江苏省2018届高考数学考前全真模拟试题(5)(扫描版)

合集下载

2018高三数学模拟卷(5)(江苏卷)

2018高三数学模拟卷(5)(江苏卷)

2018高三数学模拟卷(五) (江苏卷)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷为选择题,共10小题,50分;第II 卷为填空题和解答题,共11小题,100分.全卷满分150分,考试时间120分钟.第Ⅰ卷 (选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,恰.有一项...是符合题目要求的。

1.已知U 是全集,M 、N 是U 的两个子集,若M N U ≠ ,M N φ≠ ,则下列选项中正确的是( )A .U C M N =B .UC N M =C .()()U U C M C N φ=D . ()()U U C M C N U =2.从8名女生,4名男生中选出6名学生组成课外小组,如果按性别比例分层抽样,则不同的抽取方法种数为( )A .4284C C B .3384C C C .412CD .4284A A 3.若110a b <<,则下列不等式:①a b ab +<;②a b >;③a b <;④2>+baa b 中,正确的不等式有( )A .1个B .2个C .3个D . 4个4.为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图,如右,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a ,视力在4.6到5.0之间的学生数为b ,则a ,b参考公式:如果事件A 、B 互斥,那么P (A +B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率P n (k )=kn C P k (1-P )n -k正棱锥、圆锥的侧面积公式S 锥侧=21cl其中c 表示底面周长,l 表示斜高或母线长球的体积公式V 球=34πR 3其中R 表示球的半径的值分别为( ) A .0.27,78 B .0.27,83 C .2.7,78D .2.7,835.双曲线222006x y -=的左、右顶点分别为1A 、2A ,P 为其右支上一点,且21214A PA PA A ∠=∠,则21A PA ∠等于 ( )A .36π B .18π C . 12πD .无法确定6.设函数x x x y cos sin +=的图象上的点(x ,y )的切线斜率为k ,若)(x g k =,则函数)(x g k =的图象大致为( )7.定义在R 上的函数()f x 对任意的x 都有(3)()3f x f x +≤+和(2)()2f x f x +≥+且(1)1f =,则(2006)f 的值为( )A .2003B .2004C .2005D .20068.有一个正四棱锥,它的底面边长与侧棱长均为a ,现用一张正方形包装纸将其完全包住(不能裁剪纸,但可以折叠),那么包装纸的最小边长应为( ) A .262+a B .()26+a C .132+a D .()13+a 9.若点O 是ABC △的外心,且OA OB CO ++=0,则ABC △的内角C 等于( )A .45B .60C .90D .12010.在坐标平面上,集合(){}22,1M x y xy =+≤,(){},N x y y x =≤,则M N 表示的平面区域的面积是( )A .4π B .34π C .2π D .π第Ⅱ卷 (非选择题共100分)二、填空题: 本大题共6小题,每小题5分,共30分.11.在数列{}n a 中,如果存在非零常数T ,使得m T m a a +=对于任意的正整数m 均成立,那么就称数列{}n a 为周期数列,其中T 叫做数列{}n a 的周期.已知数列{}n x 是周期数列且满足()*112,n n n x x x n n N +-=-≥∈, 11x =,()2,0x a a R a =∈≠,当数列{}n x 的周期最小时,该数列的前2006项和是12.某厂有三个顾问A 、B 、C ,假定每个顾问发表的意见是正确的概率均为0.8,现就某事可行与否征求各顾问的意见,并按顾问中多数人的意见作出正确决策.则该厂作出正确决策的概率为 .13.已知函数()()2'212f x x xf =++,则()1f 的值是 .14.若对于任意实数,x y 都有()()()()()2006200620052004222004012200422222x y a x y a x y y a x y y a x y y -=++++++++ ()20052006200520062a x y y a y +++,则01220052006a a a a a +++++=. 15.抛一枚均匀硬币,正、反每面出现的概率都是12,反复这样地抛掷,数列{}n a 定义如下:11n a ⎧=⎨-⎩, 当第n 次投掷出现正面  ,当第n 次投掷出现反面,若()*123n n S a a a a n N =++++∈ ,则事件“82S =”的概率为 ;事件“20S ≠且82S =”的概率为 . 16.已知函数()f x 的定义域为R ,且同时满足下列条件:①(2)f x +为偶函数; ②函数()f x 没有最小值;③函数()f x 的图象被x 轴截得的线段长为4.请写出同时满足于以上三个条件的一个..函数解析式:_________ . 三、解答题: 本大题共5小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分12分)()f x 是定义在[]2,2ππ-上的偶函数,当[]0,x π∈时,()c o s f x x =,当(],2x ππ∈时,()y f x =的图像时斜率为2π且在y 轴上的截距为2-的直线在相应区间上的部分.(1) 求()2f π-、3f π⎛⎫-⎪⎝⎭的值; (2) 写出函数()y f x =的表达式,作出其图像,并根据图像写出函数的单调区间. 18.(本小题满分14分)某家具城进行促销活动,促销方案是:顾客每消费1000元,便可获得奖券一张,每张奖券中奖的概率为51,若中奖,则家具城返还顾客现金1000元,某顾客买一张价格为3400元的餐桌,得到3张奖券,(I )求家具城恰好返还该顾客现金1000元的概率; (II )求家具城至少返还该顾客现金1000元的概率. 19.(本小题满分14分)在三棱柱'''ABC A B C -中,侧面''CBB C ⊥底面',60,90ABC B BC ACB ∠=︒∠=︒,且'CB CC CA ==.(1) 求证:平面'AB C ⊥平面''AC B ; (2) 求异面直线'A B 与'AC 所成的角.20.(本小题满分16分,第一、第二小问满分各8分)过抛物线22(y px p =>0)的对称轴上的定点(,0)(0)M m m >,作直线AB 与抛物线相交于,A B 两点. (1)试证明:,A B 两点的纵坐标之积为定值;(2)若点N 是定直线:l x m =-上的任一点,试探索三条直线,,AN MN BN 的斜率之间的关系,并给出证明.21.(本小题满分14分)已知函数()32f x x ax bx c =-+++图像上的点()()1,P f x 处的切线方程为31y x =-+.(1) 若函数()f x 在2x =-时有极值,求()f x 的表达式; (2)函数()f x 在区间[]2,0-上单调递增,求实数b 的取值范围高三模拟卷(五)参考答案及评分标准说明:1.本解答仅给出了一种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容对照评分标准制订相应的评分细则.2. 评阅试卷,应坚持每题评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3. 解答右端所注分数,表示考生正确做到这一步应得的累加分数.4. 给分或扣分均以1分为单位.选择题和填空题不给中间分. 一.选择题:1. D 由韦恩图知A 、B 一定不成立,由集合运算率()()()U U U U C M C N C M N C U φ=≠= ,所以选项C 错,对于D 选项,()()()U U UUC M C NC M N C U φ=≠=,故选D.评析 对于处理有关集合间的关系问题,通常可以考虑借助于韦恩图来帮助解决,注意画图时一定要结合相应题目的已知条件来画出,从而解决相关问题.2. A 应从8名女生中选出4人,4名男生中选出2人,有4284C C ⋅种选法,故选A .评析 对于象这样的抽样与排列组合的综合问题,要注意弄清题目中的按性别比例分层抽样的含义,即意味着从8名女生中选出4人,4名男生中选出2人,从而得以求解. 3. B 由110a b <<得0b a <<,0ab a b >>+,b a >,0b a >,0a b >,且b aa b≠,故①④正确,选B .评析 对于此类问题,通常应该考虑将已知条件明显化,然后利用不等式的相关性质来判定相应的一些结论是否成立. 4. A 注意到纵轴表示组距频率,由图象可知,前4组的公比为3,最大频率30.130.10.27a =⨯⨯=,设后六组公差为d ,则560.010.030.090.27612d ⨯+++⨯+=,解得:0.05d =-, 即后四组公差为0.05-, 所以,视力在4.6到5.0之间的学生数为 (0.27+0.22+0.17+0.12)×100=78(人),选A.评析 本题巧妙地将统计与数列的相关知识结合起来,对于这样的问题看似情景新颖,但只要仔细读题将所学的数列的知识应用到其中去,不难将问题解决.5. C 设),(y x P ,不妨设0>y ,过点P 作x 轴的垂线PH ,垂足为H ,则 ,tan 1a x y H PA +=∠ ax y H PA -=∠2tan ( 其中22006a =) ∴1tan tan 22221=-=∠⋅∠a x y H PA H PA ,∴221π=∠+∠H PA H PA , 设 12PA A θ∠= , 则25PA H θ∠=,∴52πθθ+= ,∴12πθ=,即1221π=∠A PA , 故选C .评析 对于此类问题,在解决过程中要注意充分地使用已知条件,寻找其中的隐含条件,利用其中的角间的关系,尤其是涉及到有关直线问题时,常常要注意考虑对应直线的斜率情况.6. A 由已知得sin cos sin cos k x x x x x x =+-=,容易得知,)(x g k =是奇函数,故其图象关于原点成中心对称,并且当02x π<<时,cos 0k x x =>,故结合各选项知,选A.评析对于此类问题,首先要注意真正清楚一些基本的求导规则,正确地求出相应函数的导函数,然后注意结合分析相关函数的性质,从而确定相应函数的大致图象. 7. D 由已知得()()()()32321f x f x f x f x +-+≤+-+=⎡⎤⎣⎦,又()()()()()()21111121332f x f x f x f x f x f x -≤+---=++--+≤+-+⎡⎤⎣⎦,即()()132f x f x ≤+-+,所以()()321f x f x +-+=,数列(){}()*f n n N ∈是以()11f =为首项、1为公差的等差数列,所以()f n n =,()20062006f =,故选D.评析有关这样的抽象函数的问题,往往需要针对已知条件中的恒等式(或恒不等式)中的变量取某些特殊值,从而将问题解决.8. A 把该正四棱锥的四个侧面展开与底面处于同一个平面上,恰好以这四个正三角形的四个顶点为一个正方形的顶点的对应正方形的边长最小,而这个正方形的边长是====,故选A.评析 对于此类问题,通常要考虑将空间问题转化为平面问题,从而结合平面图形将其最小边长确定.9. B 由已知得OA OB CO OC +=-= ,22()OA OB OC += , 即2222OA OB OA OB OC ++= ,又点O 是ABC △的外心,所以222OA OB OC == ,OA OB OC == ,故有2222cos OC OC OC OC AOB OC ++∠= ,1cos 2AOB ∠=-,所以120AOB ∠= ,1602C AOB ∠=∠= ,故选B.评析 对于此类有关向量与平面几何相结合的问题,要注意在一个三角形中的特殊点所、具有的性质,尤其是三角形的常见的垂心、外心、重心、内心所具有的性质一定要注意,并且作为选择题目在处理时要注意一些特殊的方法.10. A 由集合M 可知,其中的元素就是以原点为圆心、1为半径的圆周及其内部的点的集合;而集合N 中的元素是夹在射线()0y x x =≥与射线()0y x x =-≤之间的x 轴上方的区域,结合图形不难得知M N 表示的平面区域的面积是4π,故选A . 评析 对于此类有关线性规划(或类似于线性规划)的问题的解决,常常要注意数形结合,首先正确地将相应的图形画出,然后结合具体的问题,将要求的问题解决. 二、填空题:11.1338. 若其最小周期为1,则该数列是常数列,即每一项都等于1,此时1a =,该数列的项分别为1,1,0,1,1,0,1,1,0,……,即此时该数列是以3为周期的数列;若其最小周期为2,则有31a a =,即11a -=,11a -=或1-,2a =或0a =,又0a ≠,故2a =,此时该数列的项依次为1,2,1,1,0,……,由此可见,此时它并不是以2为周期的数列.综上所述,当数列{}n x 的周期最小时,其最小周期是3,1a =,又200636682=⨯+,故此时该数列的前2006项和是()()668110111338⨯++++=.评析 有关这类问题,要注意结合题意的叙述探求相应的项的变化规律,从而将问题解决,并且注意适当地分类讨论.12. 0.896. 由题意可知,该厂作出正确决策,即意味着这三个人中至少有两个作出正确决策,故该厂作出正确决策的概率为3322330.80.80.20.896C C += .评析 对于此类有关生活中的概率或排列组合问题,要恰当地将生活语言转化为数学语言,从而将问题求解.13. 1- 由已知得()()''221f x x f =+,令1x =,得()()''1221f f =+,()'12f =-,故()242f x x x =-+,()2114121f =-⨯+=-.评析 对于本题这样的问题看似不定,但通过对函数的求导,不难以发现其中的()'1f 又是可以确定的,注意挖掘题目中的隐含条件. 14. 20063考查二项式定理的理解以及展开式中的各项系数和与二项式间的关系.观察已知等式两边,容易知道,只要令21x y +=且1y =,即1x =-且1y =即可得到()200620060122005200633a a a a a +++++=-= .评析 对于这类型问题,要正确地理解二项式定理,其实二项式定理仅是对一个式子的一个变形而已,只要等式两边字母取相同的值,左、右两边的值恒相等,只是在具体问题中要注意观察其中的字母究竟取何值时,能够得到要得到的值,在具体问题只有具体分析,通常可能要将其中的字母取1或1-等值. 15.732;13128由题意得,事件“82S =”即在将一枚均匀硬币抛掷8次中,恰好出现了5次正面,3次反面,故事件“82S =” 的概率为3585588111722232C C ⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,事件“20S ≠且82S =”即在将一枚均匀硬币抛掷8次中,恰好出现了5次正面3次反面且前两次的抛掷中出现的必须同为正面或反面,故事件“20S ≠且82S =”的概率为31668132128C C +=. 评析 考查数列与概率的相关知识的综合.对于这类型问题,要正确理解题意,对于题目中的n S 的值的取得又不能简单地理解为数列的和,这就要求考生能恰当地根据题意来解决具体问题,而不能一味地死记硬背而达到目的.16. ()24f x x x =-+ 24y x x =-;22)(--=x x f 等 (答案不唯一)评析 对于此类开放性问题,考生要注意根据要求先找到突破口,比如这个题目中的(2)f x +或()f x 为偶函数这一特定要求,可先考虑函数(2)f x +或()f x 的雏形,再结合其他约束条件,进而写出满足题意的函数()f x 。

最新-江苏省2018届高三数学 全真模拟卷卷181 精品

最新-江苏省2018届高三数学 全真模拟卷卷181 精品

江苏省2018届高三全真模拟卷数学卷11一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应的位置上.1.已知集合{|5}A x x =>,集合{|}B x x a =>,若命题“x A ∈”是命题“x B ∈”的充分 不必要条件,则实数a 的取值范围是 ▲ . 答案: 5a <2.复数1z i =-(是虚数单位),则22z z -= ▲ . 答案:12i -+3.为了解某校教师使用多媒体进行教学的情况,采用简单随机抽样的方法,从该校200名授课教师中抽取20名教师,调查了他们上学期使用多媒体进行教学的次数,结果用茎叶图表示如下:据此可估计该校上学期200名教师中,使用多媒体 进行教学次数在[]15,30内的人数为 ▲ . 答案:100解析:所抽取的20人中在[]15,30内的人数10人,故可得200名教师中使用多媒体进行教学次数在[]15,30内的人数为1020020⨯=100人。

4.如图是一个算法的流程图,则最后输出的W 的值为 ▲ . 答案:14解析:本题考查算法流程图。

0,11,23,36,4s t s t s t s t ==→==→==→==10s →= 所以输出14w s t =+=。

5.已知n s 是等差数列{n a }的前n 项和,若2s ≥4,4s ≤16,则5a 的最大值是 ▲ . 答案:96.用半径为210cm ,面积为π2100cm 2的扇形铁皮制作一个无盖的圆锥形容器(衔接部分忽略不计), 则该容器盛满水时的体积是 ▲ . 答案:331000cm π7.若在区间[1,5]和[2,4]上分别各取一个数,记为m 和n ,则方程22221x y m n+=表示焦点在x 轴上的椭圆的概率为 ▲ .答案:2解析:本题考查线性规划和几何概型。

由题意知15,24,m n m n ≤≤⎧⎪≤≤⎨⎪>⎩画可行域如图阴影部分。

直线m n =与2n =,4n =的交点分别为(2,2),(4,4) ∴阴影梯形的面积为1(13)242+⨯=,而区间[1,5]和[2,4]构成的区域面积为8,故所求的概率为4182=。

2018届普通高等学校招生全国统一考试高三数学模拟(五)理

2018届普通高等学校招生全国统一考试高三数学模拟(五)理

2018年普通高等学校招生全国统一考试模拟试题理数(五)本试卷共6页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5、考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合}12|{},02|{2+==<-=x y y N x x x M ,则=⋂N M ( )A .)2,0(B .)2,1(C .)1,0(D .∅2.已知i 为虚数单位,复数iai i z ++=1)1(的虚部为2,则实数=a ( ) A .1 B .2 C .3 D .43.函数x x y sin 22cos +=的最大值为( )A .21B .1C .23 D .2 4.如图,分别以C A ,为圆心,正方形ABCD 的边长为半径圆弧,交成图中阴影部分,现向正方形内投入1个质点,则该点落在阴影部分的概率为( )A .21B .22-π C. 41 D .42-π 5.已知O 为坐标原点,分别在双曲线)0,0(12222>>=-b a bx a y 第一象限和第二象限的渐近线上取点N M ,,若MON ∠的正切值为34,则双曲线离心率为( ) A .55 B .25 C. 45 D .35 6.若点),(y x 满足⎪⎩⎪⎨⎧≤+≤≥+3202y x x y y x ,则22)2(-+y x 的最小值为( )A .552B .55 C. 54 D .51 7.按下面的程序框图,如果输入的]3,1[-∈t ,则输出的x 的取值范围为( )A .]4,3[-B .]3,1[- C. ]9,3[- D .]4,3[8.将函数)3cos(sin )(π+=x x x f 的图象向右平移3π个单位,得到函数)(x g 的图象,则)(x g 图象的一个对称中心是( )A .)0,6(πB .)0,3(π C. )43,6(-πD .)43,3(-π9. )102()1(10101022101105x C x C x C x ++++ 展开式中,7x 项的系数是( )A .50400B .15300 C. 30030 D .15001510.如图是一三棱锥的三视图,则此三棱锥内切球的体积为( )A .425πB .1625π C. 41125π D .161125π 11.已知函数)(x f 是定义在R 内的奇函数,且满足)()2(x f x f =-,若在区间]1,0(上,x x f 1)(=,则=++++++)818()212()111(f f f ( ) A .631 B .1231 C. 635 D .1235 12.过抛物线)0(22>=p px y 的焦点F 且斜率为)0(>k k 的直线l 交抛物线于点B A ,,若→→=FB AF λ,且)21,31(∈λ,则k 的取值范围是( ) A .)3,1( B .)2,3( C. )22,2( D .)22,3(第Ⅱ卷(共90分)本卷包括必考题和选考题两部分。

最新-江苏省2018届高三数学 全真模拟卷卷19 精品

最新-江苏省2018届高三数学 全真模拟卷卷19 精品

江苏省2018届高三全真模拟卷数学卷19数学Ⅰ(必做部分)一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应的位置........上.. 1.2z mi =+,m R ∈,若11zi-+对应点在第二象限,则m 的取值范围为 . 2.已知全集U R =,集合{}250A x Z x x =∈-+≤,{}40B x x =-<则()U C A B 中最大的元素是 .3.已知(cos ,sin )(0),(1,3)m x x n ωωω=>=,若函数()f x m n =∙的最小正周期是2,则(1)f = .4.执行以下语句后,打印纸上打印出的结果应是: . 1i ← 4x ← While <10 2x x i ←+ 3i i ←+ End WhilePrint “x =”x5.已知函数()f x =12tan x x +-,(0,)2x π∈,则()f x 的单调减区间是 .6.在数轴上区间[]3,6-内,任取三个点,,A B C ,则它们的坐标满足不等式:()()0A B B C x x x x --<的概率为 .7.P 为抛物线24y x =上任意一点,P 在y 轴上的射影为Q ,点M (4,5),则PQ 与PM 长度之和的最小值为: .焦点(1,0)F PM PQ +=1PM PF +-,而PM PF +的最小值是MF =,所以答案为1-8、设,m n 是两条不同的直线,,αβ是两个不同的平面,有下列正确命题的序号是 . (1)若m ∥α,n ∥α,则m ∥n , (2)若,m m n α⊥⊥则//n α (3)若m α⊥,n β⊥且m n ⊥,则αβ⊥;(4)若β⊂m ,βα//,则α//m9. 定义在R 上()f x 满足:(2)()1f x f x +=,当(0,2)x ∈时,()f x =1()2x ,则(2011)f = .10.过平面区域202020x y y x y -+≥⎧⎪+≥⎨⎪++≤⎩内一点P 作圆22:1O x y +=的两条切线,切点分别为,A B ,记APB α∠=,则当α最小时cos α= .11.如图所示的数阵叫“莱布尼兹调和三角形”,他们是由整数的倒数组成的,第n 行有n 个数且两端的数均为1(2)n n≥,每个数是它下一行左右相邻两数的和,如:111111111,,1222363412=+=+=+…,则第(3)n n ≥行第3个数字是 .12. 已知正方形ABCD 的坐标分别是(1,0)-,(0,1),(1,0),(0,1)-,动点M 满足:12MB MD k k =-则MA MC += .13. “18a ≥”是“对∀正实数x ,2ax c x+≥”的充要条件,则实数c = .14.函数()f x 的定义域为D ,若满足①()f x 在D 内是单调函数,②存在[],a b D ⊆,使()f x 在[],a b 上的值域为[],b a --,那么()y fx =叫做对称函数,现有()f x k =-是对称函数, 那么k 的取值范围是 .二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤.15.已知二次函数f (x )=x 2+mx+n 对任意x ∈R ,都有f (-x ) = f (2+x )成立,设向量→a = ( sinx , 2 ) , →b = (2sinx , 12),→c = ( cos 2x , 1 ),→d =(1,2),(Ⅰ)求函数f (x )的单调区间;(Ⅱ)当x ∈[0,π]时,求不等式f (→a ·→b )>f (→c ·→d )的解集.16.在如图的多面体中,EF ⊥平面AEB ,AE EB ⊥,//AD EF ,//EF BC ,24BC AD ==,3EF =,2AE BE ==,G 是BC 的中点.(Ⅰ) 求证://AB 平面DEG ; (Ⅱ) 求证:BD EG ⊥;(Ⅲ)求多面体ADBEG 的体积.17.已知双曲线2212x y -=的两焦点为12,F F ,P 为动点,若124PF PF +=.(Ⅰ)求动点P 的轨迹E 方程; (Ⅱ)若12(2,0),(2,0),(1,0)A A M -,设直线过点M ,且与轨迹E 交于R 、Q 两点,直线1A R 与2A Q 交于点S .试问:当直线在变化时,点S 是否恒在一条定直线上?若是,请写出这条定直线方程,并证明你的结论;若不是,请说明理由.18.如图所示:一吊灯的下圆环直径为4m ,圆心为O ,通过细绳悬挂在天花板上,圆环呈水平状态,并且与天花板的距离)(OB 即为2m ,在圆 环上设置三个等分点A 1,A 2,A 3。

2018年江苏省高考数学押题试卷Word版含解析

2018年江苏省高考数学押题试卷Word版含解析

2018年江苏省高考数学押题试卷一、填空题(本大题共14小题,每小题5分,共70分.请把答案填写在题中横线上)1.已知集合A={x|x2﹣x﹣2≤0},集合B={x|1<x≤3},则A∪B= .2.已知a,b∈R,i是虚数单位,若a+i=1﹣bi,则(a+bi)8= .3.从某班抽取5名学生测量身高(单位:cm),得到的数据为160,162,159,160,159,则该组数据的方差s2= .4.若双曲线x2+my2=1过点(﹣,2),则该双曲线的虚轴长为.5.根据如图所示的伪代码,可知输出的结果S为.6.在三张奖券中有一、二等奖各一张,另一张无奖,甲乙两人各抽取一张(不放回),两人都中奖的概率为.7.已知函数y=Asin(ωx+φ),(A>0,ω>0,|φ|<π)的图象如图所示,则该函数的解析式是.8.如图,在长方体ABCD﹣A1B1C1D1中,对角线B1D与平面A1BC1交于E点.记四棱锥E﹣A1B1C1D1的体积为V1,长方体ABCD﹣A1B1C1D1的体积为V2,则的值是.9.已知实数x ,y 满足,则的取值范围是 .10.已知{a n },{b n }均为等比数列,其前n 项和分别为S n ,T n ,若对任意的n ∈N *,总有=,则= .11.已知平行四边形ABCD 中.∠BAD=120°,AB=1,AD=2,点P 是线段BC 上的一个动点,则•的取值范围是 .12.如图,已知椭圆+=1(a >b >0)上有一个点A ,它关于原点的对称点为B ,点F 为椭圆的右焦点,且满足AF ⊥BF ,当∠ABF=时,椭圆的离心率为 .13.在斜三角形ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若+=,则的最大值为 .14.对于实数a ,b ,定义运算“□”:a□b=设f (x )=(x ﹣4)□(x ﹣4),若关于x 的方程|f (x )﹣m|=1(m ∈R )恰有四个互不相等的实数根,则实数m 的取值范围是 .二、解答题(本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤)15.设α为锐角,且cos (α+)=.(1)求cos ()的值;(2)求cos (2α﹣)的值.16.在直三棱柱ABC ﹣A 1B 1C 1中,CA=CB ,AA 1=AB ,D 是AB 的中点(1)求证:BC 1∥平面A 1CD ;(2)若点P 在线段BB 1上,且BP=BB 1,求证:AP ⊥平面A 1CD .17.如图,直线l 是湖岸线,O 是l 上一点,弧是以O 为圆心的半圆形栈桥,C 为湖岸线l上一观景亭,现规划在湖中建一小岛D ,同时沿线段CD 和DP (点P 在半圆形栈桥上且不与点A ,B 重合)建栈桥,考虑到美观需要,设计方案为DP=DC ,∠CDP=60°且圆弧栈桥BP 在∠CDP 的内部,已知BC=2OB=2(km ),设湖岸BC 与直线栈桥CD ,DP 是圆弧栈桥BP 围成的区域(图中阴影部分)的面积为S (km 2),∠BOP=θ (1)求S 关于θ的函数关系式;(2)试判断S 是否存在最大值,若存在,求出对应的cosθ的值,若不存在,说明理由.18.在平面直角坐标系xOy中,设椭圆(a>b>0)的离心率是e,定义直线y=为椭圆的“类准线”,已知椭圆C的“类准线”方程为y=,长轴长为4.(1)求椭圆C的方程;(2)点P在椭圆C的“类准线”上(但不在y轴上),过点P作圆O:x2+y2=3的切线l,过点O且垂直于OP的直线l交于点A,问点A是否在椭圆C上?证明你的结论.19.已知数列{an }满足2an+1=an+an+2+k(n∈N*,k∈R),且a1=2,a3+a5=﹣4.(1)若k=0,求数列{an }的前n项和Sn;(2)若a4=﹣1,求数列{an}的通项公式an.20.已知函数f(x)=e x(x3﹣2x2+(a+4)x﹣2a﹣4),其中a∈R,e为自然对数的底数.(1)关于x的不等式f(x)<﹣e x在(﹣∞,2)上恒成立,求a的取值范围;(2)讨论函数f(x)极值点的个数.2018年江苏省高考数学押题试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共70分.请把答案填写在题中横线上)1.已知集合A={x|x2﹣x﹣2≤0},集合B={x|1<x≤3},则A∪B= {x|﹣1≤x≤3} .【考点】1D:并集及其运算.【分析】求解一元二次不等式化简集合A,然后直接利用并集运算得答案.【解答】解:由x2﹣x﹣2≤0,解得﹣1≤x≤2.∴A={x|﹣1≤x≤2},又集合B={x|1<x≤3},∴A∪B={x|﹣1≤x≤3},故答案为:{x|﹣1≤x≤3},2.已知a,b∈R,i是虚数单位,若a+i=1﹣bi,则(a+bi)8= 16 .【考点】A5:复数代数形式的乘除运算.【分析】利用复数相等求得a,b的值,代入(a+bi)8,再由复数代数形式的乘法运算化简得答案.【解答】解:由a+i=1﹣bi,得a=1,b=﹣1,从而(a+bi)8=(1﹣i)8=(﹣2i)4=16.故答案为:16.3.从某班抽取5名学生测量身高(单位:cm),得到的数据为160,162,159,160,159,则该组数据的方差s2= .【考点】BC:极差、方差与标准差.【分析】求出数据的平均数,从而求出方差即可.【解答】解:数据160,162,159,160,159的平均数是:160,则该组数据的方差s2=(02+22+12+02+12)=,故答案为:.4.若双曲线x2+my2=1过点(﹣,2),则该双曲线的虚轴长为 4 .【考点】KC:双曲线的简单性质.【分析】根据条件求出双曲线的标准方程即可得到结论.【解答】解:∵双曲线x2+my2=1过点(﹣,2),∴2+4m=1,即4m=﹣1,m=﹣,则双曲线的标准范围为x2﹣=1,则b=2,即双曲线的虚轴长2b=4,故答案为:4.5.根据如图所示的伪代码,可知输出的结果S为205 .【考点】E5:顺序结构.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是输出满足条件i=2n+1,n∈N,i=i+2≥100时,S=2i+3的值【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是输出满足条件i=2n+1,n∈N,i=i+2≥100时,S=2i+3的值,∵i+2=101时,满足条件,∴输出的S值为S=2×101+3=205.故答案为:205.6.在三张奖券中有一、二等奖各一张,另一张无奖,甲乙两人各抽取一张(不放回),两人都中奖的概率为.【考点】C5:互斥事件的概率加法公式.【分析】利用列举法求出甲、乙两人各抽取1张的基本事件的个数和两人都中奖包含的基本事件的个数,由此能求出两人都中奖的概率.【解答】解:设一、二等奖各用A,B表示,另1张无奖用C表示,甲、乙两人各抽取1张的基本事件有AB,AC,BA,BC,CA,CB共6个,其中两人都中奖的有AB,BA共2个,故所求的概率P=.故答案为:.7.已知函数y=Asin(ωx+φ),(A>0,ω>0,|φ|<π)的图象如图所示,则该函数的解析式是y=2sin(x+).【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】由图可知,A=2,由点(0,1)在函数的图象上,可得sinφ=,利用五点作图法可解得φ,又点(﹣,0)在函数的图象上,可得﹣ω+=kπ,k∈Z,进而解得ω,从而得解该函数的解析式.【解答】解:∵由图知A=2,y=2sin(ωx+φ),∵点(0,1),在函数的图象上,∴2sinφ=1,解得:sinφ=,∴利用五点作图法可得:φ=,∵点(﹣,0),在函数的图象上,可得:2sin(﹣ω+)=0,∴可得:﹣ω+=kπ,k∈Z,解得:ω=﹣,k∈Z,∵ω>0,∴当k=0时,ω=,∴y=2sin(x+).故答案为:y=2sin(x+).8.如图,在长方体ABCD﹣A1B1C1D1中,对角线B1D与平面A1BC1交于E点.记四棱锥E﹣A1B1C1D1的体积为V1,长方体ABCD﹣A1B1C1D1的体积为V2,则的值是.【考点】LF:棱柱、棱锥、棱台的体积.【分析】连接B1D1∩A1C1=F,证明以E是△A1BC1的重心,那么点E到平面A1B1C1D1的距离是BB1的,利用体积公式,即可得出结论.【解答】解:连接B1D1∩A1C1=F,平面A1BC1∩平面BDD1B1=BF,因为E∈平面A1BC1,E∈平面BDD1B1,所以E∈BF,连接BD,因为F是A1C1的中点,所以BF是中线,又根据B1F平行且等于BD,所以=,所以E是△A1BC1的重心,那么点E到平面A1B1C1D1的距离是BB1的,所以V1=×BB1,而V2=×BB1,所以=.故答案为:.9.已知实数x,y满足,则的取值范围是[1,] .【考点】7C:简单线性规划.【分析】作出不等式组对应的平面区域,利用直线斜率的几何意义进行求解即可.【解答】解:作出不等式组对应的平面区域,的几何意义是区域内的点到定点D(0,﹣1)的斜率,由图象知,AD的斜率最大,BD的斜率最小,此时最小值为1,由得,即A(1,),此时AD的斜率k==,即1≤≤,故的取值范围是[1,]故答案为:[1,]10.已知{a n },{b n }均为等比数列,其前n 项和分别为S n ,T n ,若对任意的n ∈N *,总有=,则= 9 .【考点】8E :数列的求和.【分析】设{a n },{b n }的公比分别为q ,q′,利用=,求出q=9,q′=3,可得=3,即可求得结论.【解答】解:设{a n },{b n }的公比分别为q ,q′,∵=,∴n=1时,a 1=b 1.n=2时,.n=3时,.∴2q ﹣5q′=3,7q′2+7q′﹣q 2﹣q+6=0, 解得:q=9,q′=3,∴.故答案为:9.11.已知平行四边形ABCD中.∠BAD=120°,AB=1,AD=2,点P是线段BC上的一个动点,则•的取值范围是[﹣,2] .【考点】9R:平面向量数量积的运算.【分析】以为坐标原点,以BC所在的直线为x轴,建立如图所述的直角坐标系,作AE⊥BC,垂足为E,求出A(,),D(,),设点P(x,0),0≤x≤2,根据向量的坐标运算以及向量的数量积的运算得到•=(x﹣)2﹣,根据二次函数的性质即可求出答案.【解答】解:以B为坐标原点,以BC所在的直线为x轴,建立如图所述的直角坐标系,作AE ⊥BC,垂足为E,∵∠BAD=120°,AB=1,AD=2,∴∠ABC=60°,∴AE=,BE=,∴A(,),D(,),∵点P是线段BC上的一个动点,设点P(x,0),0≤x≤2,∴=(x﹣,﹣),=(x﹣,﹣),∴•=(x﹣)(x﹣)+=(x﹣)2﹣,∴当x=时,有最小值,最小值为﹣,当x=0时,有最大值,最大值为2,则•的取值范围为[﹣,2],故答案为:[﹣,2].12.如图,已知椭圆+=1(a>b>0)上有一个点A,它关于原点的对称点为B,点F为椭圆的右焦点,且满足AF⊥BF,当∠ABF=时,椭圆的离心率为.【考点】K4:椭圆的简单性质.【分析】设椭圆的左焦点为F1,连结AF1,BF1,通过|AB|=|F1F|=2c,所以在Rt△ABF中,|AF|=2csin,|BF|=2ccos,由椭圆定义,转化求解离心率即可.【解答】解:设椭圆的左焦点为F1,连结AF1,BF1,由对称性及AF⊥BF可知,四边形AFBF1是矩形,所以|AB|=|F1F|=2c,所以在Rt△ABF中,|AF|=2csin,|BF|=2ccos,由椭圆定义得:2c(cos+sin)=2a,即:e====.故答案为:.13.在斜三角形ABC中,a,b,c分别是角A,B,C所对的边,若+=,则的最大值为.【考点】HR:余弦定理;HP:正弦定理.【分析】由+=可得, +=,通分化简,根据正弦定理及余弦定理在化简,利用基本不等式的性质求解.【解答】解:由+=可得, +=,即=,∴=,即=,∴sin2C=sinAsinBcosC.根据正弦定理及余弦定理可得,c2=ab•,整理得a2+b2=3c2,∴=≤=,当且仅当a=b时等号成立.故答案为.14.对于实数a,b,定义运算“□”:a□b=设f(x)=(x﹣4)□(x﹣4),若关于x的方程|f(x)﹣m|=1(m∈R)恰有四个互不相等的实数根,则实数m的取值范围是(﹣1,1)∪(2,4).【考点】54:根的存在性及根的个数判断.【分析】根据新定义得出f(x)的解析式,作出f(x)的函数图象,则f(x)与y=m±1共有4个交点,根据图象列出不等式组解出.【解答】解:解不等式x﹣4≤﹣4得x≥0,f(x)=,画出函数f(x)的大致图象如图所示.因为关于x的方程|f(x)﹣m|=1(m∈R),即f(x)=m±1(m∈R)恰有四个互不相等的实数根,所以两直线y=m±1(m∈R)与曲线y=f(x)共有四个不同的交点,∴或或,解得2<m<4或﹣1<m<1.故答案为(﹣1,1)∪(2,4).二、解答题(本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤)15.设α为锐角,且cos(α+)=.(1)求cos()的值;(2)求cos(2α﹣)的值.【考点】GP:两角和与差的余弦函数.【分析】(1)由已知及同角三角函数基本关系式可求sin(α+),利用诱导公式即可得解cos()的值.(2)利用诱导公式可求sin(),由2α=(α+)﹣(),利用两角差的余弦函数公式即可计算得解.【解答】(本题满分为14分)解:(1)∵α为锐角,∴α+∈(,).又cos(α+)=,故sin(α+)=,…4分∴cos()=cos[﹣(α+)]=sin(α+)=,…6分(2)又sin()=﹣sin[﹣(α+)]=﹣cos(α+)=﹣,…8分故cos(2α)=cos[(α+)﹣()]=cos(α+)cos()﹣sin(α+)sin()=×﹣×(﹣)=…14分16.在直三棱柱ABC﹣A1B1C1中,CA=CB,AA1=AB,D是AB的中点(1)求证:BC1∥平面A1CD;(2)若点P在线段BB1上,且BP=BB1,求证:AP⊥平面A1CD.【考点】LW:直线与平面垂直的判定;LS:直线与平面平行的判定.【分析】(1)连接AC1,设与CA1交于O点,连接OD,由O为AC1的中点,D是AB的中点,可得OD∥BC1,即可证明BC1∥平面A1CD.(2)法一:设AB=x,则证明△ABP∽△ADA1,可得AP⊥A1D,又由线面垂直的性质可得CD⊥AP,从而可证AP⊥平面A1CD;法二:由题意,取A1B1的中点O,连接OC1,OD,分别以OC1,OA1,OD为x,y,z轴建立空间直角坐标系,设OA1=a,OC1=b,由题意可得各点坐标,可求=(b,﹣a,2),=(0.﹣a,2),=(0,﹣2a,﹣),由•=0,•=0,即可证明AP⊥平面A1CD.【解答】证明:(1)如图,连接AC1,设与CA1交于O点,连接OD∴直三棱柱ABC﹣A1B1C1中,O为AC1的中点,∵D是AB的中点,∴△ABC1中,OD∥BC1,又∵OD⊂平面A1CD,∴BC1∥平面A1CD.(2)法一:由题意,设AB=x,则BP=x,AD=x,A1A=x,由于=,∴△ABP∽△ADA1,可得∠BAP=∠AA1D,∵∠DA1A+∠ADA1=90°,可得:AP⊥A1D,又∵CD⊥AB,CD⊥BB1,可得CD⊥平面ABA1B1,∴CD⊥AP,∴AP⊥平面A1CD.法二:由题意,取A1B1的中点O,连接OC1,OD,分别以OC1,OA1,OD为x,y,z轴建立空间直角坐标系,设OA1=a,OC1=b,则:由题意可得各点坐标为:A1(0,a,0),C(b,0,2a),D(0,0,2),P(0,﹣a,),A(0,a,2),可得: =(b,﹣a,2),=(0.﹣a,2),=(0,﹣2a,﹣),所以:由•=0,可得:AP⊥A1C,由•=0,可得:AP⊥A1D,又:A1 C∩A1D=A1,所以:AP⊥平面A1CD17.如图,直线l是湖岸线,O是l上一点,弧是以O为圆心的半圆形栈桥,C为湖岸线l 上一观景亭,现规划在湖中建一小岛D,同时沿线段CD和DP(点P在半圆形栈桥上且不与点A,B重合)建栈桥,考虑到美观需要,设计方案为DP=DC,∠CDP=60°且圆弧栈桥BP在∠CDP 的内部,已知BC=2OB=2(km),设湖岸BC与直线栈桥CD,DP是圆弧栈桥BP围成的区域(图中阴影部分)的面积为S(km2),∠BOP=θ(1)求S关于θ的函数关系式;(2)试判断S是否存在最大值,若存在,求出对应的cosθ的值,若不存在,说明理由.【考点】HN :在实际问题中建立三角函数模型.【分析】(1)根据余弦定理和和三角形的面积公式,即可表示函数关系式,(2)存在,存在,S′=(3cosθ+3sinθ﹣1),根据两角和差的余弦公式即可求出.【解答】解:(1)在△COP 中,CP 2=CO 2+OP 2﹣2OC •OPcosθ=10﹣6cosθ,从而△CDP 得面积S △CDP =CP 2=(5﹣3cosθ),又因为△COP 得面积S △COP =OC •OP=sinθ,所以S=S △CDP +S △COP ﹣S 扇形OBP=(3sinθ﹣3cosθ﹣θ)+,0<θ<θ0<π,cosθ0=,当DP 所在的直线与半圆相切时,设θ取的最大值为θ0,此时在△COP 中,OP=1,OC=3,∠CPO=30°,CP==6sinθ0,cosθ0=,(2)存在,S′=(3cosθ+3sinθ﹣1),令S′=0,得sin (θ+)=,当0<θ<θ0<π,S′>0,所以当θ=θ0时,S 取得最大值,此时cos (θ0+)=﹣,∴cosθ0=cos[(θ0+)﹣]=cos (θ0+)cos+sin (θ0+)sin=18.在平面直角坐标系xOy 中,设椭圆(a >b >0)的离心率是e ,定义直线y=为椭圆的“类准线”,已知椭圆C 的“类准线”方程为y=,长轴长为4.(1)求椭圆C 的方程;(2)点P 在椭圆C 的“类准线”上(但不在y 轴上),过点P 作圆O :x 2+y 2=3的切线l ,过点O 且垂直于OP 的直线l 交于点A ,问点A 是否在椭圆C 上?证明你的结论. 【考点】K4:椭圆的简单性质.【分析】(1)由题意列关于a ,b ,c 的方程,联立方程组求得a 2=4,b 2=3,c 2=1,则椭圆方程可求;(2)设P (x 0,2)(x 0≠0),当x 0=时和x 0=﹣时,求出A 的坐标,代入椭圆方程验证知,A 在椭圆上,当x 0≠±时,求出过点O 且垂直于0P 的直线与椭圆的交点,写出该交点与P 点的连线所在直线方程,由原点到直线的距离等于圆的半径说明直线是圆的切线,从而说明点A 在椭圆C 上.【解答】解:(1)由题意得: ==2,2a=4,又a 2=b 2+c 2,联立以上可得: a 2=4,b 2=3,c 2=1.∴椭圆C 的方程为+y 2=1;(2)如图,由(1)可知,椭圆的类准线方程为y=±2,不妨取y=2,设P (x 0,2)(x 0≠0),则k OP =,∴过原点且与OP 垂直的直线方程为y=﹣x ,当x 0=时,过P 点的圆的切线方程为x=,过原点且与OP 垂直的直线方程为y=﹣x ,联立,解得:A (,﹣),代入椭圆方程成立;同理可得,当x 0=﹣时,点A 在椭圆上;当x 0≠±时,联立,解得A 1(,﹣),A 2(﹣,),PA 1所在直线方程为(2+x 0)x ﹣(x 0﹣6)y ﹣x 02﹣12=0.此时原点O到该直线的距离d==,∴说明A点在椭圆C上;同理说明另一种情况的A也在椭圆C上.综上可得,点A在椭圆C上.19.已知数列{an }满足2an+1=an+an+2+k(n∈N*,k∈R),且a1=2,a3+a5=﹣4.(1)若k=0,求数列{an }的前n项和Sn;(2)若a4=﹣1,求数列{an}的通项公式an.【考点】8H:数列递推式;8E:数列的求和.【分析】(1)若k=0,则数列{an }满足2an+1=an+an+2(n∈N*,k∈R),则数列{an}是等差数列,利用等差数列的前n项和公式即可得出.(2)2an+1=an+an+2+k(n∈N*,k∈R),a3+a5=﹣4,a4=﹣1,可得2a4=a3+a5+k,k=2.数列{an}满足2an+1=an+an+2+2,利用递推关系可得:2(an+1﹣an)=(an﹣an﹣1)+(an+2﹣an+1),令bn=an+1﹣an,则2bn =bn﹣1+bn+1.数列{bn}是等差数列,即可得出.【解答】解:(1)若k=0,则数列{an }满足2an+1=an+an+2(n∈N*,k∈R),∴数列{an}是等差数列,设公差为d,∵a1=2,a3+a5=﹣4.∴2×2+6d=﹣4,解得d=.∴Sn=2n×=.(2)2an+1=an+an+2+k(n∈N*,k∈R),a3+a5=﹣4,a4=﹣1,则2a4=a3+a5+k,﹣2=﹣4+k,解得k=2.数列{a n }满足2a n+1=a n +a n+2+2, 当n ≥2时,2a n =a n ﹣1+a n+1+2,相减可得:2(a n+1﹣a n )=(a n ﹣a n ﹣1)+(a n+2﹣a n+1), 令b n =a n+1﹣a n , 则2b n =b n ﹣1+b n+1.∴数列{b n }是等差数列,公差=b 4﹣b 3=(a 5﹣a 4)﹣(a 4﹣a 3)=﹣2. 首项为b 1=a 2﹣a 1,b 2=a 3﹣a 2,b 3=a 4﹣a 3, 由2b 2=b 1+b 3,可得2(a 3﹣a 2)=a 2﹣2﹣1﹣a 3, 解得3(a 3﹣a 2)=﹣3,b 2=a 3﹣a 2=﹣1. ∴b n =b 2+(n ﹣2)(﹣2)=﹣2n+3. ∴a n+1﹣a n =﹣2n+3.∴a n =(a n ﹣a n ﹣1)+(a n ﹣1﹣a n ﹣2)+…+(a 2﹣a 1)+a 1 =[﹣2(n ﹣1)+3]+[﹣2(n ﹣2)+3]+…+(﹣2+3)+2=+2=﹣n 2+4n ﹣1.20.已知函数f (x )=e x (x 3﹣2x 2+(a+4)x ﹣2a ﹣4),其中a ∈R ,e 为自然对数的底数.(1)关于x 的不等式f (x )<﹣e x 在(﹣∞,2)上恒成立,求a 的取值范围; (2)讨论函数f (x )极值点的个数.【考点】6D :利用导数研究函数的极值;3R :函数恒成立问题.【分析】(1)原不等式转化为所以a >﹣(x ﹣2)2,根据函数的单调性即可求出a 的范围, (2)先求导,再构造函数,进行分类讨论,利用导数和函数的极值的关系即可判断.【解答】解:(1)由f (x )<﹣e x ,得e x (x 3﹣2x 2+(a+4)x ﹣2a ﹣4)<﹣e x , 即x 3﹣6x 2+(3a+12)x ﹣6a ﹣8<0对任意x ∈(﹣∞,2)恒成立, 即(6﹣3x )a >x 3﹣6x 2+12x ﹣8对任意x ∈(﹣∞,2)恒成立,因为x <2,所以a >=﹣(x ﹣2)2,记g(x)=﹣(x﹣2)2,因为g(x)在(﹣∞,2)上单调递增,且g(2)=0,所以a≥0,即a的取值范围为[0,+∞);(2)由题意,可得f′(x)=e x(x3﹣x2+ax﹣a),可知f(x)只有一个极值点或有三个极值点.令g(x)=x3﹣x2+ax﹣a,①若f(x)有且仅有一个极值点,则函数g(x)的图象必穿过x轴且只穿过一次,即g(x)为单调递增函数或者g(x)极值同号.(ⅰ)当g(x)为单调递增函数时,g′(x)=x2﹣2x+a≥0在R上恒成立,得a≥1.(ⅱ)当g(x)极值同号时,设x1,x2为极值点,则g(x1)•g(x2)≥0,由g′(x)=x2﹣2x+a=0有解,得a<1,且x12﹣2x1+a=0,x22﹣2x2+a=0,所以x1+x2=2,x1x2=a,所以g(x1)=x13﹣2x12﹣2+ax1﹣a=x1(2x1﹣a)﹣x1+ax1﹣a=﹣(2x1﹣a)﹣ax1+ax1﹣a= [(a﹣1)x1﹣a],同理,g(x2)= [(a﹣1)x2﹣a],所以g(x1)g(x2)= [(a﹣1)x1﹣a]• [(a﹣1)x2﹣a]≥0,化简得(a﹣1)2x1x2﹣a(a﹣1)(x1+x2)+a2≥0,所以(a﹣1)2a﹣2a(a﹣1)+a2≥0,即a≥0,所以0≤a<1.所以,当a≥0时,f(x)有且仅有一个极值点;②若f(x)有三个极值点,则函数g(x)的图象必穿过x轴且穿过三次,同理可得a<0.综上,当a≥0时,f(x)有且仅有一个极值点,当a<0时,f(x)有三个极值点.。

2018届江苏高考数学模拟试题含答案

2018届江苏高考数学模拟试题含答案

高三数学试卷 2018.5.18必做题部分一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置.......上.. 1、已知集合{1,0,2},{21,},A B x x n n Z =-==-∈则A B ⋂= ▲ .2、已知复数1212,2z i z a i =-=+(其中i 是虚数单位,a R ∈),若12z z ⋅是纯虚数,则a 的值为 ▲ .3、从集合{1,2,3}中随机取一个元素,记为a ,从集合{2,3,4}中随机取一个元素,记为b ,则a b ≤的概率为 ▲ .4、对一批产品的长度(单位:毫米)进行抽样检测,样本容量为400, 右图为检测结果的频率分布直方图,根据产品标准,单件产品长度 在区间[25,30)的为一等品,在区间[20,25) 和[30,35)的为二等品, 其余均为三等品,则样本中三等品的件数为 ▲ .5、运行右面的算法伪代码,输出的结果为S= ▲ .6、若双曲线2222:1(0,0)x y C a b a b -=>>10则双曲线C 的渐近线方程为 ▲ .7、正三棱柱ABC -A 1B 1C 1的底面边长为2,3D 为BC 中点,则三棱锥A -B 1DC 1的体积为 ▲ .8、函数cos(2)()y x ϕπϕπ=+-≤≤的图象向右平移2π个单位后,与函数sin(2)3y x π=+的图象重合,则ϕ= ▲ .9、若函数2()ln()f x x x a x =+为偶函数,则a = ▲ .10、已知数列{}n a 与2n a n ⎧⎫⎨⎬⎩⎭均为等差数列(n N *∈),且12a =,则10=a ▲ . 11、若直线20kx y k --+=与直线230x ky k +--=交于点P ,则OP 长度的最大值为 ▲ .12、如图,已知4AC BC ==,90ACB ∠=o ,M 为BC 的中点,D 为以AC 为直径的圆上一动点,S 011011(1)Pr int For i From To Step S S i i End ForS ←←++则AM DC ⋅u u u r u u u r的最小值是 ▲ .13、已知函数()()22,22,2x x f x x x ⎧-≤⎪=⎨->⎪⎩ ,函数()()2g x b f x =-- ,其中b R ∈,若函数 ()()y f x g x =- 恰有4个零点,则实数b 的取值范围是 ▲ .14、已知,x y 均为非负实数,且1x y +≤,则22244(1)x y x y ++--的取值范围为 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答.解答时应写出文字说明、证明过程或演算步骤.15、已知ABC ∆的三个内角,,A B C 所对的边分别为,,a b c ,向量(1,2)m =u r ,2(cos2,cos )2An A =r ,且1m n ⋅=u r r.(1)求角A 的大小;(2)若223b c a +==,求sin()π-4B 的值16、如图,四棱锥P —ABCD 中,四边形ABCD 为菱形,P A ⊥平面ABCD ,BD 交AC 于点E ,F 是线段PC 中点,G 为线段EC 中点. (1)求证:FG//平面PBD ; (2)求证:BD ⊥FG .ABCMD(第12题图)17、已知椭圆)0(1:2222>>=+b a b y a x C 的左焦点为F ,上顶点为A ,直线AF 与直线023=-+y x 垂直,垂足为B ,且点A 是线段BF 的中点.(1)求椭圆C 的方程;(2)若M ,N 分别为椭圆C 的左,右顶点,P 是椭圆C 上位于第一象限的一点,直线MP 与直线4=x 交于点Q ,且9MP NQ =u u u r u u u rg ,求点P 的坐标.18、中国古建筑中的窗饰是艺术和技术的统一,给人以美的享受.如图为一花窗中的一部分,呈长方形,长30 cm ,宽26 cm ,其内部窗芯(不含长方形边框)用一种条形木料做成,由两个菱形和六根支条构成,整个窗芯关于长方形边框的两条对称轴成轴对称.设菱形的两条对角线长分别为x cm 和y cm ,窗芯所需条形木料的长度之和为L . (1)试用x ,y 表示L ;(2)如果要求六根支条的长度均不小于2 cm ,每个菱形的面积为130 cm 2,那么做这样一个窗芯至少需要多长的条形木料(不计榫卯及其它损耗)?19、已知函数2()=x x f x e,(1)求函数()f x 的单调区间;(2)当240m e <<时,判断函数2(),(0)x xg x m x e=-≥有几个零点,并证明你的结论;(3)设函数21111()+()()22⎡⎤=-----⎢⎥⎣⎦h x x f x x f x cx x x ,若函数()h x 在()0,+∞为增函数,求实数c 的取值范围.20、已知数列{}n a 中,11a =,前n 项和为n S ,若对任意的*n N ∈,均有n n k S a k +=-(k 是常数,且*k N ∈)成立,则称数列{}n a 为“()H k 数列”. (1)若数列{}n a 为“(1)H 数列”,求数列{}n a 的前n 项和n S ;(2)若数列{}n a 为“(2)H 数列”,且2a 为整数,试问:是否存在数列{}n a ,使得211||40n n n a a a -+-≤对任意2n ≥,*n N ∈成立?如果存在,求出这样数列{}n a 的2a 的所有可能值,如果不存在,请说明理由。

2018年江苏省高考数学模拟试卷(5)(含详细答案)

2018年江苏省高考数学模拟试卷(5)(含详细答案)

2018年江苏省高考数学模拟试卷(5)(含详细答案)2017年高考模拟试卷(5)南通市数学学科基地命题第Ⅰ卷(必做题,共160分)一、填空题:本大题共14小题,每小题5分,共70分。

请把答案直接填写在答题卡相应位置上。

1.设集合A={1,2,3},B={2,3,6},则A∩B= {2,3}。

2.若复数z满足zi=1+i,则z的共轭复数是1-i。

3.用系统抽样方法从400名学生中抽取容量为20的样本,将400名学生随机地编号为1~400,按编号顺序平均分为20个组。

若第1组中用抽签的方法确定抽出的号码为11,则第20组抽取的号码为391.4.如图是一个算法流程图,若输入n的值是6,则输出S的值是15.5.将甲、乙两个不同的球随机放入编号为1,2,3的3个盒子中,每个盒子的放球数量不限,则1,2号盒子中各有1个球的概率为2/3.6.设x∈R,则“log2x<1”是“x2-x-2<0”的充分不必要条件。

7.已知圆(x+1)2+y2=4与抛物线y2=2px(p>0)的准线交于A、B两点,且AB=23,则p的值为3.8.设Sn是等差数列{an}的前n项和,S7=3(a1+a9),则a5的值为a5=5a1+6d。

9.如图,三棱锥A-BCD中,E是AC中点,F在AD上,且2AF=FD,若三棱锥A-BEF的体积是2,则四棱锥B-ECDF的体积为4/3.10.已知函数f(x)=sin(2x+π)(≤x<π),且f(α)=f(β)=1/3(α≠β),则α+β=5π/6.11.已知函数f(x)=x2-1(x≥0),若函数y=f(f(x))-k有3个不同的零点,则实数k的取值范围是k≤-2或k≥2.12.已知△ABC外接圆O的半径为2,且AB+AC=2AO,|AB|=|AO|,则CA×CB=8.13.设a,b,c是三个正实数,且a(a+b+c)=bc,则a的最大值为2b。

14.设a为实数,记函数f(x)=ax-ax2(x∈[0,1])的图象为C。

江苏省2018-2019学年高考数学模拟试卷Word版含解析.pdf

江苏省2018-2019学年高考数学模拟试卷Word版含解析.pdf

2018-2019学年江苏省高考数学模拟试卷一、填空题:本大题共14个小题,每小题5分,共计70分,请把答案直接填写在答题卡最最新试卷多少汗水曾洒下,多少期待曾播种,终是在高考交卷的一刹尘埃落地,多少记忆梦中惦记,多少青春付与流水,人生,总有一次这样的成败,才算长大。

新试卷十年寒窗苦,踏上高考路,心态放平和,信心要十足,面对考试卷,下笔如有神,短信送祝福,愿你能高中,马到功自成,金榜定题名。

相应的位置上.1.已知U=R,集合A={x|﹣1<x<1},B={x|x 2﹣2x<0},则A∩(?U B)=.2.已知复数,则z的共轭复数的模为.3.分别从集合A={1,2,3,4}和集合B={5,6,7,8}中各取一个数,则这两数之积为偶数的概率是.4.运行如图所示的伪代码,其结果为.5.在平面直角坐标系xOy中,与双曲线有相同渐近线,且一条准线方程为的双曲线的标准方程为.6.已知存在实数a,使得关于x的不等式恒成立,则a的最大值为.7.若函数是偶函数,则实数a的值为.8.已知正五棱锥底面边长为2,底面正五边形中心到侧面斜高距离为3,斜高长为4,则此正五棱锥体积为.9.已知函数,则不等式f(x2﹣2x)<f(3x﹣4)的解集是.10.在△ABC中,AB=3,AC=4,N是AB的中点,边AC(含端点)上存在点M,使得BM⊥CN,则cosA的取值范围为.11.设不等式组表示的平面区域为D,若指数函数y=a x(a>0,a≠1)的图象上存在区域D上的点,则a的取值范围是.12.已知函数f(x)=x2+2x+alnx在区间(0,1)内无极值点,则a的取值范围是.13.若函数同时满足以下两个条件:①?x∈R,f(x)<0或g(x)<0;②?x∈(﹣1,1),f(x)g(x)<0.则实数a的取值范围为.14.若b m为数列{2n}中不超过Am3(m∈N*)的项数,2b2=b1+b5且b3=10,则正整数A的值为.二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内.15.已知角α终边逆时针旋转与单位圆交于点,且.(1)求的值,(2)求的值.16.在四棱锥P﹣ABCD中,平面四边形ABCD中AD∥BC,∠BAD为二面角B﹣PA﹣D 一个平面角.(1)若四边形ABCD是菱形,求证:BD⊥平面PAC;(2)若四边形ABCD是梯形,且平面PAB∩平面PCD=l,问:直线l能否与平面ABCD平行?请说明理由.17.在平面直角坐标系xOy中,已知P点到两定点D(﹣2,0),E(2,0)连线斜率之积为.(1)求证:动点P恒在一个定椭圆C上运动;(2)过的直线交椭圆C于A,B两点,过O的直线交椭圆C于M,N两点,若直线AB与直线MN斜率之和为零,求证:直线AM与直线BN斜率之和为定值.18.将一个半径为3分米,圆心角为α(α∈(0,2π))的扇形铁皮焊接成一个容积为V立方分米的圆锥形无盖容器(忽略损耗).(1)求V关于α的函数关系式;(2)当α为何值时,V取得最大值;(3)容积最大的圆锥形容器能否完全盖住桌面上一个半径为0.5分米的球?请说明理由.19.设首项为1的正项数列{a n}的前n项和为S n,且S n+1﹣3S n=1.(1)求证:数列{a n}为等比数列;(2)数列{a n}是否存在一项a k,使得a k恰好可以表示为该数列中连续r(r∈N*,r≥2)项的和?请说明理由;(3)设,试问是否存在正整数p,q(1<p<q)使b1,b p,b q成等差数列?若存在,求出所有满足条件的数组(p,q);若不存在,说明理由.20.(1)若ax>lnx恒成立,求实数a的取值范围;(2)证明:?a>0,?x0∈R,使得当x>x0时,ax>lnx恒成立.三.数学Ⅱ附加题部分【理科】[选做题](本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤)A[选修4-1几何证明选讲](本小题满分10分)21.如图,AB是圆O的直径,D为圆O上一点,过D作圆O的切线交BA的延长线于点C,若DB=DC,求证:CA=AO.B[选修4-2:矩阵与变换](本小题满分10分)22.已知矩阵A=,B=,求矩阵A﹣1 B.C[选修4-4:坐标系与参数方程](本小题满分0分)23.在极坐标系中,设直线l过点,且直线l与曲线C:ρ=asinθ(a>0)有且只有一个公共点,求实数a的值.D[选修4-5:不等式选讲](本小题满分0分)24.求函数的最大值.四.[必做题](第25题、第26题,每题10分,共20分.解答时应写出文字说明、证明过程或演算步骤)25.在四棱锥P﹣ABCD中,直线AP,AB,AD两两相互垂直,且AD∥BC,AP=AB=AD=2BC.(1)求异面直线PC与BD所成角的余弦值;(2)求钝二面角B﹣PC﹣D的大小.26.设数列{a n}按三角形进行排列,如图,第一层一个数a1,第二层两个数a2和a3,第三层三个数a4,a5和a6,以此类推,且每个数字等于下一层的左右两个数字之和,如a1=a2+a3,a2=a4+a5,a3=a5+a6,….(1)若第四层四个数为0或1,a1为奇数,则第四层四个数共有多少种不同取法?(2)若第十一层十一个数为0或1,a1为5的倍数,则第十一层十一个数共有多少种不同取法?2016年江苏省高考数学模拟试卷参考答案与试题解析一、填空题:本大题共14个小题,每小题5分,共计70分,请把答案直接填写在答题卡相应的位置上.1.已知U=R,集合A={x|﹣1<x<1},B={x|x 2﹣2x<0},则A∩(?U B)=(﹣1,0] .【考点】交、并、补集的混合运算.【分析】求出集合B中的一元二次不等式的解集,确定出集合B,由全集R,求出集合B 的补集,求出集合A与集合B的补集的交集即可【解答】解:由A={x|﹣1<x<1}=(﹣1,1),B={x|x2﹣2x<0}=(0,2),∴C u B=(﹣∞,0]∪[2,+∞),∴A∩?U B=(﹣1,0],故答案为:(﹣1,0].2.已知复数,则z的共轭复数的模为.【考点】复数求模.【分析】根据复数与它的共轭复数的模相等,即可求出结果.【解答】解:复数,则z的共轭复数的模为||=|z|====.故答案为:.3.分别从集合A={1,2,3,4}和集合B={5,6,7,8}中各取一个数,则这两数之积为偶数的概率是.【考点】等可能事件的概率.【分析】求出所有基本事件,两数之积为偶数的基本事件,即可求两数之积为偶数的概率.【解答】解:从集合A={1,2,3,4}和集合B={5,6,7,8}中各取一个数,基本事件共有4×4=16个,∵两数之积为偶数,∴两数中至少有一个是偶数,A中取偶数,B中有4种取法;A中取奇数,B中必须取偶数,故基本事件共有2×4+2×2=12个,∴两数之积为偶数的概率是=.故答案为:.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档