Multiple Hydrogen Bonding for Reversible Polymer Surface Adhesion
双功能碱性离子液体水相催化苯并氧杂蒽衍生物的合成

双功能碱性离子液体水相催化苯并氧杂蒽衍生物的合成(1)项目负责人:方东()
(2)简要介绍:
本发明公开了一种双功能碱性离子液体水相催化苯并氧杂蒽衍生物的合成的新方法。
所用催化剂是同时含有Lewis 碱和碱官能团的双功能化离子液体,原料为α-萘酚、芳香醛、1,3-环己二酮衍生物,水为反应介质,在催化剂作用下反应得到苯并氧杂蒽衍生物。
本发明与现有技术相比,其优点为:(1)采用双功能化离子液体,原料来源广泛,制备方便;催化剂活性高、用量少、对水稳定、不失活;(2)含离子液体催化剂的水溶液可循环使用,环境友好;(3)用水代替有机溶剂,具有环境、经济双重效益,是一种高效、环境友好的合成苯并氧杂蒽衍生物的方法,有利于大规模工业化生产。
中空梯度聚丙烯泡沬可高效分离油水

第2期会员动态•45•建新先生以及总务部部长朱柏冬先生接待了王永芳副主任一行。
王副主任向大家介绍了杭州市“践行拥江发展”的规划,特别强调了大江东产业集聚区与杭州经济技术开发区合二为一的战略意义,并向邱克家董事长询问了公司的经营现状以及下一步的发展规划。
邱克家董事长将公司发展的历史沿革、经营现状以及上市推进计划、发展规划向王副主任作了详细介绍,希望今后的发展过程中能够得到经开区领导更多的关心和支持。
王副主任听取了邱克家董事长的汇报以后,对杭华油墨股份有限公司所取得的经营业绩和财政贡献予以赞赏,希望杭华油墨仍能保持技术领先的行业水平,借助两区合并的重大调整时机,加快产品转型升级,着重以绿色、环保为主基调,继续为新区建设和发展做岀贡献。
同时,希望杭华油墨重点推进上市工作,争取早日上市成功。
燃料电池氧还原电催化剂获突破华中科技大学化学与化工学院王得丽教授研究团队近日在燃料电池氧还原电催化剂研究上取得重要突破,该研究得到国家自然科学基金、华中科技大学人才引进基金、中组部青年千人计划和教育部新世纪优秀人才支持计划等项目的资助。
王得丽教授团队通过简单的水热合成方法,引入银源并合理调节溶剂极性,一步法合成出超细(1nm)的Pt.,Ni双金属纳米线,模拟结构发现其Pt原子利用率达到50%。
同时研究发现,得益于超高的表面Pt原子利用率、超细1D纳米线结构以及合金化带来的电子结构效应、应力效应调控等有效地提升了催化剂的氧还原反应(ORR)催化性能。
燃料电池、金属-空气电池等以其操作简单、高效环保等诸多优点在可移动电源领域备受关注。
但目前该类电池商业化应用仍然面临不少问题,比较突出的是电池阴极的ORR动力学反应速率缓慢、极化过电位大,造成了电池输出功率和效率的大幅降低。
寻求高效、稳定且廉价的阴极催化剂是电池走向商业化应用的关键所在。
中空梯度聚丙烯泡沬可高效分离油水近日,中科院宁波材料所高分子事业部研究员郑文革团队在前期关于致密结构和均匀取向泡孔结构研究工作基础上,提出了一种新型的中空梯度泡孔结构,并成功制备出一种新型高效油水分离的中空梯度聚丙烯泡沫。
双层水凝胶 电场

双层水凝胶电场
水凝胶由数千个具有高电响应的交替亲水凝胶层和聚合物纳米域的疏水层组成。
发现软凝胶层响应电场并产生氢键,作为可逆的物理交联和层粘合剂,以耗散能量并动态调节材料的机械性能。
哈尔滨工业大学王威、刘冬梅,苏黎世联邦理工学院王京等设计了一种S型异质结构PBA/MoS2@壳聚糖水凝胶(PBA/MoS2@CSH)催化剂,用于光激发下协同活化PMS以促进多相催化氧化过程。
所制备的PBA/MoS2@CSH催化剂中的过渡金属(CoFe PBA)和助催化剂(MoS2)能够通过金属价态之间的循环有效地活化PMS,而且PBA/MoS2界面电场增强了光生载流子通过S型途径高效转移,进一步促进PMS活化和去除多西环素(DC)。
西安交通大学机械结构强度与振动国家重点实验室研究人员提出了利用电容器边缘效应来大规模制备液体图案的新方法,通过将电场控制液体图形化与逐层叠加过程相结合,建立了水凝胶三维打印系统。
该技术适用于各种物化性质水凝胶,无需额外混入添加组分,克服了现有技术的局限性。
实现了水凝胶支架、温度敏感的水凝胶复合材料和高完整性离子水凝胶显示装置等的3D打印。
此外,具有平面梯度结构的复合水凝胶在电场下可以自发和可逆地捕捉。
聚电解质水凝胶在纯水或低浓度盐水中溶胀并发生面外屈曲变形,形成具有双稳态特征的穹顶构型。
向上或者向下屈曲的穹顶构型具有相同的弹性能,在外力作用下可以越过能垒,通过快速跳转变形实现构型的切换。
乙酸蒸汽催化重整制氢的研究进展

CHEMICAL INDUSTRY AND ENGINEERING PROGRESS 2017年第36卷第5期·1658·化 工 进展乙酸蒸汽催化重整制氢的研究进展王东旭1,肖显斌2,李文艳1(1华北电力大学能源动力与机械工程学院,北京 102206;2华北电力大学生物质发电成套设备国家工程实验室,北京 102206)摘要:通过生物油蒸汽重整制备氢气可以减少环境污染,降低对化石燃料的依赖,是一种极具潜力的制氢途径。
乙酸是生物油的主要成分之一,常作为模型化合物进行研究。
镍基催化剂是乙酸蒸汽重整过程中常用的催化剂,但容易因积炭失去活性,降低了制氢过程的经济性。
本文首先分析了影响乙酸蒸汽重整制氢过程的各种因素,阐述了在这一过程中镍基催化剂的积炭原理,讨论了优化镍基催化剂的方法,包括优化催化剂的预处理过程、添加助剂和选择合适的载体,最后对乙酸蒸汽重整制氢的热力学分析研究进展进行了总结。
未来应重点研究多种助剂复合使用时对镍基催化剂积炭与活性的影响,分析多种助剂的协同作用机理,得到一种高活性、高抗积炭能力的用于生物油蒸汽重整制氢的镍基催化剂。
关键词:生物油;乙酸;制氢;催化剂;热力学中图分类号:TK6 文献标志码:A 文章编号:1000–6613(2017)05–1658–08 DOI :10.16085/j.issn.1000-6613.2017.05.014A review of literatures on catalytic steam reforming of acetic acid forhydrogen productionWANG Dongxu 1,XIAO Xianbin 2,LI Wenyan 1(1 School of Energy ,Power and Mechanical Engineering ,North China Electric Power University ,Beijing 102206,China ;2 National Engineering Laboratory for Biomass Power Generation Equipment ,North China Electric PowerUniversity ,Beijing 102206,China )Abstract :Hydrogen production via steam reforming of bio-oil ,a potential way to produce hydrogen , can reduce environmental pollution and dependence on fossil fuels. Acetic acid is one of the main components of bio-oil and is often selected as a model compound. Nickel-based catalyst is widely used in the steam reforming of acetic acid ,but it deactivates fast due to the carbon deposition. In this paper ,the affecting factors for the steam reforming of acetic acid are analyzed. The coking mechanism of nickel-based catalyst in this process is illustrated. Optimization methods for nickel-baed catalyst are discussed ,including optimizing the pretreatment process ,adding promoters ,and choosing appropriate catalyst supports. Research progresses in the thermodynamics analyses for steaming reforming of acetic acid are summarized. Further studies should be focused on the effects of a combination of a variety of promoters on carbon deposition. Catalytic activity and the synergy mechanism should be analyzed to produce a novel nickel-based catalyst with high activity ,high resistance to caborn deposition for hydrogen production via steam reforming of bio-oil. Key words :bio-oil ;acetic acid ;hydrogen production ;catalyst ;thermodynamics第一作者:王东旭(1994—),男,硕士研究生,从事生物质能利用技术研究。
重组亥姆霍兹吸附平面使层状氧化物钠阴极超越高氧化极限

重组亥姆霍兹吸附平面使层状氧化物钠阴极超越高氧化极限下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!1. 引言在能源领域,钠离子电池作为一种具有高能量密度和良好稳定性的电化学储能设备备受关注。
多层交替沉积后退火处理MgB2超导薄膜上约瑟夫森结的制备

2012年 第57卷 第7期:498 ~ 505 英文引用格式: Deng H, Dai Q, Yu H F, et al. Josephson junctions fabrication in multi-layer deposition and post annealing MgB 2 thin films (in Chinese). ChinSci Bull (Chin Ver), 2012, 57: 498–505, doi: 10.1360/972011-1917《中国科学》杂志社SCIENCE CHINA PRESS论 文多层交替沉积后退火处理MgB 2超导薄膜上 约瑟夫森结的制备邓辉①, 戴倩②, 于海峰①, 魏彦锋①③, 王福仁②, 任建坤①, 崔丽敏①, 吴玉林①, 赵士平①, 陈莺飞①, 李洁①, 郑东宁①*① 中国科学院物理研究所, 北京 100190;② 北京大学物理学院, 人工微结构和介观物理国家重点实验室, 北京 100871; ③ 襄樊学院薄膜与电子实验室, 襄樊 441053 * 联系人,E-mail:**************** 2011-09-24收稿, 2011-12-18接受国家自然科学基金(10974229, 10911130357, 10974243)、国家重点基础研究发展计划(2011CBA00106)和国家重大科学研究计划(2009CB929102)资助摘要 在多层交替(SiC/[Mg/B]5)沉积后退火处理的MgB 2薄膜上用紫外光刻和Ar 离子刻蚀制作出SQUID 环路膜条, 然后用聚焦离子束(FIB)刻蚀方法在SQUID 的环路上制作了150~ 300 nm 之间不同尺寸的纳米微桥结构, 并测量了其电阻温度(R-T )曲线和电流电压(I-V )曲线. 膜条的R-T 曲线与薄膜基本相同, 表明薄膜没有受到膜条制备过程中潮湿的影响. 对SQUID 的R-T 关系测量发现电阻有较大升高, 并看到由纳米微桥的存在而具有的结构. SQUID 的I-V 曲线表明, 纳米微桥形成了弱连接, 超流主要体现为约瑟夫森耦合电流. 其中一个150 nm 宽纳米微桥的SQUID, 其回滞消失的温度约为10 K, 在此温度下, 得到临界电流I c 约为4.5 mA, I c R N ~2.25 mV, 单个纳米微桥结的临界电流密度约为1.5×107 A/cm 2. 临界电流I c 随温度以幂指数关系变化, 也验证了纳米微桥的弱连接特性. 我们的实验对基于MgB 2薄膜的约瑟夫森器件制备具有参考价值.关键词多层交替沉积后 退火 MgB 2薄膜 聚焦离子束刻蚀 约瑟夫森结2001年超导临界温度(T c )达40 K 的材料MgB 2的发现[1], 是近年来超导研究的重要进展之一. MgB 2的多带特征和高T c , 不仅吸引了人们探讨新的高温超导机理的浓厚兴趣, 也对基于约瑟夫森效应的超导电子器件的研究提出了新的要求和挑战[2~11]. 用MgB 2材料制作的器件其优点主要有: (1) 器件在20 K 附近仍能保持优良的工作性能[12], 方便新型实用的超导器件的应用. MgB 2材料有金属性, 体现在相对铜氧化物高温超导体具有较低的电阻率[13~15]和较小的各向异性[16,17], 能弥补铜氧化物高温超导器件噪声大的缺陷; 同时, 较高的工作温度所需制冷机的体积和功率, 相对于以Nb 为主的低温超导器件则大大降低了成本[2,18]. (2) MgB 2作为有2个能带的超导体[17], 其中较小的超导能隙[2,19]约2.2 meV, 意味着在快速单磁通量子(RSFQ)电路中可以使用1 THz 的时钟频率[20]. (3) MgB 2具有远大于铜氧化物高温超导体的相干长度[21](MgB 2相干长度具有各向异性, 在a-b 面约~5 nm), 使约瑟夫森器件中超导电流密度受晶界的影响并不显著[22].高质量MgB 2薄膜的制备是制作约瑟夫森器件的重要基础[23]. MgB 2薄膜的制备方案按工艺流程大致可分为二步法和一步法. 二步法中[24], 一般先通过电子束蒸发或脉冲激光沉积(PLD)制备B的薄膜然后再和Mg(或Mg的化合物)反应得到MgB2. 这种方法一般会形成较大的MgB2晶粒, 并且薄膜的结构不可从衬底外延. 一步法利用B和Mg同时反应生成薄膜. 这种方法一般能生成致密和均匀的薄膜, 代表工艺有HPCVD和Moeckly-Ruby方法等[25~28].在不断追求高质量薄膜工艺的同时, 人们对基于MgB2薄膜的约瑟夫森结的探索也在一直进行[4,29~35], 并且在基础和应用研究方面都取得了许多进展. 一方面, 约瑟夫森器件用来研究MgB2的多带特性所带来的新奇的物理现象[11,36,37]; 同时, 面向电子学应用的约瑟夫森器件的研制也不断向前发展. 对于集成化程度要求高的RSFQ器件, 研究者主要致力于原位(in situ)制作的全MgB2结[4,5,34,35,38]性能的提高. 在超导量子干涉器件(SQUID)和磁强计等方面, 人们也进行了多种尝试, 如点接触[30]、离子注入的SNS结[39]及纳米微桥[32,33,40]和纳米线[41]等.由于Mg和B两种材料自身在物理和化学性质上的差异, 虽然不同工艺对衬底的要求差别并不大[25~27], 但是高质量薄膜的获得通常需要复杂的设备和技术[17,27]. Mg和B化学性质都比较活泼, 因此薄膜和器件不易于在空气和潮湿环境中长期保存[27]. 使用电子束蒸发设备, 采用多层交替沉积后退火处理的薄膜具有致密的结构, 薄膜与器件的寿命和对环境的适应性可能会有较好的表现. 本文在多层交替沉积后退火处理工艺制作的MgB2薄膜上, 采用聚焦离子束(FIB)刻蚀的方法制备了纳米微桥形式的约瑟夫森结, 对膜条与结使用标准的四引线法分别测量了电阻温度(R-T), 电流电压(I-V)或临界电流温度(I c-T)的关系曲线.1 MgB2薄膜的制备实验中所用MgB2薄膜的制备分两步进行. 首先在SiC(001)衬底上利用电子束蒸发法制备了Mg/B多层前驱膜. 前驱膜的结构是SiC/[Mg(12 nm)/B(8 nm)]5: 其中单层的Mg层和B层的厚度分别为12和8 nm, 一共5层Mg/B层, 薄膜总厚度为100 nm. 前驱膜的厚度由电子束蒸发设备内置的石英振荡器原位监测. 蒸镀B膜的材料采用纯度为99.5%的商用金属B块, Mg源为纯度为99.5%的金属Mg柱. 在镀膜过程中背景气压小于5×10-6 Pa.随后对前驱膜进行外退火处理. 退火温度为680~740℃, 退火时间为6~8 min. 退火时, 样品周围放置若干Mg块, 挥发的Mg蒸气在样品周围形成高的Mg分压, 保证MgB2相稳定. 背景气氛为5.0 kPa流动的氢气. 氢气在高温下具有还原性, 可以保护前驱膜不被腔体中残留的氧气污染. 另外流动的氢气可带走多余的Mg蒸气, 避免Mg蒸气在薄膜表面凝结, 污染表面. 用此方法制备的薄膜T c~32 K, 有效粗糙度~4.5 nm.2 膜条和约瑟夫森结的制作和测量2.1 膜条和约瑟夫森结的制作对长在5 mm×5 mm大小SiC衬底上的MgB2薄膜, 采用通常的光刻和Ar离子刻蚀工艺在~15 μm宽的膜条上制作出一个dc SQUID形的环路结构(图1(a)), 主要部分包括两个约2~5 μm宽的膜条. 随后在膜条上, 采用FIB刻蚀出长度在150 nm左右的同样参数的纳米微桥作为约瑟夫森结. 对不同样品, 纳米桥的宽度在150~300 nm. 光刻胶使用S1813, 4000r/min旋涂40 s. 涂胶后80℃烘烤3 min. 显影液用正胶显影剂, 定影液使用去离子水, 随后样品在涂胶台上甩干. Ar离子刻蚀过程中, 样品所在的金属支架采用循环水冷却. 即使这样, 因为离子源离样品太近,刻蚀过程中温度升高很快. 因此为防止温度过高, 刻蚀过程由2 min刻蚀和3 min冷却交替进行. 刻蚀过程中样品始终与离子束成45°角.FIB在FEI-DB235系统上进行. 衬底与FIB样品托盘使用导电胶连接以防止电荷累积过多. DB235系统是具有离子束和电子束的双束系统, 可以在微米尺度上对同一区域进行双聚焦校准. 在进行离子束刻蚀之前, 首先用电子束观察好要进行纳米结构制作的区域, 用系统的定标系统估算坐标. 用离子束进行刻蚀时, 可以利用之前定好的坐标进行粗定位. 这样就能减少离子束对样品的照射时间以及照射面积,从而减低对薄膜性质的影响. 刻蚀采用30 kV电压Ga+离子束, 以10 pA的束流完成, 最后制作好的纳米结构见图1(b).2.2 测量所有的测量在液氦储槽中进行. 样品杆为不锈钢长约1.5 m, 一端为紫铜样品托, 另一端为测量引线接口和抽气口. 样品在紫铜样品托上固定, 用银胶4992012年3月 第57卷 第7期500图1 (a) 光刻和Ar 离子刻蚀的膜条; (b) 离子束刻蚀成的纳米微桥约瑟夫森结和金丝通过四引线法与样品托上的电极相连. 样品托用紫铜套罩住, 紫铜套以铟丝和样品杆密封连接. 样品杆中的空气被抽出并注入氦气, 随后样品杆被放入液氦储槽中进行降温和测量. 样品杆的接线端通过四芯双绞线接入四引线测量盒. 电流从测量盒上单端输入, 电流信号流经样品后回测量盒通过短路BNC 头接地. 电压信号从测量盒上通过2个BNC 接头引出, 可通过放大器设置为差分或单端的读出. 在R-T 测量中, 使用EGG7265 DSP 锁相放大器和Lakeshore340温度计进行测量(温度计有固定正向偏移误差量0.5 K). 锁相放大器前面板有一个输出端, 两个输入端A 和B 可用来选择差分或单端的输入. 单端输入, 即采样电压一端在测量盒上用短路BNC 头接地, 另一端直接输回A 端(电压输入灵敏度从2 nV 至1 V 可调). 差分输入, 即将采样电压两端分别输回A 和B 并选择A-B 模式. 在我们的测量中, 没有发现这两种方法得到的结果有明显差异. 在对膜条的测量中(图2(a)), 电流采用1 V 交流信号, 串联1 M Ω电阻作为输出, 即电流大小约为1 μA. 在对SQUID 的测量中, 分别使用了0.1 μA(图2(b), 0.1 V 串联 1 M Ω), 0.02 μA(图2(c), 0.2 mV 串联10 k Ω)和0.01 μA(图2(d), 0.1 mV 串联10 k Ω)作为测量电流. 在I-V 曲线的测量中, 使用Agilent33120任意波形发生器串联1 k Ω电阻(电阻精度为1‰)后作为电流源, 电压信号取出后经过前置放大器SR560放大1000倍后接入示波器Agilent54621A.3 结果和讨论3.1 测量结果膜条和不同尺寸纳米微桥SQUID 的电阻转变特性如图2所示. 其中2.5 μm 宽度的膜条(图2(a))电阻随温度的变化关系同MgB 2薄膜基本相同, T c 约32 K. 在进行FIB 操作以后, 电阻有显著增大. 图2(b)和(c)为同一基片的两个膜条形状相同但纳米微桥尺寸不同的样品. 可以看到微桥的超导转变起始温度基本没有变化, 但在转变温度附近出现分段, 而零阻温度则降低到25 K. 两个SQUID 结构(各含两个纳米微桥)的剩余电阻大小的不同基本符合纳米微桥之间的尺寸差异. 图2(d)中的R-T 曲线在超导转变区域的分段更为明显, 零阻温度约在27 K.图2(d)所示SQUID 样品的I-V 特性及随温度的变化关系如图3. 从I-V 曲线上看, 约瑟夫森效应的特征十分明显, 观察到直流约瑟夫森效应以及电流增大时从零电压态到电压态的跳变. 在低温下I-V 曲线出现回滞, 随温度增加在10 K 附近回滞消失. 从图3(c)可知在9.8 K 时, 临界电流I c 约为4.5 mA. 每个SQUID 是由两个参数相同的纳米微桥并联, 估算临界电流密度约为j c =4.5 mA/(100×150 nm 2)/2=1.5× 107 A/cm 2. 从图3(c)电压态的斜率得到正常态电阻R N 约为0.5 Ω, 则乘积I c R N 的值约为2.25 mV. 在25 K(图3(f))时由于接近零阻温度27 K, 超流已经很小. 在所有的I-V 曲线中电压态都有一些结构, 并随着温度的变化而改变, 在3.2节中讨论了这一现象.3.2 讨论用FIB 在MgB 2膜条上制作纳米微桥约瑟夫森结,501图2 (a) 膜条的R -T 曲线, T c =32 K, 转变宽度1 K; (b), (c)和(d)为纳米微桥SQUID 的R -T 曲线, 其中膜条的宽度分别为2.5,2.5,3.5 μm; (b), (c) 为同一片薄膜上的不同SQUID. 测量时所用电流分别为1, 0.1, 0.02, 0.01μA图3 纳米微桥SQUID(图2(d))的I -V 曲线通常在FIB 操作前后器件R-T 关系的变化比较明显. 第一是电阻变大[8,42,43]. 电阻的变化首先是因为结构尺寸的变化[14], 这点和采用电子束曝光(EBL)与Ar 离子刻蚀制作的纳米线和纳米结构类似[41,44]. 其次,在FIB 的操作过程中, 离子束扫描过膜条的一部分及纳米微桥的附近区域, 也能使纳米膜条及纳米桥的电阻性质发生改变[8]. 在FIB 制作前后, 剩余电阻比 (R (280 K)/R (39 K))由~1.64(图2(a))变为~1.51(图2(c)).2012年3月 第57卷 第7期502这种电阻随温度变化趋势的平缓可能由于离子照射区域的薄膜中, 晶界的耦合变弱[8]; 可供参考的是, 在体材料与薄膜的R-T 对比中, 虽然有电阻大小的差别, 但是在形状上基本一致[14]. 第二个特点是在超导转变的区域变成分段转变, 伸出一节“拖尾”[42~45], 即有两个转变温度. 一般认为第一个转变温度是电极或膜条的转变温度, 即与MgB 2薄膜温度相同(加上在制作膜条和纳米结构过程中可能产生的少许差异), 大致在32 K; 第二个转变温度即是纳米微桥结区的转变温度, 大约在25~27 K. 对“拖尾”的产生及形状的影响相关的因素可能还来自纳米结构的几何特征[44,46]. 图2(b)和(c)的“拖尾”形状与EBL+Ar 离子刻蚀制备的纳米线相似表现[41,44], 较能证明尺寸差异对临界温度T c 的影响[47], 而且较小的纳米结构所造成的“拖尾”也占整个超导转变区域较小的比例[42,45]. 晶粒的大小和离子照射时间对“拖尾”的出现和形状的影响也应被考虑[43]. 总的说来, 离子照射升高电阻率, 纳米结构降低了T c . 而“尾”长即超导转变的展宽, 在高温超导体的晶界约瑟夫森结中通常意味着热激发相滑移(TAPS)[48]. 在已见报道的MgB 2的晶界结中, 常使R-T 曲线“拖尾”的区域出现近似水平的一段[8,43]; 但MgB 2的情形与高温超导体还有很多不同的地方, 因此是否能以单一的热激发相滑移理论来说明在MgB 2纳米微桥结以及晶界结的R-T 曲线中出现的全部现象还有待进一步研究[8,46].图3(a)~(c)演示了SQUID 在升温过程中I-V 特性曲线中回滞逐渐变小直到消失的过程. 对于dc SQUID, 其临界电流能被加在环路中的磁通调制; 除此以外, I-V 特性从两个约瑟夫森结并联的关系得到. 对一个实际应用于磁场探测的SQUID, 要求在任一固定外磁场条件下I-V 曲线是单值的[49]. 这一条件可用SQUID 中约瑟夫森结的麦克坎伯参量22c c eI R C β= 描述, 其中R 和C 分别为结的电阻和电容. 当1c β≤时, dc SQUID 的I-V 曲线没有回滞, 此时I-V 曲线可以用RSJ 模型[49]描述. 图3(c)和(d)即是典型的符合RSJ 模型的I-V 曲线(在电压不太大的范围内). 当温度降低时, 由于I c 的增大, 会使c β值增加, 同时由于处于电压态时的电压值的快速增加, 所造成的发热效应, 都会促使回滞的产生. 对于纳米微桥的情况, 除了晶界结[8], 电容一般都很小, 使得在超导温区内都有1c β<<, 因此回滞主要应由发热引起[32].图3所示的I-V 曲线中, 在低温下十分显著的非线性特征随温度的升高逐渐变弱, 并最后趋于电阻式线性(图中未给出). I-V 曲线开始变为线性的起始点即为SQUID 的临界温度T c . 在远离T c 的温度(图3(c), (d)), I-V 曲线(第一象限正值部分)在随着电流的增加从零电压态跳到电压态后, 先是有符合RSJ 模型的类似抛物线的一段(Ⅰ), 然后出现一段向下折向电压轴(Ⅱ), 随后又向右上渐进的趋向线性(Ⅲ), 这三段的起始点在图3(c)中标出. 第(Ⅲ)段以后属于通常的电阻渐进区域. 第(Ⅰ)(Ⅱ)段见于不能完全用RSJ 模型描述的情形[50,51], 即纳米微桥的耦合并非完全是约瑟夫森耦合, 而同时具有弱连接与强连接的因素在内; 超流中除了约瑟夫森电流以外, 还同时含有磁通流的成分[22]. 当温度接近T c 时(图3(e), (f)), I-V 曲线上RSJ 的特性并没有减弱太多, 同时过剩电流并不明显, 说明纳米微桥整体表现较多弱连接的特性, 在SQUID 中结的约瑟夫森耦合能比热能要大[46]. 图3中临界电流I c 随温度的变化关系在图4中给出. 曲线能被较好地拟合到关系式 1.9c c c ()(0)(1)I T I T T =-中, 其中参数取为T c =30 K, I c (0)取为9.5 mA. 这种临界电流以幂函数随温度而变化的情况, 说明SQUID 中的纳米微桥具有SNIS 弱连接的特点[52,53]. 而I c -T 曲线呈现整体向上凹的形状, 这种特点和具有RSJ 特性的约瑟夫森结是类似的[50].4 结论我们采用电子束蒸发设备和多层(5层)交替沉积后退火处理工艺制作了MgB 2薄膜, 使用紫外光刻与Ar 离子刻蚀工艺制作15 μm 的膜条及5 μm 宽的图4 临界电流随温度的变化关系SQUID环路, 然后用FIB在SQUID环路上对称的位置上制作了相同参数的纳米微桥约瑟夫森结. 利用四引线法, 我们测量了膜条与SQUID的R-T曲线, 以及SQUID的I-V曲线. 实验数据表明, 经过光刻与Ar离子刻蚀后的膜条与刻蚀前的MgB2薄膜具有几乎相同的R-T曲线, 说明用这种工艺生长的薄膜对光刻过程中的水分接触具有耐受性, 薄膜的超导性质没有受到破坏性的影响. 在随后的测量过程中, 薄膜在数周内在测量平台中及与空气的长时间接触都没有发生明显的性质改变. 在制作纳米微桥约瑟夫森结之后, SQUID的R-T曲线上观测到由弱连接引起的“拖尾”现象和转变温度的展宽, 即约瑟夫森结具有比膜条略小的临界温度. 分析表明FIB刻蚀本身, 及过程中离子束的照射, 对薄膜和纳米微桥超导性质的影响不可忽视, 但是应明显小于对晶界性质的影响. FIB对薄膜影响的另一方面是使电阻率升高较多(本文没有分离FIB对膜条电阻的影响和纳米微桥自身的电阻). 对SQUID的I-V特性的测量显示回滞消失的温度约在10 K, 同时在10~14 K之间纳米微桥具有RSJ模型描述的约瑟夫森结特征. 在10 K温度, 我们估算出结的R N~0.5 , I c R N~2.25 mV. 在I-V曲线上的结构, 说明超流的主要部分是弱连接的约瑟夫森耦合电流, 并在升温测量中从回滞消失直到接近临界温度都保持这一特点. 我们可以将临界电流随温度的变化关系拟合到约化温度的幂函数, 说明约瑟夫森结的性质类似SNIS弱连接. 我们的实验对于在薄膜上实现用FIB制作应用于磁强计的SQUID具有启发和借鉴意义.致谢感谢北京大学杨涛教授对紫外光刻与Ar离子刻蚀的指导以及中国科学院物理研究所微加工实验室罗强和金爱子老师对FIB操作的帮助.参考文献1Nagamatsu J, Nakagawa N, Muranaka T, et al. Superconductivity at 39 K in magnesium diboride. Nature, 2001, 410: 63–642Brinkman A, Rowell J M. MgB2 tunnel junctions and SQUIDs. Physica C, 2007, 456: 188–1953Chen K, Cui Y, Li Q, et al. Planar MgB2 superconductor-normal metal-superconductor Josephson juncions fabricated using epitaxialMgB2/TiB2 bilayers. Appl Phys Lett, 2006, 88: 2225114Singh R K, Gandikota R, Kim J, et al. MgB2 tunnel junctions with native or thermal oxide barriers. Appl Phys Lett, 2006, 89: 0425125Shim H, Yoon K S, Moodera J S, et al. All MgB2 tunnel junctions with Al2O3 or MgO tunnel barriers. Appl Phys Lett, 2007, 90: 2125096Chen K, Cui Y, Li Q, et al. Study of MgB2/I/Pb tunnel junctions on MgO (211) substrates. Appl Phys Lett, 2008, 93: 0125027Senapati K, Barber Z H. Sidewall shunted overdamped NbN-MgO-NbN Josephson junctions. Appl Phys Lett, 2009, 94: 1735118Lee S G, Hong S H, Seong W H, et al. Josephson effects in weakly coupled MgB2 intergrain nanobridges prepared by focused ion beam.Appl Phys Lett, 2009, 95: 2025049Costache M V, Moodera J S. All magnesium diboride Josephson junctions with MgO and native oxide barriers. Appl Phys Lett, 2010, 96:08250810Carabello S, Lambert J, Mlack J, et al. Differential conductance measurements of MgB2-based Josephson junctions below 1 kelvin. IEEETrans Appl Supercond, 2011, 21: 3083–308511Ota Y, Machida M, Koyama T. Macroscopic quantum tunneling in multigap superconducting Josephson junctions: Enhancement of escaperate via quantum fluctuations of the Josephson-Leggett mode. Phys Rev B, 2011, 83: 060503(R)12Rowell J M. Magnesium diboride: Superior thin films. Nat Mater, 2002, 1: 5–613Canfield P C, Finnermore D K, Bud’ko S L, et al. Superconductivity in dense MgB2 wires. Phys Rev Lett, 2001, 86: 2423–242614Rowell J M. The widely variable resistivity of MgB2 samples. Supercond Sci Technol, 2003, 16: R17–R2715Xi X X, Pogrebnyakov A V, Xu S Y, et al. MgB2 thin films by hybrid physical-chemical vapor deposition. Physica C, 2007, 456: 22–3716Bud’ko S L, Kogan V G, Canfiled P C. Determination of superconducting anisotropy from magnetization data on random powders as ap-plied to LuNi2B2C, YNi2B2C, and MgB2. Phys Rev B, 2001, 64: 180506(R)17Xi X X. Two-band superconductor magnesium diboride. Rep Prog Phys, 2008, 71: 11650118Brake ter H J M, Wiegerinck G F M. Low-power cryocooler survey. Cryogenics, 2002, 42: 705–71819Cui Y, Chen K, Li Q, et al. Degradation-free interfaces in MgB2/insulator/Pb Josephson tunnel junctions. Appl Phys Lett, 2006, 89:2025135032012年3月 第57卷 第7期50420 Chen K, Chuang C G, Li Q, et al. High-J c MgB 2 Josephson junctions with operating temperature up to 40 K. Appl Phys Lett, 2010, 96:04250621 Finnemore D K, Ostenson J E, Bud’ko S L, et al. Thermodynamic and transport properties of superconducting Mg 10B 2. Phys Rev Lett,2001, 86: 2420–242222 Lee S G, Hong S H, Kang W N, et al. MgB 2 grain boundary nanobridges prepared by focused ion beam. J Appl Phys, 2009, 105: 013924 23 Xi X X. MgB 2 thin films. Supercond Sci Technol, 2009, 22: 04300124 Zhai H Y, Christen H M, Zhang L, et al. Growth mechanism of superconducting MgB 2 films prepared by various methods. J Mater Res,2001, 16: 2759–276225 Zeng X H, Pogrebnyakov A V, Kotcharov A, et al. In situ epitaxial MgB 2 thin films for superconducting electronics. Nat Mater, 2002, 1:35–3826 Monticone E, Gandini C, Portesi C, et al. MgB 2 thin films on silicon nitride substrates prepared by an in situ method. Supercond SciTechnol, 2004, 17: 649–65227 Moeckly B H, Ruby W S. Growth of high-quality large-area MgB 2 thin films by reactive evaporation. Supercond Sci Technol, 2006, 19:L21–L2428 Wang T S, Yu D L, Chi Z H, et al. Phase-constituent control and superconducting properties of MgB 2 films in situ grown by hot-filamentchemical-vapor deposition. J Crystal Growth, 2007, 299: 82–8529 Gonnelli R S, Calzolari A, Daghero D, et al. Josephson effect in MgB 2 break junctions. Phys Rev Lett, 2001, 87: 09700130 Zhang Y, Kinion D, Chen J, et al. MgB 2 tunnel junctions and 19 K low-noise dc superconducting quantum inteference devices. Appl PhysLett, 2001, 79: 3995–399731 Burnell G, Kang D J, Lee H N, et al. Planar superconductor-normal-superconductor Josephson junctions in MgB 2. Appl Phys Lett, 2001,79: 3464–346632 Brinkman A, Veldhuis D, Mijatovic D, et al. Superconducting quantum interference device based on MgB 2 nanobridges. Appl Phys Lett,2001, 79: 2420–242233 Mijatovic D, Brinkman A, Veldhuis D, et al. SQUID magnetometer operating at 37 K based on nanobridges in epitaxial MgB 2 thin films.Appl Phys Lett, 2005, 87: 19250534 Shimakage H, Tsujimoto K, Wang Z, et al. All-MgB 2 tunnel junctions with aluminum nitride barriers. Appl Phys Lett, 2005, 86: 072512 35 Ueda K, Saito S, Semba K, et al. All-MgB 2 Josephson tunnel junctions. Appl Phys Lett, 2005, 86: 17250236 Li Q, Liu B T, Hu Y F, et al. Large anisotropic normal-state magnetoresistance in clean MgB 2 thin films. Phys Rev Lett, 2006, 96: 167003 37 Nishio T, Dao V H, Chen Q, et al. Scanning SQUID microscopy of vortex clusters in multiband superconductors. Phys Rev B, 2010, 81:020506(R)38 Mijatovic D, Brinkman A, Oomen I, et al. Magnesium-diboride ramp-type Josephson junctions. Appl Phys Lett, 2002, 80: 2141–2143 39 Burnell G, Kang D J, Ansell D A, et al. Directly coupled superconducting quantum interference device magnetometer fabricated in mag-nesium diboride by focused ion beam. Appl Phys Lett, 2002, 81: 102–10440 Gonnelli R S, Daghero D, Calzolari A, et al. Recent achievements in MgB 2 physics and applications: A large-area SQUID magnetometerand point-contact spectroscopy measurements. Physica C, 2006, 435: 59–6541 Portesi C, Monticone E, Borini S, et al. Fabrication of superconducting MgB 2 nanostructures. J Phys: Condens Matter, 2008, 20: 474210 42 Gregor M, Mi čunek R, Plecenik T, et al. Nano-bridges based on the superconducting MgB 2 thin films. Physica C, 2008, 468: 785–788 43 Lee S G, Hong S H, Seong W K, et al. All focused ion beam fabricated MgB 2 inter-grain nanobridge dc SQUIDs. Supercond Sci Technol,2009, 22: 06400944 Monticone E, Portesi C, Borini S. Superconducting MgB 2 nanostructures fabricated by electron beam lithography. IEEE Trans ApplSupercond, 2007, 17: 222–22445 Malisa A, Valkeapää M, Johansson L G, et al. Josephson junctions fabricated by focused ion beam from ex situ grown MgB 2 thin films.Physica C, 2004, 405: 84–8846 Malisa A, Valkeapää M, Johansson L G, et al. Josephson effects in magnesium diboride based Josephson junctions. Supercond Sci Tech-nol, 2004, 17: S345–S34947 Portesi C, Borini S, Picotto G B, et al. AFM analysis of MgB 2 films and nanostructures. Surf Sci, 2007, 601: 58–6248 Gross P, Chaudhari P, Dimos D, et al. Thermally activated phase slippage in high-T c grain-boundary Josephson junctions. Phys Rev Lett,1990, 64: 228–23149 章立源, 张金龙, 崔广霁. 超导物理学. 北京: 电子工业出版社, 1995. 288–29850 Chen K, Cui Y, Li Q, et al. Study of planar MgB 2/TiB 2/MgB 2 Josephson junctions using the proximity effect SNS model. IEEE TransAppl Supercond, 2007, 17: 955–95851Hong S H, Lee S G, Seong W K, et al. Fabrication of MgB2 nanobridge dc SQUIDs by focused ion beam. Physica C, 2010, 470:S1036–S103752Golubov A A, Kupriyanov M Y. Josephson effect in SNINS and SNIS tunnel structures with finite transparency of the SN boundaries. SovPhys JETP, 1989, 69: 805–81253Tafuri F, Kirtley J R. Weak links in high critical temperature superconductors. Rep Prog Phys, 2005, 68: 2573–2663Josephson junctions fabrication in multi-layer deposition and postannealing MgB2 thin filmsDENG Hui1, DAI Qian2, YU HaiFeng1, WEI YanFeng1,3, WANG FuRen2, REN JianKun1,CUI LiMin1, WU YuLin1, ZHAO ShiPing1, CHEN YingFei1, LI Jie1 & ZHENG DongNing11Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;2State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China;3Thin Film & Elect Laboratory, Xiangfan University, Xiangfan 441053, ChinaJosephson junctions are fabricated by focused ion beam in MgB2 thin films. The films were prepared by deposite multi-layer Mg and Bfilms at room temperature first and then annealed at about 700°C. These films have T c of 32 K. Strips and SQUID loops were definedby photolithography and Ar ion beam milling. Then nanobridges of 150–300 nm wide were made by focused ion beam etching. TheR-T characteristics of the strip is the same as that of the raw film while SQUIDs have a “foot” near the critical temperature. The I-Vcurve of one of the SQUIDs is hysteretic below about 10 K. Nanobridges show features of the resistively shunted junction like, and thetemperature dependence of the critical current turns out to be of SINS weaklink. At 9.8 K, the critical current density is about 1.5×107A/cm2.multi-layer deposition and post annealing, MgB2 thin film, FIB, Josephson junctiondoi: 10.1360/972011-1917505。
基于限域效应的二维过渡金属硫化物-水滑石原位自组装及其协同催化产氢行为

基于限域效应的二维过渡金属硫化物-水滑石原位自组装及其协同催化产氢行为二维过渡金属硫化物(TMDCs)是一类具有优异电子传输、光催化和电催化性能的材料,近年来受到了广泛的研究和应用。
然而,单纯的TMDCs材料在催化产氢过程中的效率和稳定性方面仍然存在一些挑战。
为了提高其催化性能,研究人员通过限域效应的引入,使得TMDCs与其它材料形成原位自组装结构,实现协同催化产氢行为。
限域效应是指在一定空间范围内,通过材料之间的相互作用和结构调控,提高催化反应的效率和选择性。
对于TMDCs材料来说,通过限域效应的引入,可以在其表面形成与之相互作用的辅助催化剂,从而提高产氢反应的效率。
在这种限域效应下,TMDCs与辅助催化剂之间形成了一种协同作用,促进了产氢反应的进行。
在研究中,通过选择合适的过渡金属硫化物和辅助催化剂,研究人员成功实现了TMDCs与辅助催化剂的原位自组装。
例如,研究人员通过将钾离子引入TMDCs材料中,实现了与MoS2的原位自组装。
这种自组装结构能够有效地促进产氢反应的进行,并且具有较高的稳定性。
类似地,通过选择适合的辅助催化剂,如Rh、Pt等金属,可以与TMDCs形成稳定的协同催化剂结构,进一步提高产氢反应的效率。
除了辅助催化剂的引入,研究人员还通过表面修饰和结构调控来实现TMDCs的限域效应。
例如,在TMDCs的表面引入缺陷和边界,可以增加其催化活性,并提高产氢反应的效率。
同时,通过选择不同的表面修饰方法,如原子层沉积等,可以调控TMDCs的结构和形貌,进一步改善其催化性能。
基于限域效应的二维过渡金属硫化物-水滑石原位自组装结构在催化产氢行为中表现出了优异的性能。
通过限域效应的引入,TMDCs与辅助催化剂实现了协同作用,提高了产氢反应的效率和稳定性。
此外,通过表面修饰和结构调控,还可以进一步优化TMDCs的催化性能。
这些结果为设计和制备高性能的催化材料提供了新思路和方法。
综上所述,基于限域效应的二维过渡金属硫化物-水滑石原位自组装是一种有效的策略来提高TMDCs材料的催化性能。
多孔普鲁士蓝类似物的合成及电催化析氧性能

在解决传统能源危机方面,电解水制氢是最具有前景的方法之一。
在电解水过程中,析氧反应(OER)较大的过电位严重阻碍了其大规模商业应用。
因此,开发高效、廉价的产氧电催化剂是一个具有挑战的研究课题。
为解决催化剂比表面积小、催化活性位点较少导致OER过电位较高等缺点,本文拟采用沉淀法一步合成前驱体镍铁普鲁士蓝类似物NiFe-PBA(NF)和CoCo-PBA(CC),再对前驱体NF和CC在表面活性剂聚乙烯吡咯烷酮(PVP)的作用下进行溶剂热处理得到镍铁普鲁士蓝纳米多孔材料(NFP)和CoCo-PBA(CCP)。
最后,采用电化学三电极体系测试所得材料的析氧反应性能。
摘要:采用一种简单易行的共沉淀法合成了前驱体镍铁普鲁士蓝类似物NiFe-PBA(NF),然后通过溶剂热处理获得了镍铁普鲁士蓝纳米多孔材料(NFP)。
通过XRD、SEM、TEM、XPS、BET及电化学方法对所得材料进行了结构表征和析氧性能测试。
结果表明,NFP相对于前驱体NF,电化学比表面积增大、催化活性位点增多,电催化析氧反应(OER)性能显著提高。
在浓度1 mol/L KOH水溶液中,达到10 mA/cm2电流密度时,NFP所需过电位仅为260 mV,比NF(320 mV)前驱体低了18.75%,也优于大多数已报道的非贵金属催化剂和商用贵金属催化剂,显示出良好的应用前景。
结论(1)对NF和CC均进行溶剂热处理,结果表明,表面光滑的单晶结构CC经过溶剂热处理之后所得CCP仍然为实心立方体结构。
而NF表面变得粗糙成为多孔材料,说明介晶结构的NF有利于在IPA的作用下发生刻蚀作用,从而形成多孔结构。
(2)多孔结构的NFP具有较大的比表面积(338.70 m2/g),更多的催化活性位点,较小的电荷转移电阻,因而具有增强的OER电催化性能。
图文导读。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Multiple Hydrogen Bonding for Reversible Polymer Surface Adhesion Kalpana Viswanathan,Hayriye Ozhalici,Casey L.Elkins,Cheryl Heisey,Thomas C.Ward,*and Timothy E.LongDepartment of Chemistry,Macromolecules and Interfaces Institute,Virginia Polytechnic Institute andState Uni V ersity,Blacksburg Virginia24061Recei V ed August18,2005.In Final Form:No V ember9,2005Specific and reversible adhesion of a terminal thymine-functionalized polystyrene(PS-thymine)was demonstrated for a silicon surface with complementary adenine recognition sites.A novel adenine-containing triethoxysilane(ADPTES), which was suitable for covalent attachment to silanol containing surfaces,was synthesized in one step from adenine and3-isocyanatopropyl triethoxysilane(IPTES).1H and13C NMR spectroscopy and fast atom bombardment mass spectroscopy confirmed the chemical structure,and29Si NMR spectroscopy indicated the absence of any premature hydrolysis of the alkoxysilane derivative.X-ray photoelectron spectroscopy(XPS)and water contact angle measurements indicated the attachment of PS-thymine to silicon surfaces that were modified with a mixture of ADPTES and 3-mercaptopropyl triethoxysilane(MPTES).PS-thymine attachment to surfaces that were modified with only MPTES was not observed.The exclusive attachment of PS-thymine to an ADPTES/MPTES-modified surface confirmed hydrogen bonding-mediated adenine-thymine association to silicon surfaces containing a sufficiently low concentration of adenine recognition sites.Although PS-thymine attachment to the ADPTES/MPTES-modified surfaces was insensitive to THF rinsing,the PS-thymine was completely removed from the surface upon DMSO rinsing because of the disruption of adenine-thymine hydrogen bonding with a more polar aprotic solvent.PS-thymine was successfully reattached to the ADPTES/MPTES-modified surface following the DMSO rinse,demonstrating the solvato-reversible nature of the adenine-thymine association.IntroductionMolecular recognition,which is defined as the specific interaction between multiple molecules without the involvement of covalent bonding,forms the basis of supramolecular orga-nization in biological systems.1Noncovalent interactions such as electrostatic,hydrogen bonding,host-guest,andπ-πstacking are often of central importance in molecular recognition.2-4 Although relatively weak,these directional,multivalent interac-tions lead to the self-assembly of molecules into complex hierarchies with well-defined functional superstructures.Lehn and co-workers first developed self-assembly strategies based on molecular recognition to construct synthetic materials with unique physical properties.5The use of such molecular recognition sites on surfaces provides a platform for tuning the chemical as well as physical properties of a surface in a reversible and“on-demand”fashion.Also,molecular recognition sites on surfaces enables the preparation of functional surfaces for a myriad of applications ranging from electronics and optics to sensors and catalysis.6-10Moreover,the utility of functionalized thiols and alkoxy-or chlorosilanes will lead to surfaces modified with the desired molecular recognition groups.11-14Previous efforts have employed molecular recognition groups on surfaces including selective inclusional complexation and ionic/hydrogen bonding interactions.15Several groups have used cyclodextrin(CD)-based host-guest interactions16,17as model membrane receptors and chemical sensors.8Kitano et ed cyclic voltammetry to study the association constants(K a)for the complexation of R-and -CD SAMs on gold surfaces with a variety of guest molecules such as bisphenols,azo compounds, and phthalic acid esters.8,9,15,18Several groups have demonstrated the capability of CD-modified gold surfaces in electrochemically induced reversible sensing of ferrocene molecules for potential applications in electronics and sensors.19-21The reversible ferrocene-CD interactions were also used in the self-assembly of nanoparticles.22,23Electrostatic interactions between amines and carboxylic acids have also found use in the immobilization of nanoparticles and nanorods on gold surfaces.Sastry et al.24and Murphy et al.25 demonstrated the deposition of carboxylic acid-functionalized*Corresponding author.E-mail:tward@.(1)Ha¨ussling,L.;Ringsdorf,H.;Schmitt,F.-J.;Knoll,ngmuir1991,17, 1837.(2)Lindoy,I.F.;Atkinson,M.F.Self-Assembly in Supramolecular Systems; Royal Society of Chemistry:Cambridge,U.K.,2000.(3)Whitesides,G.M.;Grzybowski,B.Science2002,295,2418.(4)Stupp,S.I.;LeBonheur,V.;Walker,K.;Li,L.S.;Huggins,K.E.;Keser, M.;Amstutz,A.Science1997,276,384.(5)Lehn,J.-M.Angew.Chem.,Int.Ed.Engl.1988,27,89.(6)Mbindyo,J.K.N.;Reiss,B.D.;Martin,B.R.;Keating,C.D.;Natan,M. J.;Mallouk,T.E.Ad V.Mater.2001,13,249.(7)Cui,Y.;Wei,Q.Q.;Park,H.K.;Leiber,C.M.Science2001,293,1289.(8)Endo,H.;Hirabayashi,T.D.;Morokoshi,S.;Ide,M.G.;Kitano,ngmuir 2005,21,1314.(9)Fukuda,T.;Maeda,Y.;Kitano,ngmuir1999,15,1887.(10)Boal,A.K.;Galow,T.H.;Ilhan,F.;Rotello,V.M.Ad V.Funct.Mater. 2001,11,461.(11)Ulman,A.An Introduction to Ultrathin Organic Films;Academic Press: Boston,1991.(12)Bain,C.D.;Evall,J.;Whitesides,G.M.J.Am.Chem.Soc.1989,111, 7155.(13)Poirier,G.E.;Pylant,E.D.Science1996,272,1145.(14)Nuzzo,R.G.;Allara,D.L.J.Am.Chem.Soc.1983,105,4481.(15)Maeda,Y.;Fukuda,T.;Yamamoto,H.;Kitano,ngmuir1997,13, 4187.(16)Madison,P.H.;Long,T.E.Biomacromolecules2000,1,615.(17)Storsberg,J.;Ritter,H.;Pielartzik,H.;Groenendaal,L.Ad V.Mater.2000, 12,567.(18)Kitano,H.;Taira,Y.;Yamamoto,H.Anal.Chem.2000,72,2976.(19)Rojas,M.T.;Koniger,A.;Stoddart,J.F.;Kaifer,A.E.J.Am.Chem.Soc. 1995,117,336.(20)Sabapathy,R.C.;Bhattacharya,S.;Cleland,W.E.;Hussey,ngmuir 1998,14,3797.(21)Wang,W.-J.;Kharchenko,S.;Migler,K.;Zhu,S.Polymer2004,45, 6495.(22)Liu,J.;Mendoza,S.;Roman,E.;Lynn,M.J.;Xu,R.;Kaifer,A.E.J. Am.Chem.Soc.1999,121,4304.(23)Liu,J.;Alvarez,J.;Kaifer,A.E.Ad V.Mater.2000,12,1381.(24)Gole,A.;Sainkar,S.R.;Sastry,M.Chem.Mater.2000,12,1234.(25)Gole,A.;Orendorff,J.;Murphy,ngmuir2004,20,7117.1099Langmuir2006,22,1099-110510.1021/la052253h CCC:$33.50©2006American Chemical SocietyPublished on Web12/30/2005colloidal silver onto amine-containing SAMs and ammonium salt-functionalized gold nanorods onto acid-containing SAMs on gold surfaces.They found that the variation in pH of the deposition solution resulted in varying degrees of surface coverage with the nanoparticles.Electrostatic interactions on surfaces have also found use in the formation of tunable mixed nanoparticle composites.10,26,27Rotello and co-workers employed acid-base interactions between carboxylic acids and amines to construct SiO2/Au mixed colloid systems with controlled sizes and shapes.10,26Ulman et al.also studied the pH-switchable elec-trostatic assembly of acid-functionalized gold nanoparticles onto acid-functionalized SAMs on planar gold using benzamidine linkers.Variations in the linker length effectively tuned the stability of the nanocomposite assembly.27Tailored hydrogen bonding as a molecular recognition motif has gained attention in recent years.28,29Multiple hydrogen bonding,which is a directional interaction between a proton donor and proton acceptor,offers synthetic versatility.2In addition to their inherent directionality,these hydrogen bonding interac-tions also exhibit thermal and solvent reversibility.28,29Many research groups have utilized hydrogen bonding sites to obtain supramolecular assemblies in solution and on surfaces as well as functionalized polymers with desirable physical properties.30-41 Hydrogen bonding systems that range from single to quadruple hydrogen bonds have been well studied.29Compared to single hydrogen bonding groups,the incorporation of multiple acceptor and donor units in a molecule significantly enhances the strength of hydrogen bonding interactions and thus has received wide-spread attention in recent years.34,36,38,41Multiple hydrogen bonding groups are typically classified into two families.Self-complementary multiple hydrogen bonding(SCMHB)involves identical hydrogen bonding units,and complementary multiple hydrogen bonding(CMHB)involves dissimilar acceptor and donor units.Research efforts in our laboratories have also focused on the incorporation of multiple hydrogen bonding groups in both nonpolar and polar synthetic macromolecules,giving rise to materials with both low-temperature mechanical strength and high-temperature processability.42-45Surface studies involving hydrogen bonding association have mostly involved low-molar-mass molecules.46,47Crooks et al. investigated carboxylic acid SAMs on gold as sensors for vapors of organic acids as well as bases.46The extent of vapor adsorption was dependent on the alkyl length of the organic acid,the pH of the organic base,and the chemical structure of the acid SAM. In the case of interaction between the acid SAMs and organic base vapors,the vapor-phase molecules readily desorbed upon N2purging,which indicated a relatively weak interaction between the sensor and probe molecules.47Kaifer et al.reported the assembly of crown ether fullerenes onto gold surfaces that were coated with ammonium-terminated SAMs.48Rogers et ed tetrapyridylporphyrins that were capable of forming multiple hydrogen bonds with carboxyl-terminated SAMs to obtain stable porphyrin-functionalized gold surfaces.49The deposition of individual nanometer-sized hydrogen-bonded assemblies of barbituric/cyanuric acid on calix[4]arene dimelamine monolayers on gold via hydrogen bonding interactions was also reported.50 Rotello et al.demonstrated recognition between gold surfaces that were patterned with diacyl-2,6-diaminopyridine(DAP)and an electroactive ferrocene-terminated uracil in solution using scanning tunneling microscopy(STM).51Competitive adsorption between ferrocene and alkyl uracil led to the reversible tuning of the electroactivity of the surface.Vansco et al.recently reported solvent and temperature effects for the dimerization of quadruple hydrogen bonding trifluromethyl/ferrocenyl-pyrimidone deriva-tives from solution to pyrimidonedisulfide SAMs on a gold surface.52It is important to note that surface immobilization enhanced the apparent association constant because the surface-confined dimers were stable for more than20h in CHCl3in contrast to only170ms for neat pyrimidinone dimers.However, the interaction on the surface was destroyed upon washing with DMSO and hot CHCl3.Polymers that exhibit such reversible interactions with a solid surface hold considerable potential as releasable coatings and smart adhesives.In addition,the capability of reversibly attaching polymers to solid surfaces enables tunable surface energetics. Polymers that were functionalized with hydrogen bonding groups were assembled onto complementary surfaces to direct nano-particle assembly and tune surface characteristics.53-57Rotello and co-workers used nanoparticles and polymers functionalized with complementary hydrogen bonding groups such as thymine and triazine to form extended nanoparticle aggregates.53,54The nature and degree of substitution of the hydrogen bonding groups controlled the morphology of the nanoparticle aggregates.Rotello and co-workers also demonstrated hydrogen bond-mediated(26)Galow,T.H.;Boal,A.K.;Rotello,V.M.Ad V.Mater.2000,12, 576.(27)Auer,F.;Scotti,M.;Ulman,A.;Jorden,R.;Sellergren,B.;Garno,J.;Liu,ngmuir2000,16,7554.(28)Brunsveld,L.;Folmer,B.J.B.;Meijer,E.W.;Sijbesma,R.P.Chem. Re V.2001,101,4071.(29)Sherrington,D.C.;Taskinen,K.A.Chem.Soc.Re V.2001,30,83.(30)Keeling,D.L.;Oxtoby,N.S.;Wilson,C.;Humphrey,M.J.;Champness, N.R.;Beton,P.H.Nano Lett.2003,3,9.(31)De Feyter,S.;Miura,A.;Yao,S.;Chen,Z.;Wu¨rthner,F.;Jonkheijm,P.; Schenning,A.P.H.J.;Meijer,E.W.;De Schryver,F.C.Nano Lett.2005,5, 77.(32)Kihara,H.;Kato,T.;Uryu,T.;Fre´chet,J.M.J.Chem.Mater.1996,8, 961.(33)Kato,T.;Fre´chet,J.M.J.Macromolecules1989,22,3818.(34)MacDonald,J.C.;Whitesides,G.M.Chem.Re V.1994,94,2383.(35)Schweibert,K.E.;Chin,D.N.;Whitesides,G.M.J.Am.Chem.Soc. 1996,118,4018.(36)Fouquey,C.;Lehn,J.-M.;Levelut,A.-M.Ad V.Mater.1990,2,254.(37)Kotera,M.;Lehn,J.-M.;Vigneron,mun.1994,197.(38)Sijbesma,R.P.;Beijer,F.H.;Brunsveld,L.;Folmer,B.J.B.;Ky Hirschberg,J.H.K.;Lange,R.F.M.;Lowe,J.K.L.;Meijer,E.W.Science1997, 278,1601.(39)Ligthart,G.B.W.L.;Ohkawa,H.;Sijbesma,R.P.;Meijer,E.W.J.Am. Chem.Soc.2005,127,810.(40)Shenhar,R.;Sanyal, A.;Uzun,O.;Nakade,H.;Rotello,V.M. Macromolecules2004,37,4931.(41)Park,T.;Zimmerman,S.C.;Nakashima,S.J.Am.Chem.Soc.2005,127, 6520.(42)Yamauchi,K.;Lizotte,J.R.;Long,T.E.Macromolecules2003,36, 1083.(43)Yamauchi,K.;Lizotte,J.R.;Long,T.E.Macromolecules2002,35, 8745.(44)Yamauchi,K.;Lizotte,J.R.;Hercules,D.M.;Vergne,M.J.;Long,T.E.J.Am.Chem.Soc.2002,124,8599.(45)McKee,M.G.;Elkins,C.L.;Park,T.;Long,T.E.Macromolecules2005, 38,6015.(46)Sun,L.;Kepley,L.J.;Crooks,ngmuir1992,8,2101.(47)Yang,H.C.;Dermody,D.L.;Xu,C.;Ricco,A.J.;Crooks,ngmuir 1996,12,726.(48)Arias,F.;Godı´nez,L.A.;Wilson,S.R.;Kaifer,A.E.;Echegoyen,L. J.Am.Chem.Soc.1996,118,6086.(49)Krishnamohan Sharma,C.V.;Broker,G.A.;Szulczewski,G.J.;Rogers, mun.2000,1023.(50)Garcia-Lopez,J.J.;Zapotoczny,S.;Timmerman,P.;van Veggel,F.C. J.M.;Vansco,G.J.;Crego-Calama,M.;Reinhoudt,mun.2003, 352.(51)Credo,G.M.;Boal,A.K.;Das,K.;Galow,T.H.;Rotello,V.M.;Feldheim,D.L.;Gorman,C.B.J.Am.Chem.Soc.2002,124,9036.(52)Zou,S.;Zhang,Z.;Forch,R.;Knoll,W.;Schonherr,H.;Vansco,G.J. Langmuir2003,19,8618.(53)Boal,A.K.;Ilhan,F.;DeRouchey,J.E.;-Albrecht,T.T.;Russell,T. P.;Rotello,V.M.Nature2000,404,746.(54)Boal,A.K.;Gray,M.;Ilhan,F.;Clavier,G.M.;Kapitzky,L.;Rotello, V.M.Tetrahedron2002,58,765.(55)Sanyal,A.;Norsten,T.B.;Oktay,U.;Rotello,ngmuir2004,20, 5958.(56)Norsten,T.B.;Jeoung,E.;Thibault,R.J.;Rotello,ngmuir2003, 19,7089.(57)Jeoung,E.;Carroll,J.B.;Rotello,mun.2002,1510.1100Langmuir,Vol.22,No.3,2006Viswanathan et al.attachment of polyhedral oligomeric silesesquioxanes(POSS) that were derivatized with DAP to thymine-functionalized gold surfaces.57In a similar study,the adsorption of a diblock PS-b-P(S-r-CH2ODAP)copolymer onto thymine-functionalized gold substrates was studied,and it was reported that the polymer adsorption decreased as the length of the DAP-containing block increased.56The same research group also reported the reversible adsorption/desorption of DAP-containing monoblock and di-block copolymers onto thymine-functionalized gold surfaces.55 Although complementary triple hydrogen bonding thymine-DAP as well as self-complementary UPy-based quadruple hydrogen bonding interactions were studied earlier,hydrogen bonding interactions on surfaces using DNA base pairs have not received significant attention.In addition to exhibiting highspecificity,these interactions also have reasonable thermal stability.Several groups have studied the influence of DNA base pairs on the properties of polymers functionalized with these groups.43,58A limited number of earlier studies have employed adenine-thymine interactions on surfaces.59A relevant manu-script described the assembly of zeolites that were functionalized with thymine groups to adenine-functionalized glass surfaces.59 This article will describe an investigation of the stability and reversibility of DNA-base-pair-mediated association between a polymer and silicon surface.In the current study,silicon surfaces were modified with adenine using a novel adenine-derivatized triethoxysilane.To our knowledge,this is the first report on the modification of silicon surfaces with alkoxysilanes that are functionalized with multiple hydrogen bonding groups.PS containing a single,terminal,complementary thymine group was obtained via a sec-butyllithium(sec-BuLi)-initiated living anionic polymerization of styrene and subsequent termination with ethylene oxide.60,61Thymine was subsequently introduced at the PS chain end using a two-step Michael addition-based synthetic strategy.43Reversible attachment of the PS-thymine to the adenine-functionalized silicon surface was probed using XPS and water contact angle measurements.Experimental SectionMaterials.3-Isocyanatopropyl triethoxysilane(IPTES,95%, Aldrich)was vacuum distilled in the absence of purification reagents (0.1mmHg,30°C).Styrene(Aldrich)was stirred over CaH2for3 to4days,distilled under vacuum(0.1mmHg,10°C)after repeated degassing and freeze-thaw cycles,and stored at-25°C.Styrene was vacuum distilled from dibutylmagnesium(DBM)under similar conditions immediately prior to polymerization.DBM(25%solution in heptane,FMC Corporation Lithium Division),sec-BuLi(1.4M in cyclohexane,Aldrich),ethylene oxide(99%,Aldrich),anhydrous DMSO(Aldrich),potassium tert-butoxide(Aldrich),methanol(EMD Chemicals),dichloromethane(EMD Chemicals),concentrated H2SO4(VWR International),NH4OH(VWR International),H2O2 (30%,EMD Chemicals),and3-mercaptopropyl triethoxysilane (MPTES,95%,Gelest,Inc.)were used as received.Cyclohexane (EMD Chemicals)was distilled from sodium immediately prior to use.Adenine and thymine(Aldrich)were dried overnight in a vacuum oven at60°lipore milli-Q water was used for surface cleaning. Silicon wafers were a generous gift from the Hewlett-Packard Company.Synthesis of Adenine-Functionalized Triethoxysilane (ADPTES).The synthesis of ADPTES involved the reaction of adenine with IPTES in anhydrous DMSO as shown in Scheme1.All glassware was rigorously cleaned and flame dried.Dry adenine(2g,14.8mmol)was dissolved in anhydrous DMSO(30mL)at145°C under nitrogen.IPTES(4mL,16.2mmol,1.1equiv)was dissolved in anhydrous DMSO(10mL)in a100mL round-bottomed flask.The adenine solution was slowly added to a room-temperaturesolution of IPTES using a double-tipped needle(cannula)over30min.The mixture was allowed to stir for an additional2h to ensurecomplete reaction.DMSO was removed under vacuum,and thesolid product was dissolved in CHCl3and passed through Celite.The solid was then recrystallized from cold toluene.The productwas isolated in about20%yield.1H NMR(400MHz,25°C inCDCl3):δ0.77(-CH2CH2C H2Si-:2H,t);1.27(-Si-(OCH2-C H3)3:9H,t);1.85(-CH2C H2CH2Si-:2H,m);3.54(-C H2N-:2H,q);3.87(-Si-(OC H2CH3)3:6H,q);5.64(-N H CON H-:2H,s);8.41(-N d C H-NH-:1H,s);8.57(-N-C H d N-:1H,s);8.97(-N d CH-N H-:1H,s).13C NMR(100MHz,25°C inCDCl3):δ7.28,17.9,22.6,42.2,58.1,119.6,138.8,147.8,148.6,152.7,155.5.m/z)382.18(theoretical:382.5)Synthesis of Acrylated-and Thymine-Functionalized Poly-styrene.Hydroxy-terminated polystyrene(PS-OH)was synthesizedvia anionic polymerization of styrene initiated with sec-BuLi incyclohexane at40°C.The living anions were end-capped withethylene oxide.60,61Acrylation of PS-OH and subsequent reactionwith thymine was performed according to a literature procedure.43The PS-thymine product was characterized using1H NMRspectroscopy.PS-OH:M n)1700g/mol,M w/M n)1.08;PS-thymine:M n)2000g/mol,M w/M n)1.05. Characterization.Size-exclusion chromatography(SEC)data was obtained using a717Autosampler system equipped with three in-line5µm PLgel MIXED-C columns,a Waters2410refractive index detector operating at880nm,a Wyatt Technology miniDawn multiple-angle laser-light scattering(MALLS)detector operating at 690nm and calibrated with polystyrene standards,and a Viscotek model270differential/light-scattering dual detector.The refractive index increment(dn/d c)was calculated online.1H,13C,and29Si NMR spectroscopy were performed on a Varian UNITY spectrometer at400,100,and79.5MHz,respectively,with CDCl3as the solvent. Fast atom bombardment mass spectrometry(FAB-MS)was carried out using a Fissons Instruments VG Quattro.Substrate Treatment.Silicon wafers were cut into1cm2samplesand sonicated for5min in dichloromethane and5min in methanol.The wafers were blown with N2and cleaned with freshly preparedPiranha solution(concentrated H2SO4/H2O2;v/v:70/30)at90°Cfor1h,rinsed with milli-Q water,and cleaned with NH3/H2O2/H2O(v/v/v:1/1/5)at60°C for15min.The wafers were then rinsed withmilli-Q water several times,blown dry with N2,and immediatelyimmersed in the alkoxysilane solution and allowed to stir for a giventime.(Caution:Piranha solution reacts V iolently with many organicmaterials and should be handled with care.)Covalent Modification of Silicon Surfaces.Freshly cleanedsilicon wafers were modified with a5mM solution of(25/75;mol/mol)ADPTES/MPTES in CHCl3for6h and subsequently sonicatedthree times in CHCl3to remove any physisorbed material.Surfacemodification exclusively with MPTES and ADPTES was carried(58)Overberger,C.G.;Inaki,Y.;Nambu,Y.J.Polym.Sci.,Part A:Polym. Chem.1979,17,1759.(59)Park,J.S.;Lee,G.S.;Lee,Y.-J.;Park,Y.S.;Yoon,K.B.J.Am.Chem. Soc.2002,124,13366.(60)Quirk,R.P.;Mathers,R.T.;Wesdemiotis, C.;Arnould,M. A. Macromolecules2002,35,2912.(61)Quirk,R.P.;Pickel,D.A.;Hasegawa,H.Macromol.Symp.2005,226, 69.Scheme1.Synthesis of ADPTES with Selective Coupling tothe SecondaryAmineHydrogen Bonding for Re V ersible Polymer Adhesion Langmuir,Vol.22,No.3,20061101out under similar conditions.Wafers were characterized after each modification step using XPS and water contact angle measurements.PS -Thymine/PS -OH Treatment.The alkoxysilane-modified surfaces were immersed in a 5mM solution of PS -thymine or PS -OH in CHCl 3for 24h and exhaustively rinsed with both CHCl 3and THF.Surface Characterization.The modified silicon surfaces were sonicated in a Branson 1200ultrasonic generator for 1h.Static water contact angles were measured in sessile drop mode using an FTA-200contact angle goniometer with a syringe-driven droplet.The values were measured 30s after dispensing the drop to obtain equilibrium values.Contact angles were measured at four to five different spots on each surface.XPS was obtained on a Perkin-Elmer model 5400instrument fitted with a Mg K R X-ray source (1253.8eV)at a takeoff angle of 30°.The anode was operated at 250W.The 285eV photoelectron peak of C 1s electrons was used as an internal XPS standard.Results and DiscussionA novel adenine-containing alkoxysilane was synthesized in a single step via the reaction of adenine with IPTES (Scheme 1).1H and 13C NMR spectroscopy and FAB-MS confirmed the chemical structure of the isolated product.Characteristic 1H NMR resonances associated with the adenine groups were observed at 5.64ppm (-N H CON H -),8.41ppm (-N d C H -NH -),8.57ppm (-N -C H d N -),and 8.97ppm (-N d CH -N H -)in addition to resonances associated with triethoxysilane,which confirmed successful derivatization (Figure 1).29Si NMR spectra for both IPTES and ADPTES exhibited a single alkoxysilane Si resonance and confirmed the absence of any alkoxysilane hydrolysis (Figure 2)because any hydrolysis or condensation of the ethoxysilane group would have resulted in a pronouncedshift in the Si resonance to lower or higher field,respectively.62A three-step synthetic procedure for the synthesis of PS -thymine was adopted from our earlier literature,43and 1H NMR spectroscopy confirmed successful functionalization.Freshly cleaned silicon surfaces were modified with a mixture of ADPTES/MPTES at a molar ratio of 1:3from a CHCl 3solution.Anhydrous CHCl 3was used to eliminate both premature hydrolysis of the ethoxysilane groups and multilayer formation.63A solution concentration of 5mM was used.MPTES was used as a diluent to lower the concentration of adenine groups on the silicon surface.Dilution of the adenine groups was considered because earlier literature has shown that the exclusive presence of molecular recognition groups on solid surfaces hinders the recognition phenomenon.1,64The XPS elemental compositions of MPTES-and ADPTES/MPTES-coated silicon surfaces are shown in Table 1.It was not possible to quantify the mercapto groups on the surface because of the susceptibility of -SH groups to oxidation under ambient conditions.65Also,it was not possible to avoid oxidation of the mercapto groups despite performing reactions and storing the samples in the absence of light.The sulfur region in the XPS spectrum showed two peaks centered at 163.4and 168.3eV(62)Kelts,L.W.;Armstrong,N.J.J.Mater.Res.1989,4,423.(63)Moon,J.H.;Shin,J.W.;Kim,S.Y.;Park,ngmuir 1996,12,4621.(64)Wang,Z.-H.;Jin,G.Colloids Surf.,B 2004,34,173.(65)Liu,J.;Hlady,V.Colloids Surf.,B 1996,8,25.Figure 1.1H NMR spectrum of ADPTES in CDCl 3(2wt %solution).Figure 2.29Si NMR spectra in 16wt %CDCl 3containing 0.06M Cr(acac)3of (a)IPTES and (b)ADPTES.Table 1.XPS Elemental Composition of the MPTES and ADPTES/MPTES-Modified Silicon Surface before and afterPS -Thymine Treatmentatomic composition (%)MPTES modified b ADPTES/MPTESmodified c XPS photoeletcronpeak abinding energy (eV)before after d before after dC 1s 285.029272033O 1s 532.335373630Si 2p 102.7;99.031313528N 1s 399.945S 2p163.4;168.35554aXPS conditions:Mg anode,takeoff angle )30°.b Surface modification with MPTES:5mM MPTES in CHCl 3,6h,extracted with CHCl 3.c Surface modification with the ADPTES/MPTES mix-ture:5mM ADPTES/MPTES (1:3molar ratio)in CHCl 3,6h,extracted with CHCl 3.d Surface modification with PS:5mM PS -thymine in CHCl 3,24h,extracted with CHCl 3/THF.1102Langmuir,Vol.22,No.3,2006Viswanathan et al.attributed to -SH groups and oxidized byproduct species,respectively.65However,the latter peak at 168.3eV was predominant,which indicated that most mercapto groups were oxidized under the experimental conditions.The S 2p photo-electron peak also indicated some residual sulfuric acid that was used in the cleaning procedure;this led to further difficulty in estimating the actual concentration of the mercapto sites on the surface.Although N was not observed on silicon surfaces that were coated with MPTES,XPS analysis of the silicon surface detected N after treatment with the ADPTES/MPTES mixture,as shown in Figure 3,which indicated successful adenine functionalization.The principal N 1s core-level peak exhibited a binding energy of 399.9eV,which was similar to literature values.66The C/N ratio was calculated on the basis of the atomic compositions given in Table 1for the surface modified with the mixture before polymer deposition and were higher than expected on the basis of the chemical composition of ADPTES,which further indicated co-deposition of MPTES on the surface.However,it was not possible to determine the actual ratio of N/S on the surface because of the above-mentioned reasons.Diluent systems with distinct XPS photoelectron peaks are currently under investigation in an attempt to determine the relative ratios of diluent/adenine on the surface.However,on the basis of a C/N ratio of 3.7and the chemical composition of the alkoxysilanes,it was estimated that there was 1ADPTES for every 4.4MPTES on the surface.This ratio is higher than the theoretical ratio based on solution composition,which would ideally give a C/N ratio of 3:1,assuming complete hydrolysis of the ethoxy groups.Preferential chemisorption of the mercapto compound 67on the surface was disregarded on the basis of the following justification.For the MPTES-coated surface,the C/S ratio that was calculated from XPS was 6,which is higher than the expected ratio of 3calculated from the chemical composition of MPTES.Such a high ratio for C/S was observed for surfaces coated with mercaptopropyl trimethoxysilane and MPTES and was attributed to the presence of carbon impurities.65,68A similar trend was observed for surfaces coated with ADPTES,where the surfaces showed a C/N ratio of 2.8compared to the expected value of 1.5.Thus,the higher than expected C/N ratio from the relative concentrations of the two silanes in solution in the case of ADPTES and the mixture was attributed to the presence of carbon contamination.The atomic compositions of the MPTES-and ADPTES/MPTES-coated surfaces following PS -thymine treatment and solvent rinse are also listed in Table 1.The atomic %C on silicon surfaces that were modified with the ADPTES/MPTES mixture increased following exposure to the PS -thymine solution,whereas the MPTES-modified surface showed no change.The %O and %Si on the ADPTES/MPTES-modified surface also decreased upon exposure to PS -thymine solution,which further confirmed the hydrogen bond-mediated attachment of PS -thymine to the ADPTES/MPTES-modified surface illustrated in Figure 4.When the surface was modified only with ADPTES,XPS atomic %C did not reveal polymer attachment as shown in Table 2,which suggested the role of steric hindrance in molecular recognition in a fashion similar to the earlier literature.1,64Water contact angle measurements further supported XPS data.Static water contact angle results for MPTES-,ADPTES-,and ADPTES/MPTES-modified surfaces before and after PS -thymine treatment are summarized in Table 3.(66)Herne,T.M.;Tarlov,M.J.J.Am.Chem.Soc.1997,119,8916.(67)Heise,A.;Stamm,M.;Rauscher,M.;Duschner,H.;Menzel,H.Thin Solid Films 1998,327-329,199.(68)Hu,M.;Noda,S.;Okubo,T.;Yamaguchi,Y.;Komiyama,H.Appl.Surf.Sci.2001,181,307.Figure 3.XPS survey spectra of silicon surfaces modified with (a)MPTES and (b)ADPTES/MPTES.Figure 4.Depiction of proposed molecular recognition between an ADPTES/MPTES-modified silicon surface and a thymine-func-tionalized polymer.Table 2.XPS Elemental Composition of the ADPTES-Modified Silicon Surface before and after PS -Thymine Treatment atomic composition (%)XPSphotoelectron peak abefore b after c C 1s 2827O 1s 3233Si 2p 3131N 1s99aXPS conditions:Mg anode,takeoff angle )30°.b Surface modification with ADPTES:5mM ADPTES in CHCl 3,6h,extracted with CHCl 3.c Surface modification with PS:5mM PS -thymine in CHCl 3,24h,extracted with CHCl 3/THF.Hydrogen Bonding for Re V ersible Polymer Adhesion Langmuir,Vol.22,No.3,20061103。