电子电路噪声分析
数字电路噪声分析

数字电路噪声分析数字电路噪声分析在现代电子设备的设计与应用中扮演着重要角色。
噪声是指在电路中引入的任何随机性能干扰信号,它会对电路性能造成不可忽视的影响。
噪声的来源可以是多种多样的,包括电源噪声、器件噪声、环境噪声等。
因此,对数字电路噪声进行准确的分析和评估,对于保证电路的性能和可靠性至关重要。
1. 噪声的基本概念在数字电路中,噪声可以被视为一种随机干扰信号,它与原本的信号进行叠加,导致从电路中输出的信号产生失真。
噪声信号通常以功率谱密度的形式来描述,它是噪声功率与频谱宽度的比值。
常见的噪声类型有白噪声、热噪声、量子噪声等。
2. 噪声源与分类噪声可以由多种因素引起,主要可以分为内部噪声和外部噪声。
内部噪声主要源于电路内部的器件和引脚,例如晶体管、电阻等元件内部的热激发噪声。
外部噪声主要来自电源、天线和其他电子设备等外部环境。
根据噪声的功率谱特性,可以将噪声分为白噪声、色噪声和窄带噪声等。
3. 噪声的影响与评估噪声对数字电路的影响主要体现在信号的速度、精度和抗干扰能力等方面。
噪声会引起信号的抖动、误码率增加等问题,降低电路性能。
因此,评估噪声的影响是重要的。
噪声的评估可以通过测量和分析信号的噪声功率谱密度来进行。
4. 噪声分析方法数字电路噪声分析的方法包括频域分析和时域分析两种。
频域分析方法主要通过傅里叶变换将信号转换到频域,进而分析信号的频谱特性。
时域分析方法主要通过观察信号的时域波形特征,分析信号中的噪声成分。
5. 噪声的抑制与优化在数字电路设计中,抑制和优化噪声是提高电路性能的关键。
采取合适的抗噪声技术和设计方法可以降低噪声对电路的影响。
例如,可通过布线和电源规划来减少对干扰源的敏感度,使用低噪声元件,利用滤波器等方法来抑制噪声等。
结语:数字电路噪声分析是保证电路性能和可靠性的重要步骤。
了解噪声的基本概念和分类、评估噪声的影响、选择合适的分析方法以及采取相应的抑制和优化措施,将有助于提升电路性能和减小噪声对系统的影响,从而实现更高质量的数字电路设计与应用。
电子设计中常见的噪声问题及解决方法

电子设计中常见的噪声问题及解决方法在电子设计中,噪声是一个常见且影响深远的问题。
它会对系统性能造成严重影响,因此必须采取有效的方式进行解决。
在本文中,我们将讨论电子设计中常见的噪声问题以及相应的解决方法。
首先,让我们了解什么是噪声。
在电子设备中,噪声是指系统中出现的不希望的干扰信号,会导致输出信号的失真或降低信噪比。
电子设备中的噪声通常可以分为两类:外部噪声和内部噪声。
外部噪声是来自环境中的干扰,比如电源线上的电磁干扰、无线电信号等;内部噪声则是电子设备本身产生的信号干扰,比如器件本身的热噪声、晶体管的噪声等。
常见的电子设计中的噪声问题包括:热噪声、1/f 噪声、射频干扰以及电源干扰等。
热噪声是由于电阻器、晶体管等器件的热运动引起的,通常可以通过降低工作温度或选择低噪声器件来减小;1/f 噪声是一种与频率成反比的噪声,通常可以通过滤波器进行抑制;射频干扰是来自无线电频段的干扰信号,通常可以通过屏蔽、滤波等技术进行减小;电源干扰则是由电源波动等因素引入的干扰信号,可以通过滤波器、稳压器等措施进行消除。
为了解决这些噪声问题,我们可以采取一系列有效的解决方法。
首先,选择低噪声器件是很关键的,因为器件本身的噪声会影响整个系统的性能。
其次,合理布局电路板是很重要的,可以避免信号叠加引入额外的干扰。
此外,使用合适的滤波器、隔离器等器件也是很有效的方法,可以将不需要的干扰信号滤除。
在面对射频干扰时,可以采用屏蔽罩、隔离器件等技术来隔离干扰信号,保证系统的正常工作。
除了以上方法外,还可以利用数字信号处理技术来进行噪声消除。
通过滤波、降噪算法等方法,可以有效地去除信号中的噪声成分,提高系统的信噪比。
此外,还可以采用差分信号传输、差分输入放大器等技术来减小信号传输过程中的干扰,提高系统的抗干扰能力。
总的来说,电子设计中的噪声问题是一个不可忽视的挑战,但是只要采取适当的解决方法,就可以有效地减小噪声对系统性能的影响。
电子电路中常见的电路噪声问题解析

电子电路中常见的电路噪声问题解析电子设备中的电路噪声问题一直以来都是工程师们在设计和优化电子电路时必须面对的挑战。
电路噪声是指在电子设备中产生的无意识的、随机的、或者非期望的信号,它会影响电路的性能和稳定性。
本文将对电子电路中常见的电路噪声问题进行解析,帮助读者更好地了解和应对这些问题。
一、噪声来源在电子电路中,噪声可以来自多个方面。
以下是一些常见的噪声来源:1. 热噪声:也称为约瑟夫森噪声,是由于电子元件(如电阻)受到温度变化的影响产生的噪声。
2. 互感噪声:由于电子元件之间的互感效应引起的噪声。
3. 混频噪声:当多个频率信号在电路中混合时,会产生混频噪声。
4. 开关噪声:由于电子开关的不完美导致的噪声。
5. 自激噪声:在电路中形成自激振荡时产生的噪声。
二、常见的电路噪声问题1. 热噪声:热噪声是电子设备中常见的一种噪声问题。
在放大器电路中,热噪声会对信号的增益和精度产生负面影响。
为了降低热噪声,可以采用降低电阻温度、增加电阻阻值等措施。
2. 交叉耦合噪声:交叉耦合噪声是电子电路中常见的问题,尤其是在高频电路中更加明显。
交叉耦合噪声是由于不同电路之间互相干扰引起的,例如一个信号线上的噪声会通过电磁感应传递到其他信号线上。
3. 开关噪声:开关噪声是数字电路中常见的问题,特别是CMOS电路。
由于开关器件的非线性特性,会产生开关噪声。
为了降低开关噪声,可以采用滤波器、电源中的抗噪声电容等方法。
4. 振荡噪声:当电子电路中出现自激振荡时,会产生振荡噪声。
振荡噪声会使电路不稳定,影响电路的正常工作。
为了解决这个问题,可以采用增加阻尼、提高负反馈等方法。
三、噪声分析与处理方法在电子电路中,对于不同的噪声问题,我们可以采取不同的分析和处理方法。
以下是一些常见的方法:1. 噪声频谱分析:通过对电子电路中的噪声进行频谱分析,可以确定噪声的频率成分和幅值。
这有助于工程师们找出噪声的来源,进而采取相应的措施降低噪声。
电阻电路的噪声分析与抑制方法

电阻电路的噪声分析与抑制方法电路中的噪声是指电子元件或电路本身产生的非期望信号,它会对电路的性能和可靠性产生负面影响。
在电阻电路中,噪声是一种常见的问题,因此进行噪声分析和抑制是电路设计与优化的重要方面。
本文将对电阻电路的噪声分析方法和抑制技术进行探讨。
一、噪声分析方法1. 等效噪声电阻等效噪声电阻是指在恒温条件下,使得电阻器产生的噪声功率与被测电路产生的噪声功率相等的电阻值。
一般情况下,采用等效噪声电阻来描述电阻的噪声特性是比较方便和实用的方法。
2. 噪声功率谱密度噪声功率谱密度描述了噪声信号在频率上的分布情况。
对于电阻器,其噪声功率谱密度可以表示为:S_N = 4kTR其中,S_N为噪声功率谱密度,k为玻尔兹曼常数,T为绝对温度,R为电阻值。
可见,噪声功率谱密度与电阻值成正比,与温度成正比。
二、噪声抑制方法1. 提高电阻的阻值根据噪声功率谱密度的公式可以得知,提高电阻的阻值可以有效地降低电阻电路的噪声功率谱密度。
因此,在设计电路时,可以优先选择具有高阻值的电阻器。
2. 降低电路温度噪声功率谱密度与温度成正比,因此降低电路的温度可以有效地减小电阻电路的噪声。
在实际应用中,可以通过使用低温器件、降低环境温度或进行冷却等方法来降低电路温度。
3. 降噪滤波器降噪滤波器可以通过滤波的方式将噪声信号从电路中滤除或减小。
在电阻电路中,可以通过使用低通滤波器将高频噪声滤除。
4. 使用降噪电路降噪电路是一种专门设计用于抑制噪声的电路。
常见的降噪电路包括差分放大器、反馈电路等,它们可以通过差分方式或反馈原理降低噪声。
5. 增加供电电压供电电压的增加可以有效地提高电路的信噪比,从而降低噪声对电路性能的影响。
在设计时,可以适当提高电路的供电电压,但要注意避免超过元件的额定电压。
三、总结电阻电路的噪声分析与抑制是电路设计与优化的重要环节。
通过等效噪声电阻和噪声功率谱密度的分析,可以了解电路的噪声特性。
在实际设计中,可以采用提高电阻的阻值、降低电路温度、使用降噪滤波器、使用降噪电路以及增加供电电压等方法来抑制电阻电路的噪声。
如何进行电路的噪声分析

如何进行电路的噪声分析电路噪声分析是电子工程中非常重要的一项工作,它可以帮助我们了解电路中噪声的来源和传播方式,并提供有效的噪声抑制措施。
在本文中,将介绍如何进行电路的噪声分析。
一、引言电路噪声是电子设备中不可避免的问题,它会对电路的性能和稳定性产生影响。
因此,进行噪声分析是电子工程师必备的技能之一。
噪声分析可以帮助我们定位电路中的噪声源,了解噪声的统计特性,并提供相应的抑制方法。
二、噪声源的分类电路中常见的噪声源可以分为两类:外部噪声和内部噪声。
外部噪声源包括天线噪声、磁场噪声等,而内部噪声源则包括热噪声、量子噪声等。
三、噪声分析方法进行电路噪声分析时,常用的方法包括功率谱密度法和频域分析法。
功率谱密度法可以帮助我们计算噪声的能量分布,而频域分析法则可以分析噪声的频率成分和幅度。
四、噪声与信噪比在噪声分析中,信噪比是一个重要的概念。
信噪比定义为有用信号的功率与噪声功率之比。
通过对信噪比的分析,我们可以评估电路的可靠性和性能。
五、噪声抑制方法针对不同的噪声源,有不同的抑制方法。
例如,对于热噪声,可以通过降低温度或增加信号功率来减少噪声功率;对于量子噪声,则可以通过选择合适的元器件来降低噪声水平。
六、实际案例分析为了更好地理解噪声分析的应用,我们以一个实际案例进行分析。
假设我们要设计一个高增益放大器,我们需要分析放大器的噪声特性以及可能的抑制措施。
首先,我们可以使用功率谱密度法对放大器的噪声进行分析,得到各个频段上噪声的能量分布情况。
然后,根据噪声分析结果,我们可以选择合适的元器件,并进行电路的优化设计,以减少噪声功率。
七、结论电路噪声分析是电子工程中重要的一环,它可以帮助我们了解电路中噪声的来源和特性,并提供相应的抑制方法。
通过合理的噪声分析和抑制措施,我们可以提高电路的可靠性和性能。
总之,电路噪声分析是电子工程中不可忽视的一项技术,掌握噪声分析的方法和技巧对于工程师来说是非常重要的。
通过深入理解电路噪声的特性和抑制方法,我们可以为电子设备的设计和开发提供更加优质的解决方案。
电子电路中常见的电源噪声问题及解决方法

电子电路中常见的电源噪声问题及解决方法在电子电路中,电源噪声是一个常见的问题。
它可能导致信号质量下降,影响电路性能。
因此,理解电源噪声问题并采取相应的解决方法非常重要。
本文将介绍电子电路中常见的电源噪声问题,并提供一些解决方法。
一、电源噪声的定义和分类电源噪声是指在供电电路中存在的不稳定、波动或杂散的电流或电压信号。
根据其频率特性和起源,电源噪声可以分为多种类型。
其中,常见的电源噪声包括以下几种:1. 高频噪声:高频噪声通常源于开关电源、自激振荡电路和数字逻辑电路等。
它的频率范围一般在几十千赫兹到几百兆赫兹之间。
2. 低频噪声:低频噪声通常源于交流电源、电机和电源线等。
它的频率范围一般在几十赫兹以下。
3. 剩余噪声:剩余噪声通常是指除了高频和低频噪声之外的其他噪声成分。
它的频率范围一般在几十赫兹到几千赫兹之间。
二、电源噪声对电子电路的影响电源噪声对电子电路的影响是多方面的。
下面将介绍一些常见的影响:1. 信号干扰:电源噪声可能通过电源线或共享地线传播到其他电路中,导致信号的干扰和失真。
2. 时钟抖动:高频噪声可能导致时钟信号的抖动,进而影响电路的稳定性和性能。
3. 灵敏度降低:电源噪声可能使电子元器件的灵敏度下降,导致电路性能的降低。
4. 测量误差:电源噪声可能影响测量仪器的准确性,导致测量结果的误差。
三、解决电源噪声的方法为了解决电源噪声问题,可以采取以下几种方法:1. 滤波器:在电源电路中添加合适的滤波器可以降低电源噪声。
滤波器可以根据需要选择不同的类型,如低通滤波器、带通滤波器和带阻滤波器等。
2. 电源隔离:通过使用电源隔离器,可以有效地隔离电源噪声,防止它传播到其他电路中。
3. 稳压器:稳压器可以提供稳定的电压输出,并减小电源噪声的影响。
在设计电路时,可以选择合适的稳压器来保证电源的稳定性。
4. 接地和布线:合理的接地和布线可以减少电源噪声的传播和干扰。
应尽量避免共享地线和信号线之间的干扰,以及与高频电路和低频电路之间的相互干扰。
什么是电子电路中的电源噪声如何降低电源噪声

什么是电子电路中的电源噪声如何降低电源噪声电子电路中的电源噪声是指电路中的电源部分产生的干扰信号,它会对电路的正常工作和性能产生不利影响。
在电子设备中,如手机、电脑、无线通信系统等,电源噪声的问题尤为突出。
因此,降低电源噪声对于保证电子设备的正常运行和提高性能至关重要。
一、电源噪声的来源和特点1. 电源噪声的来源电子设备中的电源噪声来自于多个方面,如电源本身的不稳定性、电源线的电磁辐射、开关电源的换频器、电源内部的晶体管、电解电容器、电感等元件都可能会引入电源噪声。
此外,电路中的其他元件如晶体管、集成电路等也可能会产生噪声。
2. 电源噪声的特点电源噪声的特点主要包括下面几个方面:(1) 它是一种随机信号,频率范围广泛,从低频到高频都有可能存在。
(2) 它会在电路中以传导、辐射或干扰形式进行传播,并影响到周围电路和设备。
(3) 它会降低电路的信噪比,导致信号的失真,影响设备的性能和可靠性。
(4) 它会引起系统的抖动、干扰或不稳定,导致设备无法正常工作或产生误差。
二、降低电源噪声的方法为了减少电子电路中的电源噪声,以下是一些常用的方法:1. 电源线滤波通过在电源线上安装电源滤波器,可以有效地减少电源噪声的传导和辐射。
滤波器一般由电容器和电感器组成,能够滤除高频和低频噪声,提供稳定的电源电压。
在设计电源线滤波时,需考虑电源负载、频率范围和噪声水平等因素。
2. 使用稳压电源稳压电源可以提供稳定的电源电压,降低电源噪声的水平。
稳压电源可以采用集成电路芯片或稳压器等形式,能够在电源发生波动时自动调整输出电压,确保电路正常工作。
3. 优化电源电路布局良好的电源电路布局可以减少信号的干扰和噪声的传播。
在设计电路时,应尽量避免电源线与信号线的交叉,并采用短而直的电源线,减少电源线的阻抗。
此外,还可以采用屏蔽罩或屏蔽板等措施,减少电磁辐射和传导噪声。
4. 使用低噪声元件选择低噪声的电源电容、电感、晶体管等元件可以有效地降低电源噪声。
电路中的噪声分析与抑制

电路中的噪声分析与抑制在电路设计和应用过程中,噪声是一个不可避免的问题。
噪声会对电路的性能和可靠性造成负面影响,因此对电路中的噪声进行有效的分析和抑制是非常重要的。
本文将从噪声的来源、分析方法和抑制措施三个方面进行探讨。
一、噪声的来源1. 热噪声热噪声是由于电子元件内部的热运动引起的,通常以热电压的形式存在。
它是由于元件内部自身的电导产生的,与温度成正比。
在电路中,电阻器是主要的热噪声产生源。
2. 间隙噪声间隙噪声是由于电子元件内部的材料不完美造成的。
例如,在半导体器件中,由于材料的禁带宽度不均匀或杂质引起的缺陷,都会产生间隙噪声。
3. 交流电源噪声交流电源噪声是由于电源本身的不稳定性引起的。
当电源电压波动或产生纹波时,会导致交流电源噪声的产生。
4. 串扰噪声串扰噪声是由于电路中不同信号之间的相互影响引起的。
例如,当信号之间的耦合不完全时,就会导致串扰噪声的产生。
二、噪声的分析方法1. 频谱分析法频谱分析法是一种常用的噪声分析方法,通过对信号或电路的频谱进行分析,可以确定噪声在不同频率上的分布情况。
常用的频谱分析设备有频谱仪和傅里叶变换仪等。
2. 时域分析法时域分析法主要通过对信号或电路的波形进行分析,可以了解噪声在时间上的规律。
常用的时域分析设备有示波器和瞬态记录仪等。
3. 直流偏置点分析法直流偏置点分析法主要用于分析噪声对直流工作点的影响,通过改变直流偏置点的位置,观察噪声信号的变化情况,可以确定噪声的来源和传播路径。
三、噪声的抑制措施1. 滤波器的应用滤波器是抑制噪声的有效手段之一。
根据噪声的频率特性选择合适的滤波器,并将其放置在电路的合适位置,可以滤除不需要的噪声信号。
2. 接地和屏蔽设计通过合理的接地和屏蔽设计,可以减少电路中的干扰噪声。
良好的接地设计和合适的屏蔽措施可以避免不必要的耦合和串扰。
3. 优化电源设计电源是电路中噪声的重要来源,优化电源设计可以减少电源噪声对电路的影响。
例如,使用稳定的电源模块、加入滤波电容和使用低纹波电源等方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子电路噪声分析摘要对于电子线路中所标称的噪声,可以概括地认为,它是对目的信号以外的所有信号的一个总称。
最初人们把造成收音机这类音响设备所发出噪声的那些电子信号,称为噪声。
但是,一些非目的的电子信号对电子线路造成的后果并非都和声音有关,因而,后来人们逐步扩大了噪声概念。
例如,把造成视屏幕有白班呀条纹的那些电子信号也称为噪声。
可能以说,电路中除目的的信号以外的一切信号,不管它对电路是否造成影响,都可称为噪声。
例如,电源电压中的纹波或自激振荡,可对电路造成不良影响,使音响装置发出交流声或导致电路误动作,但有时也许并不导致上述后果。
对于这种纹波或振荡,都应称为电路的一种噪声。
又有某一频率的无线电波信号,对需要接收这种信号的接收机来讲,它是正常的目的信号,而对另一接收机它就是一种非目的信号,即是噪声。
在电子学中常使用干扰这个术语,有时会与噪声的概念相混淆,其实,是有区别的。
噪声是一种电子信号,而干扰是指的某种效应,是由于噪声原因对电路造成的一种不良反应。
而电路中存在着噪声,却不一定就有干扰。
在数字电路中。
往往可以用示波器观察到在正常的脉冲信号上混有一些小的尖峰脉冲是所不期望的,而是一种噪声。
但由于电路特性关系,这些小尖峰脉冲还不致于使数字电路的逻辑受到影响而发生混乱,所以可以认为是没有干扰。
当一个噪声电压大到足以使电路受到干扰时,该噪声电压就称为干扰电压。
而一个电路或一个器件,当它还能保持正常工作时所加的最大噪声电压,称为该电路或器件的抗干扰容限或抗扰度。
一般说来,噪声很难消除,但可以设法降低噪声的强度或提高电路的抗扰度,以使噪声不致于形成干扰。
关键词:电路噪声电路干扰电路信号尖峰脉冲ABSTRACTIn common use, the word noise means unwanted sound or noise pollution. In electronics noise can refer to the electronic signal corresponding to acoustic noise (in an audio system) or the electronic signal corresponding to the (visual)noise commonly seen as 'snow' on a degraded television or video image. In signal processing or computing it can be considered data without meaning; that is, data that is not being used to transmit a signal, but is simply produced as an unwanted by-product of other activities. In Information Theory, however, noise is still considered to be information. In a broader sense, film grain or even advertisements in web pages can be considered noise.Noise can block, distort, or change/interfere with the meaning of a message in both human and electronic communication.In many of these areas, the special case of thermal noise arises, which sets a fundamental lower limit to what can be measured or signaled and is related to basic physical processes at the molecular level described by well-established thermodynamics considerations, some of which are expressible by relatively well known simple formulae.Key words:Circuit noise Circuit interference Circuit signal Peak pulse第1章电路噪声 (1)1.1电路噪声的简单介绍 (1)1.2、电子电路中噪声的产生及抑制方法 (2)第2章噪声的简单分类 (3)2.1、冲击噪声 (3)2.2、热噪声 (3)2.3、闪烁噪声(1/f噪声) (3)2.4、突发噪声(爆米花噪声) (4)2.5、雪崩噪声 (4)第3章几种简单电路的噪声分析 (4)3.1 前置放大器的元件选择原则 (4)3.1.1、采用高精度的运算放大器的必要性 (5)3.1.2、运算放大器对供电电压的要求 (5)3.1.3、满摆幅对输出电压的影响 (5)3.1.4、增益带宽问题的影响 (5)3.2几种简单电路的噪声分析 (6)3.2.1反相放大电路的噪声分析 (6)3.2.2位置敏感探测器测量电路噪声分析 (10)3.2.3 光电探测电路噪声分析 (13)结论 (16)参考文献: (16)致谢 .................................................................................................................. 错误!未定义书签。
第1章电路噪声1.1电路噪声的简单介绍首先是对电路中经常见的噪声做一个介绍。
将噪声定义为电子系统中任何不需要的信号。
噪声会导致音频信号质量下降以及精确测量方面的错误。
板级与系统级电子设计工程师希望能确定其设计方案在最差条件下的噪声到底有多大,并找到降低噪声的方法以及准确确认其设计方案可行性的测量技术。
噪声包括固有噪声及外部噪声,这两种基本类型的噪声均会影响电子电路的性能。
外部噪声来自外部噪声源,典型例子包括数字交换、60Hz噪声以及电源交换等。
固有噪声由电路元件本身生成,最常见的例子包括宽带噪声、热噪声以及闪烁噪声等。
可以概括地认为,噪声是除目的信号以外的所有信号的一个总称。
最初人们把造成收音机这类音响设备所发出噪声的那些电子信号,就称为噪声。
但是,一些非目的的电子信号对电子线路造成的后果并非都和声音有关,因而,后来人们逐步扩大了噪声概念。
例如,把造成视屏幕有白班和条纹的那些电子信号也称为噪声。
可以说,电路中除目的的信号以外的一切信号,不管它对电路是否造成影响,都可称为噪声。
例如,电源电压中的纹波或自激振荡,可对电路造成不良影响,使音响装置发出交流声或导致电路误动作,但有时也许并不导致上述后果。
对于这种纹波或振荡,都应称为电路的一种噪声。
又有某一频率的无线电波信号,对需要接收这种信号的接收机来讲,它是正常的目的信号,而对另一接收机它就是一种非目的信号,即是噪声。
在电子学中常使用干扰这个术语,有时会与噪声的概念相混淆,其实,是有区别的。
噪声是一种电子信号,而干扰是指的某种效应,是由于噪声原因对电路造成的一种不良反应。
而电路中存在着噪声,却不一定就有干扰。
在数字电路中。
往往可以用示波器观察到正常的脉冲信号上混有一些小的尖峰脉冲,这是不期望的,而是一种噪声。
但由于电路特性关系,这些小尖峰脉冲还不致于使数字电路的逻辑受到影响而发生混乱,所以可以认为是没有干扰。
当一个噪声电压大到足以使电路受到干扰时,该噪声电压就称为干扰电压。
而一个电路或一个器件,当它还能保持正常工作时所加的最大噪声电压,称为该电路或器件的抗干扰容限或抗扰度。
一般说来,噪声很难消除,但可以设法降低噪声的强度或提高电路的抗扰度,以使噪声不致于形成干扰。
1.2、电子电路中噪声的产生及抑制方法噪声主要是由于电路中的数字电路和电源部分产生的。
在数字电路中,普遍存在高频的数字电平,这些电平可以产生两种噪声:1、电磁辐射,就像电视的天线一样,通过发射电磁波来干扰旁边的电路,也就是噪声。
2、耦合噪声,指数字电路和旁边的电路存在一定的耦合,噪声可以直接在电器上直接影响其他的电路,这种噪声更厉害电源上存在的噪声:如果是线性电源,首先低频的50Hz就是一个严重的干扰源。
由于初级进来的交流电本身就不纯净,而且是波浪形的正弦波,容易对旁边的电路产生电磁干扰,也就是电磁噪声。
如果是开关电源的话噪声更严重,开关电源工作在高频状态,并且在输出部分存在很强的谐波电压,这些对整个的电路都能产生很大的噪声。
防止方法:合理地接地、采用差分结构传输模拟信号、在电路的电源输出端加上耦电容、采用电磁屏蔽技术、模拟数字地分开、信号线两边走,底线、地线隔离等等。
其实这些在去除噪声的方面只是冰山一角。
本底噪声是由电路本身引起的,由于电源的不纯净,电路的相位裕度和增益裕度不合适等等电路本身和器件的原因。
这部分需要在电路设计时进行改进。
其他噪声是由于电路布局布线不合理等人为因素造成。
而电磁兼容、导线间干扰等模拟电路噪声的消除更多地依赖于经验而非科学依据。
设计人员经常遇到的情况是电路的模拟硬件部分设计出来以后,却发现电路中的噪声太大,而不得不重新进行设计和布线。
这种设计方法在几经周折之后最终也能获得成功。
不过,避免噪声问题的更好方法是在设计初期进行决策时就遵循一些基本的设计准则,并运用与噪声相关的基本原理等知识。
而前置放大器也是减小噪声的一个有效的方法。
前置放大器是指置于信源与放大器级之间的电路或电子设备,例如置于光盘播放机与高级音响系统功率放大器之间的音频前置放大器。
前置放大器是专为接收来自信源的微弱电压信号而设计的,已接收的信号先以较小的增益放大,有时甚至在传送到功率放大器级之前便先行加以调节或修正,如音频前置放大器可先将信号加以均衡及进行音调控制。
这也是减小噪声的一个方法。
第2章 噪声的简单分类在做设计之前,必须仔细审视源自放大器的噪声,一般来说,噪声主要来自五个方面【1-4】:2.1、冲击噪声冲击噪声总是跟直流流动相联系的,它出现在二极管,MOS 晶体管和双极性晶体管中。
I 的波动称为冲击噪声,通常用其均方差来衡量。
写成2i ,这里22()D i I I =- =201lim ()TD T I I dt T →∞-⎰(D I 为平均电流)2.2、热噪声在一般电阻中,是有电子的随机热运动引起的,并不受是否存在直流电流的影响,这是因为导体中典型的电子移动速度远比电子的热运动速度低。