高二数学竞赛班讲义-第五讲--组合恒等式
组合数的恒等式

组合数的恒等式组合数的恒等式是组合数学中常用的一种等式,它在解决组合计数问题中起着重要的作用。
组合数的恒等式主要包括二项式系数公式、加法原理和乘法原理等。
下面将分别介绍这些恒等式的概念和应用。
一、二项式系数公式:二项式系数公式是组合数学中最基本的恒等式之一,它描述了两个元素的组合方式。
具体而言,对于非负整数n和k,二项式系数C(n,k)表示从n个元素中选取k个元素的组合数。
二项式系数公式的表达式为:C(n,k) = C(n-1,k-1) + C(n-1,k)。
这个公式的意义在于,从n个元素中选取k个元素的组合数可以通过从n-1个元素中选取k-1个元素和从n-1个元素中选取k个元素来获得。
这个公式在组合计数问题中经常被使用,例如计算排列组合、二项式定理等。
二、加法原理:加法原理是组合计数中常用的一种方法,它用于计算多个事件的总数。
加法原理的核心思想是将多个互斥事件的计数相加,得到总计数。
具体而言,对于互斥事件A和事件B,它们的计数之和等于事件A和事件B的并集的计数。
加法原理可以推广到多个事件的情况,即对于互斥事件A1、A2、...、An,它们的计数之和等于事件A1、A2、...、An的并集的计数。
加法原理在解决组合计数问题中经常被使用,例如计算排列组合、集合的计数等。
三、乘法原理:乘法原理是组合计数中常用的一种方法,它用于计算多个独立事件的总数。
乘法原理的核心思想是将多个事件的计数相乘,得到总计数。
具体而言,对于独立事件A和事件B,它们的计数之积等于事件A和事件B的交集的计数。
乘法原理可以推广到多个独立事件的情况,即对于独立事件A1、A2、...、An,它们的计数之积等于事件A1、A2、...、An的交集的计数。
乘法原理在解决组合计数问题中经常被使用,例如计算排列组合、多个条件下的计数等。
组合数的恒等式包括二项式系数公式、加法原理和乘法原理等。
它们在解决组合计数问题中起着重要的作用,能够帮助我们计算各种组合方式的总数。
数学竞赛辅导讲座:组合恒等式、组合不等式

数学竞赛辅导讲座:组合恒等式、组合不等式① ⑤ ② ③ ④ ⑥ 数学竞赛辅导讲座:组合恒等式、组合不等式知识、方法、技能Ⅰ.组合恒等式竞赛数学中的组合恒等式是以高中排列组合、二项式定理为基础,加以推广、补充而形成的一类组合问题.组合恒等式的证明要借助于高中常见的基础组合等式.例如0)1(2321021011111=-++-+-=++++?==+==----+++-nn n n n n n nn n n n n mr mn m n m n r n r n rn r n r nr n rn nr nC C C C C C C C C C C C C C r n C C C C C C组合恒等式的证明方法有:①恒等变形,变换求和指标;②建立递推关系;③数学归纳法;④考虑组合意义;⑤母函数. Ⅱ.组合不等式组事不等式以前我们见的不多,在其他一些书籍中组合不等式的著述也很少,但是近年来组合不等式的证明却出现在国内、国际大赛上.例如1993年中国高中数学联赛二试第二大题为:设A 是一个有n 个元素的集合,A 的m 个子集A 1,A 2…,A m 两两互不包含,试证:(1)∑=≤mi A nI C(2)∑=≥m i A n m C I 12||其中|A i |表示A i 所含元素的个数,||I A n C 表示n 个不同元素取|A i |的组合数. 再如1998年第39届国际数学奥林匹克竞赛中第二大试题为:在某一次竞赛中,共有a 个参赛选手与b 个裁判,其中b ≥3,且为奇数.每个裁判对每个选手的评分中只有“通过”或“不及格”两个等级,设k 是满足条件的整数;任何两个裁判至多可对k 个选手有完全相同的评分. 证明:.21bb a k -≥ 因此我们有必要研究组合不等式的证明方法.组合不等式的证明方法有: 1.在集合间建立单射,利用集合阶的不等关系定理,设X 和Y 都是有限集,f 为从X 到Y 的一个映射,(1)若f 为单射,则|X|≤|Y|;(2)若f 为满射,则|X|≥|Y|. 2.利用容斥原理例如:设元素a 属于集族{A 1,A 2,…,A n }的k 个不同集合k i i i A A A ,,,21 ,则在∑=ni iA 1||中a 被计算了k 次,当k ≥2时,集合k i i i A A A ,,,21 两两的交集共有2k C 个.由于||,12)1(12j nj i i k A A a k k k C ∑≤≤≤-≥-=在故中至少少被计算了k -1次,这样我们得到下面的不等式:1jnj i ii ni i ni AA A A ∑∑≤≤≤==-≥组合不等式(*)可由容斥公式:||)1(||||||1)1(111i ni n jnj i ii ni i ni A AA A A =-≤≤≤==-++-=∑∑ 删去右边第三个和式起的所有和式得到.采用这种办法,我们可以从容斥公式得到另外一些组合不等式,只是要注意这些不等式的方向的变化.3.利用抽屉原则由于抽世原则的结论本身就是组合不等式关系,所以我们利用抽屉原则,巧妙构造抽屉的方法证明组合不等式.4.利用组合分析在复杂的组合计数问题、离散极值问题等问题中,会出现一些组合不等式,这时可运用组合分析方法证明之.赛题精讲例1 证明:∑=-?+=nk n k n n n n C 0122!!2)!2(2【分析】把∑∑∑∑+=+===-nn k kn n n k knnk k nnk k nC C CC21221220202,而对于变形为,变换求和指标.【证明】k n j C CCC Cnn k kn nn k k nnnn k k nnk k nnk k n-=-=-=∑∑∑∑∑+=+=+===2,,2 212212221220202令对于和式,则.20202212212nn nk k n nj n nj n n j j n nn k k nC C C C C C-=-==∑∑∑∑==-=+= 所以.2202202nn nk k n nnk k nC C C+-=∑∑== 即 nn n nk kn C C220222+=∑=,从而有∑=-?+=nk n k n n n n C 0122!!2)!2(2.例2 求证:.,)1(111)1(312111210N n C n m C n m C m C m C m n nm nn nnn n ∈++=++-+-+++-++其中证明设n n n n n n n C n m C m C m C m a 11)1(312111210++-+-+++-+=,则由基本恒等式r n r n r n r n r n C nr C C C C =+=----1111及得.1)1()()1()(31)(211111122111112101110------------++-+++-+-+++++-+=n n n n n n n n n n n n n n C n m C C n m C C m C C m C m a .)1(1)1)(2())(1(!,)1)(2(12111,)3())(1(!))(1()1(1.1,1112111nn m n n n n n n n n n n C n m m m n m n m n a m m m m a a m n m n m n a n m n m n n a n m n a a a n m a a n m a a +----++=+++++=++=+-+=++++==+++-=++==+++-=从而有而所以即故【说明】注意到a n 中各项的系数均与n 无关,且符号正负相同,由此想到a n 与a n -1之间必定存在着某些联系,且是递推关系. 例3 求证:∑=+--+=?-nk kk n k n kn C 01222.12)1(【分析】考虑到恒等式12212---+-+=k k n k k n k k n C C C ,仿例2解决.【证明】令∑=+--??-=nk kk n k n kn C a 01222,2)1(因为,12212---+-+=k k n k kn kk n C C C ,.2)1(2)1(2)1(,1.2)1(2)1()(2)1(22)1(211)1(2102)1(21)1(212)1(21121221212202221212222112222-+---=--+---=--+--=---=-=----=--=+---=--=?-=?--=?-+?-=+?-+=?-+=∑∑∑∑∑∑∑n r r n n r r n r r r n n r r n r k kn nk kn kk k n nk k n k nk kkn kn kk k n nk k k n k n k nnk kk n k n k nn a C C Ck r C C C C C a 则令所以令∑=---+==?-nk n n n n kk n k n ka ab b C 01222,2)1(则① .42)1(4)1()(2)1(2)1(2)1(21110)1(22)1(211121112222112222---=---------=----=---=?--=-++?-+=-+?-+=∑∑∑n n n j j jn j n j n n k k n n k k k n k n k nn k n k k n k n k nn b a C a C C C b 又于是由①式得1221112112,4,---------=+--=++=n n n n n n n n n n n a a a a a a a a a a b 即从而推知. 这说明{a n }为等差数列,而a 0=1,a 1=2,故公差d=1,且a n =n+1 .【说明】此题运用变换求和指标的方法,找出了a n ,a n -1,a n -2之间的线性关系式,再由初始条件求得a n .这种利用递推关系求组合数的方法,在解决较复杂的计算或证明组事恒等式时经常用到.。
组合恒等式的证明方法与技巧

证明组合恒等式的方法与技巧前言组合恒等式在数学及其应用中占有不可忽视的地位,它是以高中排前言列组合、二项式定理为基础.组合恒等式的证明有一定的难度和特殊的技巧,且灵活性很强,要求学生掌握这部分知识,不但要学好有关的基础知识,基本概念和基本技能,而且还要适当诱导学生拓宽思路、发挥才智,培养解决问题方法多样化的思想.下面就以例题讲解的形式,把证明组合恒等式的常见方法与技巧一一列举出来.1. 利用组合公式证明组合公式:mn C =n!!n m m (-)!例1. 求证:m mn C =n 11m n C --分析:这是组合恒等式的一个基本性质,等式两边都只是一个简单的组合数.由此,我们只要把组合公式代入,经过简化比较,等号两边相等即可.证:∵ m mn C =m n!!n m m (-)!…11m n C --=n n !1!n m m (-1)(-)(-)!=n n !m 1!n m m m (-1)(-)(-)!=m n!!n m m (-)!∴ m mn C =n --11m n C .技巧:利用组合公式证明时,只须将等式中的组合数用公式代入,经过化简比较即可,此方法思路清晰,对处理比较简单的等式证明很有效,但运算量比较大,如遇到比较复杂一点的组合恒等式,此方法而不可取.2. 利用组合数性质证明组合数的基本性质:(1)m n C =n mnC -(2)1mn C +=mn C +1m nC -(3)k kn C =n k 11n C --(4)++...+=012n 2nn n n n C C C C?-+-+...+(-1)=00123n nn n n n n C C C C C (5) 例2:求证:-++3...+n =n 123n122n n n n n C C C C分析:等式左边各项组合数的系数与该项组合数上标相等,且各项上标是递增加1的,由此我们联想到组合数的基本性质:kk n C =n k 11n C -- ,利用它可以将各项组合数的系数化为相等,再利用性质++...+=012n 2n n n n n C C C C 可得到证明.证:由k kn C =n k 11n C -- 得123n2n n n n C C C C ++3...+n=012n 11111n n n n n n n C C C C -----++...+n =n (012n 11111n n n n C C C C -----++...+) =nn 12-.、例3.求证:012k 1k 1m m 1m 2m k 1m k C C C C C --+++-++++...+=分析: 观察到,等式左边各项的组合数的上标和下标存在联系:上标+m =下标,而且各项下标是递增+1的.由此我们想到性质(2),将左边自第二项各项裂项相消,然后整理而得到求证.证:由性质(2)可得im i 1C ++=i m i C ++i 1m i C -+ (i ∈N )即im i C +=i m i 1C ++-i 1m i C -+令i =1,2,…,k -1,并将这k -1个等式相加,得12k 1m 1m 2m k 1C C C -+++-++...+=1021k 1k 2m 2m 1m m m k m k C C C C C C --+++3+2++-1-+-+...+-—=-0m 1C ++k 1m k C -+ =-0m C +k 1m k C -+∴012k 1k 1m m 1m 2m k 1m k C C C C C --+++-++++...+=.技巧:例2和例3的证明分别利用性质(3)(5)、(2)此方法的技巧关键在于观察,分析各项组合数存在的联系,读者应在平时实践做题总结,把它们对号入座,什么样的联系用什么样的性质来解决.3. 利用二项式定理证明我们都知道二项式定理:n n 1n 2n 2n 1n n n n n a b a a b a b ab b C C C -1-2--1(+)=+++...++,对于某些比较特殊的组合恒等式可以用它来证明,下面以两个例子说明3.1.直接代值;例4.求证:(1)-1-1+3+3+...+3+3=122n n 1n 2n n n n 2C C C (2)---1--++...+(-1)+(-1)=n n 11n 22n n 1nn n n 22221C C C 分析:以上两题左边的各项组合数都是以 i n i in a b C - 的形式出现,这样自然会联想到二项式定理.证:设 n n 1n 2n 2n 1n n n n n a b a a b a b ab b C C C -1-2--1(+)=+++...++ ① ⑴ 令a =1,b =3,代入①,得 -1-+)=1+3+3+...+3+3n 122n n 1n n n n (13C C C 即, -1-1+3+3+...+3+3=122n n 1n 2n n n n 2C C C(2) 令a =2,b =-1,代入①,得n n n 11n-22n 1n 1n n n n 121C C C ---(2-1)=2-2+2+...+(-)+(-)即,---1--++...+(-1)+(-1)=n n 11n 22n n 1n n n n 22221C C C .技巧:此方法的关键在于代值,在一般情况,a ,b 值都不会很大,一般都是0, 1,-1,2,-2 , 3,—3这些数,而且a ,b 值与恒等式右边也有必然的联系,如上题中1+3=22,2-1=1,在做题的时候要抓住这点.;3. 2.求导代值例5.求证: -+3+...+(-1)=(-1)23n n 2n n n 212nn n n 2C C C (n ≧2) 分析:观察左边各项组合数的系数发现不可以直接运用二项式定理,但系数也有一定的规律,系数都是i(i-1) i=2,3,…n 我们又知道(x i )’’=i(i-1)x i-2 由此我们想到了求导的方法.证:对n 0122n n n n n n x x x x C C C C (1+)=+++...+ 两边求二阶导数,得n 223n n 2n n n n n 1x 212x n n x C C C --(-1)(+)=+3+...+(-1)令x=1得 -+3+...+(-1)=(-1)23n n 2n n n 212n n n n 2C C C (n ≧2) 技巧:此方法证明组合恒等式的步骤是,先对恒等式na x (+)=i 1mnn i i C ax -=∑ 两边对x 求一阶或二阶导数,然后适当选取x 的值代入.4. 比较系数法·比较系数法主要利用二项式定理中两边多项式相等的充要条件为同次幂的系数相等加以证明.例6.求证:2222++)+()+()+...+()=012m m 1m 22(n nn n C C C C C (范德蒙恒等式)分析:本题若考虑上面所讲和方法来证明是比较困难的,注意到等式左边各项恰是二项展开式中各项二项式系数的平方,考虑二项展开式 (1+)n x =+0n C ++...+122n nn n n x x x C C C 和(1+)=+++...+n 012n n n n n 2n 1111x x x xC C C C 这两个展开式乘积中常数项且好式是 2222++)+()+()+...+()012m m 1m 2(n n C C C C证:∵n 0122n n n n n n x x x x C C C C (1+)=+++...+ (1+)=+++...+n 012n n nn n 2n 1111x x x xC C C C ∴n1x (1)n x+(1+)=(+++...+0122n n n nn n x x x C C C C ) (+++...+012n n nn n 2n 111x x xC C C C ) 又有,n1x (1)n x+(1+)=2nn(1+x)x ,比较两边的常数项,左边常数项为2222++)+()+()+...+()012m m 1m 2(n n C C C C右边的常数项为2nn C ,根据二项展开式中对应项的唯一性得 2222++)+()+()+...+()=012m m 1m 22(n n n n C C C C C技巧:此方法关键是适当地选择一个已知的恒等式,然后比较两边x 同次幂的系数.当然,已知恒等式的选择不是唯一的,例5也可以选择已知恒等式 n 2x (1)(1)n nx x +=+(1+) ,只须比较恒等式中两边含有n x 的系数即可得证,证明留给读者.5. 利用数列求和方法证明回到例2,除了利用组合数的性质,我们还可以有其他方法.观察,恒等式左边的各项组合数的系数为等差数列,现在我们仿照求和公式(1)12 (2)n n n -+++=的证明来证明例2 证:设123nn n n n s=C 2C 3C ...n C +++ ① 则n n-121n n n n s=n C n-1)C ...2C C +(++ 01n-2n-1n n n n =n C n-1)C ...2C C +(++ ②:①+②得01n-1nn n n n 2s=n C C ...n C C n +++n 01n-1nn n n n =n(C C ...C C )+++=n 2n∴ 12n s n -=技巧:此方法的证明有一定的特殊性,分析等式中组合数系数的变化规律尤其重要,知识的迁移在此方法是一个很好的见证.6. 利用数学归纳法证明我们都知道数学归纳法,在证明数列的题目中,我们就体会了数学归纳法的好处,只要按照数学归纳法的两个步骤进行就可以了.那么,组合恒等式的证明可不可以用数学归纳法来证明呢看下面的一个例题(例7.已知{n a }是任意的等差数列,且n ≧2,求证:123n n+1a -a +a -...+(-1)a +(-1)a =0012n-1n-1nn n n n n n C C C C C分析:由于本题恒等式左边的各项组合数系数是一个不确定的等差数列,用上面的方法处理就比较困难,又因为等式含有数列,我们不妨用数学归纳法试试.证:i) 当n =2时,因为2132a a a a -=-所以12320a a a -+=,故等式成立,ii) 假设,当n =k (k ≧2)时等式成立,即对任何等差数列{n a },有,123k k+1a -a +a -...+(-1)a +(-1)a =0012k-1k-1kk k k k k k C C C C C ① 则当n =k +1时,利用组合数性质,有+1+1+2+13+1k +1k+2a -a +a -...+(-1)a +(-1)a 012k k k k +111+1k k k k k C C C C C123-+1k +1k+2=a -(+)a +(+)a -... +(-1)(+)a +(-1)a 01021k k k 1k k k k k k k k k k C C C C C C C C 123k +1--234k +1k +2=a -a +a -...+(1)a -a -a +a -...+(1)a +(1)a 012k k 012k 1k 1k k[-][--]k k k k k k k k k C C C C C C C C C[因为根据归纳假设,当n =k 时,对任意等差数列12k 123k 2a a a a a a ++,,...,与,,①式都成立,所以上式右端的两个方括号都等于零.于是我们证明了当n =k +1时等式也成立,根据(1)和(2)可知,等式对n ≧2的任何自然数都成立.技巧:用本方法证明的思路清晰,只须分两步进行即可,但归纳法的关键是由“假设n =k 成立,推导到n =k +1也成立”这一步中间的变换过程比较复杂,在“无路可走”的情况之下,归纳法也是一个好的选择.7. 利用组合分析方法证明所谓组合分析法就是通过构造具体的组合计数模型,采用了“算两次”的方法,再根据组合数的加法原理和乘法原理得到恒等式两边相等.例8.证明:--++...+=0112n 1n n 12n n n n n n n C C C C C C C (n ≧2)证明:算右边,假设有2n 个球,现要在2n 个球中任取出(n -1个,取法有 -n 12n C 种,算左边,把2n 个球分成两堆,每堆个n 个,现要 在2n 个球在中取出(n -1)个,取法是,在第一堆取0个,第二堆取(n -1)个,或第一堆取1个,第二堆 取(n -2)个,或…或第一堆取(n -1)个,第二堆 取0.再根据加法原理总的取法有 ---++...+0n 11n 2n 10n n n n n n C C C C C C)又因为---++...+0n 11n 2n 10n n n n n n C C C C C C =-++...+0112n 1nn n n n n n C C C C C C所以,左右两边都是在2n 个球中取出(n -1)个球,因此有,--++...+=0112n 1n n 12n n n n n n n C C C C C C C (n ≧2)技巧:用组合分析法证明组合恒等式的步骤是:选指出式子的一边是某个问题的解,然后应用加法原理和乘法原理等去证明式子的另一边也是该组合问题的解.用此方法也可以证明例6,证明过程非常简洁.8概率法证排列组合基本理论是古典概型计算的基石.能否用古典概型来解决某些排列组合问题我们来看下面的例子 例9证明组合数加法题推公式:.21111C C C C k n k n k n k n ----+++=分析:把特征等式经过适当变形,使之右端变为1,而左端为若干项之和,根据左端和式中各项的特点,构造以概率模型,并找到样本空间的一个特殊分化,使之相应概率等于左端和式的各项,从而得证. 证明:我们将公示变形为.11211111=+++--+--+CC CC CC kn k n k n k n k n k n、下面利用超几何分布概率公式构建摸球模型来证明:设袋中有1+n 只球,其中有1只黑球,1只白球,现随机地抽取k 只球()11+≤≤n k .设事件A :“抽取的k 只球中含有黑球”,B :“抽取的k 只球中含有白球”,则()CC C kn knA P 101+= 由全概率公式得()()()()()B A P B P B A P B P A P +==CC C CC C CC C CC C knk n k n k n k nk n k n k n 1111101121111111--+---+-•+• =CC CCkn k n k n k n 111121+--+--+ 由()()1=+A P A P ,立即得证该公式技巧:利用概率对立事件发生的概率和为1,或是在某种情况下必然事件的概率也为1.可以与实际相结合,容易理解.…9 几何法例10 证明nnn n n C C C 21=+++ 分析:主要是利用组合的几何意义来证明.无重组合Cn 1n +的几何意义表示平面坐标上的(0,0)点到整点(n,m )(这里n,m 都是整数) 的递增路径的总和.一条从点(0,0)到点(n,m )的递增路径是 指一个有长度为1的端点为整点的线段首尾连接所组成的折线, 并且每一条线段的后一个端点的坐标或者在x 上或者在y 上,比 前一个端点增加一的单位长,水平走一步为x,垂直走一步为y,图…1中的递增路径可表示为:x,y,x,x,y,y,x,x,y,y证明:由图2可知等式的左边,Cn0表示从(0,0)到(0,n )点的增路径,Cn1表示从(0,0)到(1,n-1)点的增路径数,┄,Cn n1-表示从(0,0)到(n-1,1)点的的增路径数,Cn n表示从(0,0)到(n,0)点的的增路径数1,而这所有的地 增路径之和就是从(0,0)点到斜边上的整点的递增路径. 另一方面,从(0,0)点到斜边上任何一整点的递增路径是 n 步步长,每一步是x 或者y ,有两种选择,由乘法法则,<n 步的不同方法的总数为2n,所以等式成立.10 用幂级数法我们知道,()1-1--n x 可展成如下幂级数: ()=---11n x k k kkn x C∑∞=+01<x 现在我们用次展开式证明下列等式 例11 证明C C C C n m n n m n n n n n 111+++++=+++证明:因为 ()()()111-1-+--x x n =()21---n x左边应为:()()()1111-+---x x n =∑∑∞=∞=+•0i i kk n k n x x C右边应为:()=---21n x k k n k n x C ∑∞=+++011%比较两边nx 的系数可知,原等式成立.技巧:对组合求和,当组合下标变动时,常用幂级数方法.11微积分法例11 求证:()∑∑==-=-nk kn nk k kkC 11111分析:利用微分与积分的相互转化是问题得以解决,求导后再积回去,不改变原等式的性质. 证明:令 ()()k k nnk k x kx f C∑=--=111则 ()00=f ,()()Ck nnk k kf ∑=--=1111()()1111-=-∑-='k nk kn k x x f C =()k n k k nk x x C ∑=--111=()x x n---11=()()x x n----1111 ;=()()()121111--++-+-+n x x x即()()∑-=-='11n j jx x f上式两边同时求积分得 ()()C x j x f n j j +-+-=∑-=+11111所以 ()C j f n j ++-==∑-=11100 ⇒ ∑∑-===+=101111n j nk kj C 从而 ()()∑∑=-=++-+-=n k n j j kx j x f 1111111()()∑∑==-==-nk knnk k kf kC 111111 12 递推公式法上述例12是否还可以用递推公式的方法解决,我们来看一下··证明:令()∑=--=nk k nk n Ckf 111 ( ,3,2,1=n )则 ,11=f 当2≥n 时,n f =()()C C k n k n nk k11111-k 1----=+∑=()()∑∑=-----=--+-nk k n k kn n k k CC kk1111111111=()∑=---n k k n k n C n f 1111=()⎥⎦⎤⎢⎣⎡---∑=-11101n k k n kn C n f=()1011---n f n =n f n 11+- 所以 n f f n n 11+=-=n n f n 1112+-+-=nf 131211++++==∑==++++n k kn 1113121113 生成函数法}首先介绍生成函数相关定义和定理.定义1 设{}n a 是一个数列,做形式幂级数() +++++=nn x a x a x a a x f 2210称()x f 为数列{}n a 的生成函数. 定义2 对任何实数r 和整数k 有=Ck r()()!111k k r r r +-- 000>=<k k k定理1 设数列{}{}n n b a ,的生成函数为()()x B x A ,,若∑==ni i n a b 0,则()()xx A x B -=1 定理2 设m 是一个有理数,R a ∈,有()∑∞==+01k k k k mmx a ax C例13 设n ∈N,有())3)(2(11123+++++n n n n Cn n;证明:设数列Ck kkn +2的生成函数A(x),即A(x)=xC k kk kn k +∞=∑02设∑==n i i n a b 1,先求A(x),由()x n --11-=xC kk kkn ∑∞=+1对上式两边求导得:()()xC k k kk n n k x n 11211-∞=+--∑=-+两边同乘x 得:()()x C kkk n k n k x n +∞=--∑=-+1211对上式两边求导得:()()()()()2311121-----++-++n n x n x x n n =x C k k k k n k 112-+∞=∑两边同乘x 得: ()()()()()x x n x x n n n n 22311121-----++-++=x C k k k k n k +∞=∑12=A(x) 由定理1。
高二数学竞赛班二试数论讲义-裴蜀恒等式

高二数学竞赛班二试讲义裴蜀恒等式班级姓名一、知识点金1.欧几里得除法:设,a b 为整数,0b >,按下述方式反复作带余除法,有限步之后必然停止(即余数为零):用b 除a :000,0a bq r r b =+<<用0r 除b :01110,0b r q r r r =+<<用1r 除0r :012221,0r r q r r r =+<<……用2n r -除3n r -:321112,0n n n n n n r r q r r r ------=+<<用1n r -除2n r -:211,0n n n n n n r r q r r r ---=+<<用n r 除1n r -:11n n n r r q -+=则(,)na b r =实际上,由于余数01,,r r ⋅⋅⋅为整数,且满足0110n r r r ->>⋅⋅⋅>>⋅⋅⋅≥,从而上述的带余除法有限步后余数必为零。
因此000011211(,)(,)(,)(,)(,)(,)(,)n n n n n n a b bq r b b r r r r r r r r q r r -+=+====⋅⋅⋅===给定,a b ,欧几里得除法不仅能(在有限步内)求出(,)a b ,还可以证明方程(,)ax by a b +=①有一组整数解,x y ,并能实际地求出一组解。
具体的做法是将欧几里得除法倒推回去:21n n n n r r r q --=-,1321n n n n r r r q ----=-,…,101r b r q =-,00r a bq =-,依次消去1210,,,,n n r r r r --⋅⋅⋅,得到一组整数,x y ,使得(,)n r ax by a b =+=。
2.,a b 互素的充分必要条件是,存在整数,x y ,使得1ax by +=②等式②称为(互素整数的)裴蜀恒等式。
高中数学竞赛_组合【讲义】

第十八章 组合一、方法与例题1.抽屉原理。
例1 设整数n ≥4,a 1,a 2,…,a n 是区间(0,2n)内n 个不同的整数,证明:存在集合{a 1,a 2,…,a n }的一个子集,它的所有元素之和能被2n 整除。
[证明] (1)若n ∉{a 1,a 2,…,a n },则n 个不同的数属于n-1个集合{1,2n-1},{2,2n-2},…,{n-1,n+1}。
由抽屉原理知其中必存在两个数a i ,a j (i ≠j)属于同一集合,从而a i +a j =2n 被2n 整除;(2)若n ∈{a 1,a 2,…,a n },不妨设a n =n ,从a 1,a 2,…,a n -1(n-1≥3)中任意取3个数a i , a j , a k (a i ,<a j < a k ),则a j -a i 与a k -a i 中至少有一个不被n 整除,否则a k -a i =(a k -a j )+(a j -a i )≥2n ,这与a k ∈(0,2n)矛盾,故a 1,a 2,…,a n-1中必有两个数之差不被n 整除;不妨设a 1与a 2之差(a 2-a 1>0)不被n 整除,考虑n 个数a 1,a 2,a 1+a 2,a 1+a 2+a 3,…,a 1+a 2+…+a n-1。
ⅰ)若这n 个数中有一个被n 整除,设此数等于k n ,若k 为偶数,则结论成立;若k 为奇数,则加上a n =n 知结论成立。
ⅱ)若这n 个数中没有一个被n 整除,则它们除以n 的余数只能取1,2,…,n-1这n-1个值,由抽屉原理知其中必有两个数除以n 的余数相同,它们之差被n 整除,而a 2-a 1不被n 整除,故这个差必为a i , a j , a k-1中若干个数之和,同ⅰ)可知结论成立。
2.极端原理。
例2 在n ×n 的方格表的每个小方格内写有一个非负整数,并且在某一行和某一列的交叉点处如果写有0,那么该行与该列所填的所有数之和不小于n 。
高中数学竞赛讲义(全套)

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。
全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
三角形中的几个特殊点:旁心、费马点,欧拉线。
几何不等式。
几何极值问题。
几何中的变换:对称、平移、旋转。
圆的幂和根轴。
面积方法,复数方法,向量方法,解析几何方法。
2.代数周期函数,带绝对值的函数。
三角公式,三角恒等式,三角方程,三角不等式,反三角函数。
递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。
第二数学归纳法。
平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。
复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。
多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。
n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。
函数迭代,简单的函数方程*3.初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。
4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。
组合计数,组合几何。
抽屉原理。
容斥原理。
极端原理。
图论问题。
集合的划分。
覆盖。
平面凸集、凸包及应用*。
注:有*号的内容加试中暂不考,但在冬令营中可能考。
二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。
高二数学竞赛班讲义-第五讲--组合恒等式

高二数学竞赛班二试第五讲 组合恒等式班级 姓名一、知识要点:数学竞赛中组合数计算和组合恒等式的证明,是以高中排列、组合、二项式定理为基础,并加以推广和补充而形成的一类习题,它往往会具有一定的难度且灵活性较强。
解决这类问题常常对学生良好的运算能力和思维的灵活性都有较高的要求。
同时,此类问题的解决也有着自身特殊的解题技巧。
因此,在各类数学竞赛中经常被采用。
1.基本的组合恒等式简单的组合恒等式的化简和证明,可以直接运用课本所学的基本组合恒等式。
事实上,许多竞赛中出现的较复杂的组合数记算或恒等式证明,也往往运用这些基本组合恒等式,通过转化,分解为若干个简单的组合恒等式而加以解决。
课本中的组合恒等式有:①r n r n nC C -=; ②111r r rn n n C C C +++=+;③11k k n n kC nC --=; ④r m m r mn r n n m C C C C --=;⑤0122n nn n n n C C C C ++++=L ;⑥()01210.nnn n n n C C C C -+++-=L2.解题中常用方法① 运用基本组合恒等式进行变换;② 运用二项展开式作为辅助函数,通过比较某项的系数进行计算或证明; ③ 运用数学归纳法; ④ 变换求和指标;⑤ 运用赋值法进行证明;⑥ 建立递推公式,由初始条件及递推关系进行计算和证明; ⑦ 构造合理的模型。
二、经典例题例1.求证:1231232n n n n n n C C C nC n -++++=⋅L .例1.证明:根据前面提到的基本的组合恒等式第三条,可得:左边0121111112n n n n n n nC nC nC nC n ------=++++=⋅=L 右边例2.求和式21nk nk k C=∑的值。
例2.基本思路:将2k n k C 改写为k n k kC ⋅,先将k n kC 用恒等式3提取公因式n ,然后再将11k n kC --变形成为()11111k k n n k C C -----+,而()111k n k C ---又可以继续运用上述恒等变形,这样就使得各项系数中均不含有变动指标k 了。
竞赛数学中的组合恒等式

竞赛数学中的组合恒等式
《竞赛数学中的组合恒等式》
嘿,小伙伴们!你们知道竞赛数学里有个超级有趣的东西叫组合恒等式吗?反正我刚接触的时候,那叫一个迷糊啊!
就拿那个“二项式定理”来说吧,它就像一个神秘的魔法咒语。
(“这到底是啥呀?”我当时就这么想。
)老师在黑板上写了一堆公式,我的脑袋都快变成浆糊啦!
有一次,我和同桌小明一起讨论这个。
我问他:“小明,你说这组合恒等式咋就这么难呢?就像走在一个迷宫里,怎么都找不到出口!”小明眨眨眼说:“别着急嘛,咱们慢慢琢磨。
”
后来老师给我们讲了一个例子,说组合恒等式就像搭积木,每一块积木都有它特定的位置和作用。
(这比喻是不是很形象?)我当时就有点明白了。
再后来,做练习题的时候,我还是会经常出错。
(哎呀,我这脑子!)有一道题,我算了好几遍都不对,急得我直跺脚。
我就跑去问学习委员小红,我说:“小红,这道题我怎么都算不对,你快帮我看看!”小红看了看,笑着说:“你呀,这里少乘了一个系数。
”
经过不断地努力,我慢慢发现组合恒等式也不是那么可怕啦!它就像一个藏着宝藏的神秘盒子,只要你找到了打开它的钥匙,就能收获满满的惊喜。
你们说,数学是不是很神奇?就像探险一样,充满了未知和挑战。
(难道不是吗?)竞赛数学里的组合恒等式虽然难,但是当你真正搞懂它的时候,那种成就感,简直无法形容!
所以呀,我觉得面对竞赛数学中的组合恒等式,咱们可不能害怕,要勇敢地去探索,去发现其中的奥秘!(这就是我的想法,你们觉得呢?)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学竞赛班二试第五讲 组合恒等式班级 姓名一、知识要点:数学竞赛中组合数计算和组合恒等式的证明,是以高中排列、组合、二项式定理为基础,并加以推广和补充而形成的一类习题,它往往会具有一定的难度且灵活性较强。
解决这类问题常常对学生良好的运算能力和思维的灵活性都有较高的要求。
同时,此类问题的解决也有着自身特殊的解题技巧。
因此,在各类数学竞赛中经常被采用。
1.基本的组合恒等式简单的组合恒等式的化简和证明,可以直接运用课本所学的基本组合恒等式。
事实上,许多竞赛中出现的较复杂的组合数记算或恒等式证明,也往往运用这些基本组合恒等式,通过转化,分解为若干个简单的组合恒等式而加以解决。
课本中的组合恒等式有:①r n r n nC C -=; ②111r r rn n n C C C +++=+;③11k k n n kC nC --=; ④r m m r mn r n n m C C C C --=;⑤0122n nn n n n C C C C ++++=L ;⑥()01210.nnn n n n C C C C -+++-=L2.解题中常用方法① 运用基本组合恒等式进行变换;② 运用二项展开式作为辅助函数,通过比较某项的系数进行计算或证明; ③ 运用数学归纳法; ④ 变换求和指标;⑤ 运用赋值法进行证明;⑥ 建立递推公式,由初始条件及递推关系进行计算和证明; ⑦ 构造合理的模型。
二、经典例题例1.求证:1231232n n n n n n C C C nC n -++++=⋅L .例1.证明:根据前面提到的基本的组合恒等式第三条,可得:左边0121111112n n n n n n nC nC nC nC n ------=++++=⋅=L 右边例2.求和式21nk nk k C=∑的值。
例2.基本思路:将2k n k C 改写为k n k kC ⋅,先将k n kC 用恒等式3提取公因式n ,然后再将11k n kC --变形成为()11111k k n n k C C -----+,而()111k n k C ---又可以继续运用上述恒等变形,这样就使得各项系数中均不含有变动指标k 了。
解:()21111111111111nn nnnk k k k k nnn n n k k k k k k Ck kC k nCn k Cn k C ------======⋅=⋅=⋅=-+⋅∑∑∑∑∑()()112111211111nnk k k k n n n n k k n k CCn n C C --------==⎡⎤⎡⎤=-⋅+=-⋅+⎣⎦⎣⎦∑∑ ()()21212121212111n n n nk k k k n n n n k k k k n n C C n n C n C --------====⎡⎤=-⋅+=-+⎢⎥⎣⎦∑∑∑∑()()21212212n n n n n n n n ---=-+=+例3.求()2004200501kkk C =-∑的值。
例3.解:()()2004200412200420052005200520050111kk k C C C C =-=-+-+-∑L()()()()20041122003200420042004200420042004200411C C C C CC =-+++-+-+L1= 。
例4.设,m n N +∈,求证:()()()122013313n k nm k m k mmn n -=+++=++-∑。
例4.基本思路:由两个连续自然数m k +与1m k ++的积,联想到可化为212m k C ++,进一步运用1111r r r r r r r r r k r r r k C C C C C C +++++++++=+++L L ,反复运用基本的组合恒等式2即可化简。
证明:()()()122212012n m m m n k m k m k CC C -+++=+++=+++∑L()()22222222231232m m m n m C C C C C C C C ++⎡⎤=++++++-+++⎣⎦L L L()()33221123313m n m nC C m mn n +++=-=++- 例5.当m n ≤时,求证()()110mnrrm nrr m C C =⎧-⎪-=⎨⎪⎩∑例5.基本思路:利用基本组合恒等式4化简原式左边各项,使得化简后仅有r mn m C --中含有变动指标r 。
证明:显然,当m n =时,原式左边()()11mmmmm m C C =-=-。
当m n <时,利用基本组合恒等式4可得:()()m n m n =<左边()()11nnrrm r m m r m n n mnn m r mr m C CCC ----===-=-∑∑。
只要令r m k -=,原式即可变为:()()()()11110nn m n m rm kmkmr m m k m k nn mnn mnn m r mk k CCCCCC --+----===-=-=--=∑∑∑。
即原式成立。
说明:变换求和指标是解决较复杂的组合记数的一种常见技巧,它可以起到简化计算的目的。
变换求和指标时,要注意求和指标的上、下限需要同时变换。
例6.求证:()21202!22!!nk n n k n C n n -==+⋅⋅∑。
例6.证明:()22222122222222201122nnnnk k k nk n n n nnnnnn n n k k k n k n CC CCC C C ++===+=+=-=-=-+++∑∑∑∑L()12120222222220222n nnn n nknk nnnnnn n k k CCCC C C ---===-+++=-=-+∑∑L所以()22121222202!22,2222!!nnnk nn k n n n nnnk k n C CC C n n --===+=+=+=⋅⋅∑∑右边。
例7.求证:()()()()222012!!!n nn n n C C C n n +++=⋅L例7.基本思路1:此题若考虑用基本组合恒等式来证明是比较困难的,注意到左端各项恰好是二项展开式中各项系数的平方,考虑构造两个二项展开式。
证明:因为:()1011111,1n nnn nn nnnn n n x C C x C x C C C x x x ⎛⎫⎛⎫+=++++=+++ ⎪ ⎪⎝⎭⎝⎭L L显然,()111nnx x ⎛⎫+⋅+ ⎪⎝⎭的展开式中,常数项即为所求证等式的左端。
不妨设0x >,将原式变形为:()()211111112n nn n nx x x x x x ⎡⎤⎛⎫⎛⎫⎛⎫+⋅+=++=++= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦将上式展开,其中常数项为2nn C ,由此可知,原式成立。
基本思路2:注意到恒等式r n r n nC C -=,要证的等式的左边可变形为: 0110n n n n n n n n n C C C C C C -+++L ;而等式右边即为:()()()22!2!!!!2!n nn n C n n n n n ==⋅⋅-,因此可以考虑建立适当的组合记数模型来加以证明。
证明:设袋子中有n 个白球,n 个红球,现从这2n 个小球中随机抽取n 个小球,其方法种数为:()22!!!nn n C n n =⋅。
另一方面,可以看成1n +次如下的取球活动:从n 个白球中取出r 个,再从n 个红球中取出n r -个,其取法种数为:()2,0,1,2,,rn rrn n n C C C r n -==L ,所以符合题意的取球方法种数是:()()()22201n nn n C C C +++L 。
因此原式成立。
说明:本题的两种证明方法均采用了构造思想。
构造法是解决竞赛问题的一种常用方法。
例8.求证:∑=+--+=⋅-nk kk n k n kn C 01222.12)1(例8.【分析】考虑到恒等式12212---+-+=k k n k k n k k n C C C ,【证明】令∑=+--⋅⋅-=nk kk n k n kn C a 01222,2)1(因为,12212---+-+=k k n k k n k k n C C C ,.2)1(2)1(2)1(,1.2)1(2)1()(2)1(22)1(211)1(2102)1(21)1(212)1(21121221212202221212222112222-+---=--+---=--+--=---=-=----=--=+---=--=⋅-=⋅--=⋅-+⋅-=+⋅-+=⋅-+=∑∑∑∑∑∑∑n r r n n r r n r rr n n r r n r k kn nk kn kk k n nk k n k nk kkn kn kk k n nk k k n k n k nnk kk n k n k nn a C C Ck r C C C C C a 则令所以令∑=---+==⋅-nk n n n n kk n k n ka ab b C 01222,2)1(则 ①.42)1(4)1()(2)1(2)1(2)1(21110)1(22)1(211121112222112222---=---------=----=---=⋅--=-++⋅-+=-+⋅-+=∑∑∑n n n j j jn j n j n n k k n n k k k n k n k nn k n k k n k n k nn b a C a C C C b 又于是由①式得1221112112,4,---------=+--=++=n n n n n n n n n n n a a a a a a a a a a b 即从而推知. 这说明{a n }为等差数列,而a 0=1,a 1=2,故公差d=1,且a n =n+1 .【说明】此题运用变换求和指标的方法,找出了a n ,a n -1,a n -2之间的线性关系式,再由 初始条件求得a n .这种利用递推关系求组合数的方法,在解决较复杂的计算或证明组事恒等式时经常用到.三、巩固练习 1.求证:11mm n n n m C C m--+=。
2.求证:当n 是偶数时,123411122232n n n n n n n n n C C C C C C --+++++++=⋅L 。
3.求证:1012311112123411n n nn n n n C C C C C n n +-+++++=++L 。
(利用111111k k n n C C k n ++=++)4.求121n k n k C--=∑的值。