATG, Fujitsu, Lutris, Silverstream, the World Wide Web Consortium (W3C), and many others. Several low-cost plugins add support to Microsoft IIS and Zeus as well. They run on Windows, Unix/Linux, MacOS, VMS, and IBM mainframe operating systems. They are the single most popular application of the Java programming language. They are arguably the most popular choice for developing medium to large Web applications. They are used by the airline industry (most United Airlines and Delta Airlines Web sites), e-commerce (), online banking (First USA Bank, Banco Popular de Puerto Rico), Web search engines/portals (), large financial sites (American Century Investments), and hundreds of other sites that you visit every day.Of course, popularity alone is no proof of good technology. Numerous counter-examples abound. But our point is that you are not experimenting with a newand unproven technology when you work with server-side Java.References:[1]Clifton G.M. Branham, Arthur Jonathan .Servlets and JSP in an undergraduate database course[J].Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications,2003(3):1490-1496.[2]Kirkegaard, Christian.Static analysis for Java servlets and JSP[J].Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),2006(4):336-352.[3]Nakaike,Takuya.JSP Splitting for improving execution performance[J].Proceedings - International Symposium on Applications and the Internet,2004[8]:117-126.[4]Hassan, Doaa .Developing a security typed java servlet[J].Proceedings - The 4th International Symposium on Information Assurance and Security,2008(10):215-220.Servlet和JSP技术简述Nagle ,Wiegley摘要:Servlet程序在服务器端运行,动态地生成Web页面与传统的CGI和许多其他类似CGI的技术相比,Java Servlet具有更高的效率,更容易使用,功能更强大,具有更好的可移植性,更节省投资。

相关文档
最新文档