学易密卷:段考模拟君之七年级数学下学期期末考试原创模拟卷B卷(河北)(全解全析)
2022-2023学年第二学期七年级期末考试数学试卷 解析版

2022-2023学年七年级(下)期末数学试卷一.选择题(共10小题)1.下列计算正确的是()A.=±5B.=﹣3C.D.2.下列语句正确的是()A.平行于x轴的直线上所有点的横坐标都相同B.(﹣3,5)与(5,﹣3)表示两个不同的点C.若点P(a,b)在y轴上,则b=0D.若点P(﹣3,4),则P到x轴的距离为33.如图所示的车标,可以看作由“基本图案”经过平移得到的是()A.B.C.D.4.如图,有以下四个条件:①∠B+∠BCD=180°,②∠1=∠2,③∠3=∠4,④∠B=∠5,其中能判定AB∥CD的条件的个数有()A.1B.2C.3D.45.已知a<b,下列不等式中,正确的是()A.a+4>b+4B.a﹣3>b﹣3C.a<b D.﹣2a<﹣2 b6.红领巾公园健走步道环湖而建,以红军长征路为主题,如图是利用平面直角坐标系画出的健走步道路线上主要地点的大致分布图,这个坐标系分别以正东、正北方向为x轴、y轴的正方向,如果表示遵义的点的坐标为(﹣5,7),表示腊子口的点的坐标为(4,﹣1),那么这个平面直角坐标系原点所在位置是()A.泸定桥B.瑞金C.包座D.湘江7.荆州古城是闻名遐迩的历史文化名城,“五一”期间相关部门对到荆州观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整).根据图中信息,下列结论错误的是()A.本次抽样调查的样本容量是5000B.扇形图中的m为10%C.样本中选择公共交通出行的有2500人D.若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有25万人8.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.B.C.D.9.已知关于x的不等式组的整数解共有3个,则a的取值范围是()A.﹣2≤a<1B.﹣3<a≤﹣2C.﹣2<a<1D.﹣3<a<﹣2 10.为倡导绿色发展,避免浪费能源,某市准备对居民用电量采用阶梯收费的方法,计划实施三档的阶梯电价:第一档、第二档和第三档的电价分别覆盖全市居民家庭的80%,15%和5%.为了合理确定各档之间的界限,相关部门在该市随机调查了20000户居民6月份的用电量(单位:kw・h),并将收集的样本数据进行排序整理(排序样本),绘制了如下频数分布直方图(每段用电量均含最小值,不含最大值).根据统计数据,下面有四个推断:①抽样调查6月份的用电量,是因为6月份的用电量在一年12个月的用电量中处于中等偏上水平②在调查的20000户居民中,6月份的用电量的最大值与最小值的差小于500③月用电量小于160kw・h的该市居民家庭按第一档电价交费,月用电量不小于310kw・h的该市居民家庭按第三档电价交费④该市居民家庭月用电量的中间水平(50%的用户)为110kw•h 其中合理的是()A.①②③B.①②④C.①③④D.②③④二.填空题(共8小题)11.在实数3.14,﹣,﹣,0.13241324…,,﹣π,中,无理数的个数是.12.如果点P(a,2)在第二象限,那么点Q(﹣3,a﹣1)在.13.如图,将一副三角板按如图放置,则下列结论:①∠1=∠3;②如果∠2=30°,则有BC∥AE;③如果∠1=∠2=∠3,则有BC∥AE;④如果∠2=45°,必有∠4=∠E.其中正确的有(填序号).14.若关于x,y的二元一次方程组的解也是二元一次方程x ﹣3y=6的解,则k=.15.如图,在实数范围内规定新运算“△”,其规则是:a△b=2a﹣b.已知不等式x△k≥1的解集在数轴上,则k的值是.16.如图,AB∥ED,∠CAB=135°,∠ACD=75°,则∠CDE=度.17.如表所示,被开方数a的小数点位置移动和它的算术平方根的小数点位置移动规律符合一定的规律,若=180,且=﹣1.8,则被开方数a的值为.a…0.000001 0.01 1 100 10000 1000000 ……0.001 0.1 1 10 100 1000 …18.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为(用n表示).三.解答题19.计算(1);(2).20.解下列方程组:(1)(2).21.解不等式(1)解不等式组(2)解不等式组,并写出它的所有非负整数解..22.完成下面推理过程:如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:∵∠1=∠2 ()且∠1=∠CGD(),∴∠2=∠CGD()∴CE∥BF().∴∠BFD=∠C().又∵∠B=∠C()∴∠BFD=∠B()∴AB∥CD().23.如图,计划围一个面积为50m2的长方形场地,一边靠旧墙(墙长为10m),另外三边用篱笆围成,并且它的长与宽之比为5:2.讨论方案时,小英说:“我们不可能围成满足要求的长方形场地.”小军说:“面积和长宽比例是确定的,肯定可以围得出来.”请你判断谁的说法正确,为什么?24.△ABC在平面直角坐标系中,且A(﹣2,1)、B(﹣3,﹣2)、C (1,﹣4).将其平移后得到△A1B1C1,若A,B的对应点是A1,B1,C的对应点C1的坐标是(3,﹣1)(1)在平面直角坐标系中画出△ABC;(2)写出点A1的坐标是,B1坐标是;(3)此次平移也可看作△A1B1C1向平移了个单位长度,再向平移了个单位长度得到△ABC.25.已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,求证:AB∥CD.26.国家发改委、工业和信息化部、财政部公布了“节能产品惠民工程”,公交公司积极响应将旧车换成节能环保公交车,计划购买A 型和B型两种环保型公交车10辆,其中每台的价格、年载客量如表:A型B型价格(万元/台)x y年载客量/万人次60 100若购买A型环保公交车1辆,B型环保公交车2辆,共需400万元;若购买A型环保公交车2辆,B型环保公交车1辆,共需350万元.(1)求x、y的值;(2)如果该公司购买A型和B型公交车的总费用不超过1200万元,且确保10辆公交车在该线路的年载客量总和不少于680万人次,问有哪几种购买方案?(3)在(2)的条件下,哪种方案使得购车总费用最少?最少费用是多少万元?27.为了解2020年全国中学生创新能力大赛中竞赛项目“知识产权”笔试情况,随机抽查了部分参赛同学的成绩,整理并制作了不完整的频数分布表.分数x(分)频数百分比60≤x<70 30 10%70≤x<80 90 n80≤x<90 m40%90≤x≤100 60 20%请根据图表提供的信息,解答下列问题:(1)本次调查的样本容量为;(2)在表中:m=;n=;(3)根据频数分布表画频数分布直方图;(4)如果比赛成绩在80分以上(含80分)为优秀,那么你估计参加该竞赛项目的的30000人中,优秀人数大约是.28.对于平面直角坐标系xOy中的点P(a,b),若P'(a+kb,ka+b)(其中k为常数,且k≠0),则称点P″为点P的“k属派生点”.例如:P(1,4)的“2属派生点”为P'(1+2×4,2×1+4),即P(9,6).(1)点P(﹣2,3)的“3属派生点”P''的坐标为.(2)若点P的“5属派生点”P'的坐标为(3,﹣9),求点P的坐标.(3)若点P在x轴的正半轴上,点P的“k属派生点”为P''点,且线段PP'的长度为线段OP长度的2倍,求k的值.2022-2023学年七年级(下)期末数学试卷参考答案与试题解析一.选择题(共10小题)1.下列计算正确的是()A.=±5B.=﹣3C.D.【分析】分别利用平方根、立方根、算术平方根的性质计算即可得出答案.【解答】解:A.=5,故此选项错误;B.=3,故此选项错误;C.=5,故此选项错误;D.=﹣3,故此选项正确.故选:D.2.下列语句正确的是()A.平行于x轴的直线上所有点的横坐标都相同B.(﹣3,5)与(5,﹣3)表示两个不同的点C.若点P(a,b)在y轴上,则b=0D.若点P(﹣3,4),则P到x轴的距离为3【分析】根据平行与坐标轴的直线上点的坐标特点、坐标的概念、坐标轴上点的坐标特点及点到坐标轴的距离等知识点逐一判断即可得.【解答】解:A.平行于x轴的直线上所有点的纵坐标都相同,此选项错误;B.(﹣3,5)与(5,﹣3)表示两个不同的点,此选项正确;C.若点P(a,b)在y轴上,则a=0,此选项错误;D.若点P(﹣3,4),则P到x轴的距离为4,此选项错误;故选:B.3.如图所示的车标,可以看作由“基本图案”经过平移得到的是()A.B.C.D.【分析】根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案.【解答】解:根据平移的概念,观察图形可知图案B通过平移后可以得到.故选:B.4.如图,有以下四个条件:①∠B+∠BCD=180°,②∠1=∠2,③∠3=∠4,④∠B=∠5,其中能判定AB∥CD的条件的个数有()A.1B.2C.3D.4【分析】根据平行线的判定定理求解,即可求得答案.【解答】解:①∵∠B+∠BDC=180°,∴AB∥CD;②∵∠1=∠2,∴AD∥BC;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD;∴能得到AB∥CD的条件是①③④.故选:C.5.已知a<b,下列不等式中,正确的是()A.a+4>b+4B.a﹣3>b﹣3C.a<b D.﹣2a<﹣2 b 【分析】根据不等式的性质,可得答案.【解答】解:A、两边都加4,不等号的方向不变,故A错误;B、两边都减3,不等号的方向不变,故B错误;C、两边都乘,不等号的方向不变,故C正确;D、两边都乘﹣2,不等号的方向改变,故D错误;故选:C.6.红领巾公园健走步道环湖而建,以红军长征路为主题,如图是利用平面直角坐标系画出的健走步道路线上主要地点的大致分布图,这个坐标系分别以正东、正北方向为x轴、y轴的正方向,如果表示遵义的点的坐标为(﹣5,7),表示腊子口的点的坐标为(4,﹣1),那么这个平面直角坐标系原点所在位置是()A.泸定桥B.瑞金C.包座D.湘江【分析】直接利用遵义和腊子口的位置进而确定原点的位置.【解答】解:如图所示:平面直角坐标系原点所在位置是瑞金.故选:B.7.荆州古城是闻名遐迩的历史文化名城,“五一”期间相关部门对到荆州观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整).根据图中信息,下列结论错误的是()A.本次抽样调查的样本容量是5000B.扇形图中的m为10%C.样本中选择公共交通出行的有2500人D.若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有25万人【分析】结合条形图和扇形图,求出样本人数,进而进行解答.【解答】解:A、本次抽样调查的样本容量是=5000,正确;B、扇形图中的m为10%,正确;C、样本中选择公共交通出行的有5000×50%=2500人,正确;D、若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有50×40%=20万人,错误;故选:D.8.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.B.C.D.【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【解答】解:设索长为x尺,竿子长为y尺,根据题意得:.故选:A.9.已知关于x的不等式组的整数解共有3个,则a的取值范围是()A.﹣2≤a<1B.﹣3<a≤﹣2C.﹣2<a<1D.﹣3<a<﹣2 【分析】表示出不等式组的解集,由不等式组的整数解共有3个,确定出a的范围即可.【解答】解:不等式组整理得:,解得:a≤x<1,由不等式组的整数解有3个,得到整数解为﹣2,﹣1,0,则a的范围为﹣3<a≤﹣2.故选:B.10.为倡导绿色发展,避免浪费能源,某市准备对居民用电量采用阶梯收费的方法,计划实施三档的阶梯电价:第一档、第二档和第三档的电价分别覆盖全市居民家庭的80%,15%和5%.为了合理确定各档之间的界限,相关部门在该市随机调查了20000户居民6月份的用电量(单位:kw・h),并将收集的样本数据进行排序整理(排序样本),绘制了如下频数分布直方图(每段用电量均含最小值,不含最大值).根据统计数据,下面有四个推断:①抽样调查6月份的用电量,是因为6月份的用电量在一年12个月的用电量中处于中等偏上水平②在调查的20000户居民中,6月份的用电量的最大值与最小值的差小于500③月用电量小于160kw・h的该市居民家庭按第一档电价交费,月用电量不小于310kw・h的该市居民家庭按第三档电价交费④该市居民家庭月用电量的中间水平(50%的用户)为110kw•h 其中合理的是()A.①②③B.①②④C.①③④D.②③④【分析】根据统计图中的数据可以判断各个小题是否成立,从而可以解答本题.【解答】解:由题意可得,抽样调查6月份的用电量,是因为6月份的用电量在一年12个月的用电量中处于中等偏上水平,故①合理,在调查的20000户居民中,6月份的用电量的最大值与最小值的差小于510﹣10=500,故②合理,第一档用户数量为:20000×80%=16000户,由1108+8533+6359=16000,故月用电量小于160kw・h的该市居民家庭按第一档电价交费,第三档用户数量为:20000×5%=1000户,由151+181+232+436=1000,故月用电量不小于310kw・h的该市居民家庭按第三档电价交费,故③合理,该市居民家庭月用电量的中间水平(50%的用户)为大于等于110kw•h,小于160kw•h,故④不合理,故选:A.二.填空题(共8小题)11.在实数3.14,﹣,﹣,0.13241324…,,﹣π,中,无理数的个数是 3 .【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:3.14、﹣=﹣0.6、0.13241324…、这四个数是有理数,﹣、和﹣π这三个数是无理数,故答案为:3.12.如果点P(a,2)在第二象限,那么点Q(﹣3,a﹣1)在第三象限.【分析】根据各象限内点的坐标特征解答即可.【解答】解:由题意,得a<0,a﹣1<﹣1,点Q(﹣3,a﹣1)在第三象限,故答案为:第三象限.13.如图,将一副三角板按如图放置,则下列结论:①∠1=∠3;②如果∠2=30°,则有BC∥AE;③如果∠1=∠2=∠3,则有BC∥AE;④如果∠2=45°,必有∠4=∠E.其中正确的有①③(填序号).【分析】根据平行线的判定和性质解答即可.【解答】解:∵∠EAD=∠CAB=90°,∴∠1=∠3,故①正确,当∠2=30°时,∠3=60°,∠4=45°,∴∠3≠∠4,故AE与BC不平行,故②错误,当∠1=∠2=∠3时,可得∠3=∠4=45°,∴BC∥AE,故③正确,∵∠E=60°,∠4=45°,∴∠E≠∠4,故④错误,故答案为:①③.14.若关于x,y的二元一次方程组的解也是二元一次方程x ﹣3y=6的解,则k= 1 .【分析】把k看做已知数表示出方程组的解,代入已知方程求出k 的值即可.【解答】解:,①+②得:2x=6k,即x=3k,②﹣①得:2y=﹣2k,即y=﹣k,把x=3k,y=﹣k代入x﹣3y=6中得:3k+3k=6,解得:k=1,故答案为:115.如图,在实数范围内规定新运算“△”,其规则是:a△b=2a﹣b.已知不等式x△k≥1的解集在数轴上,则k的值是k=﹣3 .【分析】根据新运算法则得到不等式2x﹣k≥1,通过解不等式即可求k的取值范围,结合图象可以求得k的值.【解答】解:根据图示知,已知不等式的解集是x≥﹣1.则2x﹣1≥﹣3∵x△k=2x﹣k≥1,∴2x﹣1≥k且2x﹣1≥﹣3,∴k=﹣3.故答案是:k=﹣3.16.如图,AB∥ED,∠CAB=135°,∠ACD=75°,则∠CDE=30 度.【分析】过C作CF∥AB,根据平行线性质得出∠ACF+∠CAB=180°,∠CDE=∠FCD,求出∠ACF,求出∠DCF即可.【解答】解:过C作CF∥AB,∵DE∥AB,∴AB∥CF∥DE,∴∠ACF+∠CAB=180°,∠CDE=∠FCD,∵∠CAB=135°,∴∠ACF=45°,∵∠ACD=75°,∴∠FCD=30°,∴∠EDC=30°,故答案为:30.17.如表所示,被开方数a的小数点位置移动和它的算术平方根的小数点位置移动规律符合一定的规律,若=180,且=﹣1.8,则被开方数a的值为32400 .a…0.000001 0.01 1 100 10000 1000000 ……0.001 0.1 1 10 100 1000 …【分析】根据题意和表格中数据的变化规律,可以求得a的值.【解答】解:∵=180,且﹣=﹣1.8,∴=1.8,∴=180,∴a=32400,故答案为:32400.18.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为(2n,1)(用n表示).【分析】根据图形分别求出n=1、2、3时对应的点A4n+1的坐标,然后根据变化规律写出即可.【解答】解:由图可知,n=1时,4×1+1=5,点A5(2,1),n=2时,4×2+1=9,点A9(4,1),n=3时,4×3+1=13,点A13(6,1),所以,点A4n+1(2n,1).故答案为:(2n,1).三.解答题19.计算(1);(2).【分析】(1)利用开立方的运算法则和实数的分配律运算即可;(2)首先进行平方运算,绝对值得化简,开方运算,再进行加减运算即可.【解答】解(1)原式=﹣3+=;(2)原式=﹣9﹣2=﹣8.20.解下列方程组:(1)(2).【考点】98:解二元一次方程组.【专题】11:计算题.【分析】(1)利用①×3﹣②可解出y,再把y的值代入①可求出x,从而得到方程组的解;(2)利用①×3+②×2得9x+10x=48+66,可求出x,再把x的值代入①可求出y,从而得到方程组的解.【解答】解:(1),①×3﹣②得5y=﹣5,解得y=﹣1,把y=﹣1代入①得x+1=3,解得x=2,所以方程组的解为;(2),①×3+②×2得9x+10x=48+66,解得x=6,把x=6代入①得18+4y=16,解得y=﹣,所以方程组的解为.21.解不等式(1)解不等式组(2)解不等式组,并写出它的所有非负整数解.【考点】CB:解一元一次不等式组;CC:一元一次不等式组的整数解.【专题】524:一元一次不等式(组)及应用;66:运算能力.【分析】(1)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,进而求出所有非负整数解即可.【解答】解:(1),由①得:x≥﹣1,由②得:x<3,则不等式组的解集为﹣1≤x<3;(2),由①得:x>﹣2,由②得:x≤,∴不等式组的解集为﹣2<x≤,则不等式组的所有非负整数解为0,1.22.完成下面推理过程:如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:∵∠1=∠2 (已知)且∠1=∠CGD(对顶角相等),∴∠2=∠CGD(等量代换)∴CE∥BF(同位角相等,两直线平行).∴∠BFD=∠C(两直线平行,同位角相等).又∵∠B=∠C(已知)∴∠BFD=∠B(等量代换)∴AB∥CD(内错角相等,两直线平行).【考点】JB:平行线的判定与性质.【专题】551:线段、角、相交线与平行线.【分析】先确定∠1=∠CGD是对顶角,利用等量代换,求得∠2=∠CGD,则可根据:同位角相等,两直线平行,证得:CE∥BF,又由两直线平行,同位角相等,证得角相等,易得:∠BFD=∠B,则利用内错角相等,两直线平行,即可证得:AB∥CD.【解答】解:∵∠1=∠2 (已知),且∠1=∠CGD(对顶角相等),∴∠2=∠CGD(等量代换),∴CE∥BF(同位角相等,两直线平行).∴∠BFD=∠C(两直线平行,同位角相等).又∵∠B=∠C(已知),∴∠BFD=∠B(等量代换),∴AB∥CD(内错角相等,两直线平行).故答案为:已知,对顶角相等,等量代换,同位角相等,两直线平行,BFD,两直线平行,同位角相等,已知,BFD,等量代换,内错角相等,两直线平行.23.如图,计划围一个面积为50m2的长方形场地,一边靠旧墙(墙长为10m),另外三边用篱笆围成,并且它的长与宽之比为5:2.讨论方案时,小英说:“我们不可能围成满足要求的长方形场地.”小军说:“面积和长宽比例是确定的,肯定可以围得出来.”请你判断谁的说法正确,为什么?【考点】22:算术平方根;AD:一元二次方程的应用.【分析】根据矩形的面积公式求出矩形的长和宽,最后进行判断即可得出结论.【解答】解:设长方形场地的长为5xm,宽为2xm,依题意,得,5x•2x=50,∴x=,长为5,宽为2.∵4<5<9,∴2<<3.由上可知2<6,且5>10若长与墙平行,墙长只有10 m,故不能围成满足条件的长方形场地;若宽与墙平行,则能围成满足条件的长方形场地.∴他们的说法都不正确.24.△ABC在平面直角坐标系中,且A(﹣2,1)、B(﹣3,﹣2)、C (1,﹣4).将其平移后得到△A1B1C1,若A,B的对应点是A1,B1,C的对应点C1的坐标是(3,﹣1)(1)在平面直角坐标系中画出△ABC;(2)写出点A1的坐标是(0,4),B1坐标是(﹣1,1);(3)此次平移也可看作△A1B1C1向下平移了 3 个单位长度,再向左平移了 2 个单位长度得到△ABC.【考点】Q4:作图﹣平移变换.【专题】13:作图题;558:平移、旋转与对称.【分析】(1)根据A,B,C三点坐标画出图形,再作出A,B的对应点A1,B1即可;(2)根据A1,B1的位置写出坐标即可.(3)观察图象利用平移性质解决问题即可.【解答】解:(1)△ABC,△A1B1C1如图所示.(2)点A1的坐标是(0,4),B1坐标是(﹣1,1).故答案为(0,4),(﹣1,1).(3)此次平移也可看作△A1B1C1向下平移了3个单位长度,再向左平移了2个单位长度得到△ABC.故答案为下,3;左,2;25.已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,求证:AB∥CD.【考点】JB:平行线的判定与性质.【专题】14:证明题.【分析】首先由AE⊥BC,FG⊥BC可得AE∥FG,根据两直线平行,同位角相等及等量代换可推出∠A=∠2,利用内错角相等,两直线平行可得AB∥CD.【解答】证明:∵AE⊥BC,FG⊥BC,∴∠AMB=∠GNM=90°,∴AE∥FG,∴∠A=∠1;又∵∠2=∠1,∴∠A=∠2,∴AB∥CD.26.国家发改委、工业和信息化部、财政部公布了“节能产品惠民工程”,公交公司积极响应将旧车换成节能环保公交车,计划购买A 型和B型两种环保型公交车10辆,其中每台的价格、年载客量如表:A型B型价格(万元/台)x y年载客量/万人次60 100若购买A型环保公交车1辆,B型环保公交车2辆,共需400万元;若购买A型环保公交车2辆,B型环保公交车1辆,共需350万元.(1)求x、y的值;(2)如果该公司购买A型和B型公交车的总费用不超过1200万元,且确保10辆公交车在该线路的年载客量总和不少于680万人次,问有哪几种购买方案?(3)在(2)的条件下,哪种方案使得购车总费用最少?最少费用是多少万元?【考点】9A:二元一次方程组的应用;CE:一元一次不等式组的应用.【专题】521:一次方程(组)及应用;524:一元一次不等式(组)及应用;69:应用意识.【分析】(1)根据“购买A型环保公交车1辆,B型环保公交车2辆,共需400万元;若购买A型环保公交车2辆,B型环保公交车1辆,共需350万元”列出二元一次方程组求解可得;(2)购买A型环保公交车m辆,则购买B型环保公交车(10﹣m)辆,根据“总费用不超过1200万元、年载客量总和不少于680万人次”列一元一次不等式组求解可得;(3)设购车总费用为w万元,根据总费用的数量关系得出w=100m+150(10﹣m)=﹣50m+1500,再进一步利用一次函数的性质求解可得.【解答】解:(1)由题意,得,解得;(2)设购买A型环保公交车m辆,则购买B型环保公交车(10﹣m)辆,由题意,得,解得6≤m≤8,∵m为整数,∴有三种购车方案方案一:购买A型公交车6辆,购买B型公交车4辆;方案二:购买A型公交车7辆,购买B型公交车3辆;方案三:购买A型公交车8辆,购买B型公交车2辆.(3)设购车总费用为w万元则w=100m+150(10﹣m)=﹣50m+1500,∵﹣50<0,6≤m≤8且m为整数,∴m=8时,w最小=1100,∴购车总费用最少的方案是购买A型公交车8辆,购买B型公交车2辆,购车总费用为1100万元.27.为了解2020年全国中学生创新能力大赛中竞赛项目“知识产权”笔试情况,随机抽查了部分参赛同学的成绩,整理并制作了不完整的频数分布表.分数x(分)频数百分比60≤x<70 30 10%70≤x<80 90 n80≤x<90 m40%90≤x≤100 60 20%请根据图表提供的信息,解答下列问题:(1)本次调查的样本容量为300 ;(2)在表中:m=120 ;n=30% ;(3)根据频数分布表画频数分布直方图;(4)如果比赛成绩在80分以上(含80分)为优秀,那么你估计参加该竞赛项目的的30000人中,优秀人数大约是18000 .【考点】V3:总体、个体、样本、样本容量;V5:用样本估计总体;V7:频数(率)分布表;V8:频数(率)分布直方图.【专题】541:数据的收集与整理;542:统计的应用;66:运算能力;69:应用意识.【分析】(1)分数在60≤x<70的频数是30,占调查总数的10%,可求出调查总数,即样本容量;(2)根据频数所占总数的百分比即可求m、n的值;(3)根据频数补全频数分布直方图;(4)样本估计总体,样本中“优秀”的占40%+20%=60%,因此估计总体30000人的60%是“优秀”人数.【解答】解:(1)30÷10%=300(人),故答案为300;(2)m=300×40%=120(人),n=90÷300=30%,故答案为:120,30%;(3)根据频数,画出频数分布直方图;(4)30000×(40%+20%)=18000(人),故答案为:18000.28.对于平面直角坐标系xOy中的点P(a,b),若P'(a+kb,ka+b)(其中k为常数,且k≠0),则称点P″为点P的“k属派生点”.例如:P(1,4)的“2属派生点”为P'(1+2×4,2×1+4),即P(9,6).(1)点P(﹣2,3)的“3属派生点”P''的坐标为(7,﹣3).(2)若点P的“5属派生点”P'的坐标为(3,﹣9),求点P的坐标.(3)若点P在x轴的正半轴上,点P的“k属派生点”为P''点,且线段PP'的长度为线段OP长度的2倍,求k的值.【考点】D5:坐标与图形性质.【专题】532:函数及其图像.【分析】(1)根据“k属派生点”计算可得;(2)设点P的坐标为(x、y),根据“k属派生点”定义及P′的坐标列出关于x、y的方程组,解之可得;(3)先得出点P′的坐标为(a,ka),由线段PP′的长度为线段OP 长度的2倍列出方程,解之可得.【解答】解:(1)点P(﹣2,3)的“3属派生点”P′的坐标为(﹣2+3×3,﹣2×3+3),即(7,﹣3),故答案为:(7,﹣3);(2)设P点的坐标是(a,b),依题意得;,解得:,∴点P的坐标是(﹣2,1);(2)∵点P在x轴的正半轴上,∴设P点的坐标为(a,0)(a>0)又∵点P的“k属派生点”为P''点,∴设P''的坐标为(a,ka),又∵线段PP''的长度是OP长度的2倍∴PP''=2OP,即:|ka|=|2a|,又∵a>0,∴k=±2.。
2023-2024学年七年级数学下学期期末模拟卷01(浙江专用)(全解全析)

2023-2024学年七年级数学下学期期末模拟卷01全解全析第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.下列选项中,可由如图2022年杭州亚运会会徽“潮涌”平移得到的是()A.B.C.D.【分析】根据平移的特征进行判断即可.【解】:由平移的特征可知,能够通过平移得到的是:故选:C.2.如图,已知直线a,b被直线c所截,那么∠1的内错角是()A.∠2B.∠3C.∠4D.∠5【分析】两条直线被第三条直线所截形成的角中,若两个角都在两直线之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.【解】:∠1的内错角是∠3.故选:B.3.下列调查方式中正确的是()A.要了解一大批笔芯的使用寿命,采用全面调查的方式B.为了审核书稿中的错别字,采用抽样调查的方式C.为了解外地游客对湖州景点“原乡小镇”的满意程度,采用全面调查的方式D.要了解某班全体学生的视力情况,采用全面调查的方式【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解】:A、要了解一大批笔芯的使用寿命,适合采用抽样调查方式,故不符合题意;B、为了审核书稿中的错别字,适合采用全面调查的方式,故不符合题意;C、为了解外地游客对湖州景点“原乡小镇”的满意程度,适合采用抽样调查的方式,故不符合题意;D、要了解某班全体学生的视力情况,采用全面调查的方式,故符合题意.故选:D.4.已知,则下列式子一定正确的是()A.x=2,y=3B.2x=3y C.D.【分析】依据比例的基本性质以及等式的基本性质,即可得到成立的式子.【解】:A.由,可得3x=2y,故x=2,y=3不一定成立,本选项不合题意;B.由,可得3x=2y,故2x=3y不成立,本选项不合题意;C.由,可得﹣1=﹣1,即=﹣,故=不成立,本选项不合题意;D.由,可得+1=+1,故,本选项符合题意;故选:D.5.下列计算正确的是()A.(2x2y)2=4x4y2B.x3÷x=x3C.2x+3y=5xy D.(x+y)2=x2+y2【分析】直接利用积的乘方的运算法则、同底数幂的乘法法则、合并同类项法则、完全平方公式分别化简得出答案.【解】:A.(2x2y)2=4x4y2,原计算正确,故本选项符合题意;B.x3÷x=x2,原计算错误,故本选项不符合题意;C.2x与3y不是同类项,不能合并,原计算错误,故本选项不符合题意;D.(x+y)2=x2+2xy+y2,原计算错误,故本选项不符合题意;故选:A.6.若4x a+b﹣3y3a+2b﹣4=2是关于x,y的二元一次方程,则a+b的值为()A.﹣2B.﹣1C.0D.1【分析】根据二元一次方程的定义,得出a+b=1,3a+2b﹣4=1,解出a、b的值,然后把a、b的值代入a+b,计算即可得出结果.【解】:∵4x a+b﹣3y3a+2b﹣4=2是关于x,y的二元一次方程,∴,解得:,当a=3,b=﹣2时,a+b=3﹣2=1.故选:D.7.若关于x的分式方程﹣=1有增根,则a的值为()A.2B.﹣2C.4D.﹣4【分析】先求出分式方程的解,根据分式方程有增根,得到x=2,从而得到a的值.【解答】解:去分母得:x+x﹣a=x﹣2,∴x=a﹣2,∵分式方程有增根,∴x=2,∴a﹣2=2,∴a=4,故选:C.8.《九章算术》中第七章《盈不足》记载了一个问题:“今有共买物,人出八,赢三;人出七,不足四.问人数、物价各几何?”译文:“现有一些人合伙购买物品,若每人出8钱,则多出3钱;若每人出7钱,则还差4钱.问人数、物品价格各是多少?”设有x个人,物品价格为y钱,则下列方程组中正确的是()A.B.C.D.【分析】根据每人出8钱,则多出3钱,可得8x﹣3=y,根据每人出7钱,则还差4钱,可得7x+4=y,从而可以列出相应的方程组.【解答】解:由题意可得,,故选:B.9.如图所示,将两张相同的矩形纸片和三张不同的正方形纸片按如图方式不重叠地放置在矩形ABCD内若知道图中阴影部分的面积之和,则一定能求出()A.△AEH和△CFG的面积之差B.△DHG和△BEF的面积之和C.△BEF和△CFG的面积之和D.△AEH和△BEF的面积之和【分析】设GH、HE、EF、FG分别交DA、AB、BC、CD于点I、J、K、L,由HI=FK,GH=EF,证明GI=EK,设正方形IGLD和正方形KEJB的边长都是m,正方形EFGH的边长为n,则S△ADH=S△BCF =(2m+n)(m﹣n),S△ABE=S△CDG=m(2m﹣n),可求得S阴影=2mn,可推导出S△AEH﹣S△CFG=0;S△DHG+S△BEF=mn=×2mn;S△BEF+S△CFG=mn﹣n2;S△AEH+S△BEF=mn﹣n2,可知B符合题意.【解答】解:如图,设GH、HE、EF、FG分别交DA、AB、BC、CD于点I、J、K、L,∵HI=FK,GH=EF,∴HI+GH=FK+EF,∴GI=EK,设正方形IGLD和正方形KEJB的边长都是m,正方形EFGH的边长为n,∵AJ=HI=FK=m﹣n,∴AB=CD=m+m﹣n=2m﹣n,∵AD=BC=2m+n,JE=GL=m,∴S△ADH=S△BCF=(2m+n)(m﹣n),S△ABE=S△CDG=m(2m﹣n),∴S阴影=(2m﹣n)(2m+n)﹣2×(2m+n)(m﹣n)﹣2×m(2m﹣n),整理得S阴影=2mn,∵S△AEH﹣S△CFG=n(m﹣n)﹣n(m﹣n)=0,∴S△AEH﹣S△CFG的结果与S阴影值的大小无关,故A不符合题意;∵S△DHG+S△BEF=mn+mn=×2mn,∴△DHG和△BEF的面积之和可由S阴影的值求得,故B符合题意;∵S△BEF+S△CFG=mn+n(m﹣n)=mn﹣n2,∴△BEF和△CFG的面积之和不能由S阴影的值求得,故C不符合题意;∵S△AEH+S△BEF=n(m﹣n)+mn=mn﹣n2,∴△AEH和△BEF的面积之和不能由S阴影的值求得,故D不符合题意,故选:B.10.新定义:若两个分式A与B的差为n(n为正整数),则称A是B的“n分式”.例如:,则称分式是分式的“1分式”.根据以上定义,下列选项中说法错误的是()A.是的“3分式”B.若a的值为﹣3,则是的“2分式”C.若是的“1分式”,则a2=3b2D.若a与b互为倒数,则是的“5分式”【分析】根据新定义运算逐个验证正确与否即可.【解】:A、,A说法正确;B、,B说法正确;C、由已知条件得:,化简得:a2=2b2,C说法错误;D、由已知得:ab=1,,D说法正确.故选:C.第Ⅱ卷二、填空题(本大题共6个小题,每小题3分,共18分)11.若分式a2a−1有意义,a的取值范围是.【分析】根据分式有意义的条件,进行判断即可.【解】:∵分式a2a−1有意义,∴2a﹣1≠0,解得:a≠1 2.故答案为:a≠1 2.12.分解因式:2a2﹣6ab=.【分析】根据题中的公因式是2a,用提取公因式的方法进行因式分解.【解】:2a2﹣6ab=2a(a﹣3b),故答案为:2a(a﹣3b).13.七(2)班第一组的12名同学身高(单位:cm)如下:162,157,161,164,154,153,156,168,153,152,165,158.那么身高在155~160的频数是.【分析】从中找出身高在155~160的个数即可得出答案.【解】:身高在155~160的有157,156,158,则频数是3;故答案为:3.14.关于x,y的二元一次方程组{x+y=3x−3y=k的解满足x﹣y=﹣1,则k的值是.【分析】将两式相加,得到2x﹣2y=k+3,然后得到x−y=k+32,据此即可求解.【解】:{x+y=3①x−3y=k②,由②+①得2x﹣2y=k+3,∴x−y=k+3 2,∵x﹣y=﹣1,∴k+32=−1,解得k=﹣5.故答案为:﹣5.15.我们在学习代数公式时,可以用几何图形来推理论证.受此启发,在学习因式分解之后,小明同学将图1一张边长的a的正方形纸片剪去2个长为a,宽为b的长方形以及3个边长为b的正方形之后,拼成了如图2所示的长方形.观察图1和图2的阴影部分,请从因式分解的角度,用一个含有a、b等式表示从图1到图2的变化过程.【分析】利用代数式分别表示图1,图2阴影部分面积即可解答.【解】:由题可知,图1阴影部分面积为a2﹣2ab﹣3b2,图2是长为a+b,宽为a﹣3b a+b)(a﹣3b),∵两个图形阴影部分面积相等,∴a2﹣2ab﹣3b2=(a+b)(a﹣3b),故答案为:a2﹣2ab﹣3b2=(a+b)(a﹣3b).16.如图①,点E、F分别为长方形纸带ABCD的边AD、BC上的点,∠EFC=α,将纸带沿EF折叠成图②(G为ED和BF的交点),再沿BF折叠成图③(H为EF和DG的交点),则图③中的∠HFC =.(结果用含α的代数式表示)【分析】在图①中,由∠EFC=α得∠DEF=180°﹣α,∠EFB=180°﹣α,在图②中,∠EFB=180°﹣α,由折叠的性质得∠FEG =∠DEF =180°﹣α,再由三角形的外角定理得∠DGF =∠FEG +∠EFB =360°﹣2α,在图③中,由折叠的性质得∠DGF =360°﹣2α,∠EFB =180°﹣α,由三角形的外角定理得∠DHF =∠DGF +∠EFB =540°﹣3α,根据DH ∥CF 得∠DHF +∠HFC =180°,据此可得∠HFC 的度数. 【解】:在图①中, ∵四边形ABCD 是长方形, ∴AD ∥BC ,∴∠DEF +∠EFC =180°, ∵∠EFC =α,∴∠DEF =180°﹣∠EFC =180°﹣α, ∴∠EFB =180°﹣∠EFC =180°﹣α, ∴图②中,∠EFB =180°﹣α,由折叠的性质得:图②中,∠FEG =∠DEF =180°﹣α, ∵∠DGF 是△EFG 的一个外角,∴∠DGF =∠FEG +∠EFB =180°﹣α+180°﹣α=360°﹣2α, 由折叠的性质得:图③中,∠DGF =360°﹣2α,∠EFB =180°﹣α, ∵∠DHF 四△HGF 的一个外角,∴∠DHF =∠DGF +∠EFB =360°﹣2α+180°﹣α=540°﹣3α, 在图③中,DH ∥CF , ∴∠DHF +∠HFC =180°,∴∠HFC =180°﹣∠DHF =180°﹣(540°﹣3α)=3α﹣360°.三、解答题(本大题共8个小题,共72分.解答应写出文字说明,证明过程或演算步骤) 17.解二元一次方程组.(1){3x −2y =9x +2y =3;(2){x +3y =14x−23−y−22=1.【分析】(1)利用加减消元法解得x =3,再用代入法求得y =0即可;(2)先将式子去分母,再用加减消元法解得x =6,再用代入法求得y =83即可.【解】:(1){3x −2y =9①x +2y =3②①+②,得4x =12, ∴x =3.把x =3代入②,得3+2y =3, 解得y =0所以原方程组的解为{x =3y =0;(2){x +3y =14①x−23−y−22=1②,②化简得:2(x ﹣2)﹣3(y ﹣2)=6,即2x ﹣3y =4③, ①+③得:3x =18,解得:x =6,将x =6代入①得:6+3y =14,解得:y =83,∴原方程组的解为:{x =6y =83. 18.先化简,再求值:(a ﹣3b )2﹣(a +b )(a ﹣b )+(4ab 2﹣2b 3)÷b ,其中a =12,b =−14.【分析】先根据完全平方公式、平方差公式和多项式除以单项式法则去掉括号,再合并同类项,然后把a ,b 的值代入化简后的式子,进行有理数的混合运算即可.【解】:原式=a 2﹣6ab +9b 2﹣a 2+b 2+4ab ﹣2b 2=a 2﹣a 2+9b 2+b 2﹣2b 2+4ab ﹣6ab =8b 2﹣2ab , 当a =12,b =−14时,原式=8×(−14)2−2×12×(−14)=8×116+14 =12+14 =34.19.如图:已知,∠HCO =∠∠BHC +∠BEF =180°. (1)求证:EF ∥BH ;(2)若BH 平分∠EBO ,EF ⊥AO 于F ,∠HCO =64°,求∠CHO 的度数.【分析】(1)要证明EF ∥BH ,可通过∠E 与∠EBH 互补求得,利用平行线的性质说明∠EBH =∠CHB 可得结论.(2)要求∠CHO 的度数,可通过平角和∠FHC 求得,利用(1)的结论及角平分线的性质求出∠FHB 及∠BHC 的度数即可.【解】证明:(1)∵∠HCO=∠EBC,∴EB∥HC.∴∠EBH=∠CHB.∵∠BHC+∠BEF=180°,∴∠EBH+∠BEF=180°.∴EF∥BH.(2)解:∵∠HCO=∠EBC,∴∠HCO=∠EBC=64°,∵BH平分∠EBO,∴∠EBH=∠CHB=12∠EBC=32°.∵EF⊥AO于F,EF∥BH,∴∠BHA=90°.∴∠FHC=∠BHA+∠CHB=122°.∵∠CHO=180°﹣∠FHC=180°﹣122°=58°.20.为落实“双减”要求,丰富学生校园生活,提升学生综合素养,某学校开展了学科月活动.学校随机抽取了部分学生对学科月最喜欢的活动进行调查:A.法律知识竞赛;B.国际象棋大赛;C.花样剪纸大赛;D.创意书签设计大赛.并将调查结果绘制成了两幅统计图,请根据图中提供的信息回答以下问题:(1)求共调查了多少名学生?并直接补全条形统计图;(2)求扇形统计图中“创意书签设计大赛”部分所对应的圆心角度数是多少度?(3)学校有500名学生参加本次活动,地点安排在两个多功能厅,每场报告时间为60分钟.由下面的活动日程表可知,A 和C 两场报告时间与场地已经确定.在确保听取报告的每名同学都有座位的情况下,请你合理安排B ,D 二场报告,补全此次活动日程表,并说明理由.【分析】(1)根据喜欢B 类型的人数及其百分比求得总人数,用总人数减去其它类型的人数求出喜欢D 类型的人数即可补全条形统计图;(2)用360°乘以喜欢“创意书签设计大赛”的百分比即可; (3)分别求出喜欢B ,D 二场的人数,补全此次活动日程表即可. 【解】:(1)共调查的学生人数为15÷30%=50(人),D 类型的人数为50﹣(5+15+20)=10(人),补全条形统计图如下:(2)360°×1050×100%=72°,答:扇形统计图中“创意书签设计大赛”部分所对应的圆心角度数是72度; (3)喜欢B 类型的人数为500×30%=150(人), 喜欢D 类型的人数为500×1050×100%=100(人), 补全此次活动日程表如下:21.如图,四边形BCED中,点A在CB的延长线上,点F在DE的延长线上,连接AF交BD于G,交CE 于H,且∠1=45°,∠2=135°.(1)求证:BD∥CE;(2)若∠C=∠D,求证:∠A=∠F.【分析】(1)由∠CHG+∠2=180°,∠2=135°可得出∠CHG=45°=∠1,利用“同位角相等,两直线平行”可证出BD∥CE;(2)由BD∥CE得出∠C=∠ABD,由∠C=∠D得出∠ABD=∠D,利用“内错角相等,两直线平行”得出AC∥DF,利用“两直线平行,内错角相等”得出∠A=∠F.【解】证明:(1)∵∠CHG+∠2=180°,∠2=135°,∴∠CHG=45°,∵∠1=45°,∴∠CHG=∠1,∴BD∥CE.(2)∵BD∥CE,∴∠C=∠ABD,∵∠C=∠D,∴∠ABD=∠D.∴AC∥DF,∴∠A=∠F.22.去年全国根食产量再创新高,为推进乡村振兴奠定了坚实基础,某粮食生产专业户原计划生产水稻和小麦共14吨,由于水稻超产8%,小麦超产5%,实际生产了15吨.(1)该专业户去年原计划生产水稻、小麦各多少吨?(2)据了解,该专业户去年水稻种植面积是小麦种植面积的2倍,且水稻亩产量比小麦多120千克,求水稻种植面积是多少亩?【分析】(1)设该专业户去年原计划生产水稻x吨,小麦y吨,根据某粮食生产专业户原计划生产水稻和小麦共14吨,由于水稻超产8%,小麦超产5%,实际生产了15吨.列出二元一次方程组,解方程组即可; (2)设水稻种植面积是m 亩,则小麦种植面积为12m 亩,根据水稻亩产量比小麦多120千克,列出分式方程,解方程即可.【解】:(1)设该专业户去年原计划生产水稻x 吨,小麦y 吨, 由题意得:{x +y =14(1+8%)x +(1+5%)y =15,解得:{x =10y =4,答:该专业户去年原计划生产水稻10吨,小麦4吨;(2)该专业户去年实际生产水稻:(1+8%)×10=10.8(吨),生产小麦:(1+5%)×4=4.2(吨), 设水稻种植面积是m 亩,则小麦种植面积为12m 亩,由题意得:10.8m −4.212m=1201000,解得:m =20,经检验,m =20是原方程的解,且符合题意, 答:水稻种植面积是20亩.23.如图为某社区的一块方形空地,由四块长为a ,宽为b 的长方形空地与一块小正方形水池拼接而成,为创建生态社区、小明为空地设计了甲、乙两种绿化方案,其中阴影部分都用于绿化,已知S 甲、S 乙分别表示图甲、乙中绿化的面积.(1)S 甲= ,S 乙= (用a ,b 的代数式表示); (2)当S 甲−S 乙=14a 2时,求S 甲S乙的值. 【分析】(1)S 甲为四个直角三角形的面积和;S乙为大正方形的面积减四个小直角三角形的面积减小正方形的面积;(2)根据已知以及(1)的结论求得b =a2,代入S 甲S乙计算即可求解.【解】:(1)S 甲=4×12ab =2ab ;S 乙=(a +b)2−2×12ab −2×12(a +b)b −(a −b)2=a 2+2ab +b 2﹣ab ﹣ab ﹣b 2﹣a 2+2ab ﹣b 2=2ab ﹣b 2, 故答案为:2ab ;2ab ﹣b 2; (2)解:∵S 甲−S 乙=14a 2,∴2ab −(2ab −b 2)=14a 2,解得b =a2(负值已舍),∴S 甲S 乙=2ab 2ab−b 2=2a⋅a 22a⋅a2−(a2)2=a 2a 2−a 24=a 23a 24=43. 24.已知:点A 在直线DE 上,点B 、C 都在直线PQ 上(点B 在点C 的左侧),连接AB ,AC ,AB 平分∠CAD ,且∠ABC =∠BAC .(1)如图1,求证:DE ∥PQ ;(2)如图2,点K 为线段AB CK ,且始终满足2∠EAC ﹣∠BCK =90°.①当CK ⊥AB 时,在直线DE 上取点F ,连接FK ,使得∠FKA =12∠AKC ,求此时∠AFK 的度数;②在点K 的运动过程中,∠AKC 与∠EAC 的度数之比是否为定值,若是,求出这个值;若不是,说明理由.【分析】(1)由角平分线的定义可得∠DAB =∠BAC ,再根据内错角相等,两直线平行可得结论; (2)①由垂直的定义可知∠AKC =90°,即可得∠FKA =45°,设∠EAC =x °,则可表示∠ABC 和∠BCK 的度数,然后利用三角形的内角和解题即可解题;②设∠EAC =x °,则可求出∠ABC 的值,然后表示∠AKC 的度数解题即可. 【解答】(1)证明:∵AB 平分∠CAD , ∴∠DAB =∠BAC , 又∵∠ABC =∠BAC , ∴∠DAB =∠ABC ,∴DE ∥PQ ; (2)解:①如图,∵CK ⊥AB , ∴∠AKC =90°, 又∵∠FKA =12∠AKC ,∴∠FKA =45°, 设∠EAC =x °,∵∠DAB =∠BAC =∠ABC , ∴∠ABC =180°−x°2=90°−12x°, 又∵2∠EAC ﹣∠BCK =90°, ∴∠BCK =2x °﹣90°, 在△BKC 中, ∠B +∠BCK =90°,即2x°−90°+90°−12x°=90°,解得:x =60,∴∠AFK =∠DAB −∠AKF =90°−12x°−45°=15°;同理,当F 点可以在A 点的左边,∠AFK =75°; ②∠AKC∠EAC =32,理由为: 如图,设∠EAC =x °, ∵∠DAB =∠BAC =∠ABC ,∴∠ABC=180°−x°2=90°−12x°,∵2∠EAC﹣∠BCK=90°,∴∠BCK=2x°﹣90°,在△BKC中,∴∠AKC=∠B+∠BCK=2x°−90°+90°−12x°=32x°,∴∠AKC∠EAC=32x°x°=32,。
河北省石家庄市新华区2023-2024学年七年级下学期期末数学试题(含答案)

2023—2024学年第二学期期末学业质量监测七年级数学(冀教版)注意事项:1.本试卷共6页,满分100分,考试时长90分钟。
2.答卷前将密封线左侧的项目填写清楚。
3.答案须用黑色字迹的签字笔书写。
一、精心选择(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项只有一项是正确的)1.如图,CF,CE,CD分别是△ABC的中线、角平分线、高,下列线段中,长度最短的是()A.CF B.CE C.CD D.CB2.2−3可以表示为()A.2×2×2B.(−2)×(−2)×(−2)C.2÷2÷2D.12×2×23.如图.∠1与∠2是()A.同位角B.内错角C.同旁内角D.对顶角4.我国陆地上风能储量约为253,000兆瓦,将253,000用科学记数法表示为2.53×10n,则n的值为()A.4B.5C.6D.−55.一款晾衣架的示意图如图所示,支架OP=OQ=30cm(连接处的长度忽略计),则点P,Q之间的距离可以是()A.50cm B.65cm C.70cm D.80cm6.下列运算中,结果正确的是()A.a4⋅a3=a12B.(a3)2=a6C.a6÷a2=a3D.(−3x)2=−9x27.数轴上表示数m,n的点的位置如图所示,则下列结论不正确的是()A.m−n<0B.m+1<n−1C.−3m<−3n D.m2<n28.如图,将长方形纸片按如图方式折叠,已知∠DQP=50∘,则∠CPM=()A.40∘B.50∘C.60∘D.80∘9.等式“☐a2−b2=−(2a−b)(2a+b)”中的“□”表示的数是()A.4B.−4C.16D.−1610.如图,已知直线m平移后得到直线n,∠1=108∘,∠2=35∘.则∠3的度数为()A.98∘B.103∘C.107∘D.143∘11.【问题】已知关于x,y的方程组{3x+5y=4k−2x−3y=2的解满足2x+y=3.求k的值.嘉嘉同学有如下两种解题思路和部分步骤:Ⅰ.将方程组中的两个方程相加并整理,可得到2x+y=2k,再求k的值;Ⅱ.解方程组{2x+y=3,x−3y=2,得到{x=117,y=−17.再代入3x+5y=4k−2中,可求k的值.下列判断正确的是()A.Ⅰ的解题思路不正确B.Ⅱ的解题思路不正确C.Ⅱ的解题思路正确,求解不正确D.Ⅰ与Ⅱ的解题思路与求解都正确12.阅读下面的数学问题:如图,在△ABC中,AE⊥BC于点E,CD⊥AB于点D,AE,CD交于点P,AQ平分∠CAE,CQ平分∠ACD.甲、乙两人经过研究,分别得到如下结论:甲:∠APC+∠ABC=180∘;乙:∠AQC+12∠ABC=180∘.其中判断正确的是()A.甲、乙两人的结论都正确B.甲、乙两人的结论都错误C.甲的结论错误,乙的结论正确D.甲的结论正确,乙的结论错误二、准确填空(本大题共4个小题,每小题3分,共12分.其中16小题第一个空2分,第二个空1分)13.写出一个满足不等式x−6>0的x的整数值为 .14.整式a2−a和(a−1)2的公因式为 .15.命题“若△ABC中的∠A:∠B:∠C=1:2:3,则△ABC是直角三角形”是 .(填“真命题”或“假命题”)16.几何验证:如图1,可验证公式(a+b)2=a2+2ab+b2.(1)公式应用:若m+n=5,mn=6,则m2+n2的值为;,则S1+S2的(2)拓展延伸:如图2,四边形ACDE和四边形BCFG是两个正方形,若DF=6,S△ACF=92值为 .图2三、细心解答(本大题共8个小题,共52分.解答应写出文字说明、说理过程或演算步骤)17.(本小题满分5分)小明在解方程组{x−3y=3,①2x−5y=4②的过程如下:解:由①×2,得2x−6y=6③,…………第一步②−③,得−y=−2,…………第二步得y=2.…………第三步把y=2代入①,得x=9,…………第四步所以原方程组的解为{x=9,y=2.(1)小明的解题过程从第步开始出现错误;(2)请你写出正确的解方程组的过程.18.(本小题满分5分)已知不等式组{2(x−1)≥−3,①4x−2<1+3x.②(1)解该不等式组,并把解集在下面的数轴上表示出来;(2)写出该不等式组的所有正整数解.19.(本小题满分6分)如图,△ABC的顶点都在正方形网格(每个小正方形的边长均为1个单位长度)的格点上,将△ABC向左平移7个单位长度得到△A′B′C′.(1)在网格中画出△A′B′C′及A′B′边上的中线C′H和高线C′G;(2)直接写出线段BC所扫过的面积.20.(本小题满分6分)已知A=(a+2b)(a−b)−a5÷a3−(2b)2.(1)先化简A,再求当a=1,b=−3时,A的值;(2)若a=6b,求A的值.21.(本小题满分6分)如图,△ABC中,∠A=70∘,∠ABC=75∘,点D为线段AC上的点(不与点A,C重合),点E在AB的延长线上,连接DE,∠E=40∘,DF平分∠ADE.(1)求∠C的度数;(2)说明BC//DF的理由.22.(本小题满分7分)有三个连续奇数,最小的奇数为2n−1(n为正整数).(1)用含n的代数式表示另外两个奇数;(2)判断这三个奇数的平方和是否是12的倍数.若是,请说明理由;若不是,请写出被12除的余数是多少.23.(本小题满分8分)某校欲租用租赁公司的甲、乙两种型号的大巴车共8辆(两种车型都要租用),将部分师生送去植物园游玩,相关的租车信息如下:信息一:若租用3辆甲型大巴、5辆乙型大巴,共可载客435人;若租用6辆甲型大巴、2辆乙型大巴,共可载客390人。
河北省唐山市2023-2024学年七年级下学期期末数学试题

河北省唐山市2023-2024学年七年级下学期期末数学试题一、单选题1.下列各式中,计算结果等于6a 的是( ) A .33a a ⋅B .()42aC .82a a -D .122a a ÷2.多项式236m mn +的公因式是( ) A .3B .mC .3mD .3n3.如图,ABC V 的边BC 上的高是( )A .线段AFB .线段DBC .线段CFD .线段BE4.若()22648x mx x ++=-,则m 的值是( ) A .8B .16-C .16D .16±5.不等式()214x -≥的解集在数轴上表示为( )A .B .C .D .6.如图,在下列条件中,能判定AD //BC 的是( )A .∠1=∠2B .∠3=∠4C .∠ABC =∠ADCD .∠ABC +∠BCD =180°7.若3x =4,3y =6,则3x+y 的值是( ) A .24B .10C .3D .28.已知a b >,则下列不等式中正确的是( ) A .22a b -<- B .1133a b ->- C .22a b <D .1212a b -<-9.如图,AB CD P , 且50A ∠=︒,32C ∠=︒, 则E ∠等于( )A .18︒B .25︒C .32︒D .41︒10.对于下列多项式,能用平方差公式进行因式分解的是( ) ①22a b + ②22a b - ③22a b -+ ④22a b --A .①②B .①④C .③④D .②③11.计算775.9910 5.9810⨯-⨯,结果用科学记数法表示为( )A .50.110⨯B .60110⨯.C .5110⨯D .6110⨯12.若ABC ∆的三个内角A ∠,B ∠,C ∠满足关系式2B C A ∠+∠=∠,则此三角形( )A .一定是直角三角形B .一定是钝角三角形C .一定有一个内角为45°D .一定有一个内角为60°13.如图,ABC V 的中线AD 、BE 相交于点 F , 若ABF △的面积为1S ,四边形CEFD 的面积为2S ,则1S 与2S 的大小关系是( )A .12S S =B .12S S <C .12S S >D .无法确定14.若关于x 的不等式组0721x m x -≤⎧⎨-<⎩的整数解共有2个,则m 的取值范围是( )A .56m <<B .56m ≤<C .56m <≤D .56m ≤≤二、填空题15.把方程2x +y =3改写成用含x 的式子表示y 的形式,得y =. 16.计算:1022-+=________. 17.不等式组14420x x +<⎧⎨-≤⎩的解集为.18.如图,已知点 P 是射线ON 上一动点 (不与点 O 重合),50O ∠=︒, 若OAP △是钝角三角形, 则A ∠的取值范围是.三、解答题19.已知a , b , c 是ABC V 的三边. (1)4a =,6b =, 则c 的取值范围是; 若c 为偶数,则ABC V 的最大周长为.(2)若ABC V 是等腰三角形, 4a =, 周长为16, 求另外两边长. 20.一次课堂练习,嘉嘉同学做了如下四道因式分解的题目:①()()22422x y x y x y -=-+;②()3244a a a a -=-;③()22x y xy xy x y -=-;④()22224222m mn n m n ++=+.(1)嘉嘉做错的或不完整的题目是(填序号); (2)把你选出(1)题中题目的正确答案写在下面.21.如图,要使输出值y 大于50,求输入的最小正整数x 的值.22.已知代数式:()()()422b a b a b a b --+- (1)化简这个代数式;(2)若2220a ab b -+=,求原代数式的值.23.如图, 在ABC V 中,30A ∠=︒,80ABC ∠=︒ ,ABC V 的外角BCD ∠的平分线CE 交AB 的延长线于点 E .(1)求BCE ∠的度数;(2)过点D 作DF CE ∥, 交AB 的延长线于点 F , 求F ∠的度数.(3)若把直线DF 绕点 F 旋转,直线 DF 和直线CE 交于点 P , 当DF 和 ABC V 的一边平行时,直接写出FPE ∠的度数.24.为保障安全,对某大桥的限重作出规定,载重后总质量超过30 吨的车辆禁止通行.现有一辆自重6吨的卡车,要运输若干套某种设备,每套设备由3个A 部件和1个B 部件组成,这种设备必须成套运输.已知2个A 部件和1个 B 部件的总质量为2.8吨,3个A 部件和2个 B 部件的质量相等.(1)1个 A 部件和1个B 部件的质量分别是多少?(2)该卡车要运输这种成套设备通过此大桥,一次最多可运输多少套? 25.ABC V 的两条角平分线BI 、CI 相交于点 I .(1)如图1:①若80BAC ∠=︒,求 BIC ∠的度数;②若BAC β∠=,直接写出 BIC ∠=°(用含β的式子表示); (2)如图2,连接AI ,AI 平分BAC ∠,作DE AI ⊥分别交AB 、AC 于点D 、E .你发现与BIC ∠一定相等的角有;与DIB ∠一定相等的角有.。
河北省保定市竞秀区2023-2024学年七年级下学期期末数学试题(含答案)

2023—2024学年度第二学期期末学业质量监测七年级数学试卷注意事项:1.本试卷共8页,总分120分,考试时间120分钟.2.答题前,考生务必将姓名、准考证号填写在试卷和答题卡相应位置上.3.所有答案均在答题卡上作答,在本试卷或草稿纸上作答无效.答题前,请仔细阅读答题卡上的“注意事项”,按照“注意事项”的规定答题.4.答选择题时,用2B 铅笔把答题卡上对应题目的答案标号涂黑;答非选择题时,请在答题卡上对应题目的答题区域内答题.一、选择题(本大题共12个小题,每题3分,共36分.在每小题给出的四个选项中,只有一个选项符合题意)1.如图,点D 在直线上,,则图中的和的关系是()A .互为补角B .互为余角C .同位角D .对顶角2.中华文明,源远流长;中华汉字,寓意深广.下列四个选项中,是轴对称图形的为()A .B .C .D .3.如图,为了估计一池塘岸边两点A ,B 之间的距离,小颖同学在池塘一侧选取了一点P ,测得,,那么点A 与点B 之间的距离不可能是( )A .B .C .D .4.计算的值为( )A .B .C .1D .25.事件①:射击运动员射击一次,命中靶心;事件②:随意翻到一本书的某页,这页的页码是奇数.则下列表述正确的是()A .事件①是必然事件,事件②是随机事件B .事件①是随机事件,事件②是必然事件C.事件①和②都是随机事件AB CD ED ⊥1∠2∠100m PA =90m PB =90m 100m 150m 200m202420250.5(2)⨯-2-0.5-D .事件①和②都是必然事件6.如图,平分,,垂足为A ,,Q 是射线上的一个动点,则线段的最小值是( )A .10B .8C .6D .47.红外线是太阳光线中众多不可见光线中的一种,且应用广泛,某红外线遥控器发出的红外线波长约为,则下列说法正确的是( )A .是8位小数B .C .D .是7位小数8.如图,是一个可折叠衣架,是地平线,当,时,就可以确定点N 、P 、M 在同一直线上,这样判定的依据是()A .内错角相等,两直线平行B .过直线外一点有且只有一条直线与这条直线平行C .两点确定一条直线D .平行于同一直线的两直线平行9.在一次数学实践活动课上,老师指导学生进行折纸活动,下图是小明、小凡、小颖三位同学的折纸示意图(C 的对应点是),分析他们折纸情况说法正确的是()A .小明折出的是中的角平分线B .小凡折出的是边上的中线C .小颖折出的是中边上的高线D .上述说法都错误10.已知线段a ,b ,c 求作:,使,,.下面的作图顺序正确的是()OP MON ∠PA ON ⊥6PA =OM PQ 79.410m -⨯79.410-⨯779.410 1.4810--⨯-=⨯769.410109.410--⨯+=⨯79.410-⨯AB //PM AB //PN AB C 'ABC △BAC ∠BC ABC △BC ABC △BC a =AC b =AB c =①以点A 为圆心,以b 为半径画弧,以点B 为圆心,以a 为半径画弧,两弧交于C 点;②作线段等于c ;③连接,,则就是所求作图形.A .①②③B .③②①C .②①③D .②③①11.如图,已知,直线l 与直线a ,b 分别交于点A ,B ,分别以点A ,B为圆心,大于的长为半径画弧,两弧分别相交于点M ,N ,作直线,交直线b 于点C ,连接,若,则的度数是()A .B .C .D .12.如图,中,,D 是线段上一点(不与点B ,C 重合),连接,点E ,F 分别在线段,的延长线上,且.则以下结论:①;②;③;④D 从B 运动到C 的过程中,周长不变.正确的是()A .①②④B .①②③C .②③④D .①③④二、填空题(本大题共4个小题;每题3分,共12分.把答案写在题中横线上)13.已知,,则____________.14.如图,点P 是外的一点,点M ,N 分别是两边上的点,点P 关于的对称点Q 恰好落在线段上,点P 关于的对称点R 落在的延长线上,若,,,则线段的长为____________.15.不透明的盒子中装有红、白两色的小球共n (n 为正整数)个,这些球除颜色外无其他差别,随机摸出一个小球,记录颜色后放回并摇匀,不断重复这一过程.如图显示了用计算机模拟实验的结果.AB AC BC ABC △//a b 12AB MN AC 138∠=︒ACB∠76︒100︒102︒104︒ABC △AB AC BC ==BC AD AB AC DE DF AD ==60E BDE ∠+∠=︒60E CFD ∠+∠=︒EBD DCF △≌△BED △45x =42y=4x y+=AOB ∠AOB ∠OA MN OB MN 2.5PM = 3.5PN =3MN =QR若盒子中共装60个小球,可以根据本次实验结果,估算出盒子中红球有____________个.16.如图,长方形纸片中,,点E ,F 在边上,点G ,H 在边上,分别沿,折叠,使点D 和点A 都落在点M 处,若,则的度数是____________度.三、解答题(本大题共8个小题,共72分,解答应写出必要的文字说明,证明过程或演算步骤.)17.计算:(本小题满分8分,(1)题4分,(2)题4分)(1).(2)利用整式乘法公式计算:.18.(本小题满分6分)先化简,再求值:,其中.19.(本小题满分7分)小明和妈妈去超市买凳子,小明发现售货员把凳子按如图方式叠放在一起时,每叠放一个凳子,增加的高度是一样的.下表是叠放凳子的总高度h 与凳子数量n 的几组对应值.凳子的数量n (个)1234…叠放凳子的总高度h (厘米)46525864…根据以上信息,回答下列问题:(1)按照表格所示的规律,当凳子的数量为6时,叠放的凳子总高度为____________厘米;(2)直接写出叠放的凳子总高度h 与凳子的数量n 之间的关系式:____________;(3)按上表所示的规律,若将该种凳子按如图方式叠放在层高为92厘米的超市货架上,能叠放8个吗?ABCD //AD BC AD BC EG FH 12115∠+∠=︒EMF ∠1021(2024)(2)3π-⎛⎫-+--- ⎪⎝⎭2202320222024-⨯432(32)()()3x x x x x x -÷---⋅12x =-请说明理由.20.(本小题满分8分)如图,墙地面b ,嘉嘉想知道这堵墙上点A 到地面的高度,但又没有直接测量的工具,于是设计了下面的方案.第一步:找一根长度大于的直杆,使直杆斜靠在墙上,且顶端与点A 重合,记下直杆与地面的夹角;第二步:使直杆顶端竖直缓慢下滑,直到,标记此时直杆的底端点D ;第三步:测量的长度即为点A 到地面的高度.(1)请说明为什么的长度即为点A 到地面的高度;(2)若测得,,求梯子下滑的高度.21.(本小题满分9分)小明和小颖都想参加学校杜团组织的暑假实践活动,但只有一个名额,小明提议用如下的办法决定谁去参加活动:将一个转盘9等分,分别标上1至9九个号码,随意转动转盘,若转到2的倍数,小明去参加活动;转到3的倍数,小颖去参加活动;转到其它号码则重新转动转盘.(1)转盘转到号码7的概率是____________.(2)转盘转到2的倍数的概率是多少?(3)你认为这个游戏对小明和小颖公平吗?请说明理由.22.(本小题满分11分)题目:如图,中,F 为边上一点,点D 为延长线上一点.(1)在图中按要求完成尺规作图:①在右侧作,交于点G ;②作的角平分线.(不写作图步骤,保留作图痕迹,作图要用2B 铅笔,如果笔迹太细、太轻,可以描重一些.)(2)在(1)的条件下,若.①请说明.a ⊥AN NA ABN ∠NCD ABN ∠=∠ND AN ND AN 1.2m BN = 2.5m DN =AC ABC △AB BC BF BFG A ∠=∠BC ACD ∠CE 180AFG ACE ∠+∠=︒//AB CE②与的关系是____________.下面是嘉嘉的解答过程,请在(1)中完成尺规作图,并补全(2)中的说理依据:解:(1)(2)①因为,根据________________________,得到;因为,根据________________________,得到;因为已知,所以可以得到;进而根据________________________,得到.②与的关系是____________.23.(本小题满分11分)如图1,在长方形中,,E 为边中点.动点P 从点B 开始,以的速度沿路线运动,到点A 停止.图2是点P 出发t 秒后,的面积随时间变化的图象.根据图中提供的信息,回答下列问题:(1)____________;点M 表示的实际意义是________________________;(2)当点P 在上运动时,求的面积为时t 的值;(3)如图3,当点P 从点B 出发时,动点Q 同时以的速度从C 点出发,沿边运动,当点P 运动到点C 时,P 、Q 两点停止运动.当x 为何值时,与全等,请直接写出x 的值.24.(本小题满分12分)活动探究:数学活动课上,王老师准备了若干个图1所示的三种纸片,A 种纸片是边长为a 的正方形,B 种纸片是边长为b 的正方形,C 种纸片是长为b ,宽为a的长方形.AFG ∠B ∠BFG A ∠=∠//FG AC //FG AC 180AFG A ∠+∠=︒180AFG ACE ∠+∠=︒A ACE ∠=∠//AB CE AFG ∠B ∠ABCD 6cm AB =AB 3cm/s B C D A →→→BPE △2(cm )S (s)t BC =cm DA BPE △29cm cm/s x CD PBE △PCQ △(1)若小明想用图1中的三种纸片拼出一个面积为的大长方形,则需要C 种纸片____________张;(2)小兰用A 种纸片一张,B 种纸片一张,C 种纸片两张拼成了图2所示的大正方形,在用两种不同的方法求此大正方形的面积时,小兰发现了代数式,,之间的等量关系式,这个关系式是:________________________;实践应用:(3)如图3,学校在长方形空地里铺了地砖,地砖有三种,一种是5个相同的黑色小长方形,另两种是两个白色大正方形和两个白色小正方形.已知长方形空地的周长为8.4米,每个黑色小长方形地砖的面积均为0.36平方米.设每个黑色小长方形地砖的长为m 米,宽为n 米.①____________;②求空地中白色地砖的总面积.2023-2024学年度第二学期期末学业质量监测七年级数学试卷参考答案及评分标准(仅供参考,其他解法,参照给分)一、选择题(本大题共12个小题,每题3分,共36分。
2022—2023年人教版七年级数学下册期末模拟考试(带答案)

2022—2023年人教版七年级数学下册期末模拟考试(带答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分) 1.若()286m n a b a b =,那么22m n -的值是 ( ) A .10 B .52 C .20 D .322.下列四个图形中,线段BE 是△ABC 的高的是( )A .B .C .D .3.已知|m -2|+(n -1)2=0,则关于x 的方程2m +x =n 的解是( )A .x =-4B .x =-3C .x =-2D .x =-14.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >05.如图,四边形ABCD 内接于⊙O ,点I 是△ABC 的内心,∠AIC=124°,点E 在AD 的延长线上,则∠CDE 的度数为( )A .56°B .62°C .68°D .78°6.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q7.当a <0,n 为正整数时,(-a )5·(-a )2n 的值为( )A .正数B .负数C .非正数D .非负数8.64的立方根是( )A .4B .±4C .8D .±89.已知实数a 、b 满足a+b=2,ab=34,则a ﹣b=( ) A .1 B .﹣52 C .±1 D .±5210.如图所示的几何体的主视图是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:3222x x y xy +=﹣__________. 2.如图折叠一张矩形纸片,已知∠1=70°,则∠2的度数是________.3.已知AB//y 轴,A 点的坐标为(3,2),并且AB=5,则B 的坐标为________.4.如果方程(m-1)x |m|+2=0是表示关于x 的一元一次方程,那么m 的取值是________.5.若264a =3a =________.6.如果20a b --=,那么代数式122a b +-的值是________.三、解答题(本大题共6小题,共72分)1.解不等式组,并将解集在数轴上表示出来.273(1)15(4)2x x x x -<-⎧⎪⎨-+≥⎪⎩①②2.已知A =3x 2+x+2,B =﹣3x 2+9x+6.(1)求2A ﹣13B ; (2)若2A ﹣13B 与32C -互为相反数,求C 的表达式; (3)在(2)的条件下,若x =2是C =2x+7a 的解,求a 的值.3.如图,∠BAD=∠CAE=90°,AB=AD ,AE=AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠FAE 的度数;(3)求证:CD=2BF+DE .4.如图,在平面直角坐标系中,点A 、C 分别在x 轴上、y 轴上,CB //OA ,OA =8,若点B 的坐标为(a ,b ),且b 444a a --.(1)直接写出点A 、B 、C 的坐标; (2)若动点P 从原点O 出发沿x 轴以每秒2个单位长度的速度向右运动,当直线PC 把四边形OABC 分成面积相等的两部分停止运动,求P 点运动时间;(3)在(2)的条件下,在y轴上是否存在一点Q,连接PQ,使三角形CPQ的面积与四边形OABC的面积相等?若存在,求点Q的坐标;若不存在,请说明理由.5.为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?6.在一次实验中,小明把一根弹簧的上端固定、在其下端悬挂物体,下面是测得的弹簧的长度y与所挂物体质量x的一组对应值.①上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?②当所挂物体重量为3千克时,弹簧多长?不挂重物时呢?③若所挂重物为7千克时(在允许范围内),你能说出此时的弹簧长度吗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、B4、B5、C6、C7、A8、A9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、()2 x x y-2、55°3、(3,7)或(3,-3)4、-15、±26、5三、解答题(本大题共6小题,共72分)1、原不等式组的解集为﹣4<x≤2,在数轴上表示见解析.2、(1)7x2﹣x+2;(2)﹣14x2+2x﹣1;(3)﹣5773、(1)证明见解析;(2)∠FAE=135°;4、(1)A(8,0),B(4,4),C(0,4);(2)t=3;(3)存在;点Q坐标(0,12)或(0,−4)5、(1)本次调查共抽取了120名学生;(2)补图见解析;(3)估计该中学最喜爱国画的学生有320名.6、①上表反映了弹簧长度与所挂物体质量之间的关系;其中所挂物体质量是自变量,弹簧长度是因变量;②当所挂物体重量为3千克时,弹簧长24厘米;当不挂重物时,弹簧长18厘米;③32厘米.。
学易密卷:段考模拟君之七年级数学上学期期末考试原创模拟卷(河北B卷)(全解全析)

数学 第1页(共5页)2017-2018学年上学期期末原创卷B 卷七年级数学·全解全析1 2 34 5 6 7 8 9 10 11 12 13 14 15 16 ABBDCDBCBBBACCAB1.【答案】A【解析】单项式223a b -的系数是23-,次数是3.故选A .2.【答案】B【解析】①长方形是平面图形,②梯形是平面图形,③正方体是立体图形,④圆柱是立体图形,⑤圆锥是立体图形,所以,属于立体图形的是③④⑤.故选B . 3.【答案】B【解析】因为78分比80分少2分,可知应记作–2分.故选B .5.【答案】C【解析】根据题意,得x =–3,y =±4.当x =–3,y =4时,x –y =–3–4=–7;当x =–3,y =–4时,x –y =–3–(–4)=1.故选C . 6.【答案】D【解析】A .原式=26a ,故A 错误;B .原式=38a -,故B 错误;C .原式=3,故C 错误;D .326()a a -=,正确.故选D . 7.【答案】B【解析】把x =2分别代入四个选项中的方程,只有选项B 中方程的左右两边相等,所以选项B 中方程–x +6=2x 的解是x =2.故选B . 8.【答案】C【解析】原式=119(8)=1(8)41(32)1323194-⨯--÷---⨯=---=-+=.故选C .9.【答案】B【解析】∵21412n a b --与283m m a b 是同类项,∴8m =4,2n –1=2m ,∴12m =,1n =,则(1+n )100(1–m )。
河北省石家庄市桥西区2023-2024学年七年级下学期期末数学试题

河北省石家庄市桥西区2023-2024学年七年级下学期期末数学试题一、单选题1.某校的家长课堂直播点击量达105000人次. 数据105000用科学记数法表示为( ) A .51.0510⨯ B .410.510⨯ C .60.10510⨯ D .61.0510⨯ 2.下列各等式从左边到右边的变形中,是因式分解的是( )A .2(3)(3)9x x x -+=-B .824x x =⨯C .2244(2)x x x ++=+D .221(2)1x x x x -+=-+3.如图, 直线a , b 相交于点O , 如果1280∠+∠=︒, 那么3∠的度数为( )A .140︒B .110︒C .40︒D .50︒4.下列各式中,计算结果为10a 的是( )A .55a a +B .202a a ÷C .55a a ⋅D .()252a - 5.若不等式(2)4a x ->的解集为42x a <-,则a 的取值范围是( ) A .2a < B .2a > C .2a ≥ D .2a ≤ 6.下列各组数满足方程238x y +=的是( )A .12x y =⎧⎨=⎩B .21x y =⎧⎨=⎩C .12x y =-⎧⎨=⎩D .24x y =⎧⎨=⎩ 7.一条古称在称物时的状态如图所示,已知180∠=︒,则2∠=( )A .20︒B .80︒C .100︒D .120︒8.下列命题是真命题的是( )A .若两个数的平方相等,则这两个数相等B .同位角相等C .同一平面内,垂直于同一直线的两条直线平行D .相等的角是对顶角9.四位同学画出如下的线段BD ,其中能表示ABC V 高的是( )A .B .C .D .10.使用a ,b 两根直的铁丝做成一个三角形框架,尺寸如图所示,若需要将其中一根铁丝折成两段,则可以把铁丝分为两段的是( )A .只有aB .只有bC .a ,b 都可以D .a ,b 都不可以 11.若k 为任意整数,则22(23)4k k +-的值总能( )A .被2整除B .被3整除C .被5整除D .被7整除12.如图,直线m n ∥,ABC V 是直角三角形,90B ??,点C 在直线n 上.若150∠=︒,则2∠的度数是( )A .60°B .50°C .45°D .40°13.如图,ABC V 沿着点B 到点C 的方向平移到DEF V 的位置,90B ??,6AB =,4DH =,平移距离为7,则阴影部分的面积为( )A .12B .16C .28D .2414.如图,直线AB CD ∥,点P 是直线AB 上一个动点,当点P 的位置发生变化时,PCD V 的面积( )A .向左移动变小B .向右移动变小C .始终不变D .无法确定15.如图,在大长方形中放置10个形状、大小都相同的小长方形,则大长方形的面积是( )A .6400B .6750C .6700D .680016.小羽制作了如图所示的卡片A 类,B 类,C 类各50张,其中A ,B 两类卡片都是正方形,C 类卡片是长方形,现要拼一个长为()57a b +,宽为()7a b +的大长方形,那么所准备的C 类卡片的张数( )A .够用,剩余4张B .够用,剩余5张C .不够用,还缺4张D .不够用,还缺5张二、填空题17.3a a ÷=18.某加工零件标出部分数据(如图),小明说,这四个数据中有一个标错了,请你完善以下修改方案:若A ∠、B ∠、BCD ∠所标数据正确,则图中D ∠所标数据应为.19.观察下列等式:()()2111x x x -+=-;()()23111x x x x -++=-;()()324111x x x x x -+++=-;⋯根据以上规律,回答问题:(1)()()43211x x x x x -++++=(2)109832222221++++++K 的结果可以表示为.三、解答题20.分解因式:(1)²x xy - (2)2?8?a b -21.已知61310x -=, 求代数式 ()()()3?22x x x --+-的值.22.解不等式组 ()3121113x x x x ⎧+>+⎪⎨-<+⎪⎩,并写出该不等式组的最大整数解. 23.已知AB CD P ,在AB CD ,之间任取一点E , 连接EA ED ,.(1)如图1, 若3045A D ∠=︒∠=︒,,求E ∠度数;(2)如图2, 猜想A AED D ∠∠∠,,的数量关系,并说明理由.24.如图,将边长为()a b +的正方形剪出两个边长分别为a ,b 的正方形(阴影部分).观察图形,解答下列问题:(1)用两个不同的代数式表示阴影部分的面积.方法1∶ ;方法2∶ ;(2)运用你发现的结论,解决问题;已知6x y +=,6xy =,求 ²²x y +的值.25.随着“低碳生活,绿色出行”理念的普及,新能源汽车成为大部分人首选的交通工具.灯塔市公交公司购买一批A ,B 两种型号的新能源汽车,已知购买3辆A 型汽车和1辆B 型汽车共需要55万元,购买2辆A 型汽车和4辆B 型汽车共需要120万元.(1)求购买每辆A 型和B 型汽车各需要多少万元?(2)若该公司计划购买A 型汽车和B 型汽车共15辆,且总费用不超过220万元,则最少能购买A 型汽车多少辆?26.我们将内角互为对顶角的两个三角形称为“对顶三角形”.例如,在图1中,ADB V 的内角AOB ∠与COD △的内角COD ∠为对顶角,则AOB V 与COD △为“对顶三角形”,根据三角形三个内角和是180︒,“对顶三角形”有如下性质:A B C D ∠+∠=∠+∠.(1)如图1,在“对顶三角形”AOB V 与COD △中,若85AOB ∠=︒,则______C D ∠+∠=︒.(2)如图2,在ABC V 中,AD BE 、分别平分BAC ∠和ABC ∠,若60C ∠=︒,ADE ∠比BED ∠大8︒,求BED ∠的度数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所以不等式组的解集是 2<x<5, 因此,不等式组的最小整数解是 3,即 a=3,(4 分)
∵b=46×0.256+(– 1 )–2–(3721–4568)0=(4×0.25)6+(–2)2–1=4, 2
当 a=3 为等腰三角形的底时,另外两腰都是 b=4, 因为 3+4=7,7 大于 4,能构成三角形, 所以△ABC 的周长是 3+4+4=11,(6 分) 当 b=4 为等腰三角形的底时,另外两腰都是 a=3, 因为 3+3=6,6 大于 4,能构成三角形, 所以△ABC 的周长是 4+3+3=10,(8 分) 所以△ABC 的周长是 10 或 11.(9 分) 24.【解析】(1)8x3+4x2y+2xy2–4x2y–2xy2–y3,8x3–y3.(2 分)
25.【解析】(1)设购买该品牌应急灯的单价是 x 元,购买手电筒的定价是 y 元.
根据题意得
x 5y 3x 2
50 y 85
,解得
x
y
25 5
.(4
分)
答:购买该品牌应急灯的定价是 5 元,购买手电筒的单价是 25 元;(5 分) (2)设公司购买应急灯的个数为 a,则还需要购买手电筒的个数是(2a+8),(6 分) 由题意得 25a+5(2a+8–a)≤670,解得 a≤21.(10 分) 答:该公司最多可购买 21 个该品牌的台灯.(11 分) 26.【解析】(1)∠E=∠END–∠BME.(3 分) 如图 1,∵AB∥CD,
15.【答案】D
【解析】可以发现:(a+b)n 的各项展开式的系数除首尾两项都是 1 外,其余各项系数都等于(a+b)n–1
的相邻两个系数的和,
则(a+b)4 的各项系数依次为 1、4、6、4、1;
(a+b)5 的各项系数依次为 1、5、10、10、5、1;
数学全解全析 第 2 页(共 8 页)
则(a+b)6 的系数分别为 1、6、15、20、15、6、1. 前四项系数分别为 1、6、15、20.故选 D. 16.【答案】A 【解析】如图连接 MN,
12.【答案】A 【解析】如图,∠BAC=∠ACD–∠B=15°,∠1=∠BAC=15°,故选 A.学@科网
13.【答案】B
14.【答案】B
x 10 3y
x 35
【解析】设每块墙砖的长为
xcm,宽为
ycm,根据题意得:
2x
2
y
40
,解得
y
15
,
则每块墙砖的截面面积是 35×15=525(cm2),故选 B.
10cm.故答案为:10.
19.【答案】17.5°,
70 2n1
20.【解析】(1)6992 =(700–1)2
数学全解全析 第 3 页(共 8 页)
=7002–2×700×1+1 =490000–1400+1 =488601.(4 分) (2)20192–2017×2021 =20192–(2019–2)(2019+2) =20192–20192+22 =4.(8 分)学@科网
x=
1
,y=
1
时,原式=24×1
1
×
=
1
;(6
分)
68
682
(2)∵a–b=5,ab=1,
∴a2+b2=(a–b)2+2ab=52+2×1=27.(9 分)
2(x 1) 3x 7①
23.【解析】
1
2
x
1
3
3 2
x②
,
解不等式①,得 x<5,解不等式②,得 x>2,
数学全解全析 第 4 页(共 8 页)
∵AM、BN 是△ABC 的两条中线,∴ S△BCN
1 2
S△ABC
,
S△ABM
1 2
S△ABC
,
S△ABM S△ABO S△BOM =4 2=6 ,则 S△ABC 12 ,则 S△BCN 6 ,则 S四边形CMON S△BCN S△BOM
=6–2=4,故选 A.
17.【答案】1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 BCCBCCBADBAABBDA 1.【答案】B
【解析】m2•m4=m6.故选 B. 2.【答案】C
【解析】把数据 1.82×107 中 1.82 的小数点向右移动 7 位就可以得到,为 18200000.故选 C. 3.【答案】C
【解析】因为
3x+7y=1,整理得
7y=1–3x,所以
1
y=
3x
,当
x=–2
时,y= 1
6
=1,故答案为:1.
7
7
18.【答案】10
【解析】若 10cm 为腰长,则第三边的长是 10cm;若 5cm 为腰长,∵5+5=10,
∴不能组成三角形,舍去;综上可得若等腰三角形的两边的边长分别为 10cm 和 5cm,则第三边的长是
x y 2① 21.【解析】(1) x 2 y 3② ,①–②,得 y=5,
(9 分)
22.【解析】(1)(2x+3y)2–(2x–3y)2
=(4x2+12xy+9y2)–(4x2–12xy+9y2)
=4x2+12xy+9y2–4x2+12xy–9y2
=24xy,(4 分)
当
数学全解全析 第 1 页(共 8 页)
10.【答案】B 【解析】在△DEF 中,∠1=50°,∠DEF=90°,∴∠D=180°–∠DEF–∠1=40°.∵AB∥CD, ∴∠2=∠D=40°.故选 B.
11.【答案】A 【解析】∵AD 是 BC 边上的中线,∴BD=CD,∴△ABD 和△ACD 周长的差=(AB+BD+AD)(– AC+AD+CD) =AB–AC,∵△ABD 的周长为 25cm,AB 比 AC 长 6cm,∴△ACD 周长为:25–6=19(cm).故选 A.
【解析】由– 1 x<3,得 x>–6,其根据是:不等式的两边同时乘以(或除以)同一个负数,不等号的方向 2
改变.故选 C. 7.【答案】B
8.【答案】A 【解析】设∠A=x,则∠B=2x,∵∠A+∠B+∠C=180°,∴3x+30°=180°,∴x=50° ∴∠A=50°.故选 A.
9.【答案】D 【解析】∵x2+kx+64 是一个完全平方式,∴x2+kx+64=(x+8)2 或 x2+kx+64=(k–8)2, ∴k=±16.故选 D.