立体几何文档
立体几何_精品文档

方程的联系上. 贯穿于立体几何中的化归思想、分类讨论思想、数形结合思想以
及立体几何特有的平移法、正投影法、体积法、展开法、翻折法、割补法等都
极大地丰富了中学数学的思想和方法.
本章内容由两大部分构成, 前一部分主要介绍了常见的多面体和旋转体的结
构特征, 以对几何体的直观认识为主. 后一部分在学生丰富的直观形象基础上系
·
数
学
必 修
故选 D.
②
人 教 B
版
返回导航
第一章 立体几何初步
『规律方法』 识读三视图, 还原几何体画出直观图, 是一项重要的基本功, 解题要点是紧扣三视图画法规则, 抓住观察者与几何体的方位和正投影的性质, 确定几何体的形状.
数 学 必 修 ② 人 教 B 版
返回导航
·
·
第一章 立体几何初步
(1)设 G 是 OC 的中点,证明:FG∥平面 BOE; (2)证明:PA⊥平面 BOE.
数 学 必 修 ② 人 教 B 版
返回导航
·
第一章 立体几何初步
[解析] (1)如图,
取BC的中点H, 连接FH、GH,
∵G是OC的中点,
∴GH∥OB, FH∥PC,
又EO∥PC, ∴FH∥EO.
∴平面FGH∥平面EOB,
2 6.
而
VBCF-NEM=32VE-BNMC=32×2×VE-ANMD=
2 2.
数 学 必
∴VABCDEF=VBCF-NEM-VE-ANMD=
22-
62=
2 3.
修
②
人 教
B
版
返回导航
·
第一章 立体几何初步
『规律方法』 空间几何体的表面积和体积是立体几何中的重要知识, 与实 际问题联系密切, 求解时, 要熟练掌握几何的表面积和体积公式, 注意割补法和等 积变换思想, 等价转化思想, 并要把握住几何体的特点, 适当时候可借助轴截面或 其他平面图形处理几何体中的数量关系.
Ppt课件立体几何

空间几何的计算问题
总结词
需要掌握常见的计算方法和技巧
详细描述
解决空间几何计算问题需要学生掌握常见的计算方法和技巧,如代数运算、三角 函数、平面几何等。学生需要了解这些方法的适用范围和运用技巧,以便在计算 过程中能够灵活运用,提高计算效率和准确性。
06
立体几何的发展趋势
立体几何与其他学科的交叉研究
归纳解题技巧
根据不同的题型,归纳出相应的 解题技巧,以便更快地找到解题
方法。
强化练习
通过大量的练习,可以更好地掌 握解题方法,提高解题效率。
05
立体几何的难点解析
空间几何的作图问题
总结词
空间想象能力要求高
详细描述
立体几何的作图问题需要学生具备较高的空间想象能力, 能够准确地将二维平面图形转化为三维空间图形。这需要 学生不断练习,提高自己的空间感知和想象能力。
曲面立体中,有些面是曲面,有 些面是平面。
曲面立体中,曲面之间可能相交 或平行,也可能呈弧形相切。
立体图形的对称性
立体图形具有对称性,即存在 一个或多个对称轴或对称中心 。
对称轴将立体图形分为两个或 多个相等的部分。
对称中心将立体图形旋转180 度后与原图重合。
03立体几何的应用Fra bibliotek立体几何的应用
空间几何体的性质
空间几何体具有对称性、 重心、表面积和体积等性 质。
点、线、面的关系
点与直线的关系
一个点在直线上,或者在 直线外。
点与平面的关系
一个点在平面上,或者在 平面外。
直线与平面的关系
直线在平面上,或者与平 面平行,或者与平面相交 。
空间几何的度量关系
01
02
03
(完整版)立体几何初步(知识点梳理),推荐文档

春季高考立体几何部分知识点梳理及历年试题一.线面之间空间关系及证明方法A.线//线的证明方法1.将两条直线放到一个平面内(或者转移到同一平面内)利用平行四边形或者三角形的中位线来证明2. 一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.(线//面→线//线)3. 如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
(面//面→线//线)4.垂直于同一个平面的两条直线平行。
B.线⊥线的证明方法1.异面直线平移到一个平面内证明垂直2. 一条直线垂直于一个平面,则这条直线与平面内任意直线垂直.(线⊥面→线⊥线)C.线//面的证明方法1. 平面外一直线与平面内一直线平行,则该直线与此平面平行. (线//线→线//面)2. 如果两个平面平行,那么其中一平面内的任一直线平行于另一平面(面//面→线//面)D. 线⊥面的证明方法1.一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直(线⊥线→线⊥面)2. 两平面垂直,则一个平面内垂直于交线的直线垂直于另一个平面(面⊥面→线⊥面)E. 面//面的证明方法1.一个平面内有两条相交直线与另一个平面平行,则这两平面平行(线//面→面//面)2. 如果一个平面内的两条相交直线和另一个平面内的两条相交直线分别平行,那么这两个平面平行(线//线→面//面)3.垂直于同一条直线的两个平面平行。
4.平行于同一个平面的两个平面平行。
F. 面⊥面的证明方法1. 如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直(线⊥面→面⊥面)二.各几何体的体积公式柱体(圆柱,棱柱)V=s h 其中s 为底面积,h 为高∙椎体(圆柱,棱柱)V= 其中s 为底面积,h 为高13s ∙ℎ球体 体积V= 表面积S=443πr 3πr22012年春考真题23.已知空间四边形ABCD 中,E ,F ,G ,H 分别是边AB ,BC ,CD ,DA 的中点,给出下列四个命题:1.AC 与BD 是相交直线2.AB//DC3.四边形EFGH 是平行四边形4.EH//平面BCD 其中真命题的个数是A. 4B.3C.2D.1解析:如图AC 与BD 没有相交,是异面直线。
空间立体几何【完整版】

·
L
异面直线: 不同在任何一个平面内,没有公共点。 2 公理 4:平行于同一条直线的两条直线互相平行。 符号表示为:设 a、b、c 是三条直线 a∥ b c∥ b =>a∥c
强调:公理 4 实质上是说平行具有传递性,在平面、空间这个性质都适用。 公理 4 作用:判断空间两条直线平行的依据。 3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补 4 注意点: ① a'与 b'所成的角的大小只由 a、b 的相互位置来确定,与 O 的选择无关,为简便,点 O 一般取在两直线中的一条上; (0, ② 两条异面直线所成的角θ∈
A
α
L
A
B
B∈α 公理 1 作用:判断直线是否在平面内 (2)公理 2:过不在一条直线上的三点,有且只有一个平面。 符号表示为:A、B、C 三点不共线 => 有且只有一个平面α, 使 A∈α、B∈α、C∈α。
A B
α·
·
C
·
公理 2 作用:确定一个平面的依据。 (3)公理 3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共 直线。 符号表示为:P∈α∩β =>α∩β=L,且 P∈L 公理 3 作用:判定两个平面是否相交的依据 2.1.2 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系: 共面直线 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点; β α
2 2
3 圆锥的表面积 S rl r 5 球的表面积 S 4R
2
2
(二)空间几何体的体积 1 柱体的体积 3 台体的体积
V S底 h
2 锥体的体积
V
1 S底 h 3
高中立体几何(全一册)

高中立体几何 (全一册)第一章直线和平面第三单元空间直线和平面一、教法建议【抛砖引玉】本单元主要研究空间直线与平面的位置关系,是立体几何基础中的支柱.通过研究空间直线与平面位置关系的判定和性质,用以解决立体几何中的计算和证明问题.空间直线和平面的位置关系共分为两类:一是直线在平面内,如果一条直线上有不同的两点落在同一个平面内,那么整条直线就落这个平面内.此时直线这个点集是平面点集的真子集;二是直线在平面外,直线在平面外又分为两种情况:直线与平面平行,这里有平行的定义、平行的判定和平行的性质;还有直线与平面相交,当直线与平面有且仅有一个交点时,直线就与平面相交,相交时又有两种不同的位置关系,第一是直线与平面垂直,垂直的定义、垂直的判定和垂直的性质,同时提出了立体几何中最重要的定理──三垂线定理及其逆定理,为后续知识的学习奠定坚实的基础;第二是直线与平面斜交,有直线在平面内的射影和直线与平面所成角的概念.本单元的重点之一是研究直线与平面的平行.平行的定义是直线与平面没有公共点;如何判定直线与平面的平行呢?如果平面外的一条直线和这个平面内的某一条直线平行,那么这条直线就平行于这个平面.这就是判定定理,简称为“线线平行,线面平行”.直线和平面平行以后又有些什么性质呢?当直线a平行于平面α以后是否有平面内任何一条直线都平行于直线a呢?结论是否定的,我们有如下的性质定理:如果一条直线和一个平面平行,经过这条直线的一个平面与已知平面相交,那么这条直线就和交线平行.这是直线与平面平行的性质定理,简称为“线面平行,线线平行.”这两种简称都要在理解原定理的意思中说出各个线和面的意义.本单元重点之二是研究直线与平面的垂直.垂直的定义要求很高,一条直线如果垂直于一个平面内的任何一条直线,那么称这条直线垂直于这个平面.有了这个要求很高的定义以后,判定就变行相对宽松一些,如果一条直线垂直于平面内的两条相交直线,那么称这条直线垂直于已知平面.注意它的证明纯粹应用平面几何中等腰三角形的性质和判定.此外,还有两条平行直线与平面垂直的判定和性质的两个定理.平面的斜线与平面所成的角是指斜线和它在平面上的射影所成的锐角,特别地当直线垂直于平面时,直线与平面成直角;当直线平行于平面时,直线与平面成零角.因此,设Q是直线l与平面α所成的角时,角θ的取值范围是θ∈[0,2 ].本单元的重点之三是三垂线定理及其逆定理,它们都是研究直线与直线关系的.在研究空间图形时,常常利用它们把某些空间图形的计算问题转化为平面图形的计算问题,证明问题也的这样,所以三垂线定理及其逆定理是立体几何的重要支柱.这两个定理的证明仅仅用到直线与平面垂直的判定和定义,是不难掌握的,同学们在学习过程中应特别注意的是搞清三垂线定理及其逆定理的区别,应用定理时,说清究竟是用三垂线定理,还是三垂线定理的逆定理.【指点迷津】本单元的知识,既重要,又难学.教师对学生的指导必须在给学生认真讲清概念关键的同时,用模型给学生摆清各种直线和平面的位置关系,解决好使学生建立空间概念的问题.在教学过程中使学生的空间想象能力逐步得到培养;同时还要学会把空间想象出来的线面关系在二维平面上表示出来.在纸面上画出来.也就是要做到:第一,直线与平面的位置要想得出,能理解,会比划;第二是把想象出的位置关系画到平面上.这是有一定难度的.因为平面几何研究的是二维的平面图形的性质,学生从初中升入高一,本来就对想象三维空间的线面关系感到困难,又要把想象出来的三维线面关系重新表示到二维纸面上来,画好图,画得直观、生动,关键是符合科学性,而且看到图又要能想象出位置关系,而这个过程是必须要过的,而且一定要过好,这就叫做空间想象能力的培养.二、学海导航【思维基础】学习本单元的知识,主要抓住空间直线与平面的平行、斜交和垂直三种主要位置关系.每一种位置关系都要搞清一系列问题.例如,怎样定义直线与平面平行?如何判定直线与平面平行,有几种方法?直线与平面平行以后,有些什么性质?又例如,怎样定义直线与平面的垂直?如何判定直线与平面垂直,有几种方法?直线与平面垂直以后,又有些什么性质?都必须通过整理,弄懂弄通,运用自如,才真掌握了这些知识;还比如,平面的斜线中有一个斜线长和射影长的定理,这是必须注意定理的条件、前提,必须是以平面外一点出发的诸多斜线和一条垂线,如果遗忘这个条件,结论虽然是不对的.所以要求同学们认真地阅读理解定理中的原文原句,正确地掌握其内在含意.试完成以下各题:1.直线和平面平行的充要条件是这条直线和平面内的()(A)一条直线不相交(B)两条直线不相交(C)任意一条直线都不相交(D)无数条直线不相交2.设a、b是两条异面直线,下列命题中,正确的是()(A)有且仅有一条直线与a、b都垂直(B)有一个平面与a、b都垂直(C)过直线a有且仅有一个平面与b平行(D)过空间任何一点必可作一条直线与a、b都相交3.正方体AB CD—A1B1C1D1中,E、F分别是AA1和AB的中点,则EF与对角面AA1C1C 所成的角是()(A)300 (B)450(C)600(D)15004.设P是△AB C所在平面外一点,则点P在此三角形所在平面内的射影是△AB C的垂心的主要条件是()(A)P A=P B=PC (B)P A⊥B C且P B⊥A C(C)点P到△AB C三边的距离相等(D)P A、P B、PC与△AB C所在平面所成的角相等5.已知△AB C 在平面α的同侧,顶点A 、B 、C 到平面α的距离分别是11、7、3,G 是△AB C 的重心,则G 到平面α的距离等于 .6.已知长方体AB CD —A ′B ′C ′D ′中,AA ′=5,AB =12,那么直线B ′C ′′与平面A ′B CD ′的距离等于 .7.在长方体AB CD —A 1B 1C 1D 1中,AB =6,A D=8,AA 1=3.6,A E 与低面对角线B 1D 1垂直于点E .(1)求证 A 1E B 1D 1;(2)求 A E 的长.【学法指要】例1.四棱锥的四个侧面中,直角三角形的个数最多的是 ( )(A )1个(B )2个 (C)3个 (D)4个 解:如图,当四棱锥P —AB CD 的侧棱P A 垂直于底面AB CD 时,P A ⊥AB ,P A ⊥A D ,△P AB 和△P A D 都是直角三角形;当底面AB CD 是矩形时,∵B C ⊥AB ,由三垂线定理知B C ⊥P B ,∴△P B C 也是直角三角形,同理△PCD 也是直角三角形,因此侧面中直角三角形的个数最多是4个,选(D ).例如2.等腰直角三角形△AB C 中,AB =A C=1,P A ⊥平面AB C ,且P B =2.求P A 与平面P B C 所成角的正弦值. ( )解:如图,在AB C 中作A C ⊥B C 于D ,则D 是B C 中点,且A D=22,又因为P A =2,PD=412322+=, ∵A D ⊥B C ,由三垂线定理知PD ⊥B C ,∴B C ⊥平面P A D ,平面P A D ⊥平面P B C , 过A 作A O ⊥PD 于O ,则A O ⊥平面P B C .∠A PO=θ就是P A 与平面P B C 所成的角,在Rt △P A D 中,A O=PA AD PD ⋅=23, ∴sin θ=AO PA =13.即P A 与平面P B C 所成角的正弦值等于13. 例3.异面直线a 、b 分别与平面α平行,且a 、b 到平面α的距离相等,A 是直线a 上任意一点,B 是直线b 一的任意一点,求证线段AB 被平面α平分.证明:设CD 是异面直线a 、b 的公垂线段,CD 交平面α于点O ,则CO=DO ,如图,过D 作直线a ′∥a ,则相交直线a ′与b 确定的平面与平面α平行.过点A 作A ′A ⊥直线a ′,交直线a ′于点A ′,则AA ′⊥面α,设AA ′交平面α于点M ,则由于异面直线a 、b 到平面α的距离相等,所以A M=M A ′,即M 是AA ′的中点,又设AB 交平面α于点P ,连MP 、A ′B . 由于相交直线a ′与b 所确定的平面与平面α平行,这两个平行平面被平面AA ′B 所截,截得的交线MP 与A ′B 平行,由M 是AA ′的中点,知PM 是△AA ′B 的中位线,故P 是AB 的中点,即线段AB 被平面α平分.例4.在正方形SG 1G 2G 3中,E 、F 分别是G 1G 2、G 2G 3的中点,D 是EF 的中点,现沿SE 、SF 及EF 把正方形折成一个四面体,使G 1、G 2、G 3三点重合,重合后记为G ,那么在四面体S-EFG 中必有 ( )(A )SG ⊥△EFG 所在平面(B )SD ⊥△EFG 所在平面(C )GF ⊥△SEF 所在平面(D )GD ⊥△SEF 所在平面解:由于在平面图形SG 1G 2G 3中,SG 1⊥G 1G 2,SG 3⊥G 2G 3,所以折成四面休SGEF 中,∠SGE=∠SGF=Rt ∠,GE 、GF 、相交于点G ,因此SG ⊥△EFG 所在平面.故应选(A )例5.已知∠BA C 在平面α内,P A 是平面α的斜线,若∠P AB =∠P A C=∠BA C=600,P A =a .求点P 到坪面α的距离.解:过点P 作PO 平面α,∵∠P A C=∠P AB ,∴A O 平分∠BA C ,在平面α内,作OC ⊥A C于点C ,连PC ,由三垂线定理知PC ⊥A C .又∵∠P A C=600,P A =a ,∴A C=a 2∴A O=AC a cos30330= 在Rt △P A O 中,PO=PA AO a a a 22221363-=-= 故点P 到平面α的距离为63a . 例6.如图,AB CD 是边长为2a 的正方形,M 、N 分别是AB 、A D 的中点,PC ⊥平面AB CD ,PC=a .(1)求证:B D ∥平面PMN ;(2)求点B 到平面PMN 的距离.解:(1)∵M 、N 分别是正方形AB CD 的边AB 、A D 的中点,∴MN ∥B D ,MN ∈平面PMN ,∴B D ∥平面PMN .(2)∵AB CD 是正方形,∴B D ⊥A C ,MN ∥B D∴MN ⊥A C又∵PC ⊥平面AB CD ,MN ⊂平面AB CD ,∴MN ⊥PC .又PC ∩A C=点C .∴MN ⊥平面EPC .在平面EPC 内,作O H ⊥PE 于点H ,则MN ⊥O H ,∴O H ⊥平面PMN ,由于B D ∥平面PMN ,所以O H 的长就是点B 到平面PMN 的距离.在Rt △PCE 中,PC= a ,EC=()∴PE=222a ,又EO=22a ∵△E H O ∽△ECP ,∴O H :PC=EO :PE , ∴O H =PC EO PE a ⋅=1111. 故点B 到平面PMN 的距离为1111a . 例7.如图,A D 是△AB C 中B C 边上的高,在A D 上取一点E ,使A E=12ED ,过E作直线MN 平行于B C ,交AB 于M ,交A C 于N ,现将△A MN 沿MN 折过去,此时点A 到了A ′的位置,如果∠A ′ED=600,求证:E A ′⊥平面A ′B C .证明:连结A ′B 、A ′C 、A ′D ,∵A E=12ED ,A ′E=A E , ∴A ′E=12ED ,∠A ′ED=600, 在A ′ED 中,由余弦定理求得A ′D =32ED . ∴E A ′D=900,即E ′A ⊥A ′D .又A D ⊥B C ,MN ∥B C ,∴MN ⊥A D .即MN ⊥A ′E ,MN ⊥ED .因此MN ⊥平面E A ′D ,即B C ⊥平面E A ′D .E A ′⊂平面E A ′D∴E A ′⊥B C ,E A ′⊥A ′D ,A ′D ∩B C=点C∴E A ′⊥平面A ′B C评注:通常是知道位置关系,如平行,垂直等来进行计算,这里的关键在于利用A E=12ED 和∠A ED=600这两个数量关系来推断E A ′⊥A ′D ,这个位置关系,同学们应该学会.例8.已知平面α、β相交于直线PQ ,线段O A 、O B 分别垂直于平面α、β,其中A 、B 为垂足.求证:(1)PQ ⊥平面A O B(2)PQ ⊥AB .证明:(1)∵O A ⊥平面α⇒ O A ⊥PQPQ ⊥平面αO B ⊥平面β ⇒ PQ ⊥平面A O B⇒ O B PQPQ ⊂平面βO A ∩O B =点O(2)∵PQ ⊥平面A O BPQ ⊥ABAB ⊂平面A O B评注:同学们在推理论证的学习达到一定的熟练程度的时候,可以学习运用推出符号“⇒”来进行论证,这样的证明因果关系清晰,简洁明了.但是应注意两点,第一是条件必须具备齐全,然后直接运用定理便可推出;第二是必须按序一步一步地推得,不能把条件全部罗列,一个推出符号“⇒”就得到最后结论,这是不对的,请同学们学习时注意.例9.如图,地平面上有一竖直的旗杆OP ,为了测得它的高度h ,在地面上选一条基线AB ,AB =20米,在A 点处测得点P 的仰角为∠O A P=300,在B 点处测得点P 的仰角为∠O B P=450,又测得∠A O B =600.求旗杆的高(结果可以保留根号).解:设旗杆的高OP =h ,在Rt △P A O 中,∴∠P A O=300,∴A O=3h ,在Rt △P B O 中,∵∠P B O=450,∴B O=h ,在△A O B 中,∠A O B =600,由余弦定理知AB 2=A O 2+B O 2-2A O ·B O cos600,∴400=3h 2+h 2-23·h 212 ∴(4-3)h 2=400.H =2043-(米).答:旗杆的高度为h =2043-米.例10.在四面体AB CD 中,已知棱AB ⊥CD ,棱A C ⊥B D .求证棱A D ⊥B C .证明:设顶点A 在平面B CD 内的射影为O ,即 A O ⊥平面B CD 于点O ,则因为AB ⊥CD ,由三垂线逆定理知B O ⊥CD ,同理CO ⊥B D . 因此O 时△B CD 的垂心,连DO ,则DO ⊥B C ,由三垂线定理知A D ⊥B C .评注:应用三垂线定理时,正定理和逆定理不能搞错.已知平面内的直线与斜线在这个平面内的射影垂直,得到平面内的直线与斜线垂直是三垂线定理.反之,已知平面内的直线与平面的斜线垂直,推得这条直线和斜线在已知平面内的射影也垂直,是三垂线定理的逆定理.例11.已知Rt △AB C 的斜边AB 在平面α内,两直角边A C 、B C 与平面α分别成θ1和θ2角,若平面AB C 与平面α成二面角为.求证:sin 2θ1+sin 2θ2=sin 2φ证明:设直角顶点C 在平面α内的射影为O ,连结A O 、B O ,则∠C A O=θ1,∠C B O=θ2.设CO=h ,则sin θ1=h AC, sin θ2=h BC在平面AB C 中,作CD ⊥AB 于D ,连结OD ,由三垂线逆定理知OD ⊥AB 且∠CDO=φ就是平面AB C 与平面α所成二面角的平面角,而且sin φ=h CD∵sin 2θ1+sin 2θ2 =h AC h BC h AC BC AC BC 22222222+=⋅+⋅ =h AB AC BC 2222⋅⋅ 在Rt △AB C 中,∵CD ·AB =A C ·B C ,∴⋅⋅AB AC BC =1CD. ∴sin 2θ1+sin 2θ2=h AB AC BC 2222⋅⋅=h CD22=sin 2φ. 故有结论成立.例12.平面M 的一条斜线与平面M 所成的角为α,该平面内过斜足的一条直线与斜线在平面内的射影所成的角为β,与斜线所成的角为γ.求证:cos γ=cos α·cos β.证明:如图,PO 是平面M 的垂线,P A 是平面M 的斜线,O A 就是斜线P A 在平面M 内的射影,∠P A O=α就是斜线P A 与平面M 所成的角.AB 是平面M 内过斜足A 的直线,它与射影O A 所成的角为,即∠O AB=β,AB 与斜线P A 所成的角为γ,所以∠P AB =γ.在平面M 内,作O B ⊥AB 于点B .连结P B ,则由三垂线定理知P B ⊥AB ,因此,在Rt△P A O ,Rt △A O B 和Rt △P B O 中,有cos α=OA PA ,cos β=AB OA ,cos γ=AB PA因此有 cos γ=cos α·cos β.例13.已知三棱锥P —AB C 的三条侧棱P A 、P B 、PC 两两互相垂直.(1)求证点P 在平面AB C 内的射影G 是△AB C 的垂心;(2)求证△A P B 、△B PC 、△CP A 的面积平方和等于△AB C 面积的平方;(3)设二面角P —AB —C 、P —B C —A 、P —C A —B分别为α、β、γ,求证cos α·cos β·cos γ≤39 证明:(1)P A ⊥P BP A ⊥PC ⇒P A ⊥平面PB C⇒ P A ⊥B C ⇒A G ⊥B CP B ∩P B =点P PC ⊂平面P B C A G 是P A 的射影同理 B G ⊥A C ,CG ⊥AB 所以G 是△AB C 的垂心.(2)延长A G 交B C 于H ,连结P H ,∵P A ⊥平面P B C ,P H ∈平面P B C ,∴P A ⊥P H 即∠A P H =900.在Rt △P AH 中,P H 2=AH ·G H .∴(S △B PC )2=14B C 2·P H 2=14B C 2·AH ·G H =(12B C ·AH )(12B C ·G H )=S △AB C ·S △G B C . 同理(S △A P B )2=S △AB C ·S △GBC ,(S △CP A )2=S △AB C ·S △GC A ,将三式相加,便得(S △B PC )2+(S △CP A )2+(S △A P B )2=(S △AB C )2(3)∵cos=S S GAB PAB ∆∆,cos=S S GBC PBC ∆∆,cos=S S GCA PCA∆∆, ∴cos 2+cos 2+cos 2=1 ∵cos cos cos (cos cos cos )22232221313αβγαβγ⋅⋅≤++= ∴cos cos cos 222127αβγ⋅⋅≤ ∵α、β、γ为锐角.∴cos cos cos αβγ⋅⋅≤39【思维扩散】空间的直线与平面是立体几何第一章的重点.每种位置关系展开都有一系列判定定理和性质定理,学习过程中对定理的条件,定理应用的适用范围必须作周密的考虑和判定,不能一概而论,肓目应用.看下面的两个命题:命题1.已知平面α∩平面β=直线l ,直线b ∥平面α,直线b ∥平面β,则直线∥b .命题2.已知P A 是平面α的斜线,PO 是平面α的垂线,如果直线l 垂直于斜线P A ,那么直线l 一定垂直于其射影PO .命题1中的结论显然是正确的,可以这样来证明:过直线b 作平面γ,设γ∩β=直线a ,则因为直线b ∥平面β,所以直线b ∥直线a ,又因为直线b ∥平面α,直线a 在平面α外,所以,直线a ∥平面α,平面β是经过a 且与平面α相交于直线l 的平面,所以直线a ∥直线l ,由三线平行公理知直线b ∥直线l .命题2中的结论显然是错误的.平面α的垂线,斜线摆好以后,三垂线定理说的是“平面α内”的直线l ,这个条件省略以后,命题就可能是不正确的.因为垂直于斜线P A 的直线许多种不同的位置,只要在垂直于P A 的 平面内的直线都垂直于P A ,但显然不能都与射影O A 垂直.思想问题首先应该严格按照命题的条件,题目的已知,其次是在允许范围内多方位、多角度地思考问题,可以为我们创造性思维的培养奠定坚实的基础.三、智能显示【心中有数】本单元直线与平面的位置关系是立体几何第一章线面关系的重点,主要是空间直线与平面平行、空间直线与平面垂直及空间直线与平面斜交三种位置关系,每种位置关系都有定义、判定、性质等一整套理论,必须熟练地掌握,正确地使用.【动脑动手】解答下列一组题目,以检查学习效果:1.已知直线a 、b 和平面α,以下四个命题中,①a ∥b②a ⊥α ⇒b ⊥α⇒ a ∥b a ⊥αb ⊥α ③a ⊥α④a ∥α ⇒ b ∥α⇒ b ⊥α a ⊥ba ⊥b 其中正确命题是(A ) ①、②(B )①、②、③ (C) ②、③、④ (D )①、②、④2.已知直线m 、n 和平面,则α⊥β的一个充分条件是(A )m ⊥n ,m ∥α,n ∥β(B )m ⊥n ,α∩β=m ,n ⊂α(C )m ∥n ,m ⊂α,n ⊥β(D)m ∥n ,m ⊥α,n ⊥β3.如果直线l 是平面α的斜线,那么在平面内(A )不存在与l 平行的直线(B)不存在与l垂直的直线(C)与l垂直的直线只有一条(D)与l平行的直线无数多条4.在下列命题中,偶命题是()(A)若a、b是异面直线,则一定存在平面α,过a且与b垂直(B)若a、b是异面直线,则一定存在平面α,过a且与b垂直(C)若a、b是异面直线,则一定存在平面α,与a、b所成的角相等(D)若a、b是异面直线,则一定存在平面α,与a、b的距离相等5.如图,点P是三棱锥S—AB C的面S B C内一点.(1)过P作PQ∥平面AB C;(2)过(1)中得到的PQ作平面α∥平面AB C;(3)在面AB C内求一点R,使PR∥平面S AB,且R到A C和B C的距离相等.6.已知M、N是棱长为a的正方体AB CD—A1B1C1D1中棱A1B1和A1D1的中点.(1)求证B D∥平面A MN;(2)求点B到平面A MN的距离.【创新园地】正四棱柱AB CD—A1B1C1D1中,AB=a,AA1=b (b>a),A M⊥A1B,交B1B于点M.(1)求证:B D1⊥平面M A C;(2)求点B到平面M A C的距离.证明:(1)D1A1是平面AA1B1B的垂线,B D1是平面AA1B1B的斜线,A1B是斜线B D1在平面AA1B1B内的射影,A M是平面AA1B1B内的一条直线,因为A M⊥A1B,由三垂线定理知B D1⊥A M;又D1B⊥A C,A C∩A M=点A,所以B D1⊥平面M A C.(2)解法(一),作对角面BB1D1D,交A C于O,连OM,则OM就是对角面BB1D1D 与平面M A C的交线,∵A C⊥平面BB1D1D,∴平面A MC⊥平面BB1D1D,在平BB1D1D内,作BH⊥OM于点H则BH就是点B到平面M A C的距离.∵AB=a,AA1=b,Rt△AB M∽Rt△A1AB,∴BMABABAA=1,∴B M=ab2.又∵B O=22a,∴MO=BM BOaba b2222242+=+.因此BH=BM BOMOa a ba b⋅=++2222222.解法(二):∵AB=a, AA1=b,同理求得B M=ab2.因为AB C的面积为12a2,所以三棱锥M—AB C的体积是V SH a a b a b==⋅⋅=1313126224. 另一方面,因为B O=a 22a ,MO=2222b a b a +, 所以A MC 的面积为 S A MC=12A C ·MO=22222b a ba +. 设B 到平面A MC 的距离为x ,则三棱锥M —AB C 的体积又可以这样计算:x S V A M C ⋅=∆31 所以 ba b a b a x 622314222=+⋅ 即 x =2222222ba b a a ++ 因此点B 到平面A MC 的距离为2222222b a b a a ++. 评析:求点到平面的距离,方法很多,可能直接作出这个距离来求,一般要用到平面与平面的垂直.因为两个平面互相垂直,在一个平面内垂直于它们交线的直线,垂直于另一个平面.点到平面的距离就可以求出来了.另一种方法是不作出距离,而是利用体积法换法,直接求出点到平面的距离.(本单元完)【思维基础】答案:1.C ;2.C ; 3.A ; 4.B ; 5.7;6.1360; 7.A E=6.【动脑动手】答案:1.A ;2.C ; 3.A ; 4.B ; 5.略; 6.a 32.四、同 步 题 库A 组(一)选择题1.下面说法中,正确的是( )(A )若一条直线与一个平面不相交,则这条直线和这个面平行;(B )若一条直线与一个平面内任何一条直线都不相交,则此直线与这个平面平行; (A ) 若直线上有无数个点不在平面内,则这条直线与平面平行;(B ) 若直线与平面内无数条直线平行,则这条直线与这个平面平行.2.直线与平面垂直是指( )(A ) 直线与平面只有一个公共点;(B ) 直线与平面内的两条直线都垂直;(C )直线与平面内无数条直线都垂直; (D )直线与平面成90°角.3.和一个平面成等角的两条直线的位置关系( )(A )平行; (B )相交; (C )异面; (D )以上都可能 4.P 是△ABC 所在平面外一点,若PA=PB=PC ,则P 在平面ABC 内的射影是△ABC 的( )(A )外心; (B )内心; (C )垂心; (D )重心 5.下列命题中正确的是( ) (A )⎩⎨⎧⊥⇒⊥b a a b a α//; (B )⎩⎨⎧⇒⊥⊥b a a b a //α(C )⎩⎨⎧⇒⊥⊥αα//a b a a (D ) ⎩⎨⎧⊥⇒⊥ααb ba a //6.如图,AD 是Rt △ABC 斜边BC 上的高,PA ⊥D 面ABC ,图中共有直角三角形有( )7.直角三角形ABC 的斜边AB 在平面α内,直角项点C 在α上的射影为C′,△ABC′是( ) (A )直角三角形 (B )锐角三角形;(C )钝角三角形 (D )锐角或钝角三角形8.在矩形ABCD 中,AB=3,BC=4,PA ⊥平面ABCD ,且PA=1,则P 到对角线BD 的距离是( )(A )2921; (B )513; (C )517; (D )119519.长方体的一条对角线与各个面所成的角为α、β、γ,则下列等式正确的是( ) (A )sin2α+sin2β+sin2γ=32; (B)cos2α+cos2β+cos2γ=1 (C) sin2α+sin2β+sin2γ=2; (D)cos2α+cos2β+cos2γ=210.对两条异面直线在同一平面内的射影,下列说法中正确的是( )(A )不可能是两点; (B )不可能是一直线和一点(C )不可能是两平行线; (D )不可能是两相交直线 (二)填空题1.a ∥b,b ⊂a,则直线a 、b 的位置关系是 .2.已知点A 和直线l ,A ∉l,则过点A 与直线l 平行的直线有 条;过点A 与直线l 垂直的直线有 条;过点A 作与直线l 平行的平面有 个;过点A 作与直线l 垂直的平面有 个.3.在棱长为a 的正方体ABCD-A 1B 1C 1D 1中,点A 到C 1D 的距离为 ;点A 到B 1C 的距离为 ;点A 到平面BB 1D 1D 的距离为 ;AA 1到平面BB 1D 1D 的距离是 ,AA 1与BD 1的距离是 .4.若PO ⊥平面AOB ,∠AOB=90°,AB=a ,∠PAO=∠PBO=α,C 是AB 的中点,则PC= .5.l 是平面α内直线,A 是α外一点,设A 到α的距离为d 1,A 到l 的距离为d 2,则d 1 d 2.6.AB ∥平面α,AA′⊥α于A′,BB′是α的斜线,B′是斜足,若AA′=9,BB′=36,则BB′与α所成角为 .7. ∠XOY=60°在平面α内,OA=α是α的斜线,∠AOX=∠AOY=45°,则点A 到α的距离是 .8.如果平面外的一条直线上有两点到这个平面的距离相等,则这条直线和这个平面的位置关系是 .9.△ABC 的面积为S ,BC α,点A 到面平α的距离等于点A 到BC 的距离的53,则△ABC 在α上的射影的图形面积是 .10.点P 到平面α的垂线段PO=12cm ,斜线段PA 、PB 分别为13cm 和20cm ,则A ,B 两点的最大距离是 .最小距离是 .(三)解答题1.已知P 是□ABCD 所在平面外一点,M 是PD 的中点(如图),求证:PB ∥平面MAC.2.已知直线l ∥平面α,l ∥平面β,且α β=m ,(如图).求证:l ∥m.3.在空间四边形ABCD 中,AB ⊥CD ,AD ⊥BC ,求证:BD ⊥AC.4. 如图,线段AB=α,在平面α内,CA ⊥α,BD 与α所成角为30°,BD ⊥AB ,C 、D 在α同侧CA=BD=b ,求:(1)CD 的长; (2)直线CD 与α所成角的正切值.5.如图,三棱柱ABC-A 1B 1C 1中,AB=2,BC=CA=AA 1=1,A 1在底面ABC 上的射影是O 点.(1)O 与B 能否重合?试证明你的结论;(2)若O 在AC 上.求BB 1与侧面AC 1的距离.B 组(一)选择题1.下列四个命题中 (1)若a ∥α,b ∥α, 则a ∥b ;(2)若a ∥b, a ∥α,则b ∥α; (3)若a ∥α,则a 平行于α内的任意直线;(4)若a 平行于α内的无数条直线,则a ∥α.其中正确的命题个数是( )(A )0; (B )1; (C )2; (D )3 2.下列命题中正确的是( ) (A )若a ⊥α,b ⊥α,c ⊥α,则直线α平行于过直线b 、c 的平面;(B ) 若a ∥α,b ∥α,且a 、b 到平面α的距离不相等. 则a 、b 是异面直线; (C ) 若a ∥α, b ∥α,且a 、b 到平面α的距离相等,则a 、b 相交或平行;(D )若a ∥α, b ∥α,且a 、b 到平面α的距离相等,则与a 、b 都相交的直线在平面α外.3.在同一平面α的射影等长的两条线段是( ) (A )如果有一公共端点,则它们必等长;(B ) 如果等长,则它们必有公共点;(C )如果平行,则它们必等长; (D )如果等长,则它们必平行.4.与空间四边形ABCD 四个顶点距离相等的平面有( )(A )4个; (B )5个; (C )6个; (D )7个5.AB 是⊙O 的直径,SA 垂直于⊙O 所在的平面M ,平面M 内有一动点P ,使PB ⊥PS ,则P 的位置( ) (A )⊙O 外; (B )⊙O 上; (C )⊙O 内; (D )不能确定6.如图,正方形SG 1G 2G 3中,E ,F 分别是G 1G 2,G 2G 3的中点,D 是EF 中点. 现沿SE 、SF ,及EF 把这个正方形折成一个四面体,使G 1、G 2、G 3重合,记作G 则(A )SG ⊥FEG ; (B )SD ⊥面EFG ; (C )GF ⊥面SEF ; (D )GD ⊥面SEF7.直角△ABC 的两直角边BC=3,AC=4,PC ⊥面ABC ,且PC=59,则P 到斜边AB 的距离是( ) (A )3; (B )4; (C )15; (D )428.斜线AB 与平面M 成θ角,BC M ,AA′⊥M ,A′是垂足,若∠ABC=α,∠A ′BC=β,则( ) (A )sinα=sinθsinβ; (B) sinβ=sinθsinα(C) cosα=cosθcosβ; (D) cosβ=cosθcosα(二)填空题1.将矩形ABCD沿着平行于BC的线段EF折起,连结AB和CD(如图),则AB与EF 所成角等于,BC与AE所成角等于,点A到BC的距离等于线段的长,若AE=EB=4cm,∠AEB=120°,则AD与BC的距离等于. AD与平面BCFE的距离等于, EF到平面BD的距离等于.2.Rt△ABC,∠C=90°,CA=12,BC=5,BC 平面αA到α的距离是10,则△ABC的垂心、内心到α的距离分别为.3.过平面α外一点引两条斜线,它们与α所成角分别是30°,45°,且它们在α内的射影互相垂直,则这两条线夹角的余弦值为.4.P是等腰梯形ABCD外一点,且PA=PB=PC=PD,若P在面ABCD的射影P′在梯形ABCD 外,则应满足.5.AC是平面α内的一条射线,P为α外一点,PA=2,P到α的距离为1,设∠PAC=θ,m=tgθ,则m的取值范围是.(三)解答题1.如图,两个全等正方形ABCD和ABEF,所在平面相交于AB,M∈AC,N∈FB,求证:MN∥平面BCE.2.已知AB是异面直线a、b公垂线,AB=2cm,a、b所成角为30°,在直线a上取一点P 使PA=4cm,求P到直线b的距离.3.空间四边形ABCD中,△ ABC是正三角形,AD⊥面ABC,H是A在面BCD上的射影. 求证:H不可能是△BCD的垂心.4.如图,已知斜边为AB的Rt△ABC,过点A作AP⊥平面ABC,AE⊥PB于点E,AF⊥PC 于点F,(1)求证:PB⊥平面AEF.(2)若AP=AB=2,试用tgθ(θ是∠BPC)表示△AEF 的面积.当tgθ取何值时,△AEF 的面积最大?最大面积是多少?C 组(一)选择题1.在空间中,给出如下命题 (1)垂直于同一直线的两直线平行;(2) 平行于同一平面的两直线平行;(3)与同一平面成等角的两直线平行; (4) 与同一平面内的射影是两条平行线的两直线平行,其中真命题的个数是( )(A )0; (B )1; (C )2; (D )3.2.从平面外一点向平面引垂线和若干斜线,若斜线与平面所成的角相等,则( )(A )斜足一定是正多边形的顶点; (B )垂足是斜足为顶点的多边形的内心;(C )垂足是斜足为顶点的多边形的外心; (D )垂足是斜足为顶点的多边形的垂心.3.如图,PC ⊥面α,垂足为C ,AB α,CB ⊥AB ,垂足为B ,则线段PA 、PB 的大小关系是( )(A )PA<PC<PB; (B) PC>PB>PA;(C) PA<PB<PC; (D) PB>PA>PC.4.若a ∥α,且a 和α的距离为d ,则平面α内( )(A )有且只有一条直线与l 的距离为d ; (B )所有直线与l 的距离都等于d ;(C ) 有无数条直线与l 的距离都等于d ; (D )所有直线与l 的距离都不等于d.5.线段AB 两端点到平面α的距离分别是6cm 和10cm ,则它的中点到α的距离是( ) (A )6cm; (B)8cm; (C)2cm; (D)8cm 或2cm6.异面直线a 、b 互相垂直,它们与平面β都相交,若α与β所成角为38°,则b 与β所成角大小()(A)一定是52°;(B)最大是52°;(C)最小是52°;(D)可以是0°90°中的任意角度(二)填空题7.直线与平面所成的角α的取值范围.8.若P是△ABC所在平面外一点,且PA、PB、PC两两垂直,则P在△ABC内的射影是△ABC的.9.直线EF平行于平面α内的两直线AB、CD,EF与α的距离为15,与AB的距离是17,又AB与CD间的距离是28,则EF和CD的距离是.10.如图,在正方体ABCD-A1B1C1D1中,M是棱DD1的中点,O是底面ABCD的中心,P为棱A1B1上任意一点,则直线OP与直线AM所成的角是.(第10题)(三)解答题11.如图,已知AB和CD是异面直线,AB⊥平面α于B,CD⊥平面β于D,且AC是AB 和CD的公垂线,α β=l.求证:AC∥l12.PA⊥矩形ABCD所在平面,M、N分别是AB和PC的中点. (1)求证:MN∥平面PAD.(2)求证:MN⊥CD;(3)若∠PDA=45°,求证:MN⊥平面PCD.(第11题) (第13题)13.如图,正方体,ABCD-A1B1C1D1的棱长为1,O、O1分别是ABCD与A1B1C1D1的中心;(1)求证:OD1∥平面A1C1B1.(2)求D1O与平面A1C1B的距离;(3)求BD 与平面A 1C 1B 所成角.答案与提示同步题库A 组(一)选择题1.B2.D3.D4.A5.B6.B7.C8.B9.D 10.A (二)填空题 1.异面成平行2.1; 无数; 无数;13.a; a; a a a 22;22;22. 4.α2212tg a+; 5.≤; 6.60° 7.a 338. 平行或相交 9.S 5410.21cm; 11cm (三)解答题 1.(略) 2.(略) 3.(略)4.(1)CD=22b a +; (2)2234ba b +5.(1)不垂直,(2)BB 1与侧面AC 1的距离即为BC 长即BC=1.B 组(一)选择题 1.A 2.D 3.C 4.D 5.B 6.A 7.A 8.C(二)填空题1. 90°; 90°; AB;43cm; 23cm; 2cm.2.310cm; 35cm 3.42 4.∠ABD>90°(或∠ACD=90°) 5.m≥33。
(完整版)立体几何中的轨迹问题(总结+讲义+练习),推荐文档

立体几何中的轨迹问题在立体几何中,某些点、线、面依一定的规则运动,构成各式各样的轨迹,探求空间轨迹与求平面轨迹类似,应注意几何条件,善于基本轨迹转化.对于较为复杂的轨迹,常常要分段考虑,注意特定情况下的动点的位置,然后对任意情形加以分析判定,也可转化为平面问题.对每一道轨迹命题必须特别注意轨迹的纯粹性与完备性.立体几何中的最值问题一般是指有关距离的最值、角的最值或面积的最值的问题.其一般方法有:1、几何法:通过证明或几何作图,确定图形中取得最值的特殊位置,再计算它的值;2、代数方法:分析给定图形中的数量关系,选取适当的自变量及目标函数,确定函数解析式,利用函数的单调性、有界性,以及不等式的均值定理等,求出最值.轨迹问题【例1】如图,在正四棱锥S-ABCD中,E是BC的中点,P点在侧面△SCD内及其边界上运动,并且总是保持PE AC.则动点P的轨迹与△SCD组⊥成的相关图形最有可能的是( )D DA.B.C.解析:如图,分别取CD、SC的中点F、G,连结EF、EG、FG、BD.设AC与BD的交点为O,连结SO,则动点P的轨迹是△SCD的中位线FG.由正四棱锥可得SB⊥AC,EF⊥AC.又∵EG∥SB ∴EG⊥AC∴AC⊥平面EFG,∵P∈FG,E∈平面EFG,∴AC⊥PE.另解:本题可用排除法快速求解.B中P在D点这个特殊位置,显然不满足PE AC;C中P点所在的轨⊥迹与CD平行,它与CF成角,显然不满足PE AC;D于中P点所在的轨迹与CD平行,它与CF所成的角π4⊥为锐角,显然也不满足PE AC.⊥评析:动点轨迹问题是较为新颖的一种创新命题形式,它重点体现了在解析几何与立体几何的知识交汇处设计图形.不但考查了立体几何点线面之间的位置关系,而且又能巧妙地考查求轨迹的基本方法,是表现最为活跃的一种创新题型.这类立体几何中的相关轨迹问题,如“线线垂直”问题,很在程度上是找与定直线垂直的平面,而平面间的交线往往就是动点轨迹.【例2】(1)如图,在正四棱柱ABCD —A1B1C1D1中,E、F、G、H分别是CC1、C1D1、DD1、DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M满足时,有MN∥平面B1BDD1.(2)正方体ABCD—A1B1C1D1中,P在侧面BCC1B1及其边界上运动,且总保持AP⊥BD1,则动点P的轨迹是线段B1C.(3)正方体ABCD —A1B1C1D1中,E、F分别是棱A1B1,BC上的动点,且A1E=BF,P为EF的中点,则点P的轨迹是线段MN(M、N分别为前右两面的中心).(4)已知正方体ABCD—A1B1C1D1的棱长为1,在正方体的侧面BCC1B1上到点A距离为的点的集合形成一条曲线,那么这条曲线的形状是,它的长度是.1ACC1AE1AA1A1(1)(2)(3)(4)若将“在正方体的侧面BCC1B1上到点A距离为的点的集合”改为“在正方体表面上与点A距离为的点的集合”那么这条曲线的形状又是,它的长度又是.A【例3】(1)(04北京)在正方体ABCD -A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点,若P 到直线BC 与直线C 1D 1的距离相等,则动点P 的轨迹所在的曲线是 ( D )A .A 直线B .圆C .双曲线D .抛物线变式:若将“P 到直线BC 与直线C 1D 1的距离相等”改为“P 到直线BC 与直线C 1D 1的距离之比为1:2(或2:1)”, 则动点P 的轨迹所在的曲线是 椭圆 (双曲线).(2)(06北京)平面α的斜线AB 交α于点B ,过定点A 的动直线l 与AB 垂直,且交α于点C ,则动点C 的轨迹是 (A )A .一条直线B .一个圆C .一个椭圆D .双曲线的一支解:设l 与l 是其中的两条任意的直线,则这两条直线确定一个平面,且斜线AB 垂直这个平面,由过平面外一点有且只有一个平面与已知直线垂直可知过定点A 与AB 垂直所有直线都在这个平面内,故动点C 都在这个平面与平面α的交线上,故选A .(3)已知正方体ABCD —A 1B 1C 1D 1的棱长为1,M 在棱AB 上,且AM =,点P 到直13线A 1D 1的距离与点P 到点M 的距离的平方差为1,则点P 的轨迹为 抛物线 .(4)已知正方体ABCD —A 1B 1C 1D 1的棱长为3,长为2的线段MN 点一个端点M 在DD 1上运动,另一个端点N 在底面ABCD 上运动,则MN 的中点P 的轨迹与正方体的面所围成的几何体的体积为 .π6【例4】(04重庆)若三棱锥A -BCD 的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与△ABC 组成图形可能是:( D )BAB CD 【例5】四棱锥P -ABCD ,AD ⊥面PAB ,BC ⊥面PAB ,底面ABCD 为梯形,AD =4,BC =8,AB =6,∠APD =∠CPB ,满足上述条件的四棱锥的顶点P 的轨迹是()A .圆B .不完整的圆C .抛物线D .抛物线的一部分分析:∵AD ⊥面PAB ,BC ⊥平面PAB ∴AD ∥BC 且AD ⊥PA ,CB ⊥PB ∵∠APD =∠CPB ∴tanAPD =tanCPB∴=AD PA CBPB ∴PB =2PA在平面APB 内,以AB 的中点为原点,AB 所在直线为x 轴建立平面直角坐标系,则A (-3,0)、B (3,0),设P (x ,y )(y ≠0),则(x -3)2+y 2=4[(x +3)2+y 2](y ≠0)即(x +5)2+y 2=16(y ≠0)∴P 的轨迹是(B)1AA 3A立体几何中的轨迹问题(教师版)1.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 与到直线B 1C 1的距离相等,则动点P 所在曲线的形状为(D ).A .线段B .一段椭圆弧C .双曲线的一部分D .抛物线的一部分 简析本题主要考查点到直线距离的概念,线面垂直及抛物线的定义.因为B 1C 1面AB 1,所以⊥PB 1就是P 到直线B 1C 1的距离,故由抛物线的定义知:动点的轨迹为抛物线的一段,从而选D .2.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 的距离与到直线B 1C 1的距离之比为2:1,则动点P 所在曲线的形状为(B ).A .线段B .一段椭圆弧C .双曲线的一部分D .抛物线的一部分3.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 的距离与到直线B 1C 1的距离之比为1:2,则动点P 所在曲线的形状为(C ).A .线段B .一段椭圆弧C .双曲线的一部分D .抛物线的一部分4.在正方体ABCD-A 1B 1C 1D 1中,E 为AA 1的中点,点P 在其对角面BB 1D 1D 内运动,若EP 总与直线AC 成等角,则点P 的轨迹有可能是(A ).A .圆或圆的一部分B .抛物线或其一部分C .双曲线或其一部分D .椭圆或其一部分 简析由条件易知:AC 是平面BB 1D 1D 的法向量,所以EP 与直线AC 成等角,得到EP 与平面BB 1D 1D 所成的角都相等,故点P 的轨迹有可能是圆或圆的一部分.5.已知正方体的棱长为a ,定点M 在棱AB 上(但不在端点A ,B 上),点P 是平面ABCD A B C D -1111ABCD 内的动点,且点P 到直线的距离与点P 到点M 的距离的平方差为a 2,则点P 的轨迹所在曲线为A D 11(A ).A .抛物线B .双曲线C .直线D .圆简析在正方体中,过P 作PF AD ,过F 作FE A 1D 1,垂足分别为F 、E ,ABCD A B C D -1111⊥⊥连结PE .则PE 2=a 2+PF 2,又PE 2-PM 2=a 2,所以PM 2=PF 2,从而PM =PF ,故点P 到直线AD 与到点M 的距离相等,故点P 的轨迹是以M 为焦点,AD 为准线的抛物线.6.在正方体中,点P 在侧面BCC 1B 1及其边界上运动,总有AP BD 1,则动点P 的轨迹ABCD A B C D -1111⊥为__________. 简析在解题中,我们要找到运动变化中的不变因素,通常将动点聚焦到某一个平面.易证BD 1面ACB 1,所以满足BD 1AP 的所有点P 都在一个平面ACB 1上.而已知条件中的点P 是在侧面BCC 1B 1及⊥⊥其边界上运动,因此,符合条件的点P 在平面ACB 1与平面BCC 1B 1交线上,故所求的轨迹为线段B 1C .本题的解题基本思路是:利用升维,化“动”为“静”,即先找出所有点的轨迹,然后缩小到符合条件的点的轨迹.7.在正四棱锥S-ABCD 中,E 是BC 的中点,点P 在侧面SCD 内及其边界上运动,总有PE AC ,则动点∆⊥P 的轨迹为_______________. 答案线段MN (M 、N 分别为SC 、CD 的中点)8.若A 、B 为平面的两个定点,点P 在外,PB ,动点C (不同于A 、B )在内,且PC AC ,则αα⊥αα⊥动点C 在平面内的轨迹是________.(除去两点的圆)9.若三棱锥A —BCD 的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与ABC 组成的图形可能是:(D )∆A A A AB C B C B C B C A B C D简析动点P 在侧面ABC 内,若点P 到AB 的距离等于到棱BC 的距离,则点P 在的内角∠ABC 平分线上.现在P 到平面BCD 的距离等于到棱AB 的距离,而P 到棱BC 的距离大于P 到底面BCD 的距离,于是,P 到棱AB 的距离小于P 到棱BC 的距离,故动点P 只能在的内角平分线与AB 之间的区域∠ABC 内.只能选D .10.已知P 是正四面体S-ABC 的面SBC 上一点,P 到面ABC 的距离与到点S 的距离相等,则动点P 的轨迹所在的曲线是(B ). A .圆B .椭圆 C .双曲线D .抛物线解题的要领就是化空间问题为平面问题,把一些重要元素集中在某一个平面内,利用相关的知识去解答,象平面几何知识、解析几何知识等.11.已知正方体的棱长为1,在正方体的侧面上到点A 距离为的点的轨迹形ABCD A B C D -1111BCC B 11233成一条曲线,那么这条曲线的形状是_________,它的长度为__________.12.已知长方体中,,在线段BD 、上各有一点P 、Q ,PQ 上有一点ABCD A B C D -1111AB BC ==63,A C 11M ,且,则M 点轨迹图形的面积是 .PM MQ =2提示轨迹的图形是一个平行四边形.13.已知棱长为3的正方体中,长为2的线段MN 的一个端点在上运动,另一个端点ABCD A B C D -1111DD 1N 在底面ABCD 上运动,求MN 中点P 的轨迹与正方体的面所围成的几何体的体积.14.已知平面平面,直线,点,平面、间的距离为4,则在内到点P 的距离为5且到直//αβl α⊂l P ∈αββ线的距离为的点的轨迹是( )l 29A .一个圆B .两条平行直线C .四个点D .两个点简析:如图,设点P 在平面内的射影是O ,则OP 是、的公垂线,OP=4.在βαβ点的轨迹是四个点,故选C .16.在四棱锥中,面PAB ,面PAB ,底面ABCD 为梯形,AD=4,BC=8,AB=6,ABCD P -⊥AD ⊥BC ,满足上述条件的四棱锥的顶点P 的轨迹是( )CPB APD ∠=∠A .圆B .不完整的圆C .抛物线D .抛物线的一部分简析:因为面PAB ,面PAB ,所以AD//BC ,且.⊥AD ⊥BC ︒=∠=∠90CBP DAP 又,8BC ,4AD ,CPB APD ==∠=∠由于点P 不在直线AB 上,故此轨迹为一个不完整的圆,选B .17.如图,定点A 和B 都在平面内,定点P C 是内异于A 和B α,PB ,α⊥α∉α的动点.且,那么动点C 在平面内的轨迹是( )AC PC ⊥αA .一条线段,但要去掉两个点B .一个圆,但要去掉两个点C .一个椭圆,但要去掉两个点D .半圆,但要去掉两个点简析:因为,且PC 在内的射影为BC ,所以,即.所以点C 的轨迹是PC AC ⊥αBC AC ⊥︒=∠90ACB 以AB 为直径的圆且去掉A 、B 两点,故选B .18.如图,在正方体中,P 是侧面内一动点,若P 到直线1111D C B A ABCD -1BC BC 与直线的距离相等,则动点P 的轨迹所在的曲线是( )11D C A .直线B .圆C .双曲线D .抛物线简析:因为P 到的距离即为P 到的距离,所以在面内,P 到定点11D C 1C 1BC 的距离与P 到定直线BC 的距离相等.由圆锥曲线的定义知动点P 的轨迹为抛物线,故选D .1C 19.已知正方体的棱长为1,点P 是平面AC 内的动点,若点P 到直线的距离等于点1111D C B A ABCD -11D A P 到直线CD 的距离,则动点P 的轨迹所在的曲线是( )A .抛物线B .双曲线C .椭圆D .直线简析:如图4,以A 为原点,AB 为x 轴、AD 为y 轴,建立平面直角坐标系.设P (x ,y ),作于E 、于F ,连结EF ,易知AD PE ⊥11D A PF ⊥建议收藏下载本文,以便随时学习!1x |EF ||PE ||PF |2222+=+=又作于N ,则.依题意,CD PN ⊥|1y ||PN |-=|PN ||PF |=故动点P 的轨迹为双曲线,选B .20.如图,AB 是平面的斜线段,A 为斜足,若点P 在平面内运动,使得△ABP a a 的面积为定值,则动点P 的轨迹是( )(A )圆 (B )椭圆 (C )一条直线 (D )两条平行直线分析:由于线段AB 是定长线段,而△ABP 的面积为定值,所以动点P 到线段AB 的距离也是定值.由此可知空间点P 在以AB 为轴的圆柱侧面上.又P 在平面内运动,所以这个问题相当于一个平面去斜切一个圆柱(AB 是平面的斜线段),得到的切痕是椭圆.P 的轨迹就是圆柱侧面与平面的交线 .a 21.如图,动点在正方体的对角线上.过点作垂直于平面的直线,与正P 1111ABCD A B C D -1BD P 11BB D D 方体表面相交于.设,,则函数的图象大致是( )M N ,BP x =MN y =()y f x=ABCD MN P A 1B 1C 1D 1分析:将线段MN 投影到平面ABCD 内,易得y 为x 一次函数.22.已知异面直线a ,b 成角,公垂线段MN 的长等于2,线段AB 两个端点A 、B 分别在a ,b 上移动,且︒60线段AB 长等于4,求线段AB 中点的轨迹方程.图5简析:如图5,易知线段AB 的中点P 在公垂线段MN 的中垂面上,直线、为平面内过MN 的中α'a 'b α点O 分别平行于a 、b 的直线,于,于,则,且P 也为的中点.'a 'AA ⊥'A 'b 'BB ⊥'B P 'B 'A AB =⋂'B 'A 由已知MN=2,AB=4,易知得.,2AP ,1'AA ==32'B 'A =则问题转化为求长等于的线段的两个端点、分别在、上移动时其中点P 的轨迹.现以32'B 'A 'A 'B 'a 'b 的角平分线为x 轴,O 为原点建立如图6所示的平面直角坐标系.'OB 'A ∠图6设,,)y ,x (P n |'OB |,m |'OA |==则)n 21,n 23('B ),m 21,m 23('A -)n m (41y ),n m (43x -=+=222)32()n m (41)n m (43=++-消去m 、n ,得线段AB 的中点P 的轨迹为椭圆,其方程为.1y 9x 22=+点评:例5和例6分别将立体几何与解析几何中的双曲线与椭圆巧妙地整合在一起,相互交汇和渗透,有利于培养运用多学科知识解决问题的能力.立体几何中的轨迹问题1.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 与到直线B 1C 1的距离相等,则动点P 所在曲线的形状为 ( )A .线段B .一段椭圆弧C .双曲线的一部分D .抛物线的一部分2.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 的距离与到直线B 1C 1的距离之比为2:1,则动点P 所在曲线的形状为( ) A .线段 B .一段椭圆弧 C .双曲线的一部分 D .抛物线的一部分3.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 的距离与到直线B 1C 1的距离之比为1:2,则动点P 所在曲线的形状为( ) A .线段 B .一段椭圆弧 C .双曲线的一部分 D .抛物线的一部分4.在正方体ABCD-A 1B 1C 1D 1中,E 为AA 1的中点,点P 在其对角面BB 1D 1D 内运动,若EP 总与直线AC 成等角,则点P 的轨迹有可能是( ) A .圆或圆的一部分 B .抛物线或其一部分 C .双曲线或其一部分 D .椭圆或其一部分5.已知正方体的棱长为a ,定点M 在棱AB 上(但不在端点A ,B 上),点P 是平面ABCD A B C D -1111ABCD 内的动点,且点P 到直线的距离与点P 到点M 的距离的平方差为a 2,则点P 的轨迹所在曲线为( A D 11)A .抛物线B .双曲线C .直线D .圆6.若三棱锥A —BCD 的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与ABC 组成的图形可能是( ∆)A A AB C B C B C B CA B C D7.已知P 是正四面体S-ABC 的面SBC 上一点,P 到面ABC 的距离与到点S 的距离相等,则动点P 的轨迹所在的曲线是( ) A .圆B .椭圆 C .双曲线D .抛物线8.已知平面平面,直线,点,平面、间的距离为4,则在内到点P 的距离为5且到直//αβl α⊂l P ∈αββ线的距离为的点的轨迹是(l 29)A .一个圆B .两条平行直线C .四个点D .两个点9.在四棱锥中,面PAB ,面PAB ,底面ABCD 为梯形,AD=4,BC=8,AB=6,ABCD P -⊥AD ⊥BC ,满足上述条件的四棱锥的顶点P 的轨迹是( )CPB APD ∠=∠A .圆B .不完整的圆C .抛物线D .抛物线的一部分10.如图,定点A 和B 都在平面内,定点P C 是内异于A 和B α,PB ,α⊥α∉α的动点.且,那么动点C 在平面内的轨迹是( )AC PC ⊥αA .一条线段,但要去掉两个点B .一个圆,但要去掉两个点C .一个椭圆,但要去掉两个点D .半圆,但要去掉两个点11.已知正方体的棱长为1,点P 是平面AC 内的动点,若点P 到直线的距离等于点1111D C B A ABCD -11D A P 到直线CD 的距离,则动点P 的轨迹所在的曲线是()A .抛物线B .双曲线C .椭圆D .直线12.如图,AB 是平面的斜线段,A 为斜足,若点P 在平面内运动,使得△ABP a a 的面积为定值,则动点P 的轨迹是( )A .圆B .椭圆C .一条直线D .两条平行直线13.如图,动点在正方体的对角线上.过点作垂直于平面的直线,与正P 1111ABCD A B C D -1BD P 11BB D D 方体表面相交于.设,,则函数的图象大致是( )M N ,BP x =MN y =()y f x =ABCD MN P A 1B 1C 1D 114.在正方体中,点P 在侧面BCC 1B 1及其边界上运动,总有AP BD 1,则动点P 的轨迹ABCD A B C D -1111⊥为________.15.在正四棱锥S-ABCD 中,E 是BC 的中点,点P 在侧面SCD 内及其边界上运动,总有PE AC ,则动点∆⊥P 的轨迹为_______________.16.若A 、B 为平面的两个定点,点P 在外,PB ,动点C (不同于A 、B )在内,且PC AC ,则αα⊥αα⊥动点C 在平面内的轨迹是________.17.已知正方体的棱长为1,在正方体的侧面上到点A 距离为的点的轨迹形ABCD AB C D -1111BCC B 11233成一条曲线,那么这条曲线的形状是_________,它的长度为__________.18.已知长方体中,,在线段BD 、上各有一点P 、Q ,PQ 上有一点ABCD A B C D -1111AB BC ==63,A C 11M ,且,则M 点轨迹图形的面积是.PM MQ =219.已知棱长为3的正方体中,长为2的线段MN 的一个端点在上运动,另一个端点ABCD A B C D -1111DD 1N 在底面ABCD 上运动,则MN 中点P 的轨迹与正方体的面所围成的几何体的体积是.20.已知异面直线a ,b 成角,公垂线段MN 的长等于2,线段AB 两个端点A 、B 分别在a ,b 上移动,且︒60线段AB 长等于4,求线段AB 中点的轨迹方程.。
第二章立体几何.doc

一、用符号语言和图形语言表示1.线而平行的判定定理:如果不在一个平而内的一条直线和平而内的一条直线平行,那么这条直线和这个平面平行.2.线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.3.平行平面的判定定理:如果一个平面内有两条相交直线分别平行于另一个平面,那么这两个平面互相平行.4.平行平面的判定定理推论:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面互相平行.5.平行平面的性质定理:如果两个平行平面同时与第三个平面相交,那么它们的交线平行.6.面面平行的另一性质:如果两个平面平行,那么其中一个平面内的直线平行于另一个平面.1、正方体ABC D-A.B, G 2中,E为DD]的中点。
求证:剧,〃平面ACE。
2、在正方体ABCD —中,E、F分别为BC、GD〕的中点。
求证:EF〃平面BB】D]D。
3、已知三棱柱ABC-A^Q中,D为线段A©中点。
求证:BC X//平面AB】D5.已知,如图P是平行四边形ABCD外一点同M, N分别是PC, AB的中点。
求证:MN//平面PADc如图,在三棱锥V.ABC中, VA=VGAB=BGK 是AC 的中点。
求证:AC1YWVKB.2、如图,点P是平行四边形ABCD所在平面外一点,。
是对角线AC 与BD的交点,且PA=PC , PB=PD.求证:PCLL平面ABCD练习4已知:〃_L平面P/M', PB=PC, M是BC的中点,求证:HCLAM.练习2、在正方体AC〔中,0为下底面的中心,(1) 求证:AC±©DiBiBD(2) 求证:AC±D1OCA练习3在三棱锥P-ABC 中,PA_L 平面 ABC, AB±BC, PA=AB, D 为PB 的中点, 求证:AD_LPC ・练习8如图,在八ABC 中,匕ABC=9()0,PAJ >平面ABC,AF±PC J F,AE±PB J E.求证:EF±PC【思考】已知三棱锥A-BCI )的各棱K 都为2, 求直线AB 与平面BCD 所成角的大小。
(完整word版)文科立体几何平行、垂直加体积

1、在平行六面体ABCD—A1B1C1D1中,AA1=AB,AB1⊥B1C1。
求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.2、如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A 1C1⊥A1B1.求证:(1)直线DE∥平面A1C1 F;(2)平面B1D E⊥平面A1C1F。
3、如图,在正方体ABCD —A 1B 1C 1D 1中,E,F ,P,Q,M,N 分别是棱AB ,AD,DD 1,BB 1,A 1B 1,A 1D 1的中点。
求证:(1)直线BC 1∥平面EFPQ; (2)直线AC 1⊥平面PQMN 。
4、如图,ABCD 与ADEF 为平行四边形,M ,N ,G 分别是AB ,AD,EF 的中点。
(1)求证:BE∥平面DMF; (2)求证:平面BDE∥平面MNG 。
中点, 5、如图,在三棱柱111ABC A B C -中,D 是AC 的于点E .1A D ⊥平面ABC ,=AB BC ,平面1BB D 与棱11AC 交(Ⅰ)求证:1AC A B ⊥;(Ⅱ)求证:平面1BB D ⊥平面11AAC C ; (Ⅲ)求证:1B B DE ∥.EABCB 1C 1A 1D6、如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD。
求证:(1)EF∥平面ABC;(2)AD⊥AC。
7、如图①所示,已知直角△ABC,其中∠ABC=90°,D,E分别是AB,AC边上的中点,现沿DE将△ADE 翻折,使得A与平面ABC外一点P重合,得到如图②所示的几何体.(1)证明:平面PBD⊥平面BCED;(2)记平面PDE与平面PBC的交线为l,探究:直线l与BC是否平行.若平行,请给出证明;若不平行,请说明理由.8、如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.(1)证明:平面AEC⊥平面BED;(2)若∠ABC=120°,AE⊥EC,三棱锥E—ACD的体积为,求该三棱锥的侧面积.9、如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何证明大题
1.如图,四面体ABCD 中,BCD AD 平面⊥, E 、F 分别为AD 、AC 的中点,CD BC ⊥.
求证:(1)BCD EF 平面// (2)ACD BC 平面⊥.
2、如图,棱长为1的正方体ABCD-A 1B 1C 1D 1中, (1)求证:AC ⊥平面B 1D 1DB; (2)求证:BD 1⊥平面ACB 1 (3)求三棱锥B-ACB 1体积.
3、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点.
求证:(1) C 1O ∥面11AB D (2 )1AC ⊥面11AB D .
D 1
C 1
B 1
A 1
C
D
B
A
D 1O
D
B A
C 1
B 1
A 1
C
4. 如图,P 为ABC ∆所在平面外一点,⊥PA 平面ABC ,
︒=∠90ABC ,PB AE ⊥于E ,PC AF ⊥于F
求证:(1)⊥BC 平面PAB ;
(2)⊥AE 平面PBC ; (3)⊥PC 平面AEF .
5、如图,ABCD 是正方形,O 是正方形的中心,PO ⊥底面ABCD ,E 是PC 的中点。
求证:(1)PA ∥平面BDE (2)平面PAC ⊥平面BDE (3)若棱锥的棱长都为2,求棱锥的体积。
6.如图,PA ⊥平面ABC ,平面PAB ⊥平面PBC 求证:AB ⊥BC
7.如图,在三棱锥S-ABC 中,,90︒=∠=∠=∠ACB SAC SAB , (Ⅰ)证明SC ⊥BC ;
(Ⅱ),29,13,2===SB BC AC 若已知 求侧面SBC 与底面ABC 所成二面角的大小。
F
E
P
C
B A
P
A B C B
S
C
A
A C
高三文科数学立体几何综合题训练
1.如图,四边形ABCD 与''ABB A 都是边长为a 的正方形,点E 是A A '的中点,
'A A ⊥平面ABCD .
(I )求证:C
A '//平面BDE ;
(II )求证:平面AC A '⊥平面BDE .
2.如图,在四棱锥ABCD -P 中,底面ABCD 是矩形,侧棱PD ⊥底面ABCD , DC PD =,E 是PC 的中点,作EF ⊥PB 交PB 于点F . (1)证明:PA ∥平面EDB ;
(2)证明:PB ⊥平面EFD .
3.在棱长为2的正方体1111D C B A ABCD -中,E 、F 分别为1DD 、DB 的中点。
(1)求证:EF//平面11D ABC ;(2)求证:EF C B 1⊥; (3)求三棱锥EFC B -1的体积V 。
A
B
C E
F
P
1
A 1
C 1
B
B
A
4.在直三棱柱111C B A ABC -中, AC=4,CB=2,AA 1=2
60=∠ACB ,E 、F 分别是BC C A ,11的中点。
(1)证明:平面⊥AEB 平面C C BB 11;
(2)证明://1F C 平面ABE ;
(3)设P 是BE 的中点,求三棱锥F C B P 11-的体积。
5.如图,四边形ABCD 为矩形,AD ⊥平面ABE
2,AE EB BC === F 为CE 上的点,且BF ⊥平面ACE , .BD AC G =
(1)求证:AE ⊥平面BCE ; (2)求证://AE 平面BFD ; (3)求三棱锥E ADC -的体积.
6.如图,在侧棱垂直于底面的三棱柱ABC —A 1B 1C 1中,AC=3,AB=5,AA 1=BC=4,点D 是AB 的中点。
(Ⅰ)求证:1AC BC ⊥; (Ⅱ)求证:1//AC 平面CDB 1; (Ⅲ)求三棱锥A 1—B 1CD 的体积。
A1
B1
C1
D1
A
B C
D
E
7.正方形ADEF与梯形ABCD所在的平面互相垂
直, ,//,22
AD CD AB CD CD AB AD
⊥==.
(Ⅰ)求证:BC BE
⊥;
(Ⅱ)在EC上找一点M,使得//
BM平面ADEF,
请确定M点的位置,并给出证明.
8.三棱柱
111
ABC A B C
-中,侧棱与底面垂直,90
ABC
∠= ,
1
2
AB BC BB
===,,
M N分别是AB,
1
A C的中点.
(Ⅰ)求证:MN∥平面
11
BCC B;
(Ⅱ)求证:MN⊥平面
11
A B C;
(Ⅲ)求三棱锥M-
11
A B C的体积.
9.如图,长方体
1
1
1
1
D
C
B
A
ABCD-中,1
1
=
=AA
AB,2
=
AD,E是BC的中点.
(Ⅰ)求证:直线//
1
BB平面DE
D
1
;
(Ⅱ)求证:平面AE
A
1
⊥平面DE
D
1
;
(Ⅲ)求三棱锥DE
A
A
1
-的体积.
10.如图,PA垂直于矩形ABCD所在的平
面,AD PA2
==,CD=E、F
分别
是AB、PD的中点。
(I)求证:AF//平面PCE;
(Ⅱ)求证:平面PCE⊥平面PCD;
(Ⅲ)求四面体PEFC的体积
11.如图(1),ABC
∆是等腰直角三角形,4
AC BC
==,E、F分别为AC、AB的中点,将AEF
∆沿EF折起,使A'在平面BCEF上的射影O恰为EC的中点,得到图(2).
E
B
A
C
D
F
N
M
C1
B1
A1
C
B
A
(1)求证:EF A C '⊥; (2)求三棱锥BC A F '-的体积.
12.如图,在四棱锥P-ABCD 中,底面ABCD 是平行四边形,PA ⊥
平面ABCD ,点M 、N 分别为BC 、PA 的中点,且PA =AD =2,
AB =1,AC
(Ⅰ)证明:CD ⊥平面P AC ;
(Ⅱ)在线段PD 上是否存在一点E ,使得NM ∥平面ACE ;若存在,求出PE 的长;若不存在,说明理由.
13.一个四棱锥P-ABCD 的三视图如图所示. (1)求四棱锥P-ABCD 的体积;
(2)若E 为CD 中点,求证:平面PBD ⊥平面PAE 。
15.已知四棱锥P —A BCD 中,点M 是PC 的中点,点E 是AB 上的一个动点,且该四棱锥的三视图如图所示,其中正视图和侧视图是直角三角形。
F E
A
(I )求证:PA//平面BDM ;
(II )若点E 是AB 的中点,求证:CE ⊥平面P DE ;
(III )无论点E 在何位置,是否均有三棱锥C —PDE 的体积为
定值?若是,请求出定值;若不是,请说明理由。
16.一个简单多面体的直观图和三视图如图所示,它的主视图和侧视图都是腰长为1的等腰直角三角形,俯视图的轮廓为正方形,E 是PD 的中点. (1)求证:ACE PB 平面//; (2)求证:PC ⊥BD ;
(3)求三棱锥C-PAB 的体积。
17.已知矩形ABCD 中,AB=6,
BC=E 为AD 的中点(图一)。
沿BE 将△ABE 折起,使平面ABE ⊥平面BECD (图二),且F 为AC 的中点。
(1)求证:FD//平面ABE ; (2)求证:AC ⊥BE 。
18.如图甲,在平面四边形ABCD 中,已知45,90,A C ∠=∠=
105ADC ∠=
,AB BD =,
主视图
侧视图
俯视图
甲D C
B A 现将四边形ABCD 沿BD 折起,使平面ABD ⊥平面BD
C (如图乙),设点E 、F 分别为棱AC 、A
D 的中点.
(1)求证:DC ⊥平面ABC ; (2)设CD a =,求三棱锥A -BFE 的体积.
19.如图,在体积为1的三棱柱111C B A ABC -中,侧棱⊥1AA 底面ABC ,AB AC ⊥,
11==AA AC ,P 为线段AB 上的动点. (Ⅰ)求证:P C CA 11⊥;
(Ⅱ)线段AB 上是否存在一点P ,使四面体11C AB P -的体积为6
1
?若存在, 请确定点P 的位置;若不存在,请说明理由.
20.如图,已知四边形ABCD 为直角梯形,∠ABC =90°,AD ∥BC ,AD =2,AB =BC =1.沿AC 将△ABC 折起,使点B 到点P 的位置, 且平面PAC ⊥平面ACD . (Ⅰ)证明:DC ⊥平面APC ; (Ⅱ)求棱锥A -PBC 的体积.。