2015年湖北省黄冈中学高二上学期数学期中试卷和解析(理科)

合集下载

湖北省黄冈中学2014-2015学年高二上学期期中数学模拟试卷

湖北省黄冈中学2014-2015学年高二上学期期中数学模拟试卷

湖北省黄冈中学2014-2015学年高二上学期期中数学模拟试卷一、选择题(本大题共8小题,每小题5分,满分40分).1.(5分)执行如图所示的程序框图,若输入n的值为7,则输出的s的值为()A.22 B.16 C.15 D.112.(5分)某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x﹣y|的值为()A.1B.2C.3D.43.(5分)已知事件A与事件B发生的概率分别为P(A)、P(B),有下列命题:①若A为必然事件,则P(A)=1.②若A与B互斥,则P(A)+P(B)=1.③若A与B互斥,则P(A∪B)=P(A)+P(B).其中真命题有()个.A.0B.1C.2D.34.(5分)设m,n是整数,则“m,n均为偶数”是“m+n是偶数”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件5.(5分)给出如下四个命题:①若“p且q”为假命题,则p、q均为假命题;②若等差数列{a n}的前n项和为S n,则三点(10,),(100,),(110,)共线;③“∀x∈R,x2+1≥1”的否定是“∃x∈R,x2+1≤1”;④在△ABC中,“A>B”是“sinA>sinB”的充要条件.其中正确的命题的个数是()A.4B.3C.2D.16.(5分)椭圆的焦距等于()A.20 B.16 C.12 D.87.(5分)已知椭圆:+=1(0<b<3),左右焦点分别为F1,F2,过F1的直线交椭圆于A,B 两点,若||+||的最大值为8,则b的值是()A.B.C.D.8.(5分)一只小蜜蜂在一个棱长为30的正方体玻璃容器内随机飞行,若蜜蜂在飞行过程中与正方体玻璃容器6个表面中至少有一个的距离不大于10,则就有可能撞到玻璃上而不安全;若始终保持与正方体玻璃容器6个表面的距离均大于10,则飞行是安全的,假设蜜蜂在正方体玻璃容器内飞行到每一位置可能性相同,那么蜜蜂飞行是安全的概率是()A.B.C.D.二、填空题(本大题共6小题,每小题5分,满分30分)9.(5分)用秦九韶算法求多项式f(x)=12+35x﹣8x2+79x3+6x4+5x5+3x6在x=﹣4的值时,V4的值为.10.(5分)如表是某小卖部一周卖出热茶的杯数与当天气温的对比表:若热茶杯数与气温近似地满足线性关系,则其关系式是.气温/℃18 13 10 4 ﹣1杯数24 34 39 51 6311.(5分)命题p:∀x∈R,2x2+1>0的否定是.12.(5分)命题“∃x∈R,2x2﹣3ax+9<0”为假命题,则实数a的取值范围为.13.(5分)过点P(0,1)的直线与曲线|x|﹣1=相交于两点A,B,则线段AB长度的取值范围是.14.(5分)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过点F1的直线交椭圆E 于A、B两点,若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为.三、解答题(本大题共6小题,满分80分.解答应写出文字说明.证明过程或演算步骤)15.(12分)某市为了了解市民对卫生管理的满意程度,通过问卷调查了学生、在职人员、退休人员共250人,结果如下表:学生在职人员退休人员满意x y 78不满意 5 z 12若在所调查人员中随机抽取1人,恰好抽到学生的概率为0.32.(Ⅰ)求x的值;(Ⅱ)现用分层抽样的方法在所调查的人员中抽取25人,则在职人员应抽取多少人?(Ⅲ)若y≥70,z≥2,求市民对市政管理满意度不小于0.9的概率.(注:满意度=)16.(12分)设集合P={1,2,3}和Q={﹣1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b组成数对(a,b),并构成函数f(x)=ax2﹣4bx+1(Ⅰ)写出所有可能的数对(a,b),并计算a≥2,且b≤3的概率;(Ⅱ)求函数f(x)在区间O,4nn﹣1n﹣210﹣2,2﹣2,22,42,42,4.1,+∞)上是增函数的概率.考点:几何概型.分析:(1)列举出所有的可能的数对,由分步计数原理知共有15个,看清要求满足的条件,写出所有的数对,要做到不重不漏.(2)设事件“f(x)=ax2﹣4bx+1在区间1,+∞)上为增函数”为B,因函数f(x)=ax2﹣4bx+1的图象的对称轴为x=且a>0,所以要使事件B发生,只需即2b≤a.由满足题意的数对有(1,﹣1)、(2,﹣1)、(2,1)、(3,﹣1)、(3,1),共5个,∴P(B)==.点评:本题主要考查列举,古典概型要求能够列举出所有事件和发生事件的个数,本题可以列举出所有事件,概率问题同其他的知识点结合在一起,实际上是以概率问题为载体,主要考查的是另一个知识点.17.(14分)某市中学生田径运动会总分获得冠、亚、季军的代表队人数情况如下表.大会组委会为使颁奖仪式有序进行,气氛活跃,在颁奖过程中穿插拙奖活动,并用分层抽样的方法从三个代表队中共抽取16人在前排就坐,其中亚军队有5人.名次性别冠军队亚军队季军队男生30 30 *女生30 20 30(1)求季军队的男运动员人数;(2)从前排就飧的亚军队5人(3男2女)中随机抽収2人上台领奖,请列出所有的基事件,并求亚军队中有女生上台领奖的概率;(3)抽奖活动中,运动员通过操作按键,使电脑看碟动产化.内的两个随机数x,y随后电脑自动运行如下所示的程序框图相应程序.若电脑显示“中奖”,则该运动员获相应奖品,若电脑显示“谢谢”,则不中奖.求该运动员获得奖品的概率.考点:几何概型;古典概型及其概率计算公式;程序框图.专题:计算题.分析:(1)先设季军队的男运动员人数为n,由分层抽样的方法得关于n的等式,即可解得n.(2)记3个男运动员分别为A1,A2,A3,2个女运动员分别为B1,B2,利用列举法写出所有基本事件和亚军队中有女生的情况,最后利用概率公式计算出亚军队中有女生上台领奖的概率;(3)由框图得到,点(x,y)满足条件,其表示的区域是图中阴影部分,利用几何概型的计算公式即可得到该运动员获得奖品的概率.解答:解:(1)设季军队的男运动员人数为n,由题意得,解得n=20.(2)记3个男运动员分别为A1,A2,A3,2个女运动员分别为B1,B2,所有基本事件如下:(A1,A2),(A1,A3),(A2,A3),(A1,B1),(A1,B2),(A2,B1),(A2,B1),(A3,B1),(A3,B1),(B1,B2),共10种,其中亚军队中有女生有7种,故亚军队中有女生上台领奖的概率为.(3)由已知,0≤x≤4,0≤y≤4,点(x,y)在如图所示的正方形内,由条件得到的区域是图中阴影部分,故该运动员获得奖品的概率为:=.点评:本小题主要考查古典概型及其概率计算公式、程序框图、几何概型等基础知识,考查运算求解能力,属于基础题.18.(14分)设命题p:实数x满足x2﹣4ax+3a2<0,其中a>0;命题q:实数x满足x2﹣5x+6≤0 (1)若a=1,且q∧p为真,求实数x的取值范围;(2)若p是q必要不充分条件,求实数a的取值范围.考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:(1)利用一元二次不等式的解法可化简命题p,若p∧q为真,则p真且q真,即可得出;(2)若p是q的必要不充分条件⇔解答:解:(1)p:实数x满足x2﹣4ax+3a2<0,其中a>0⇔(x﹣3a)(x﹣a)<0,∵a>0为,所以a<x<3a;当a=1时,p:1<x<3;命题q:实数x满足x2﹣5x+6≤0⇔2≤x≤3;若p∧q为真,则p真且q真,∴2≤x<3;故x的取值范围是2,3;(2)由m2﹣7am+12a2<0(a>0),得(m﹣3a)(m﹣4a)<0,即3a<m<4a,即p:3a<m<4a,若实数m满足方程+=1表示焦点在y轴上的椭圆,则,即,解得1<m<,即q:1<m<,若非q是非p的充分不必要条件,则p是q的充分不必要条件,即,即,即.点评:本题主要考查充分条件和必要条件的应用,根据条件求出对应的命题是解决本题的关键.20.(14分)设A(x1,y1),B(x2,y2)是椭圆,(a>b>0)上的两点,已知向量=(,),=(,),且,若椭圆的离心率,短轴长为2,O为坐标原点:(Ⅰ)求椭圆的方程;(Ⅱ)若直线AB过椭圆的焦点F(0,c),(c为半焦距),求直线AB的斜率k的值;(Ⅲ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.考点:直线与圆锥曲线的综合问题.专题:计算题;压轴题.分析:(Ⅰ)根据题意可求得b,进而根据离心率求得a和c,则椭圆的方程可得.(Ⅱ)设出直线AB的方程,与椭圆方程联立消去y,表示出x1+x2和x1x2,利用建立方程求得k.(Ⅲ)先看当直线的斜率不存在时,可推断出x1=x2,y1=﹣y2,根据=0求得x1和y1的关系式,代入椭圆的方程求得|x1|和|y1|求得三角形的面积;再看当直线斜率存在时,设出直线AB的方程,与椭圆方程联立,利用韦达定理表示出x1+x2和x1x2,利用=0求得2b2﹣k2=4,最后利用弦长公式和三角形面积公式求得答案.解答:解:(Ⅰ)2b=2.b=1,e=椭圆的方程为(Ⅱ)由题意,设AB的方程为y=kx+由已知=0得:=,解得k=±(Ⅲ)(1)当直线AB斜率不存在时,即x1=x2,y1=﹣y2,由=0,则又A(x1,y1)在椭圆上,所以S=所以三角形的面积为定值(2)当直线AB斜率存在时,设AB的方程为y=kx+b得到x1+x2=代入整理得:2b2﹣k2=4=所以三角形的面积为定值点评:本题主要考查了直线与圆锥曲线的综合问题.设直线方程的时候,一定要考虑斜率不存在时的情况,以免有所遗漏.。

湖北省黄冈中学2015-2016学年高二上学期期中考试数学(理)试题 含答案

湖北省黄冈中学2015-2016学年高二上学期期中考试数学(理)试题 含答案

湖北省黄冈中学2015年秋季期中考试高二数学试卷(理科)
第Ⅰ卷选择题
一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.经过圆的圆心且与直线平行的直线方程是()
A、B、
C、D、
2.已知直线,,若,则m的值是( )A、B、-2
C、D、2
3.某几何体的三视图如图所示,当a+b取最大值时,该几何体体积为()
A、B、
C、D、
4.如图正方体ABCD—A1B1C1D1的棱长为2,线段B1D1上有两个动点E、F,且EF=1则下列结论中错误的是()
A、EF∥平面ABCD
B、AC⊥BE
C、三棱锥A—BEF体积为定值
D、ΔBEF与ΔAEF面积相等
5.已知{a n}是等差数列,a3=8,S6=57,则过点P(2,a7),Q(3,a8)的直线斜率为()
A、3
B、
C、—3
D、-13
6.若点(1,1)和点(0,2)一个在圆的内部,另一个在圆的外部,则正实数a的取值范围是()
A、B、
C、(0,1)
D、(1,2)
7.如图,在四面体A—BCD中,AC与BD互相垂直,且长度分别为2和3,平行于这两条棱的平面与边AB、BC、CD、DA分别相交
于点E、F、G、H,记四边形EFGH的面积为y,设,则( )
A、函数f(x)的值域为(0,1]
B、函数y=f(x)满足f(x)=f(2-x)
C、函数y=f(x)的最大值为2
D、函数y=f(x)在上单调递增
8.正四面体ABCD的外接球半径为6,过棱AB作该球的截面,则截面面积的最小值为()
A、9π
B、4π
C、24π
D、16π。

2014-2015年湖北省黄冈市黄梅一中高二(上)期中数学试卷和参考答案(理科)

2014-2015年湖北省黄冈市黄梅一中高二(上)期中数学试卷和参考答案(理科)

2014-2015学年湖北省黄冈市黄梅一中高二(上)期中数学试卷(理科)一、选择题(共10小题)1.(5分)某地区高中分三类,A类学校共有学生2000人,B类学校共有学生3000人,C类学校共有学生4000人,若采取分层抽样的方法抽取900人,则A 类学校中的学生甲被抽到的概率为()A.B.C.D.2.(5分)设(﹣x)10=a0+a1x+a2x2+…+a10x10,则(a0+a2+…+a10)2﹣(a1+a3+…+a9)2的值为()A.0 B.2 C.﹣1 D.13.(5分)对两个变量y和x进行回归分析,得到一组样本数据:(x1,y1),(x2,y2),…,(x n,y n),则下列说法中不正确的是()A.由样本数据得到的回归方程=x+必过样本中心(,)B.残差平方和越小的模型,拟合的效果越好C.用相关指数R2来刻画回归效果,R2越小,说明模型的拟合效果越好D.若变量y和x之间的相关系数为r=﹣0.9362,则变量y和x之间具有线性相关关系4.(5分)在区域内任取一点P,则点P落在单位圆x2+y2=1内的概率为()A.B.C.D.5.(5分)某校高二年级有8个班,现有6名学生,分配到其中两个班,每班3人,共有种()方法.A.280 B.560 C.1120 D.33606.(5分)把一枚硬币任意抛掷三次,事件A=“至少一次出现反面”,事件B=“恰有一次出现正面”,则P(B|A)=()A.B.C.D.7.(5分)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,根据收集到的数据(如下表),由最小二乘法求得回归直线方程表中有一个数据模糊不清,请你推断出该数据的值为()A.68 B.68.2 C.69 D.758.(5分)执行如图所示的程序框图后,输出的值为4,则P的取值范围是()A.B.C.D.9.(5分)若x∈A,且∈A,则称A是“伙伴关系集合”.在集合M={﹣1,0,,,,1,2,3,4}的所有非空子集中任选一个集合,则该集合是“伙伴关系集合”的概率为()A.B.C. D.10.(5分)在数1,2,3,4,5的排列a1,a2,a3,a4,a5中,满足a1<a2,a2>a3,a3<a4,a4>a5的排列出现的概率为()A.B.C.D.二、填空题(共5小题)11.(5分)若展开式中的所有二项式系数和为512,则该展开式中的常数项为.12.(5分)设随机变量ξ服从正态分布N(0,1),若P(ξ>1)=p,则P(﹣1<ξ<0)=.13.(5分)随机变量ξ服从二项分布ξ~B(n,p),且Eξ=300,Dξ=200,则P 等于.14.(5分)将7个“省三好学生”名额分配给5个不同的学校,其中甲乙两校各要有2个名额,则不同的分配方案种数有种.(用数字作答)15.(5分)一支足球队每场比赛获胜(得3分)的概率为a,与对手踢平(得1分)的概率为b,负于对手(得0分)的概率为c(a,b,c∈(0,1)),已知该足球队进行一场比赛得分的期望是1,则+的最小值为.三、解答题(共6小题)16.(12分)用一颗骰子连掷三次,投掷出的数字顺次排成一个三位数,此时:(1)各位数字互不相同的三位数有多少个?(2)可以排出多少个不同的数?(3)恰好有两个相同数字的三位数共有多少个?17.(12分)已知的展开式中前三项的系数成等差数列.(Ⅰ)求n的值;(Ⅱ)求展开式中系数最大的项.18.(12分)某校在一次趣味运动会的颁奖仪式上,高一、高二、高三各代表队人数分别为120人、120人、n人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就坐,其中高二代表队有6人.(1)求n的值;(2)把在前排就坐的高二代表队6人分别记为a,b,c,d,e,f,现随机从中抽取2人上台抽奖.求a和b至少有一人上台抽奖的概率.(3)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个[0,1]之间的均匀随机数x,y,并按如图所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,求该代表中奖的概率.19.(12分)某校从参加某次知识竞赛的同学中,选取60名同学将其成绩(百分制)(均为整数)分成6组后,得到部分频率分布直方图(如图),观察图形中的信息,回答下列问题.(Ⅰ)求分数在[70,80)内的频率,并补全这个频率分布直方图;(Ⅱ)从频率分布直方图中,估计本次考试的平均分;(Ⅲ)若从60名学生中随机抽取2人,抽到的学生成绩在[40,70)记0分,在[70,100]记1分,用X表示抽取结束后的总记分,求X的分布列和数学期望.20.(13分)已知某种植物种子每粒成功发芽的概率都为,某植物研究所进行该种子的发芽实验,每次实验种一料种子,每次实验结果相互独立.假定某次实验种子发芽则称该次实验是成功的,如果种子没有发芽,则称该次实验是失败的.若该研究所共进行四次实验,设ξ表示四次实验结束时实验成功的次数与失败的次数之差的绝对值;(1)求随机变量ξ的数学期望(2)记“关于x的不等式ξx2﹣ξx+1>0的解集是实数集R”为事件A,求事件A 发生的概率P(A).21.(14分)已知圆C经过P(4,﹣2),Q(﹣1,3)两点,且在y轴上截得的线段长为,半径小于5.(1)求直线PQ与圆C的方程;(2)若直线l∥PQ,直线l与圆C交于点A、B,且以AB为直径的圆经过坐标原点,求直线l的方程.2014-2015学年湖北省黄冈市黄梅一中高二(上)期中数学试卷(理科)参考答案与试题解析一、选择题(共10小题)1.(5分)某地区高中分三类,A类学校共有学生2000人,B类学校共有学生3000人,C类学校共有学生4000人,若采取分层抽样的方法抽取900人,则A 类学校中的学生甲被抽到的概率为()A.B.C.D.【解答】解:抽样比f==,∴A类学校应该抽取2000×=200,∴A类学校中的学生甲被抽到的概率为P==.故选:A.2.(5分)设(﹣x)10=a0+a1x+a2x2+…+a10x10,则(a0+a2+…+a10)2﹣(a1+a3+…+a9)2的值为()A.0 B.2 C.﹣1 D.1【解答】解:设f(x)=则(a0+a2+…+a10)2﹣(a1+a3+…+a9)2=(a0+a1+…+a10)(a0﹣a1+a2﹣…﹣a9+a10)=f(1)f(﹣1)=()10()10=1.故选:D.3.(5分)对两个变量y和x进行回归分析,得到一组样本数据:(x1,y1),(x2,y2),…,(x n,y n),则下列说法中不正确的是()A.由样本数据得到的回归方程=x+必过样本中心(,)B.残差平方和越小的模型,拟合的效果越好C.用相关指数R2来刻画回归效果,R2越小,说明模型的拟合效果越好D.若变量y和x之间的相关系数为r=﹣0.9362,则变量y和x之间具有线性相关关系【解答】解:样本中心点在直线上,故A正确,残差平方和越小的模型,拟合效果越好,故B正确,R2越大拟合效果越好,故C不正确,当r的值大于0.75时,表示两个变量具有线性相关关系,故选:C.4.(5分)在区域内任取一点P,则点P落在单位圆x2+y2=1内的概率为()A.B.C.D.【解答】解:满足约束条件区域为△ABC内部(含边界),与单位圆x2+y2=1的公共部分如图中阴影部分所示,则点P落在单位圆x2+y2=1内的概率概率为P=.故选:D.5.(5分)某校高二年级有8个班,现有6名学生,分配到其中两个班,每班3人,共有种()方法.A.280 B.560 C.1120 D.3360【解答】解:由题意知本题是一个分步计数问题,首先把6个人平均分成两个组,作为两个元素,这是一个平均分组问题,有=10种结果,把这两个元素在8个位置排列,共有A82=56种结果,根据分步计数原理得到共有10×56=560,故选:B.6.(5分)把一枚硬币任意抛掷三次,事件A=“至少一次出现反面”,事件B=“恰有一次出现正面”,则P(B|A)=()A.B.C.D.【解答】解:由题意,P(AB)==,P(A)=1﹣=,∴P(B|A)==,故选:C.7.(5分)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,根据收集到的数据(如下表),由最小二乘法求得回归直线方程表中有一个数据模糊不清,请你推断出该数据的值为()A.68 B.68.2 C.69 D.75【解答】解:设表中有一个模糊看不清数据为m.由表中数据得:=30,=,由于由最小二乘法求得回归方程.将x=30,y=代入回归直线方程,得m=68.故选:A.8.(5分)执行如图所示的程序框图后,输出的值为4,则P的取值范围是()A.B.C.D.【解答】解:根据题意可知该循环体运行3次第一次:s=,n=2第二次:s==,n=3第三次:s==,n=4此时退出循环体,不满足S<P,所以,故选:D.9.(5分)若x∈A,且∈A,则称A是“伙伴关系集合”.在集合M={﹣1,0,,,,1,2,3,4}的所有非空子集中任选一个集合,则该集合是“伙伴关系集合”的概率为()A.B.C. D.【解答】解:∵集合M={﹣1,0,,,,1,2,3,4},∴集合M的所有非空子集的个数为:29﹣1=511.∵若x∈A,且∈A,则称A是“伙伴关系集合,∴若﹣1∈A,则∈A;若1∈A,则∈A;若2∈A,则∈A,2与一起成对出现;若3∈A,则∈A,3与一起成对出现;若4∈A,则∈A,4与一起成对出现.∴集合M的所有非空子集中,“伙伴关系集合”可能有:25﹣1=31个.∴在集合M={﹣1,0,,,,1,2,3,4}的所有非空子集中任选一个集合,则该集合是“伙伴关系集合”的概率为:.故选:C.10.(5分)在数1,2,3,4,5的排列a1,a2,a3,a4,a5中,满足a1<a2,a2>a3,a3<a4,a4>a5的排列出现的概率为()A.B.C.D.【解答】解:数1,2,3,4,5的排列共有A55=120种结果,记“满足a1<a2,a2>a3,a3<a4,a4>a5”为事件A,则A包含的结果有2A22+2A33=16由古典概率的计算公式可得P(A)=;故选:B.二、填空题(共5小题)11.(5分)若展开式中的所有二项式系数和为512,则该展开式中的常数项为84.【解答】解:展开式中所有二项式系数和为512,即2n=512,则n=9,T r+1=(﹣1)r C9r x18﹣3r令18﹣3r=0,则r=6,所以该展开式中的常数项为84.故答案为:84.12.(5分)设随机变量ξ服从正态分布N(0,1),若P(ξ>1)=p,则P(﹣1<ξ<0)=.【解答】解:画出正态分布N(0,1)的密度函数的图象如下图:由图象的对称性可得,若P(ξ>1)=p,则P(ξ<﹣1)=p,∴则P(﹣1<ξ<1)=1﹣2p,P(﹣1<ξ<0)=.故填:.13.(5分)随机变量ξ服从二项分布ξ~B(n,p),且Eξ=300,Dξ=200,则P等于.【解答】解:∵ξ服从二项分布B~(n,p)Eξ=300,Dξ=200∴Eξ=300=np,①;Dξ=200=np(1﹣p),②.可得1﹣p==,∴p=1﹣=.故答案为:.14.(5分)将7个“省三好学生”名额分配给5个不同的学校,其中甲乙两校各要有2个名额,则不同的分配方案种数有35种.(用数字作答)【解答】解:∵7个市三好学生名额是相同的元素,∴要满足甲、乙两校至少各有两个名额,可以先给甲和乙各两个名额,余下的三个相同的元素在五个位置任意放,当三个元素都给一个学校时,有5种结果,当三个元素分为1和2两种情况时,有4×5=20种结果,当三个元素按1、1、1分成三份时,有C53=10种结果,∴不同的分配方案有5+20+10=35种结果故答案为:35.15.(5分)一支足球队每场比赛获胜(得3分)的概率为a,与对手踢平(得1分)的概率为b,负于对手(得0分)的概率为c(a,b,c∈(0,1)),已知该足球队进行一场比赛得分的期望是1,则+的最小值为.【解答】解:因为该足球队进行一场比赛得分的期望是1,所以3a+b=1所以+=(3a+b)(+)=+=,当且仅当a=b取等号,+的最小值为.故答案为:.三、解答题(共6小题)16.(12分)用一颗骰子连掷三次,投掷出的数字顺次排成一个三位数,此时:(1)各位数字互不相同的三位数有多少个?(2)可以排出多少个不同的数?(3)恰好有两个相同数字的三位数共有多少个?【解答】解:(1)得到一个三位数,分三步进行:先填百位,再填十位,最后填个位.百位上的数字填法有6种,十位上的数字填法有5种,个位上的数字填法有4种,根据分步计数原理,各位数字互不相同的三位数有6×5×4=120个.(2)分三步进行:先填百位,再填十位,最后填个位,每种都有6种方法,根据分步计数原理,可以排出6×6×6=216个不同的数.(3)从三个位中任选两个位,填上相同的数字,有6C32种方法,剩下的一位数字的填法有5种,根据分步计数原理,恰好有两个相同的数字的三位数有6C32 C51=90 个.17.(12分)已知的展开式中前三项的系数成等差数列.(Ⅰ)求n的值;(Ⅱ)求展开式中系数最大的项.【解答】解:(Ⅰ)由题设,得,即n2﹣9n+8=0,解得n=8,n=1(舍去).(Ⅱ)设第r+1的系数最大,则即解得r=2或r=3.所以系数最大的项为T3=7x5,.18.(12分)某校在一次趣味运动会的颁奖仪式上,高一、高二、高三各代表队人数分别为120人、120人、n人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就坐,其中高二代表队有6人.(1)求n的值;(2)把在前排就坐的高二代表队6人分别记为a,b,c,d,e,f,现随机从中抽取2人上台抽奖.求a和b至少有一人上台抽奖的概率.(3)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个[0,1]之间的均匀随机数x,y,并按如图所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,求该代表中奖的概率.【解答】解:(1)由题意可得,∴n=160;(2)高二代表队6人,从中抽取2人上台抽奖的基本事件有(a,b),(a,c),(a,d),(a,e),(a,f),(b,c),(b,d),(b,e),(b.f),(c,d),(c,e),(c,f),(d,e),(d,f),(e,f)共15种,其中a和b至少有一人上台抽奖的基本事件有9种,∴a和b至少有一人上台抽奖的概率为=;(3)由已知0≤x≤1,0≤y≤1,点(x,y)在如图所示的正方形OABC内,由条件得到的区域为图中的阴影部分由2x﹣y﹣1=0,令y=0可得x=,令y=1可得x=1∴在x,y∈[0,1]时满足2x﹣y﹣1≤0的区域的面积为=∴该代表中奖的概率为=.19.(12分)某校从参加某次知识竞赛的同学中,选取60名同学将其成绩(百分制)(均为整数)分成6组后,得到部分频率分布直方图(如图),观察图形中的信息,回答下列问题.(Ⅰ)求分数在[70,80)内的频率,并补全这个频率分布直方图;(Ⅱ)从频率分布直方图中,估计本次考试的平均分;(Ⅲ)若从60名学生中随机抽取2人,抽到的学生成绩在[40,70)记0分,在[70,100]记1分,用X表示抽取结束后的总记分,求X的分布列和数学期望.【解答】解:(Ⅰ)设分数在[70,80)内的频率为x,根据频率分布直方图,则有(0.01+0.015×2+0.025+0.005)×10+x=1,可得x=0.3,所以频率分布直方图如图所示.(Ⅱ)平均分为:(Ⅲ)学生成绩在[40,70)的有0.4×60=24人,在[70,100]的有0.6×60=36人,并且X的可能取值是0,1,2.所以X的分布列为:.∴EX=0×+1×+2×==.20.(13分)已知某种植物种子每粒成功发芽的概率都为,某植物研究所进行该种子的发芽实验,每次实验种一料种子,每次实验结果相互独立.假定某次实验种子发芽则称该次实验是成功的,如果种子没有发芽,则称该次实验是失败的.若该研究所共进行四次实验,设ξ表示四次实验结束时实验成功的次数与失败的次数之差的绝对值;(1)求随机变量ξ的数学期望(2)记“关于x的不等式ξx2﹣ξx+1>0的解集是实数集R”为事件A,求事件A 发生的概率P(A).【解答】解:(1)由题意知ξ的可能取值为0,2,4,(2分)∵“ξ=0”指的是实验成功2次,失败2次.(2分)∴p(ξ=0)=.“ξ=2”指的是实验成功3次,失败1次或实验成功1次,失败3次.∴P(ξ=2)=.“ξ=4”指的是实验成功4次,失败0次或实验成功0次,失败4次.∴p(ξ=4)=,(6分)∴Eξ=.故随机变量ξ的数学期望为.(7分)(2)由题意知:“不等式ξx2﹣ξx+1>0的解集是实数R”为事件A.当ξ=0时,不等式化为1>0,其解集是R,说明事件A发生;当ξ=2时,不等式化为2x2﹣2x+1>0,∵△=﹣4<0,所以解集是R,说明事件A发生;当ξ=4时,不等式化为4x2﹣4x+1>0,其解集{x|x},说明事件A不发生.(10分)∴p(A)=p(ξ=0)+p(ξ=2)=.(12分)21.(14分)已知圆C经过P(4,﹣2),Q(﹣1,3)两点,且在y轴上截得的线段长为,半径小于5.(1)求直线PQ与圆C的方程;(2)若直线l∥PQ,直线l与圆C交于点A、B,且以AB为直径的圆经过坐标原点,求直线l的方程.【解答】解:(1)直线PQ的方程为y﹣3=×(x+1)即直线PQ的方程为x+y﹣2=0,C在PQ的中垂线y﹣=1×(x﹣)即y=x﹣1上,设C(n,n﹣1),则r2=|CQ|2=(n+1)2+(n﹣4)2,由题意,有r2=(2)2+|n|2,∴n2+12=2n2﹣6n+17,∴n=1或5(舍去),r2=13或37(舍去),∴圆C的方程为(x﹣1)2+y2=13.(2)设直线l的方程为x+y+m=0,由,得2x2+(2m﹣2)x+m2﹣12=0,设A(x1,y1),B(x2,y2),则x1+x2=1﹣m,x1x2=,∵以AB为直径的圆经过坐标原点,∴∠AOB=90°,∴x1x2+y1y2=0∴x1x2+(x1+m)(x2+m)=0,整理得m2+m﹣12=0,∴m=3或﹣4(均满足△>0),∴l的方程为x+y+3=0或x+y﹣4=0.。

高二年级期中考试数学(理)试题及答案

高二年级期中考试数学(理)试题及答案

湖北省黄冈中学秋季高二数学期中考试试题(理科)命题:熊斌校对:罗欢一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.抛物线22y x =的焦点坐标为( ) A .(1,0)B .1,04⎛⎫⎪⎝⎭C .10,4⎛⎫ ⎪⎝⎭D .10,8⎛⎫ ⎪⎝⎭2.如果双曲线22142x y -=右支上一点P 到双曲线右焦点的距离是2,那么点P 到右准线的距离是( ) A .26B .46C .22D .23.在正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是A 1D 1、C 1D 1的中点,则异面直线AB 1与EF 所成的角的大小为( ) A .60° B .90°C .45°D .30°4.下列说法正确的是( )A .平面α和平面β只有一个公共点B .两两相交的三条直线共面C .不共面的四点中,任何三点不共线D .有三个公共点的两平面必重合5.过双曲线22143x y -=左焦点F 1的直线交双曲线的左支于M 、N 两点,F 2为其右焦点,则|MF 2|+|NF 2|-|MN |的值为( ) A .6B .8C .10D .166.P 是曲线1cos sin x y αα=-+⎧⎨=⎩上任意一点,则点P 到点A (2,-4)的最远距离是( )A .6B .6C .26D .5CA 1 DD 1 B A BC F E7.抛物线24y x =的焦点为F ,准线为l ,经过F 的直线与抛物线在x 轴上方的部分相交于点A ,AK ⊥l ,垂足为K ,则AKF ∆的面积是( )A .4B .C .D .88.圆22210x y x +--=关于直线230x y -+=对称的圆的方程是( ) A .221(3)(2)2x y ++-=B .221(3)(2)2x y -++=C .22(3)(2)2x y ++-=D .22(3)(2)2x y -++=9.椭圆22221(0)x y a b a b +=>>的中心、右焦点、右顶点、右准线与x 轴的交点依次为O 、F 、A 、H ,则||||FA OH 的最大值为( )A .12B .13C .14D .不能确定10.设椭圆22221(0)x y a b a b +=>>的离心率为12e =,右焦点为F (c, 0),方程20ax bx c +-=的两个实根分别为x 1和x 2,则点P (x 1, x 2)( ) A .必在圆222x y +=内B .必在圆222x y +=上C .必在圆222x y +=外D .以上三种情形都有可能二、填空题(本大题共5小题,每小题5分,共25分,把答案填在题中横线上)11.双曲线221x y m-=的虚轴长是实轴长的2倍,则m =_____________.12.从圆222210x x y y -+-+=外一点P (3,2)向这个圆作一条切线PA ,A 为切点,则PA=_______________.13.已知正方形ABCD ,则以A 、B 为焦点,且过C 、D 两点的椭圆的离心率为_________. 14.已知圆C 1:22(3)1x y ++=和圆C 2:22(3)9x y -+=,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为_____________.15.设F 为抛物线24y x =的焦点,A 、B 、C 为该抛物线上三点,若0FA FB FC ++=,则||||||FA FB FC ++=____________.班级:__________ 姓名:____________ 座号:_________ 成绩:___________答题卡题号12345678910答案题号1112131415答案三、解答题(本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤)16.(本小题满分12分)以抛物线28y x上的点M与定点(6,0)A为端点的线段MA的中点为P,求P点的轨迹方程.17.(本小题满分12分)已知长方体ABCD—A1B1C1D1中,O1是上底面对角线A1C1、B1D1的交点,体对角线A1C交截面AB1D1于点P,求证:O1、P、A三点在同一条直线上.MAOPxy18.(本小题满分12分)设P 是双曲线221416x y -=右支上任一点,过点P 分别作两条渐近线的垂线,垂足分别为E 、F ,求||||PE PF ⋅的值.19.(本小题满分12分)已知椭圆22221(0)y x a b a b+=>>的一个焦点1(0,F -,对应的准线方程为y =.(1)求椭圆的方程;(2)直线l 与椭圆交于不同的两点M 、N ,且线段MN 恰被点13,22P ⎛⎫- ⎪⎝⎭平分,求直线l的方程.20.(本小题满分13分)设F 1、F 2分别是椭圆2214x y +=的左、右焦点.(1)若P 是该椭圆上的一个动点,求12PF PF ⋅的最大值和最小值;(2)设过定点M (0,2)的直线l 与椭圆交于不同的两点A 、B ,且∠AOB 为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.21.(本小题满分14分)如图,在平面直角坐标系xOy中,过定点C(0,p)作直线与抛物线22(0)=>相交于A、B两点.x py p∆面积的最小值;(1)若点N是点C关于坐标原点O的对称点,求ANB(2)是否存在垂直y轴的直线l,使得l被以AC为直径的圆截得的弦长恒为定值?若存在,求出l的方程;若不存在,说明理由.湖北省黄冈中学2019年秋季高二数学期中考试参考答案1.D 2.A 3.A 4.C 5.B 6. A7.C 8.C 9.C 10.A 11.412.213.21-14.221(1)8y x x -=-≤15.616.解:设点00(,),(,)M x y P x y ,则00622x x y y +⎧=⎪⎪⎨⎪=⎪⎩,∴00262x x y y =-⎧⎨=⎩.代入2008y x =得:2412y x =-.此即为点P 的轨迹方程.17.证明:如答图所示,∵11111,AC B D O = ∴111111,.O AC O B D ∈∈又∵111111111111,,,.AC AC B D AB D O AC O AB D ⊂⊂∴∈∈平面平面平面平面又∵1111111,,..AC AB D P P AC P AB D P AC =∴∈∈∴∈平面平面平面 又∵111,,A AC A AB D ∈∈平面平面∴O 1、P 、A 三点都是平面AB 1D 1与平面A 1C 的公共点. ∴O 1、P 、A 三点在同一条直线上.18.解:渐近线方程为20x y ±=,设P (x 0, y 0),则222200001416416x y x y -=⇒-=由点到直线的距离公式有0000||,||55PE PF ==,∴2200|4|16||||.55x y PE PF -⋅==19.解:(1)由22222292.c ac a b c ⎧-=-⎪⎪-=-⎨⎪⎪=+⎩得3,1a b ==即椭圆的方程为221.9y x +=(2)易知直线l 的斜率一定存在,设l :313,.2222k y k x y kx ⎛⎫-=+=++ ⎪⎝⎭即设M (x 1, y 1),N (x 2, y 2),由223,221.9k y kx y x ⎧=++⎪⎪⎨⎪+=⎪⎩ 得2222327(9)(3)0.424k k x k k x k +++++-= ∵x 1、x 2为上述方程的两根,则2222327(3)4(9)0424k k k k k ⎛⎫∆=+-+⋅+-> ⎪⎝⎭①∴21223.9k k x x k ++=-+∵MN 的中点为13,22P ⎛⎫- ⎪⎝⎭,∴1212 1.2x x ⎛⎫+=⨯-=- ⎪⎝⎭ ∴223 1.9k k k +-=-+ ∴2239k k k +=+,解得k =3.代入①中,229927184(99)180424⎛⎫∆=-+⋅+-=> ⎪⎝⎭∴直线l :y =3x +3符合要求.20.解:(1)易知2,1,a b c ===12(0),0).F F设P (x, y ),则22222121(,),)313(38).44x PF PF x y x y x y x x ⋅=-⋅-=+-=+--=-因为[2,2]x ∈-,故当x =0,即点P 为椭圆短轴端点时,21PF PF ⋅有最小值-2. 当2x =±,即点P 为椭圆长轴端点时,21PF PF ⋅有最大值1.(2)显然直线x =0不满足题设条件,可设直线l :11222,(,),(,).y kx A x y B x y =+ 联立222,1,4y kx x y =+⎧⎪⎨+=⎪⎩消去y ,整理得221430.4k x kx ⎛⎫+++= ⎪⎝⎭ ∴12122243,.1144k x x x x k k +=-=++ 由2221(4)43430,4k k k ⎛⎫∆=-+⨯=-> ⎪⎝⎭得k k >< ①又0900.AOB OA OB <∠<⇔⋅> ∴12120.OA OB x x y y ⋅=+>又222212121212222381(2)(2)2()44.111444k k k y y kx kx k x x k x x k k k --+=++=+++=++=+++∴222310.1144k k k -++>++即k 2<4. ∴-2<k <2. ②故由①②得2 2.k k -<<<< 21.解法一:(1)依题意,点N 的坐标为N (0,-p ),可设A (x 1, y 1),B (x 2, y 2),直线AB 的方程为y kx p =+,与x 2=2py联立得22,.x py y kx p ⎧=⎨=+⎩ 消去y 得22220.x pkx p --= 由韦达定理得212122,2.x x pk x x p +==-于是21212121212||||()42ABN BCN ACN S S S p x x p x x p x x x x ∆∆∆=+=⨯-=-=+-222224822,p p k p p k =+=+∴当k =0时,2min ()22.ABN S p ∆=(2)假设满足条件的直线l 存在,其方程为y=a , AC 的中点为O ',l 与以AC 为直径的圆相交于点P 、Q ,PQ 的中点为H ,则,O H PQ O ''⊥点的坐标为11,.22x y p +⎛⎫⎪⎝⎭∵2222111111||||(),222O P AC x y p y p '==+-=+ 111|||2|,22y p O H a a y p +'=-=--∴22222211111||||||())(2)(),442p PH O P O H y p a y p a y a p a ⎛⎫''=-=+---=-+- ⎪⎝⎭∴221||(2||)4().2p PQ PH a y a p a ⎡⎤⎛⎫==-+- ⎪⎢⎥⎝⎭⎣⎦ 令02p a -=,得2p a =,此时|PQ |=p 为定值,故满足条件的直线l 存在,其方程为2py =,即抛物线的通径所在的直线. 解法二:(1)前同解法一,再由弦长公式得222222222121212||2||1()414821 2.AB k x x k x x x x k p k p p k k =+-=+⋅+-=+⋅+=+⋅+又由点到直线的距离公式得221p d k=+,从而,22222112||21222221ABN pS d AB p k k p k k ∆=⋅⋅=⋅+⋅+⋅=++, (2)假设满足条件的直线l 存在,其方程为y=a ,则以AC 为直径的圆的方程为11(0)()()()0x x x y p y y --+--=,将直线方程y=a 代入得211()()0,x x x a p a y -+--=则21114()()4().2p x a p a y a y a p a ⎡⎤⎛⎫∆=---=-+- ⎪⎢⎥⎝⎭⎣⎦设直线l 与以AC 为直径的圆的交点为P (x 3, y 3),Q (x 4, y 4),则有3411||||4()2().22p p PQ x x a y a p a a y a p a ⎡⎤⎛⎫⎛⎫=-=-+-=-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦令0,22p p a a -==得,此时|PQ |=p 为定值,故满足条件的直线l 存在,其方程为2py =,即抛物线的通径所在的直线.NO AC By xl。

湖北省部分重点中学2015-2016上学期高二期中考试数学试题(理科)(含详细答案)

湖北省部分重点中学2015-2016上学期高二期中考试数学试题(理科)(含详细答案)

湖北省部分重点中学2015-2016上学期高二期中考试数学试题(理科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.下列命题正确的是()A.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若两条直线和同一个平面所成的角相等,则这两条直线平行D.若两个平面都垂直于第三个平面,则这两个平面平行2.如果执行如图所示的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则()A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数3. 一条光线从点(﹣2,﹣3)射出,经y轴反射后与圆(x+3)2+(y﹣2)2=1相切,则反射光线所在直线的斜率为()A.﹣或﹣B.﹣或﹣C.﹣或﹣D.﹣或﹣4.在正方体ABCD﹣A1B1C1D1中,M为DD1的中点,O为底面ABCD的中心,P为棱A1B1上任意一点,则直线OP与直线AM所成的角是()A.B.C.D.与P点位置有关5.在同一坐标系下,直线ax+by=ab和圆(x﹣a)2+(y﹣b)2=r2(ab≠0,r>0)的图象可能是()A. B.C.D.6. 在梯形ABCD中,∠ABC=,AD//BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A. B. C. D.27. 某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x的值是()A.2 B.C.D.38.为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:据此估计,该社区一户收入为15万元家庭年支出为( )A.11.8万元B.11.4万元C.12.0万元D.12.2万元9. 右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0 B.2 C.4 D.1410. 已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为()(附:若随机变量ξ服从正态分布N(μ,σ²),则P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%.)A.4.56% B.13.59% C.27.18% D.31.74%11. 在正方体ABCD﹣A1B1C1D1中,E是棱CC1的中点,F是侧面BCC1B1内的动点,且A1F∥平面D1AE,则A1F与平面BCC1B1所成角的正切值构成的集合是()A.{t|} B.{t|≤t≤2}C.{t|2} D.{t|2}12. 已知△ABC的三边分别为AB=5,BC=4,AC=3,M是AB边上一点,P是平面ABC外一点,下列四个命题正确的是()①若PA⊥平面ABC,则三棱锥P﹣ABC的四个面都是直角三角形;②若PM⊥平面ABC,M是AB边上中点,则有PA=PB=PC;③若PC=5,PC⊥平面ABC,则△PCM面积的最小值为;④若PC=5,P在平面ABC上的射影是△ABC内切圆的圆心,则点P到平面ABC是的距离为.其中正确命题的序号是A.①②③B.①②④C.②③④D.①③④二、填空题(本大题共4小题,每小题5分,共20分)13.与直线3x+4y+5=0关于x轴对称的直线的方程为.14. 若在区间(﹣1,1)内任取实数a,在区间(0,1)内任取实数b,则直线ax﹣by=0与圆(x﹣1)2+(y﹣2)2=1相交的概率为.15. 在棱锥P﹣ABC中,侧棱PA、PB、PC两两垂直,Q为底面△ABC内一点,若点Q到三个侧面的距离分别为3、4、5,则以线段PQ为直径的球的表面积为.16. 点P在正方体ABCD﹣A1B1C1D1的面对角线BC1上运动,则下列四个命题:①三棱锥A﹣D1PC的体积不变;②DP⊥BC1;③A1P∥面ACD1;④面PDB1⊥面ACD1.其中正确的命题的序号是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本题满分10分)某校高二(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,可见部分如下:试根据图表中的信息解答下列问题:(I)求全班的学生人数及分数在[70,80)之间的频数;(II)为快速了解学生的答题情况,老师按分层抽样的方法从位于[70,80),[80,90)和[90,100]分数段的试卷中抽取8份进行分析,再从中任选3人进行交流,求交流的学生中,成绩位于[70,80)分数段的人和成绩位于[]90,100分数段的人均被抽到的概率。

湖北省黄冈市黄冈中学2014-2015学年高二上学期期中试题 (1)

湖北省黄冈市黄冈中学2014-2015学年高二上学期期中试题 (1)

湖北省黄冈市黄冈中学2014-2015学年高二上学期期中化学试题说明:1、本试卷分四部分,共100分,考试时间90分钟。

2、★的数目反映该题的难易程度,★数多表示该题难度大。

3、本试卷的选择题均为单项选择题。

4、请将答案填、涂在答题卡指定的位置上,答在试卷或其它位置上的答案无效。

5、本试卷可能用到的相对原子质量:H:1 O:16 Na:23 Cu:64第一部分元素及其化合物(10分)1、(10分)单质、氧化物、酸、碱及盐之间的转化是元素及其化合物的主要研究内容,试按要求完成下列试题:(1)磷酸钙与焦炭、石英砂混合,在电炉中加热到1500℃生成白磷(P4),反应为:2Ca3(PO4)2+6SiO2=6CaSiO3+2P2O510C+2P2O5 =P4↑+10CO↑上述反应中的各种物质,属于酸性氧化物的有★。

(2)试写出实验室制取CO2气体的离子方程式:★;(3)实验室常使用浓盐酸与MnO2固体共热制取Cl2,当制得0.1mol Cl2时,被氧化的HCl的物质的量为★★mol。

(4)将1molC与5molO2充分反应后的气体,全部通入到足量Na2O2再充分反应后,剩余气体的物质的量为★★mol。

(5)取FeSO4溶液,调pH约为7,加入淀粉KI溶液和H2O2,溶液呈蓝色并有红褐色沉淀生成。

当消耗2 mol I-时,共转移3 mol电子,该反应的离子方程式是★★★★。

第二部分反应热与化学平衡(15分)2、(2分)乙炔(C2H2)气体的燃烧热为△H=—1299.6 kJ·mol-1,请写出代表其燃烧热的热化学方程式:★。

3、(7分)已知:2A(g)+ B(g) 3C(g) △H=-90kJ·mol-1,实验室将2molA、2.5molB和1.5molC充入恒温密闭容器中发生上述反应,达平衡时放出45 kJ的热量,试回答下列问题:(1)充入气体后,反应向★(填“正”或“逆”)反应方向进行直至平衡。

2014-2015年湖北省黄冈市武穴中学高二上学期数学期中试卷及参考答案(理科)

2014-2015年湖北省黄冈市武穴中学高二上学期数学期中试卷及参考答案(理科)

2014-2015学年湖北省黄冈市武穴中学高二(上)期中数学试卷(理科)一、选择题(5分×10=50分)1.(5分)过点(﹣1,3)且垂直于直线x﹣2y+3=0的直线方程为()A.2x+y﹣1=0 B.2x+y﹣5=0 C.x+2y﹣5=0 D.x﹣2y+7=02.(5分)若圆x2+y2﹣2x﹣4y=0的圆心到直线x﹣y+a=0的距离为,则a的值为()A.﹣2或2 B.或C.2或0 D.﹣2或03.(5分)现从200件产品中随机出20件进行质量检验,列说法正确是()A.200件产品是总体B.20件产品是样本C.样本容量是200 D.样本容量是204.(5分)若椭圆的两焦点为(﹣2,0)和(2,0),且椭圆过点,则椭圆方程是()A.B.C.D.5.(5分)已知m,n表示两条不同直线,α表示平面,下列说法正确的是()A.若m∥α,n∥α,则m∥n B.若m⊥α,m⊥n,则n∥αC.若m∥α,m⊥n,则n⊥αD.若m⊥α,n⊂α,则m⊥n6.(5分)一个几何体的三视图如图所示,其中正视图是一个正三角形,则该几何体的体积为()A.B.C.1 D.7.(5分)甲、乙两名运动员在某项测试中的6次成绩如茎叶图所示,,分别表示甲乙两名运动员这项测试成绩的平均数,s1,s2分别表示甲乙两名运动员这项测试成绩的标准差,则有()A.B.C. D.8.(5分)已知椭圆E:=1(a>b>0)的左焦点为F(﹣2,0)过点F 的直线交椭圆于A,B两点.若AB的中点坐标为(﹣1,),则E的方程为()A.=1 B.=1C.=1 D.=19.(5分)已知二面角α﹣l﹣β为60°,AB⊂α,AB⊥l,A为垂足,CD⊂β,C∈l,∠ACD=135°,则异面直线AB与CD所成角的余弦值为()A.B.C.D.10.(5分)已知F1、F2分别是椭圆的左、右焦点,A是椭圆=1上一动点,圆C与F1A的延长线,F1F2的延长线以及线段AF2相切,若M(t,0)为其中一个切点,则()A.t=2 B.t>2C.t<2 D.t与2的大小关系不确定二、填空题(5×5=25分)11.(5分)防疫站对学生进行身体健康调查,某高二学生共有1200名,采用分层抽样法抽取一个容量为200的样本.已知女生比男生少抽了60人,则该校的女生人数应是.12.(5分)经过点P(0,﹣1)作直线l,若直线l与连接A(1,﹣2),B(2,1)的线段总有公共点,则直线l的倾斜角α的范围为.13.(5分)若方程(9﹣m)x2+(m﹣4)y2=1表示椭圆,则实数m的取值范围是.14.(5分)若椭圆的短轴为AB,它的一个焦点为F,则满足三角形ABF为等边三角的椭圆的离心率是.15.(5分)已知圆:(x+cosθ)2+(y﹣sinθ)2=1,直线l:y=kx.给出下面四个命题:①对任意实数k和θ,直线l和圆M有公共点;②对任意实数k,必存在实数θ,使得直线l和圆M相切;③对任意实数θ,必存在实数k,使得直线l和圆M相切;④存在实数k和θ,使得圆M上有一点到直线l的距离为3.其中正确的命题是(写出所以正确命题的编号)三、解答题(75分)16.(12分)已知△ABC的顶点A(6,1),AB边上的中线CM所在直线方程2x ﹣y﹣5=0,AC边上的高BH所在直线方程为x﹣2y﹣5=0.求:(Ⅰ)顶点C的坐标;(Ⅱ)直线BC的方程.17.(12分)如图所示的一块木料中,棱BC平行于面A′C′.(Ⅰ)要经过面A′C′内的一点P和棱BC将木料锯开,应怎样画线?(写出画法步骤,并在图中画出)(Ⅱ)说明所画的线与平面AC的位置关系.18.(12分)自点A(﹣3,3)发出的光线L射到x轴上,被x轴反射,其反射光线所在直线与圆x2+y2﹣4x﹣4y+7=0相切,求光线L所在直线的方程.19.(12分)我国发射的第一颗人造地卫星的运行轨道是以地心为一个焦点的椭圆,设地球的半径为R,卫星近地点,远地点离地面距离分别为m,n.求卫星轨道的离心率.20.(13分)如图,EC⊥平面ABC,EC∥BD,平面ACD⊥平面ECB.(Ⅰ)求证AC⊥BC;(Ⅱ)若CA=CB=CE=2BD,求二面角D﹣AE﹣C的余弦值.21.(14分)已知E为圆=16上的任意一点,A点坐标为线段AE的垂直平分线与直线CE相交于点Q(C点为圆心).(Ⅰ)当E点在圆C上运动时,求Q点轨迹M的方程;(Ⅱ)若一直线与曲线M相交于P,Q两点,且直线OP,PQ,OQ的斜率依次成等比数列,求△OPQ面积的取值范围.2014-2015学年湖北省黄冈市武穴中学高二(上)期中数学试卷(理科)参考答案与试题解析一、选择题(5分&#215;10=50分)1.(5分)过点(﹣1,3)且垂直于直线x﹣2y+3=0的直线方程为()A.2x+y﹣1=0 B.2x+y﹣5=0 C.x+2y﹣5=0 D.x﹣2y+7=0【解答】解:根据题意,易得直线x﹣2y+3=0的斜率为,由直线垂直的斜率关系,可得所求直线的斜率为﹣2,又知其过点(﹣1,3),由点斜式得所求直线方程为2x+y﹣1=0.2.(5分)若圆x2+y2﹣2x﹣4y=0的圆心到直线x﹣y+a=0的距离为,则a的值为()A.﹣2或2 B.或C.2或0 D.﹣2或0【解答】解:把圆x2+y2﹣2x﹣4y=0化为标准方程为:(x﹣1)2+(y﹣2)2=5,所以圆心坐标为(1,2),∵圆心(1,2)到直线x﹣y+a=0的距离为,∴,即|a﹣1|=1,可化为a﹣1=1或a﹣1=﹣1,∴解得a=2或0.故选:C.3.(5分)现从200件产品中随机出20件进行质量检验,列说法正确是()A.200件产品是总体B.20件产品是样本C.样本容量是200 D.样本容量是20【解答】解:根据题意,得;从200件产品中随机出20件进行质量检验,200件产品的质量是总体,抽出20件产品的质量是样本,样本的容量是20.故选:D.4.(5分)若椭圆的两焦点为(﹣2,0)和(2,0),且椭圆过点,则椭圆方程是()A.B.C.D.【解答】解:由题意知,c=2,焦点在x 轴上,∴a2=b2+4,故可设椭圆的方程为+=1,把点代入椭圆的方程可求得b2=6,故椭圆的方程为+=1,故选:D.5.(5分)已知m,n表示两条不同直线,α表示平面,下列说法正确的是()A.若m∥α,n∥α,则m∥n B.若m⊥α,m⊥n,则n∥αC.若m∥α,m⊥n,则n⊥αD.若m⊥α,n⊂α,则m⊥n【解答】解:在正方体ABCD﹣A′B′C′D′中:令底面A′B′C′D′=αA、令m=AB,n=BC,满足m∥α,n∥α,但m∥n不成立,A错误;B、令m=AA′,n=A′B′,满足m⊥α,m⊥n,但n∥α不成立,B错误;C、令m=AB,n=AD,满足m∥α,m⊥n,但n⊥α不成立,C错误;故选:D.6.(5分)一个几何体的三视图如图所示,其中正视图是一个正三角形,则该几何体的体积为()A.B.C.1 D.【解答】解:由三视图可知:该几何体是如图所示的三棱锥,其中侧面PAC⊥面ABC,△PAC是边长为2的正三角形,△ABC是边AC=2,边AC上的高OB=1,PO=为底面上的高.于是此几何体的体积V==.故选:D.7.(5分)甲、乙两名运动员在某项测试中的6次成绩如茎叶图所示,,分别表示甲乙两名运动员这项测试成绩的平均数,s1,s2分别表示甲乙两名运动员这项测试成绩的标准差,则有()A.B.C. D.【解答】解:由茎叶图可看出甲的平均数是,乙的平均数是,∴两组数据的平均数相等.甲的方差是(36+1+0+0+1+36)=,乙的方差是(49+4+0+0+4+49)=.∴甲的标准差小于乙的标准差,故选:B.8.(5分)已知椭圆E:=1(a>b>0)的左焦点为F(﹣2,0)过点F 的直线交椭圆于A,B两点.若AB的中点坐标为(﹣1,),则E的方程为()A.=1 B.=1C.=1 D.=1【解答】解:设过点F的直线方程为:y=k(x+2),联立椭圆方程,消去y,得,(b2+a2k2)x2+4a2k2x+4a2k2﹣a2b2=0,设A(x1,y1),B(x2,y2),则x1+x2=﹣,即有AB中点为(﹣,),即有﹣=﹣1,=,又k==,解得,b2=a2,且c=2,即有a2﹣b2=4,解得,a2=8,b2=4.则有椭圆E的方程为:+=1.故选:D.9.(5分)已知二面角α﹣l﹣β为60°,AB⊂α,AB⊥l,A为垂足,CD⊂β,C∈l,∠ACD=135°,则异面直线AB与CD所成角的余弦值为()A.B.C.D.【解答】解:如图,过A点做AE⊥l,使BE⊥β,垂足为E,过点A做AF∥CD,过点E做EF⊥AE,连接BF,∵AE⊥l∴∠EAC=90°∵CD∥AF又∠ACD=135°∴∠FAC=45°∴∠EAF=45°在Rt△BEA中,设AE=a,则AB=2a,BE=a,在Rt△AEF中,则EF=a,AF=a,在Rt△BEF中,则BF=2a,∴异面直线AB与CD所成的角即是∠BAF,∴cos∠BAF===.故选:B.10.(5分)已知F1、F2分别是椭圆的左、右焦点,A是椭圆=1上一动点,圆C与F1A的延长线,F1F2的延长线以及线段AF2相切,若M(t,0)为其中一个切点,则()A.t=2 B.t>2C.t<2 D.t与2的大小关系不确定【解答】解:如图所示,切点分别为M,N,E.∵|F1F2|+|F2M|=|F1A|+|AE|,|AE|=|AN|,|F2M|=|F2N|.|F1A|+|AN|+|NF2|=2a=4,∴=4﹣,解得t=2.故选:A.二、填空题(5&#215;5=25分)11.(5分)防疫站对学生进行身体健康调查,某高二学生共有1200名,采用分层抽样法抽取一个容量为200的样本.已知女生比男生少抽了60人,则该校的女生人数应是420.【解答】解:设该校的女生人数x,则男生人数为1200﹣x,抽样比例为,∵女生比男生少抽了60,∴,解得x=420,故答案为:42012.(5分)经过点P(0,﹣1)作直线l,若直线l与连接A(1,﹣2),B(2,1)的线段总有公共点,则直线l的倾斜角α的范围为.【解答】解:k PA=k PB=∵l与线段AB相交,∴k pA≤k≤k pB∴﹣1≤k≤1∴0≤tanα≤1或﹣1≤tanα<0由于y=tanx在[0,)及(﹣,0)均为减函数∴直线l的倾斜角α的范围为:故答案为:13.(5分)若方程(9﹣m)x2+(m﹣4)y2=1表示椭圆,则实数m的取值范围是{m|4<m<或} .【解答】解:∵方程(9﹣m)x2+(m﹣4)y2=1表示椭圆,∴,解得4<m<9,且m≠,∴实数m的取值范围是{m|4<m<或}.故答案为:{m|4<m<或}.14.(5分)若椭圆的短轴为AB,它的一个焦点为F,则满足三角形ABF为等边三角的椭圆的离心率是.【解答】解:∵椭圆的短轴为AB,它的一个焦点为F,则满足三角形ABF为等边三角的椭圆,∴b=,c==a,∴.故答案为:.15.(5分)已知圆:(x+cosθ)2+(y﹣sinθ)2=1,直线l:y=kx.给出下面四个命题:①对任意实数k和θ,直线l和圆M有公共点;②对任意实数k,必存在实数θ,使得直线l和圆M相切;③对任意实数θ,必存在实数k,使得直线l和圆M相切;④存在实数k和θ,使得圆M上有一点到直线l的距离为3.其中正确的命题是①②(写出所以正确命题的编号)【解答】解:∵圆:(x+cosθ)2+(y﹣sinθ)2=1恒过定点O(0,0)直线l:y=kx也恒过定点O(0,0),∴①正确;圆心M(﹣cosθ,sinθ)圆心到直线的距离d==≤1,∴对任意实数k和θ,直线l和圆M的关系是相交或者相切,∴②正确,③④都错误.故答案为:①②.三、解答题(75分)16.(12分)已知△ABC的顶点A(6,1),AB边上的中线CM所在直线方程2x ﹣y﹣5=0,AC边上的高BH所在直线方程为x﹣2y﹣5=0.求:(Ⅰ)顶点C的坐标;(Ⅱ)直线BC的方程.【解答】解:(Ⅰ)由于AC边所在的直线的斜率为﹣2,则它的方程为y﹣1=﹣2(x﹣6),即2x+y﹣13=0,解方程组,求得,故点C的坐标为(,4).(Ⅱ)(2)设B(m,n),则M(,).把M的坐标代入直线方程为2x﹣y﹣5=0,把点B的坐标代入直线x﹣2y﹣5=0,可得,求得,故点B(﹣,﹣).再用两点式求的直线BC的方程为=,化简为46x﹣41y+57=0.17.(12分)如图所示的一块木料中,棱BC平行于面A′C′.(Ⅰ)要经过面A′C′内的一点P和棱BC将木料锯开,应怎样画线?(写出画法步骤,并在图中画出)(Ⅱ)说明所画的线与平面AC的位置关系.【解答】解:(Ⅰ)过点P作B′C′的平行线,交A′B′、C′D′于点E,F,连结BE,CF;作图如右图,(Ⅱ)易知BE,CF与平面AC的相交,∵BC∥平面A′C′,又∵平面B′C′CB∩平面A′C′=B′C′,∴BC∥B′C′,∴EF∥BC,又∵EF⊄平面AC,BC⊂平面AC,∴EF∥平面AC.18.(12分)自点A(﹣3,3)发出的光线L射到x轴上,被x轴反射,其反射光线所在直线与圆x2+y2﹣4x﹣4y+7=0相切,求光线L所在直线的方程.【解答】解:已知圆的标准方程是(x﹣2)2+(y﹣2)2=1,它关于x轴的对称圆的方程是(x﹣2)2+(y+2)2=1,设光线L所在直线的方程是y﹣3=k(x+3)(其中斜率k待定)由题设知对称圆的圆心C'(2,﹣2)到这条直线的距离等于1,即.整理得:12k2+25k+12=0,解得:,或.故所求的直线方程是,或,即3x+4y﹣3=0,或4x+3y+3=0.19.(12分)我国发射的第一颗人造地卫星的运行轨道是以地心为一个焦点的椭圆,设地球的半径为R,卫星近地点,远地点离地面距离分别为m,n.求卫星轨道的离心率.【解答】解:椭圆的离心率:e=∈(0,1),(c为半焦距;a为长半轴)只要求出椭圆的c和a,由题意,结合图形可知,a=,c=OF1=﹣m﹣R=,所以e===.20.(13分)如图,EC⊥平面ABC,EC∥BD,平面ACD⊥平面ECB.(Ⅰ)求证AC⊥BC;(Ⅱ)若CA=CB=CE=2BD,求二面角D﹣AE﹣C的余弦值.【解答】(Ⅰ)证明:∵EC∥BD,∴四边形BDEC为平面图形,EC⊥平面ABC,AC⊂平面ABC,EC⊂平面ABC,∴AC⊥EC,EC⊥BC,∴∠ACB为A﹣EC﹣B的平面角,∴∠ACB=90°,∴AC⊥BC;(Ⅱ)∵AC,BC,EC两两垂直,∴分别以CA,CB,CE为x,y,z轴,建立坐标系,∵CA=CB=CE=2BD,∴A(2,0,0),C(0,0,0),E(0,0,2),D(0,2,1),∴=(﹣2,0,2),=(﹣2,2,1),=(0,0,2),设平面DAE的法向量=(x1,y1,z1),平面AEC的法向量为=(x2,y2,z2),∴,得=(1,),,得=(0,1,0),∴cos<>===∵二面角D﹣AE﹣C是锐二面角,∴二面角D﹣AE﹣C的余弦值为:.21.(14分)已知E为圆=16上的任意一点,A点坐标为线段AE的垂直平分线与直线CE相交于点Q(C点为圆心).(Ⅰ)当E点在圆C上运动时,求Q点轨迹M的方程;(Ⅱ)若一直线与曲线M相交于P,Q两点,且直线OP,PQ,OQ的斜率依次成等比数列,求△OPQ面积的取值范围.【解答】解:(Ⅰ)由圆的方程可知,圆心C(),A,半径等于4,设点Q的坐标为(x,y ),∵线段AE的垂直平分线与直线CE相交于点Q,∴|QA|=|EQ|.又|CQ|+|QE|=4(半径),∴|QC|+|QA|=4>|AC|=2.∴点Q的轨迹是以A,C为焦点的椭圆,且2a=4,c=,∴a=2,b=1,∴点M的轨迹方程为;(Ⅱ)设直线方程为y=kx+m,由,消去y得:(1+4k2)x2+8kmx+4(m2﹣1)=0,则△=64k2m2﹣16(1+4k2)(m2﹣1)=16(4k2﹣m2+1)>0,则,,故y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2,∵直线OP、PQ、OQ的斜率依次成等比数列,∴,即,则,由于m≠0,故k2=⇒k=±,∴直线l的斜率k为±.(3)∵直线OQ的斜率存在且不为0,及△>0∴0<m2<2,且m≠1.设d为点O到直线l的距离,则S△OPQ=d|PQ|===,<,则S△OPQ∴S的取值范围为(0,1).△OPQ。

湖北省黄冈中学2015-2016学年高二数学上学期期末考试试题 理(含解析)

湖北省黄冈中学2015-2016学年高二数学上学期期末考试试题 理(含解析)

湖北省黄冈中学2015-2016学年高二上学期期末考试数学试题(理科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.)1、总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字,则选出来的第5个个体的编号为()7816 6572 0802 6314 0702 4369 9728 01983204 9234 4935 8200 3623 4869 6938 7481A.08 B.07C.02 D.012、甲、乙两名学生的六次数学测验成绩(百分制)的茎叶图如图所示.①甲同学成绩的中位数大于乙同学成绩的中位数;②甲同学的平均分比乙同学的平均分高;③甲同学的平均分比乙同学的平均分低;④甲同学成绩的方差小于乙同学成绩的方差.上面说法正确的是()A.③④B.①②④C.②④D.①③④3、当输入x=-4时,如图的程序运行的结果是()A.7 B.8C.9 D.154、下列说法错误的是()A.若命题“p∧q”为真命题,则“p∨q”为真命题B.命题“若m>0,则方程x2+x-m=0有实根”的逆命题为真命题C.命题“若a>b,则ac2>bc2”的否命题为真命题D.若命题“”为假命题,则“”为真命题5、一名小学生的年龄和身高(单位:cm)的数据如下表:由散点图可知,身高y与年龄x之间的线性回归方程为,预测该学生10岁时的身高为()A.154 B.153C.152 D.1516、“a≠5且b≠-5”是“a+b≠0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既非充分条件也非必要条件7、某校共有学生2000名,各年级男、女生人数如下表:如果从全校学生中随机抽取一名学生,抽到二年级女生的概率为0.19.现用分层抽样的方法在全校学生中分年级抽取64名学生参加某项活动,则应在三年级中抽取的学生人数为()A.24 B.18C.16 D.128、已知双曲线的一个焦点与抛物线y2=-4x的焦点重合,且双曲线的离心率为,则此双曲线的方程为()A.B.C.D.9、如图,直三棱柱ABC—A1B1C1中,∠BAC=90°,AB=AC=2,,则AA1与平面AB1C1所成的角为()A.B.C.D.10、已知:a,b,c为集合A={1,2,3,4,5}中三个不同的数,通过如下框图给出的一个算法输出一个整数a,则输出的数a=4的概率是()A.B.C. D.11、如图,在平行六面体ABCD—A1B1C1D1中,底面是边长为1的正方形,若∠A1AB=∠A1AD=60°,且AA1=3,则A1C的长为()A.B.C. D.12、椭圆的左、右焦点分别为F1,F2,弦AB过F1,若△ABF2的内切圆周长为π,A、B两点的坐标分别为(x1,y1)和(x2,y2),则|y2-y1|的值为()A.B.C. D.二、填空题13、三进制数121(3)化为十进制数为__________.14、若命题“,使x2+(a-1)x+1<0”是假命题,则实数a的取值范围为__________.15、在区间上随机地取出一个数x,若满足|x|≤m的概率为,则m=__________.16、以下四个关于圆锥曲线的命题中:①双曲线与椭圆有相同的焦点;②以抛物线的焦点弦(过焦点的直线截抛物线所得的线段)为直径的圆与抛物线的准线是相切的;③设A、B为两个定点,k为常数,若|PA|-|PB|=k,则动点P的轨迹为双曲线;④过抛物线y2=4x的焦点作直线与抛物线相交于A、B两点,它们的横坐标之和等于5,则|AB|=7.其中真命题的序号为__________(写出所有真命题的序号)三、解答题17、(本小题满分10分)《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20~80mg/100ml(不含80)之间,属于酒后驾车;在80mg/100ml(含80)以上时,属于醉酒驾车.某市公安局交通管理部门在某路段的一次拦查行动中,依法检查了300辆机动车,查处酒后驾车和醉酒驾车的驾驶员共20人,检测结果如下表:(Ⅰ)绘制出检测数据的频率分布直方图(在图中用实线画出矩形框即可);(Ⅱ)求检测数据中醉酒驾驶的频率,并估计检测数据中酒精含量的众数、平均数.18、(本小题满分12分)p:实数x满足x2-4ax+3a2<0,其中a>0,q:实数x满足.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)是的充分不必要条件,求实数a的取值范围.19、(本小题满分12分)某射击运动员进行射击训练,前三次射击在靶上的着弹点A、B、C 刚好是边长分别为5cm,6cm,的三角形的三个顶点.(Ⅰ)该运动员前三次射击的成绩(环数)都在区间解析:.15、3解析:.16、①②④17、(1)检测数据的频率分布直方图如图:(5分)(2)检测数据中醉酒驾驶的频率是.(6分)估计检测数据中酒精含量的众数是35与55.(8分)估计检测数据中酒精含量的平均数是.(10分)18、(1)由,得,又a>0,所以a<x<3a.(2分)当a=1时,1<x<3,即p为真时实数x的取值范围是1<x<3.(3分)由得得2<x≤3,即q为真时实数x的取值范围是2<x≤3.(4分)若p∧q为真,则p真且q真,(5分)所以实数x的取值范围是2<x<3.(6分)(2)是的充分不必要条件,即,且推不出.即q是p的充分不必要条件,(8分)则,解得1<a≤2,所以实数a的取值范围是1<a≤2.(12分)19、(Ⅰ)前三次射击成绩依次记为x1、x2、x3,后三次成绩依次记为y1、y2、y3,从这6次射击成绩中随机抽取两个,基本事件是:,共15个,(3分)其中可使|a-b|>1发生的是后9个基本事件.故.(6分)(Ⅱ)因为着弹点若与A、B、C的距离都超过1cm,则着弹点就不能落在分别以A、B、C为圆心,半径为1cm的三个扇形区域内,只能落在扇形外的部分.(7分)因为(9分)满足题意部分的面积为,(11分)故所求概率为.(12分)20、(1)∵F(0,2),p=4,∴抛物线方程为x2=8y,(1分)与直线y=2x+2联立消去y得:x2-16x-16=0,设A(x1,y1),B(x2,y2).(2分)则x1+x2=16,x1x2=-16,(3分);(5分)(2)假设存在,由抛物线x2=2py与直线y=2x+2联立消去y得:x2-4px-4p=0.设A(x1,y1),B(x2,y2),△>0,则x1+x2=4p,x1x2=-4p,(7分)P(2p,4p+2),Q(2p,2p).(8分)方法一:(9分)(10分)(11分)故存在且满足△>0.(12分)方法二:由得:.(9分)即,(10分),(11分)代入得4p2+3p-1=0,.故存在且满足△>0.(12分)21、(1)证明:在图中,由题意可知,BA⊥PD,ABCD为正方形,所以在图中,SA⊥AB,SA=2,四边形ABCD是边长为2的正方形,(2分)因为SB⊥BC,AB⊥BC,所以BC⊥平面SAB,(4分)又SA平面SAB,所以BC⊥SA,又SA⊥AB,所以SA⊥平面ABCD.(6分)(2)方法一:建立空间直角坐标系,以AB为x轴,AD为y轴,AS为z轴,(7分)A(0,0,0),C(2,2,0),D(0,2,0),S(0,0,2).(8分).(10分)即二面角E—AC—D的正切值为.(12分)方法二:在AD上取一点O,使,连接EO.因为,所以EO//SA,所以EO⊥平面ABCD,过O作OH⊥AC交AC于H,连接EH,(7分)则AC⊥平面EOH,所以AC⊥EH.所以∠EHO为二面角E—AC—D的平面角,(9分),在Rt△AHO中,.(11分),即二面角E—AC—D的正切值为.(12分)22、(1)由题意知|PQ|=|AQ|,又∵|CP|=|CQ|+|PQ|=4.(2分),由椭圆定义知Q点的轨迹是椭圆,(3分)2a=4,即a=2,,∴Q的轨迹方程E:.(5分)(2)由题意知所求的直线不可能垂直于x轴,所以可设直线为:y=kx-2,M(x1,y1),N(x2,y2),联立方程组,将y=kx-2代入中得(7分)(8分),当且仅当即t=2时面积最大,最大值为1.(10分)(11分).(12分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014-2015学年湖北省黄冈中学高二(上)期中数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是满足题目要求的.1.(5分)下列说法中正确的是()A.频率是概率的近似值,随着试验次数增加,频率会越来越接近概率B.要从1002名学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2名学生,这样对被剔除者不公平C.用秦九韶算法计算多项式f(x)=12+35x+9x3+5x5+3x6在当x=﹣1时的值时要用到6次加法和15次乘法D.数据2,3,4,5的方差是数据4,6,8,10的方差的一半2.(5分)2014年索契冬季奥运会的花样滑冰项目上,8个评委为某选手打出的分数如茎叶图所示,则这些数据的中位数是()A.84 B.85 C.86 D.87.53.(5分)某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为()A.35 B.25 C.15 D.74.(5分)从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是()A.至少有一个红球与都是红球B.至少有一个红球与都是白球C.至少有一个红球与至少有一个白球D.恰有一个红球与恰有二个红球5.(5分)某产品的广告费用x与销售额y的统计数据如下表根据上表可得回归方程=x+的为9.4,据此模型预报广告费用为6万元时销售额为()A.63.6万元B.65.5万元C.67.7万元D.72.0万元6.(5分)圆O1:x2+y2﹣2x=0和圆O2:x2+y2﹣4y=0的公共弦长为()A.B.C.3 D.7.(5分)设,求a2+a4+…+a2n的值()A.3n B.3n﹣2 C.D.8.(5分)4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为()A.B.C.D.9.(5分)某几何体的三视图如图所示,则该几何体的体积的最大值为()A.B.C.D.10.(5分)如图,已知点P(2,0),正方形ABCD内接于⊙O:x2+y2=2,M、N 分别为边AB、BC的中点,当正方形ABCD绕圆心O旋转时,•的取值范围是()A.[﹣1,1]B.[﹣,]C.[﹣2,2]D.[﹣,]二、填空题:本大题共5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.11.(5分)空间直角坐标系中与点P(2,3,5)关于yoz平面对称的点的坐标为.12.(5分)由数字0,1,2,3,4组成的没有重复数字且比2000大的四位数的个数为(用数字作答).13.(5分)在(1+x2)(1﹣2x)6的展开式中,x5的系数为.14.(5分)根据如图算法语句,当输出y的值为31时,输入的x值为.15.(5分)如果自然数a的各位数字之和等于7,那么称a为“吉祥数”.将所有“吉祥数”从小到大排成一列a1,a2,a3,…,若a n=2005,则n=.三、解答题:本大题共6个小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)高二某班50名学生在一次百米测试中,成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组[13,14),第二组[14,15),…,第五组[17,18],如图是按上述分组方法得到的频率分布直方图.(1)若成绩在区间[14,16)内规定为良好,求该班在这次百米测试中成绩为良好的人数;(2)请根据频率分布直方图估计样本数据的众数和中位数(精确到0.01).17.(12分)已知关于x的一元二次方程x2﹣2ax+b2=0.(1)若a是从0、1、2、3四个数中任取的一个数,b是从0、1、2三个数中任取的一个数,求上述方程没有实根的概率;(2)若a是从区间[0,3]内任取的一个数,b是从区间[0,2]内任取的一个数,求上述方程没有实根的概率.18.(12分)已知在的展开式中,第5项的系数与第3项的系数之比是56:3.(1)求n;(2)求展开式中的所有有理项;(3)求C n1+9C n2+81C n3+…+9n﹣1C n n的值.19.(12分)阅读如图的程序框图,解答以下问题:(1)如果输入的N=3,那么输出的S为多少?(2)对于输入的任何正整数N,都有对应S输出.证明:S<2.20.(13分)如图,四棱锥P﹣ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD,侧面PAD⊥底面ABCD,且△PAD为等腰直角三角形,∠APD=90°,M为AP的中点.(Ⅰ)求证:AD⊥PB;(Ⅱ)求证:DM∥平面PCB;(Ⅲ)求平面PAD与平面PBC所成锐二面角的余弦值.21.(14分)如图,圆C:x2﹣(1+a)x+y2﹣ay+a=0.(Ⅰ)若圆C与x轴相切,求圆C的方程;(Ⅱ)已知a>1,圆C与x轴相交于两点M,N(点M在点N的左侧).过点M 任作一条直线与圆O:x2+y2=4相交于两点A,B.问:是否存在实数a,使得∠ANM=∠BNM?若存在,求出实数a的值,若不存在,请说明理由.2014-2015学年湖北省黄冈中学高二(上)期中数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是满足题目要求的.1.(5分)下列说法中正确的是()A.频率是概率的近似值,随着试验次数增加,频率会越来越接近概率B.要从1002名学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2名学生,这样对被剔除者不公平C.用秦九韶算法计算多项式f(x)=12+35x+9x3+5x5+3x6在当x=﹣1时的值时要用到6次加法和15次乘法D.数据2,3,4,5的方差是数据4,6,8,10的方差的一半【解答】解:A选项,频率是概率的近似值,随着试验次数增加,频率会越来越接近概率,故A正确;B选项,每个个体被抽到的概率相等,故B错误C选项,用秦九韶算法计算多项式f(x)=12+35x+9x3+5x5+3x6在当x=﹣1时的值时要用到6次加法和6次乘法,故C错误;D选项,∵数据4,6,8,10分别是数据2,3,4,5的2倍,∴数据2,3,4,5的方差是数据4,6,8,10的方差的,故D错误.故选:A.2.(5分)2014年索契冬季奥运会的花样滑冰项目上,8个评委为某选手打出的分数如茎叶图所示,则这些数据的中位数是()A.84 B.85 C.86 D.87.5【解答】解:由茎叶图知,这些数据的中位数为:=86.故选:C.3.(5分)某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为()A.35 B.25 C.15 D.7【解答】解:青年职工、中年职工、老年职工三层之比为7:5:3,所以样本容量为=15.故选:C.4.(5分)从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是()A.至少有一个红球与都是红球B.至少有一个红球与都是白球C.至少有一个红球与至少有一个白球D.恰有一个红球与恰有二个红球【解答】解:从装有5个红球和3个白球的口袋内任取3个球,不同的取球情况共有以下几种:3个球全是红球;2个红球1个白球;1个红球2个白球;3个球全是白球.选项A中,事件“都是红球”是事件“至少有一个红球”的子事件;选项B中,事件“至少有一个红球”与事件“都是白球”是对立事件;选项C中,事件“至少有一个红球”与事件“至少有一个白球”的交事件为“2个红球1个白球”与“1个红球2个白球”;选项D中,事件“恰有一个红球”与事件“恰有二个红球”互斥不对立.故选:D.5.(5分)某产品的广告费用x与销售额y的统计数据如下表根据上表可得回归方程=x+的为9.4,据此模型预报广告费用为6万元时销售额为()A.63.6万元B.65.5万元C.67.7万元D.72.0万元【解答】解:∵=3.5,=42,∵数据的样本中心点在线性回归直线上,回归方程中的为9.4,∴42=9.4×3.5+,∴=9.1,∴线性回归方程是y=9.4x+9.1,∴广告费用为6万元时销售额为9.4×6+9.1=65.5,故选:B.6.(5分)圆O1:x2+y2﹣2x=0和圆O2:x2+y2﹣4y=0的公共弦长为()A.B.C.3 D.【解答】解:圆O1的圆心为(1,0),半径r1=1,圆O2的圆心为(0,2),半径r2=2,故两圆的圆心距,大于半径之差而小于半径之和,故两圆相交.圆和圆两式相减得到相交弦所在直线方程x ﹣2y=0,圆心O1(1,0)到直线x﹣2y=0距离为,由垂径定理可得公共弦长为2=,故选:B.7.(5分)设,求a2+a4+…+a2n的值()A.3n B.3n﹣2 C.D.【解答】解:令x=1,则(1+1+12)n=a0+a1+…+a2n①令x=﹣1,则(1﹣1+1)n=a0﹣a1+…+a2n②∴①+②得2(a0+a2+a4+…+a2n)=3n+1∴a0+a2+a4+…+a2n=令x=0,则a0=1,∴a2+a4+…+a2n=﹣1=故选:C.8.(5分)4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为()A.B.C.D.【解答】解:4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,基本事件总数n==6,取出的2张卡片上的数字之和为奇数包含的基本事件个数m==4,∴取出的2张卡片上的数字之和为奇数的概率为=.故选:C.9.(5分)某几何体的三视图如图所示,则该几何体的体积的最大值为()A.B.C.D.【解答】解:由三视图知,几何体是一个三棱锥,三棱锥的底面是一条直角边为1,斜边为b的直角三角形,∴另一条直角边是,三棱锥的一条侧棱与底面垂直,由勾股定理可知这条边是,∴几何体的体积是V=∵在侧面三角形上有a2﹣1+b2﹣1=6,∴V=,当且仅当侧面的三角形是一个等腰直角三角形,故选:D.10.(5分)如图,已知点P(2,0),正方形ABCD内接于⊙O:x2+y2=2,M、N 分别为边AB、BC的中点,当正方形ABCD绕圆心O旋转时,•的取值范围是()A.[﹣1,1]B.[﹣,]C.[﹣2,2]D.[﹣,]【解答】解:设M(cosα,sinα),∵,∴,∴N(﹣sinα,cosα),∴=(﹣sinα,cosα),=(cosα,sinα),∴=(cosα﹣2,sinα),∴=﹣sinα(cosα﹣2)+sinαcosα=2sinα,∵sinα∈[﹣1,1],∴2sinα∈[﹣2,2],∴•的取值范围是[﹣2,2].故选:C.二、填空题:本大题共5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.11.(5分)空间直角坐标系中与点P(2,3,5)关于yoz平面对称的点的坐标为(﹣2,3,5).【解答】解:根据关于坐标平面yOz的对称点的坐标的特点,可得点P(2,3,5)关于坐标平面yOz的对称点的坐标为:(﹣2,3,5).故答案为:(﹣2,3,5).12.(5分)由数字0,1,2,3,4组成的没有重复数字且比2000大的四位数的个数为72(用数字作答).【解答】解:当最高位为2时,其余的三位数任意取有=24个,当最高位为3或4的有=48个,根据分类计数原理可得,一共有72个.故答案为:7213.(5分)在(1+x2)(1﹣2x)6的展开式中,x5的系数为﹣352.【解答】解:根据题意,(1﹣2x)6展开式的通项为T r=C6r•(﹣2x)r=(﹣1)r C6r•2r x r,+1则(1+x2)(1﹣2x)6的展开式中出现x5的项有两种情况,第一种情况(1+x2)中出1,而(1﹣2x)6展开式中出x5项,其系数为1×(﹣1)525=﹣192,5C6第二种情况(1+x2)中出x2项,而(1﹣2x)6展开式中出x3项,其系数为=﹣160,则(1+x2)(1﹣2x)6展开式中x5的系数为﹣192﹣160=﹣352;故答案为:﹣352.14.(5分)根据如图算法语句,当输出y的值为31时,输入的x值为60.【解答】解:执行算法语句知程序的功能是求分段函数的值,其解析式为,故解得当y的值为31时,x的值为60.故答案为:60.15.(5分)如果自然数a的各位数字之和等于7,那么称a为“吉祥数”.将所有“吉祥数”从小到大排成一列a1,a2,a3,…,若a n=2005,则n=65.【解答】解:∵方程x1+x2+…+x i=m使x1≥1,x i≥0(i≥2)的整数解个数为.现取m=7,可知,k位“吉祥数”的个数为且P(1)==1,P(2)==7,P(3)==28对于四位“吉祥数”,其个数为满足a+b+c=6的非负整数解个数,即个.∵2005是形如的数中最小的一个“吉祥数”,∴2005是第1+7+28+28+1=65个“吉祥数”,即a n=2005,从而n=65.故答案为:65三、解答题:本大题共6个小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)高二某班50名学生在一次百米测试中,成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组[13,14),第二组[14,15),…,第五组[17,18],如图是按上述分组方法得到的频率分布直方图.(1)若成绩在区间[14,16)内规定为良好,求该班在这次百米测试中成绩为良好的人数;(2)请根据频率分布直方图估计样本数据的众数和中位数(精确到0.01).【解答】解:(1)根据频率分布直方图知,成绩在[14,16)内的人数为:50×0.18+50×0.38=28人;(2)由频率分布直方图知,众数落在第三组[15,16)内,是;∵数据落在第一、二组的频率为1×0.04+1×0.08=0.22<0.5,数据落在第一、二、三组的频率为1×0.04+1×0.08+1×0.38=0.6>0.5,∴中位数一定落在第三组[15,16)中;设中位数是x,∴0.22+(x﹣15)×0.38=0.5,解得中位数.17.(12分)已知关于x的一元二次方程x2﹣2ax+b2=0.(1)若a是从0、1、2、3四个数中任取的一个数,b是从0、1、2三个数中任取的一个数,求上述方程没有实根的概率;(2)若a是从区间[0,3]内任取的一个数,b是从区间[0,2]内任取的一个数,求上述方程没有实根的概率.【解答】解:(1)设事件A为“方程x2﹣2ax+b2=0无实根”;﹣﹣﹣﹣﹣﹣﹣﹣(1分)当△=4a2﹣4b2=4(a2﹣b2)<0,即a<b时,方程x2﹣2ax+b2=0无实根.﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)所有的(a,b)共12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2).其中,第一个数表示a的取值,第二个数表示b的取值.事件A包含3个基本事件(0,1),(0,2),(1,2),由于每个基本事件发生的可能性都相同,﹣﹣﹣﹣﹣﹣(4分)∴事件A发生的概率P(A)==.﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)答:方程x2﹣2ax+b2=0没有实根的概率为.﹣﹣﹣﹣﹣﹣﹣(7分)(2)设事件B为“方程x2﹣2ax+b2=0无实根”;﹣﹣﹣﹣(8分)如图,试验的所有基本事件所构成的区域为矩形OABC:{(a,b)|0≤a≤3,0≤b≤2},其中构成事件B的区域为三角形OEC,即{(a,b)|0≤a≤3,0≤b≤2,a<b},由于点(a,b)落在区域内的每一点是随机的,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)∴事件B发生的概率P(B)===.﹣﹣﹣﹣﹣﹣﹣(13分)答:方程x2﹣2ax+b2=0没有实根的概率为.﹣﹣﹣﹣﹣﹣﹣﹣(14分)18.(12分)已知在的展开式中,第5项的系数与第3项的系数之比是56:3.(1)求n;(2)求展开式中的所有有理项;(3)求C n1+9C n2+81C n3+…+9n﹣1C n n的值.【解答】解:(1)由题意可得,,解得n=10.=•(﹣2)r•,令5﹣为整数,r可取0,(2)因为通项公式为:T r+16,于是有理项为和T7=13400.(3)==.19.(12分)阅读如图的程序框图,解答以下问题:(1)如果输入的N=3,那么输出的S为多少?(2)对于输入的任何正整数N,都有对应S输出.证明:S<2.【解答】解:(1)第一次循环得到:T=1,S=1,k=2;第二次循环得到:;,4>3满足条件,输出(2)由题意知,而n>2时有n!>2n﹣1∴经验证,n=1,2也有S<2.20.(13分)如图,四棱锥P﹣ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD,侧面PAD⊥底面ABCD,且△PAD为等腰直角三角形,∠APD=90°,M为AP的中点.(Ⅰ)求证:AD⊥PB;(Ⅱ)求证:DM∥平面PCB;(Ⅲ)求平面PAD与平面PBC所成锐二面角的余弦值.【解答】(I)证明:取AD的中点G,连结PG、GB、BD.∵PA=PD,∴PG⊥AD…(2分)∵AB=AD,且∠DAB=60°,∴△ABD是正三角形,BG⊥AD,又PG∩BG=G,∴AD⊥平面PGB.∴AD⊥PB.…(4分)(II)证明:取PB的中点F,连结MF,CF,∵M、F分别为PA、PB的中点,∴MF∥AB,且.∵四边形ABCD是直角梯形,AB∥CD且AB=2CD,∴MF∥CD且MF=CD,…(6分)∴四边形CDMF是平行四边形.∴DM∥CF.∵CF⊂平面PCB,DM⊄平面PCB,∴DM∥平面PCB.…(8分)(III)解:∵侧面PAD⊥底面ABCD,又∵PG⊥AD,∴PG⊥底面ABCD.∴PG⊥BG.∴直线GA、GB、GP两两互相垂直,故以G为原点,直线GA、GB、GP所在直线为x轴、y轴和z轴,建立如图所示的空间直角坐标系G﹣xyz.设PG=a,则由题意得:,.∴.设是平面PBC的法向量,则且.∴取,得.∵M是AP的中点,∴.∴..∴.平面PAD的法向量,设平面PAD与平面PBC所成锐二面角为θ,则,…(10分)∴平面PAD与平面PBC所成锐二面角的余弦值为.…(12分)21.(14分)如图,圆C:x2﹣(1+a)x+y2﹣ay+a=0.(Ⅰ)若圆C与x轴相切,求圆C的方程;(Ⅱ)已知a>1,圆C与x轴相交于两点M,N(点M在点N的左侧).过点M 任作一条直线与圆O:x2+y2=4相交于两点A,B.问:是否存在实数a,使得∠ANM=∠BNM?若存在,求出实数a的值,若不存在,请说明理由.【解答】(Ⅰ)因为由可得x2﹣(1+a)x+a=0,由题意得△=(1+a)2﹣4a=(a﹣1)2=0,所以a=1,故所求圆C的方程为x2﹣2x+y2﹣y+1=0.(Ⅱ)令y=0,得x2﹣(1+a)x+a=0,即(x﹣1)(x﹣a)=0,求得x=1,或x=a,所以M(1,0),N(a,0).假设存在实数a,当直线AB与x轴不垂直时,设直线AB的方程为y=k(x﹣1),代入x2+y2=4得,(1+k2)x2﹣2k2x+k2﹣4=0,设A(x1,y1),B(x2,y2),从而.因为NA、NB的斜率之和为,而(x 1﹣1)(x2﹣a)+(x2﹣1)(x1﹣a)=2x1x2﹣(a+1)(x2+x1)+2a==,因为∠ANM=∠BNM,所以,NA、NB的斜率互为相反数,,即,得a=4.当直线AB与x轴垂直时,仍然满足∠ANM=∠BNM,即NA、NB的斜率互为相反数.综上,存在a=4,使得∠ANM=∠BNM.赠送初中数学几何模型【模型三】双垂型:图形特征:运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC.(1)如图,当∠APB=90°时,若AC=5,PC=,求BC的长;(2)当∠APB=90°时,若AB=APBC的面积是36,求△ACB的周长.2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.第21页(共21页)3.如图,在四边形ABCD 中,AB=AD ,∠DAB=∠BCD=90°,(1)若AB =3,BC +CD =5,求四边形ABCD 的面积(2)若p = BC +CD ,四边形ABCD 的面积为S ,试探究S 与p 之间的关系。

相关文档
最新文档