质谱仪、回旋加速器、磁流体发电机(疯狂小题)
质谱仪和磁流体发电机习题word

质谱仪和磁流体发电机习题word一、高中物理解题方法:质谱仪和磁流体发电机1.某种工业上用质谱仪将铀离子从其他相关元素中分离出来,如图所示,铀离子通过U=100kV的电势差加速后进入匀强磁场分离器,磁场中铀离子的路径为半径r=1.00m的半圆,最后铀离子从狭缝出来被收集在一只杯中,已知铀离子的质量m=3.92×10-25kg,电荷量q=3.20×10-19C,如果该设备每小时分离出的铀离子的质量M=100mg,则:(为便于计算 3.92≈2)(1)求匀强磁场的磁感应强度;(2)计算一小时内杯中所产生的内能;(3)计算离子流对杯产生的冲击力。
【答案】(1)0.5T(2)8.16×106J(3)0.011N【解析】【详解】(1)铀离子在加速电场中加速时,由动能定理qU=12mv2-0铀离子做匀速圆周运动的向心力由洛伦兹力提供qvB=2mvr所以B=525192121210 3.92101 3.2010qUmmv Ummqr r q--⨯⨯⨯==⨯=0.5T。
(2)每小时加速铀离子的数目n=Mm=625100103.9210--⨯⨯=2.55×1020个,每个铀离子加速获得的动能为E k=12mv2=qU这些动能全部转化为内能,则n个铀离子全部与杯子碰撞后产生的总的内能为:Q=nE k=nqU=2.55×1020×3.20×10-19×105J=8.16×106J。
(3)经过1小时,把这些铀离子看成一个整体,根据动量定理得-F N t=0-Mv 所以求得杯子对这些铀离子的冲击力F N195 6252 3.21010100103.9210Mvt---⨯⨯⨯⨯⨯⨯==N=0.011N据牛顿第三定律,离子对杯子的冲击力大小等于0.011N;2.如图甲所示,电荷量均为+q、质量分别为m1和m2的两个离子飘入电压为U0的加速电场,其初速度几乎为零。
2024全国高考真题物理汇编:质谱仪与回旋加速器

2024全国高考真题物理汇编质谱仪与回旋加速器一、多选题1.(2024安徽高考真题)空间中存在竖直向下的匀强电场和垂直于纸面向里的匀强磁场,电场强度大小为E,磁感应强度大小为B。
一质量为m的带电油滴a,在纸面内做半径为R的圆周运动,轨迹如图所示。
当a运动到最低点P时,瞬间分成两个小油滴Ⅰ、Ⅱ,二者带电量、质量均相同。
Ⅰ在P点时与a的速度方向相同,并做半径为3R的圆周运动,轨迹如图所示。
Ⅱ的轨迹未画出。
己知重力加速度大小为g,不计空气浮力与阻力以及Ⅰ、Ⅱ分开后的相互作用,则()A.油滴a带负电,所带电量的大小为mg EB.油滴a做圆周运动的速度大小为gBR EC.小油滴Ⅰ做圆周运动的速度大小为3gBRE,周期为4EgBD.小油滴Ⅱ沿顺时针方向做圆周运动2.(2024湖北高考真题)磁流体发电机的原理如图所示,MN和PQ是两平行金属极板,匀强磁场垂直于纸磁场,极板间便产生电压。
下列说法正确的是()A.极板MN是发电机的正极B.仅增大两极板间的距离,极板间的电压减小C.仅增大等离子体的喷入速率,极板间的电压增大D.仅增大喷入等离子体的正、负带电粒子数密度,极板间的电压增大二、解答题3.(2024湖南高考真题)如图,有一内半径为2r、长为L的圆筒,左右端面圆心O′、O处各开有一小孔。
以O为坐标原点,取O′O方向为x轴正方向建立xyz坐标系。
在筒内x≤0区域有一匀强磁场,磁感应强度大小为B ,方向沿x 轴正方向;筒外x ≥0区域有一匀强电场,场强大小为E ,方向沿y 轴正方向。
一电子枪在O′处向圆筒内多个方向发射电子,电子初速度方向均在xOy 平面内,且在x 轴正方向的分速度大小均为v 0。
已知电子的质量为m 、电量为e ,设电子始终未与筒壁碰撞,不计电子之间的相互作用及电子的重力。
(1)若所有电子均能经过O 进入电场,求磁感应强度B 的最小值;(2)取(1)问中最小的磁感应强度B ,若进入磁场中电子的速度方向与x 轴正方向最大夹角为θ,求tan θ的绝对值;(3)取(1)问中最小的磁感应强度B ,求电子在电场中运动时y 轴正方向的最大位移。
高中物理质谱仪和磁流体发电机压轴题知识点及练习题及答案

高中物理质谱仪和磁流体发电机压轴题知识点及练习题及答案一、高中物理解题方法:质谱仪和磁流体发电机1.如图所示,质量为m 、电荷量为+q 的粒子,从容器A 下方的小孔S 1不断飘入加速电场,其初速度几乎为零,粒子经过小孔S 2沿着与磁场垂直的方向进入磁感应强度为B 的匀强磁场中,做半径为R 的匀速圆周运动,随后离开磁场,不计粒子的重力及粒子间的相互作用.(1)求粒子在磁场中运动的速度大小v ; (2)求加速电场的电压U ;【答案】(1)BqR m (2)222B qR m【解析】 【分析】(1)根据牛顿第二定律,洛仑兹力提供向心力就能求出粒子进入磁场时的速度大小; (2)根据粒子在电场中运动的规律,由动能定理就能求出电压. 【详解】(1) 洛仑兹力提供向心力2v qvB m R=解得qBRv m=; (2) 根据动能定理212qU mv =解得:222B qR U m=. 【点睛】本题是动能定理和牛顿定律的综合题,解决本题的关键会灵活运用动能定理和牛顿运动定律,还要理解电流强度的定义.2.质谱仪的构造如图所示,离子从离子源出来经过板间电压为U 的加速电场后进入磁感应强度为B 的匀强磁场中,沿着半圆周运动而达到记录它的照相底片上,测得图中PQ 的距离为L ,则该粒子的荷质比qm为多大?【答案】228q U m B L= 【解析】 【分析】 【详解】粒子在电压为U 的电场中加速时,据动能定理得212qU mv =粒子进入磁场后做圆周运动,根据图中的几何关系可知L =2R据牛顿第二定律有2v qvB m R=解得228q U m B L=3.质谱仪在同位素分析、化学分析、生命科学分析中有广泛的应用。
如图为一种单聚焦磁偏转质谱仪工作原理示意图,在以O 为圆心,OH 为对称轴,夹角为2α的扇形区域内分布着方向垂直纸面的匀强磁场。
离子源S 产生的各种不同正离子束(速度可看成零),经加速电压U 0加速后,从A 点进入偏转电场,如果不加偏转电压,比荷为qm的离子将沿AB 垂直磁场左边界进入扇形磁场,经过扇形区域,最后从磁场右边界穿出到达收集点D ,其中1OM r =,2ON r =,B 点是MN 的中点,收集点D 和AB 段中点对称于OH 轴;如果加上一个如图所示的极小的偏转电压,该离子束中比荷为qm的离子都能汇聚到D 点。
洛伦兹力在现代科技中的应用(质谱仪、速度选择器、回旋加速器、磁电式发电子、电磁流量计)

洛伦兹力在现代科技中的应用一、速度选择器如图3-5-5所示,D 1和D 2是两个平行金属板,分别连在电源的两极上,其间有一电场强度为E 的电场,同时在此空间加有垂直于电场方向的磁场,磁感应强度为B 。
S 1、S 2为两个小孔,且S 1与S 2连线方向与金属板平行。
速度沿S 1、S 2连线方向从S 1飞入的带电粒子只有做直线运动才可以从S 2飞出。
因此能从S 2飞出的带电粒子所受的电场力与洛伦兹力平衡,即qE =qvB 。
故只要带电粒子的速度满足v =EB,即使电性不同,比荷不同,也可沿直线穿出右侧的小孔S 2,而其他速度的粒子要么上偏,要么下偏,无法穿出S 2。
因此利用这个装置可以达到选择某一速度带电粒子的目的,故称为速度选择器。
【练习题组1】1.如图3为一“速度选择器”装置的示意图。
a 、b 为水平放置的平行金属板,一束具有各种不同速率的电子沿水平方向经小孔O 进入a 、b 两板之间。
为了选取具有某种特定速率的电子,可在a 、b 间加上电压,并沿垂直于纸面的方向加一匀强磁场,使所选电子仍能够沿水平直线OO ′运动,由O ′射出,不计重力作用。
可能达到上述目的的办法是( )A .使a 板电势高于b 板,磁场方向垂直纸面向里B .使a 板电势低于b 板,磁场方向垂直纸面向里C .使a 板电势高于b 板,磁场方向垂直纸面向外D .使a 板电势低于b 板,磁场方向垂直纸面向外2.如图所示,两平行金属板水平放置,开始开关S 合上使平行板电容器带电.板间存在垂直纸面向里的匀强磁场.一个不计重力的带电粒子恰能以水平向右的速度沿直线通过两板.在以下方法中,能使带电粒子仍沿水平直线通过两板的是( )A .将两板的距离增大一倍,同时将磁感应强度增大一倍B .将两板的距离减小一半,同时将磁感应强度增大一倍C .将开关S 断开,两板间的正对面积减小一半,同时将板间磁场的磁感应强度减小一半D .将开关S 断开,两板间的正对面积减小一半,同时将板间磁场的磁感应强度增大一倍3.如图所示的平行板之间,电场强度E 和磁感应强度B 相互垂直,具有不同水平速度的带电粒子(不计重力)射入后发生偏转的情况不同。
高考物理质谱仪和磁流体发电机习题综合题含答案解析

高考物理质谱仪和磁流体发电机习题综合题含答案解析一、高中物理解题方法:质谱仪和磁流体发电机1.质谱仪的构造如图所示,离子从离子源出来经过板间电压为U 的加速电场后进入磁感应强度为B 的匀强磁场中,沿着半圆周运动而达到记录它的照相底片上,测得图中PQ 的距离为L ,则该粒子的荷质比qm为多大?【答案】228q U m B L= 【解析】 【分析】 【详解】粒子在电压为U 的电场中加速时,据动能定理得212qU mv =粒子进入磁场后做圆周运动,根据图中的几何关系可知L =2R据牛顿第二定律有2v qvB m R=解得228q U m B L=2.如图为质谱仪的原理示意图,电荷量为q 、质量为m 的带正电的粒子从静止开始经过电势差为U 的加速电场后进入粒子速度选择器,选择器中存在相互垂直的匀强电场和匀强磁场,匀强电场的场强为E 、方向水平向右.已知带电粒子能够沿直线穿过速度选择器,从G 点垂直MN 进入偏转磁场,该偏转磁场是一个以直线MN 为边界、方向垂直纸面向外的匀强磁场.带电粒子经偏转磁场后,最终到达照相底片的H 点.可测量出G 、H 间的距离为L.带电粒子的重力可忽略不计.求(1).粒子从加速电场射出时速度v 的大小.(2).粒子速度选择器中匀强磁场的磁感强度B 1的大小和方向. (3).偏转磁场的磁感强度B 2的大小. 【答案】(1)2qUm; (2)2m E qU ; (3)22mU L q ;【解析】 【分析】 【详解】(1)由动能定理得 qU=①解得:(2)由洛伦兹力与电场力大小相等得到: qvB 1=Eq ② 由①②联立得到:122/E m B v qU qU m===由左手定则得磁场方向垂直纸面向外.(3)粒子在磁场中运动是洛伦兹力通过向心力得到:22v qvB m R =③2L R =④由①③④联立解得:222mv mU B qR L q==3.如图所示,质量为m 、电荷量为q 的粒子,从容器A 下方的小孔S 1不断飘入电压为U 的加速电场,其初速度几乎为零。
高考物理质谱仪和磁流体发电机习题试卷附答案解析

高考物理质谱仪和磁流体发电机习题试卷附答案解析一、高中物理解题方法:质谱仪和磁流体发电机1.如图所示为质谱仪的示意图,在容器A 中存在若干种电荷量相同而质量不同的带电粒子,它们可从容器A 下方的小孔S 1飘入电势差为U 的加速电场,它们的初速度几乎为0,然后经过S 3沿着与磁场垂直的方向进入磁感应强度为B 的匀强磁场中,最后打到照相底片D 上。
若这些粒子中有两种电荷量均为q 、质量分别为m 1和m 2的粒子(m 1<m 2)。
(1)分别求出两种粒子进入磁场时的速度v 1、v 2的大小; (2)求这两种粒子在磁场中运动的轨道半径之比; (3)求两种粒子打到照相底片上的位置间的距离。
【答案】(112qU m 22qU m 212m m 3)2qB 22qm U 12qmU 【解析】 【分析】(1)带电粒子在电场中被加速,应用动能定理可以求出粒子的速度。
(2)粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,由牛顿第二定律可以求出粒子的轨道半径,然后求出半径之比。
(3)两粒子在磁场中做圆周运动,求出其粒子轨道半径,然后求出两种粒子打到照相底片上的位置间的距离。
【详解】(1)经过加速电场,根据动能定理得: 对m 1粒子:qU=12m 1v 12 m 1粒子进入磁场时的速度:112qUv m = 对m 2粒子有:qU=12m 2v 22, m 2粒子进入磁场时的速度:222qUv m =(2)在磁场中,洛仑兹力提供向心力,由牛顿第二定律得:qvB=m 2v R,解得,粒子在磁场中运动的轨道半径:mv R qB=, 代入(1)结果,可得两粒子的轨道半径之比:R 1:R 2=12m m ; (3)m 1粒子的轨道半径:111m v R qB=, m 2粒子的轨道半径: 222m v R qB=, 两粒子打到照相底片上的位置相距:d=2R 2-2R 1,解得,两粒子位置相距为:21222d qm U qmU qB=-() ; 【点睛】本题考查了粒子在电场与磁场中的运动,分析清楚粒子运动过程是正确解题的关键,应用动能定理与牛顿第二定律可以解题。
高考物理质谱仪和磁流体发电机压轴难题综合题附答案解析

高考物理质谱仪和磁流体发电机压轴难题综合题附答案解析一、高中物理解题方法:质谱仪和磁流体发电机1.在考古中为了测定古物的年代,可通过测定古物中碳14与碳12的比例,其物理过程可简化为如图所示,碳14与碳12经电离后的原子核带电量都为q ,从容器A 下方的小孔S 不断飘入电压为U 的加速电场,经过S 正下方的小孔O 后,沿SO 方向垂直进入磁感应强度为B 、方向垂直纸面向外的匀强磁场中,最后打在相机底片D 上并被吸收。
已知D 与O 在同一平面内,其中碳12在底片D 上的落点到O 的距离为x ,不考虑粒子重力和粒子在小孔S 处的初速度。
(1)求碳12的比荷;(2)由于粒子间存在相互作用,从O 进入磁场的粒子在纸面内将发生不同程度的微小偏转(粒子进入磁场速度大小的变化可忽略),其方向与竖直方向的最大偏角为α,求碳12在底片D 上的落点到O 的距离的范围;(3)实际上,加速电场的电压也会发生微小变化(设电压变化范围为U ±ΔU ),从而导致进入磁场的粒子的速度大小也有所不同。
现从容器A 中飘入碳14与碳12最终均能打在底片D 上,若要使这两种粒子的落点区域不重叠,则ΔU 应满足什么条件?(粒子进入磁场时的速度方向与竖直方向的最大偏角仍为α)【答案】(1)228q U m B x =;(2)距离范围为cos ~x x α;(3) 227cos 67cos 6U U θθ-∆<+ 【解析】 【分析】 【详解】 (1)经加速电场有212qU mv =在磁场中2mv qvB r = 12r x =解得碳12的比荷228q U m B x= (2)粒子在磁场中圆运动半径22qmU xr == 由图像可知,粒子左偏α角(轨迹圆心为O 1)或右偏α角(轨迹圆心为O 2),落点到O 的距离相等均为L =2r cos θ,故θ=0°时落点到O 的距离最大L max =2r =x故θ=α时落点到O 的距离最小L min =2r cos α=x cos α所以落点到O 的距离范围为cos ~x x α。
高中物理质谱仪和磁流体发电机压轴难题综合题附答案解析

高中物理质谱仪和磁流体发电机压轴难题综合题附答案解析一、高中物理解题方法:质谱仪和磁流体发电机1.质谱仪是分析同位素的重要工具,其原理简图如图所示。
容器A 中有电荷量均为+q 、质量不同的两种粒子,它们从小孔S 1不断飘入电压为U 的加速电场(不计粒子的初速度),并沿直线从小孔S 2(S 1与S 2连线与磁场边界垂直)进入磁感应强度大小为B 、方向垂直纸面向外的匀强磁场,最后打在照相底片D 上,形成a 、b 两条“质谱线”。
已知打在a 处粒子的质量为m 。
不计粒子重力及粒子间的相互作用。
(1)求打在a 处的粒子刚进入磁场时的速率v ; (2)求S 2距a 处的距离x a ;(3)若S 2距b 处的距离为x b ,且x b =2a x ,求打在b 处粒子的质量m b (用m 表示)。
【答案】(1)2qUv m=22a mU x B q =m b =2m【解析】 【详解】(1)粒子经过电压为U 的电场,由动能定理有2102qU m =-v ①可得2qUv m=(2)粒子通过孔S 2进入匀强磁场B 做匀速圆周运动,有2a v qvB m r = ②2a a x r = ③联立①②③式可得22a mUx B q=④(3)同(2)可得22b b m Ux B q=⑤联立④⑤式并代入已知条件可得m b =2m2.如图所示,相距为D 、板间电压为U 的平行金属板M 、N 间有垂直纸面向里、磁感应强度为B 0的匀强磁场;在pOy 区域内有垂直纸面向外、磁感应强度为B 的匀强磁场;pOx 区域为无场区.一正离子沿平行于金属板、垂直磁场射入两板间并做匀速直线运动,从H (0,A )点垂直y 轴进入第Ⅰ象限,经Op 上某点离开磁场,最后垂直x 轴离开第Ⅰ象限.求:(1)离子在金属板M 、N 间的运动速度; (2)离子的比荷q m; (3)离子在第Ⅰ象限的磁场区域和无场区域内运动的时间之比. 【答案】(1)0U v B d =(2)02q Um B Bad =(3)122t t π= 【解析】 【分析】 【详解】(1)设带电粒子的质量为m 、电量为q ,在平行金属板间的运动速度为v ,平行金属板间的场强为E 0依题意,有qvB 0=qE 0① 又M ,N 间为匀强电场,有0UE d=② 联立①②解得0Uv B d=③ (2)带电粒子进入POy 区域,做匀速圆周运动,设轨道半径为r ,有2v qvB m r=④依题意带电粒子进入第I 象限转过1/4圈后从OP 上离开磁场,如图,由几何关系得A-r=rtAn45° ⑤联立③④⑤得:02q U m B Bad=⑥(3)匀速圆周运动的周期2rT v π=⑦ 带电粒子在磁场中的运动时间14T t =⑧ 离子从C 出来后做匀速直线运动,设经过x 轴上的D 点,如图,由几何关系有CD=A-r ⑨ 从C 到D 的时间为2CDt v =⑩ 联立③⑤⑦⑧⑨⑩得122t t π=3.某种工业上用质谱仪将铀离子从其他相关元素中分离出来,如图所示,铀离子通过U =100kV 的电势差加速后进入匀强磁场分离器,磁场中铀离子的路径为半径r =1.00m 的半圆,最后铀离子从狭缝出来被收集在一只杯中,已知铀离子的质量m =3.92×10-25kg ,电荷量q =3.20×10-19C ,如果该设备每小时分离出的铀离子的质量M =100mg ,则:(为便于计算 3.92≈2)(1)求匀强磁场的磁感应强度; (2)计算一小时内杯中所产生的内能; (3)计算离子流对杯产生的冲击力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
质谱仪、回旋加速器、磁流体发电机专题
1.一回旋加速器当外加磁场一定时,可把α粒子加速到v,它能把质子加速到的速度为()
A.v B.2v C.0.5v D.4v
2质谱仪的两大重要组成部分是加速电场和偏转磁场。
如图所示为质谱仪的原理图,设想有一个静止的质量为m、带电量为q的带电粒子(不计重力),经电压为U的加速电场加速后垂直进入磁感应强度为B的偏转磁场中,带电粒子打至底片上的P点,设OP=x,则在图中能正确反映x与U之间的函数关系的是()。
3回旋加速器的核心部分是两个半径为R的D型金属扁盒,如图,盒正
中央开有一条窄缝,在两个D型盒之间加交变电压,于是在缝隙中形成
交变电场,由于屏蔽作用,在D型盒内部电场很弱,D型盒装在真空容
器中,整个装置放在巨大电磁铁的两极之间,磁场方向垂直于D型盒的
底面,只要在缝隙中的交变电场的频率不变,便可保证粒子每次通过缝
隙时总被加速,粒子的轨道半径不断增大,并逐渐靠近D型盒边缘,加
速到最大能量E后,再用特殊的装置将它引出。
在D型盒上半面中心出口A处有一正离子源,正离子所带电荷量为q、质量为m,加速时电极间电压大小恒为U。
(加速时的加速时间很短,可忽略;正离子从离子源出发时初速为零)。
则下列说法正确的是
A.增大交变电压U,则正离子在加速器中运行时间将变短
B.增大交变电压U,则正离子在加速器中运行时间将不变
C.正离子第n次穿过窄缝前后的速率之比为
D.回旋加速器所加交变电压的频率为
4医生做某些特殊手术时,利用电磁血流计来监测通过动脉的血流速度.电磁血流计由一对电极a和b以及磁极N和S构成,磁极间的磁场是均匀的.使用时,两电极a、b均与血管壁接触,两触点的连线、磁场方向和血流速度方向两两垂直,如图所示.由于血液中的正负离子随血流一起在磁场中运动,电极a、b之间会有微小电势差.在达到平衡时,血管内
部的电场可看作是匀强电场,血液中的离子所受的电场力和磁场力的合力为零.在某次监测中,两触点的距离为3.0mm,血管壁的厚度可忽略,两触点间的电势差为160µV,磁感应强度的大小为0.040T.则血流速度的近似值和电极a、b的正负为()
A.1.3m/s,a正、b负B.2.7m/s,a正、b负
C.1.3m/s,a负、b正D.2.7m/s,a负、b正
5电磁流量计广泛应用于测量可导电流体(如污水)在管中的流量(即单位时间内通过管内横截面的流体的体积)。
为了简化,假设流量计是如图所示的横截面为长方形的一段管道,其中空部分的长、宽、高分别为图中的a、b、c。
流量计的两端与输送流体的管道相连(图中虚线)。
图中流量计的上下两面是金属材料,前后两面是绝缘材料。
现于流量计所在处加磁感应强度为B的匀强磁场,磁场方向垂直于前后两面。
当导电流体稳定地流经流量计时,在管外将流量计上、下两表面分别与一串接了电阻R的电流表的两端连接,I表示测量的电流值。
已知流体的电阻率为ρ,不计电流表的内阻,则可求得流量为( )
6如图甲所示是回旋加速器的示意图,其核心部分是两个D形金属盒,在加速带电粒子时,两金属盒置于匀强磁场中,并分别与高频电源相连.带电粒子在磁场中运动的动能Ek随时间t的变化规律如图乙所示,若忽略带电粒子在电场中的加速时间,则下列判断中正确的是( )
A.在Ek—t图中应有t4一t3=t3一t2=t2—t1
B.高频电源的变化周期应该等于tn一tn-1
C.粒子加速次数越多,粒子最大动能一定越大
D.要想粒子获得的最大动能越大,则要求D形盒的面积也越大
7磁流体发电是一项新兴技术,它可以把气体的内能直接转化为
电能,如图是它的示意图.平行金属板A、B之间有一个很强的匀
强磁场,磁感应强度为B,将一束等离子体(即高温下电离的气体,
含有大量正、负带电粒子)垂直于磁场B的方向喷入磁场,每个离
子的速度为v,电荷量大小为q,A、B两板间距为d,稳定时下列说
法中正确的是( )
A. 图中A板是电源的正极
B. 图中B板是电源的正极
C. 电源的电动势为Bvd
D. 电源的电动势为Bvq
8如图所示为测定带电粒子比荷的装置,粒子以一定的初速度进
入并沿直线通过速度选择器,速度选择器内有相互正交的匀强磁
场和匀强电场,磁感应强度和电场强度分别为B和E.然后粒子通
过平板S上的狭缝P,进入另一匀强磁场,最终打在能记录粒子位
置的胶片上.下列表述正确的是( )
A. 速度选择器中的磁场方向垂直纸面向里
B. 能通过狭缝P的带电粒子的速率等于
C. 粒子打在胶片上的位置越靠近狭缝P,粒子的比荷越小
D. 粒子打在胶片上的位置越靠近狭缝P,粒子的比荷越大
9下图是质谱仪工作原理的示意图。
带电粒子a、b经电压U加速
(在A点初速度为零)后,进入磁感应强度为B的匀强磁场做匀
速圆周运动,最后分别打在感光板S上的x1、x2处。
图中半圆
形的虚线分别表示带电粒子a、b所通过的路径,则
A.a的质量一定大于b的质量
B.a的电荷量一定大于b的电荷量
C.a运动的时间大于b运动的时间D.a的比荷大于b的比荷
10质谱仪是一种能够把具有不同荷质比(带电粒子的电荷和质量之比)的带电粒子分离开来的仪器,它的工作原理如图所示.其中A部分为粒子速度选择器,C部分是偏转分离器.如果速度选择器的两极板间匀强电场的电场强度为E,匀强磁场的磁感强度为B1.偏转分离器区域匀强磁场的磁感强度为B2,某种带电粒子由O点沿直线穿过速度选择器区域后进入偏转分离器.求:
(1)粒子由孔O′进入偏转分离器时的速度为多大?
(2)粒子进入偏转分离器后在洛伦兹力作用下做圆周运动(如图示),在照相底片MN上的D点形成感光条纹,测得D点到O′点的距离为d,则该种带电粒子带何种电荷,该种带电粒子的比荷为多大?
11(12分)如图14所示,回旋加速器D形盒的半径为R,用来加速质量为m、电荷量为q的质子,使质子由静止加速到能量为E后,由A孔射出,求:
(1)加速器中匀强磁场B的方向和大小;
(2)设两D形盒间距为d,其间电压为U,电场视为匀强电场,质子每次经电场加速后能量增加,加速到上述能量所需回旋周数;
(3)加速到上述能量所需时间.
1B 2B 3AC 4A 5A 6A 7BC 8BD 9D
10答:(1)粒子由孔O′进入偏转分离器时的速度为
(2)该种带电粒子的荷质比为.
11方向是垂直与直面向里。