高中数学必修5第2章《数列》单元测试题
(完整版)高中数学必修5数列基础题测试卷.docx

高一数学必修五第二章数列测试题一 . (每小 5 分,共 60分)1、已知数列{a n}的通公式a n n 23n 4( n N * ) ,a4等于( ).A、 1B、 2C、 0D、 32、在等比数列 { a n } 中 , 已知11a59 , a3( )a9C 、1A、 1 B 、 3 D 、± 33、等比数列a n中 , a29, a5 243,a n的前 4 和()A、 81B、 120 C 、 168D、 1924、数列 1, 3, 6,10,⋯的一个通公式是()22n(n 1)n(n 1)A、a n =n -(n-1)B、 a n=n -1C、 a n= D 、a n =225、已知等差数列a n中 , a2a88 ,数列前9 和S9等于 ()A、 18B、 27C、 36D、 456、S n是等差数列a n的前n和,若S735 , a4()A、8B、 7C、 6D、 57、已知数列3 ,3, 15, ⋯ ,3(2n1), 那么 9 是数列的()A、第 12 B 、第 13C、第 14D、第 158、等差数列{ a n}的前m和 30,前2m 和100,它的前3m 和是()A、 130B、170C、 210D、 2609、a n是等差数列,a1a3a59, a69 ,个数列的前 6 和等于()A、 12B、 24C、 36D、 4810、已知某等差数列共有10 ,其奇数之和15,偶数之和30,其公差()A、 5B、4C、3D、211、已知数列 2 、 6、10 、14 、 3 2 ⋯那么 7 2 是个数列的第几()A、 23B、24C、 19D、2512、在等比数列{ a n}(n N* )中,若a11, a4110 项和为(,则该数列的前)81B 、21C 、211A、222210D 、224211二、填空题(每小题 5 分,共 20 分)13、已知数列的通项a n5n 2 ,则其前 n 项和 S n.14、已知a n是等差数列,a4a6 6 ,其前5项和 S510 ,则其公差d.15、等比数列a n的前n项和为S n,已知S1,2S2,3S3成等差数列,则a n的公比为.16、各项都是正数的等比数列a n,公比q 1 , a5, a7, a8成等差数列,则公比q=三、解答题(70 分)17、有四个数,前三个数成等比数列,其和为19,后三个数为等差数列,其和为12,求此四个数。
版新人教A版必修五第二章数列单元测试卷带答案

新人教A版必修五第二章数列单元测试卷(带答案)(120分,分15 0分)一、(每小5分,共60分)1.数列2,5,22,11L的一个通公式是(,.n3n3.an3n1C.an3n1D.a n3n3.已知数列a n,a13,a26,且a n2an1a n,数列的第五().B.C.12D.6.是数列7,13,19,25,31,L,中的第().2011A.332B.333C.334D.335.在等差数列a n中,若a3a4a5a67450,a2a8()C.180一个首23,公差整数的等差数列,假如前六均正数,第七起数,它的公差是()A.-2B.-3C.-4D.-56.在等差数列{an}中,公差d,若S10=4S5,a1等于()d11A. C.24数列{an}和{bn}都是等差数列,此中a1=25,b1=75,且a100+b100=100,数列{an+bn}的前100之和是()8.已知等差数列{an}的公差d=1,且a1+a2+a3+⋯+a98=137,那么a2+a4+a6+⋯+a98的等于()9.在等比数列{an}中,a1=1,q∈R且|q|≠1,若am=a1a2a3a4a5,m等于()1 0.公差不0的等差数列{a}中,a、a、a挨次成等比数列,公比等于()236A .1B.3n-1(a≠0),个数列的特点是}的前n和()11.若数列{aS =aA.等比数列B.等差数列C.等比或等差数列 D.非等差数列Sn2n1 2.等差数列{a}和{b}的前n和分S与,全部自然数n,都有=nTn Tn3n1a5等于(2920D.11b5 A.B. C.17314311二、填空(每小4分,共16分)13.数列{a n}的前n和S n=n2+3n+1,它的通公式.1 4.已知{1}是等差数列,且a2=2-1,a4=2+1,a10=.a n1 5.在等比数列中,若S10=10,S20=30,S30=.1 6.数列11,21,31,41,⋯的前n和.2441 6三、解答:17.(本小分12分)已知等差数列{an}中,Sn=m,Sm=n(m≠n),求Sm+n.18.(安分12分)等差数列{an}的前n和Sn,已知a3=12,S12>0,S13<0.求公差d的取范. (安分12分)已知等差数列{an1102?并求此最大.}中,a =29,S=S,个数列的前多少和最大20.(安分12分)2a1=5,an+1=2an+3(n≥1),求{an}的通公式.21.(安分12分)乞降:1+4+7+⋯+3n25525n122.(安分14分)已知数列{an}中,Sn是它的前n和,而且Sn+1=4an+2(n=1,2,⋯),a1=1.(1) bn=an+1-2an(n=1,2,⋯)求{bn}是等比数列;(2) cn=an n(n=1,2⋯)求{cn}是等2差数列;(3)求数列{an}的通公式及前 n和公式.数列元量参照答案一、3二、填空13.a n5n12715.70n2n2114.-4716.22n2n2n2三、解答1 7.分析:np2+qn np2+qn=m;①S=n2+qm=n②m①-②得:p(n2-m2)+q(n-m)=m-n即p(m+n)+q=-1(m ≠n)Sm+n=p(m+n)2+q(m+n)=(m+n)[p(m+n)+q]=-(m+n).121112a1d018.分析:由S12>0及S13<0可得2131213a1d022a+11d>024+7d>01即又∵a3=12,∴a1=12-2d∴a+6d<03+d <01∴-24<d<-3.7分析:数列{a n}的公差d∵S10201092019解得d=-2=S,∴10×29+d=20×29+d∴a n=-2n +3122个数列的前n和最大,a≥0-2n+31≥0n需:即an+1≤0-2(n+1)+31≤0∴≤n≤∵n∈N,∴n=15∴当n=15,Sn最大,最大151514S=15×29+(-2)=225.20.分析:令an=bn+k,an+1=bn +1+k2∴b n+1+k=2(bn +k)+3即bn+1-2bn=k+3令k+3=0,即k=-3an=bn-3,bn+1=2bn明{bn}等比数列,q=2b1=a1-k=8,∴b n=8·2n-1=2n+2∴a n=2n+2-3.2分析:++⋯+3n23n1.Sn7+2=1+525n25n11Sn=+4+7+⋯+3n5+3n2②552535n15n①-②得:443333n2(15n1)3n25S n1552L5n15n13115n575n12n7Sn75n12n7.45n16n12 2.分析:(1)∵S n+1n+n+1+2②=4a+2①∴S=4a②-①得Sn+2n+1n+1n即an+2n+,-S=4a-4a(n=1,2,⋯)=4a-4a形,得an+2-2an+1=2(an +1-2an)∵b n=an+1-2an(n=1,2,⋯)∴b n+1=2bn.由此可知,数列{b n}是公比2的等比数列;由S2=a1+a2=4a1+2,又a1=1,得a2=5故b1=a2-2a1=3∴b n=3·2n-1.(2) Qc nan(n1,2,L),cn1nan1an a n12a nbnn122n12n1,将bn=3·2n-1代入,得cn +1-cn=(n=1,2,⋯)由此可知,数列{cn}是公差的等差数列,它的首a11c1=,故c3(n)3n1.n44( 3)Qc n3n11(3n1)∴a n=2n·c n=(3n-1)·2n-2(n=1,2,⋯);44当n≥2,S-n-1+2,因为Sn =4an1+2=(3n-4)·21=a1=1也合适于此公式,因此所求{an nn-1 (3n-4)·2+2.}的前n和公式是:5。
第2章数列测试题含详细答案(必修5)

南京市高一数学5 (必修)第二章:数列、选择题1 在数列 1, 1,2,3, 5, 8, x, 21, 34, 55 中,x 等于() A. 11 B. 125•已知一等比数列的前三项依次为x, 2x - 2, 3x 3 ,1那么-13—是此数列的第()项 2A. 2B. 4C. 6D. 86 .在公比为整数的等比数列'弘{中,如果ai ai 二1& as as 二12,那么该数列的前8项之和为() A. 513B. 512 225C. 510D.8、填空题1. 等差数列 右,中,a? =9, as =33,贝广厂的公差为 __________________________2. 数列(a.)是等差数列,a4 =7,贝ij S7 = ___________________ 6 ■计算 log 3 : ,,3*3]…、<3,二 _________ . A • 66B. 99 C ■ 144D. 297 彎比欢列a 冲, &2 二 9, 35 二 243,则 的前4项和为(A . 81B . 120C • 1684..2 1 与 2 -1, D • 192 两数的等比中项是( )1A. 1B. 一 1C. _1D.—2.等差数列{&}中,Qi 乜 4=39, S3 一 a 27, 的和S9等于( ) 贝v 数列{&}前9项三、解答题1 •成等差数列的四个数的和为26,第二数与第三数之积为40,求这四个数。
2.在等差数列 屮,厂 一 0. 3, a (2 =3. 1,求 a (s + a 〔9 + a?o + a?i + a?2 的值。
3. 求和:(a -1) (a 2 -2) ••• (a 21 - n), (a = 0)4.设等比数列& •'前n 项和为5 ,若S3 • S6二2S“求数列的公比q 参考答案(数学5必修)第二章[基础训练A 组]l.C A E- n - n 1=a n • 2 -B ai ' ai' a? — 39, a3 >a a a - 27, 3ai —13, a6 —99 9 9s 9 (d aj (d aj (13 9> 993. B 色二27 二 q 3, q —3,印二生二3,£ 二 冯二A120a 2 q 1-3 4. C x :=( l)f -2 =l)x ; 1一、选择题——39, 3a 5. B x(3x 3)= (XT 22)x 尸或 lx 二而 4x 二-lx 二-46. C3x 32x 2=_4x(3ai(l q ) =18, ai (q q2)二12,jfn q Z, q = 2, ai = 2,z\1-2二、填空题5.—124. -753 35. -26.三、解答题1.2. 5-2〃d5-22(bl .=8 2.9/吩a】a9)岂仝q J或q=2,22 251049 S7=7 (a<i ■ a:) = 7 印二4 9bi b 65-12 =25, q = ± 5, a<io = a.9 q=±75 5logL ・T3 = log3(3,z 3 刁…3 戶)二log3(3八二丄+丄+ +丄二址3“ 12-2n解:设四数为a—3d, a -d, a d, a 3d, 则4a = 26, a2 -d2 = 4013,d或,23时,时, 四数为2, 5,8,113四数为11,8, 5,2解:dis &19 &20 &21 &22 ―5&20, &12 —3-5 二7d 二2・ & <7-0.4 a?o — ai2 8d — 3. 1 3. 2 = 6. 3…&(8 a (9 a?o a?i a?2 二5a?o 二6. 3 5 一31. 5解:原式二(&玄・・・a n) -(1 2 3.•…-n)二(a 『・・・V -)3)2a(l ——a a) n(n 1)(a.=1)1 -a 23 6由 S3 S6=2S F —q) M —qi/ —q)1-q 1 -q 2q_q —0 =o, 2 (q 3)3 —q 3 一 1 二0,得 cf 或 cf 二1, 3. 两个等華数加{a n l£n [ —「一二一二一,则旦小二“八也+・・・+(1)n +3 b 5 --------------------4. 在等比数列 位}中,若厂3,厂75,则印。
第二章数列单元综合测试(人教A版必修5)

第二章数列单元综合测试时间:120分钟 分值:150分第Ⅰ卷(选择题,共60分)1.数列{2n +1}的第40项a 40等于( ) A .9 B .10 C .40D .41解析:a 40=2×40+1=81=9.答案:A2.等差数列{2-3n }中,公差d 等于( ) A .2 B .3 C .-1D .-3解析:设a n =2-3n ,则an +1-a n =[2-3(n +1)]-(2-3n )=-3. 答案:D3.数列{a n }的通项公式是a n =2n ,S n 是数列{a n }的前n 项和,则S 10等于( )A .10B .210C .210-2D .211-2解析:∴数列{a n }是公比为2的等比数列且a 1=2.答案:D4.在等差数列{a n }中,前n 项和为S n ,若a 7=5,S 7=21,那么S 10等于( ) A .55 B .40 C .35D .70解析:设公差为d ,则⎩⎪⎨⎪⎧a 1+6d =5,7a 1+21d =21,解得d =23,a 1=1,则S 10=10a 1+45d =40. 答案:B5.等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列.若a 1=1,则S 4等于( ) A .7 B .8 C .15D .16解析:设公比为q ,由于4a 1,2a 2,a 3成等差数列, 则4a 2=4a 1+a 3,所以4q =4+q 2,解得q =2. 所以S 4=a 1(1-q 4)1-q =1-241-2=15.答案:C6.等差数列{a n }的前n 项和为S n, 若a 3+a 17=10,则S 19的值是( ) A .55 B .95 C .100D .不确定解析:a 3+a 17=a 1+a 19,∴S 19=19(a 1+a 19)2=192×10=95.答案:B7.设{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13=( )A .120B .105C .90D .75解析:{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,即3a 2=15,则a 2=5. 又a 1a 2a 3=80,∴a 1a 3=(5-d )(5+d )=16,∴d =3.答案:B8.一个只有有限项的等差数列,它前5项的和为34,最后5项的和为146,所有项的和为234,则它的第7项等于( )A .22B .21C .19D .18解析:设该数列有n 项,且首项为a 1,末项为a n, 公差为d .则依题意有⎩⎪⎨⎪⎧5a 1+10d =34,①5a n -10d =146,②a 1+an2·n =234,③①+②可得a 1+a n =36.代入③得n =13.从而有a 1+a 13=36. 又所求项a 7恰为该数列的中间项,∴a 7=a 1+a 132=362=18.故选D.答案:D9.三个不同的实数a ,b ,c 成等差数列,又a ,c ,b 成等比数列,则ab 等于( )A .-2B .2C .-4D .4解析:∵2b =a +c ,∴c =2b -a .∵c 2=ab ,∴a 2-5ab +4b 2=0,∴a =b (舍去)或a =4b ,∴a b=4. 答案:D10.已知等比数列{a n }满足a n >0,n =1,2,…,且a 5·a 2n -5=22n (n ≥3),则当n ≥1时,log 2a 1+log 2a 3+…+log 2a 2n -1等于( )A .n (2n -1)B .(n +1)2C .n 2D .(n -1)2解析:设公比为q ,答案:C11.在一直线上共插有13面小旗,相邻两面小旗之间距离为10 m ,在第一面小旗处有一个人,把小旗全部集中到一面小旗的位置上,每次只能拿一面小旗,要使他走的路程最短,应集中到哪一面小旗的位置上( )A .7B .6C .5D .4解析:图1如图1所示,设将旗集中到第x 面小旗处,则从第一面旗到第x 面旗共走路程为10(x-1)m ,然后回到第二面旗处再到第x 面处的路程是20(x -2)m ,…,从第x -1面到第x 面来回共20 m ,从第x 面处到第x +1面处路程为20 m ,从第x 面到第x +2面处的路程为20×2 m ,….总共的路程为s =10(x -1)+20(x -2)+20(x -3)+…+20×1+20×1+20×2+…+20×(13-x )=10(x -1)+20·(x -2)(x -1)2+20·(13-x )(14-x )2=10[(x -1)+(x -2)(x -1)+(13-x )(14-x )]=10(2x 2-29x +183)=20(x -294)2+31154.∵x ∈N *,∴当x =7时,s 有最小值为780 m , 即将旗集中到第7面小旗处,所走的路程最短. 答案:A12.若数列{a n }是等差数列,首项a 1>0,a 2007+a 2008>0,a 2007·a 2008<0,则使前n 项和S n >0成立的最大自然数n 是( )A .4013B .4014C .4015D .4016解析:由已知a 1>0,a 2007·a 2008<0,可得数列{a n }为递减数列,即d <0,a 2007>0,a 2008<0.利用等差数列的性质及前n 项和公式可得所以使前n 项和S n >0成立的最大自然数n 是4014,选B. 答案:B第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.数列{a n }中的前n 项和S n =n 2-2n +2,则通项公式a n =________. 解析:当n =1时,a 1=S 1=1;当n >1时,a n =S n -S n -1=(n 2-2n +2)-[(n -1)2-2(n -1)+2]=2n -3. 又n =1时,2n -3≠a 1,所以有a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n >1.答案:a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n >114.设{a n }为公比q >1的等比数列,若a 2006和a 2007是方程4x 2-8x +3=0的两根,则a 2008+a 2009=________.解析:方程4x 2-8x +3=0的两根是12和32,答案:1815.等差数列{a n }中,若S 12=8S 4,且d ≠0,则a 1d等于________.解析:∵S 12=12a 1+66d ,S 4=4a 1+6d ,又S 12=8S 4,∴12a 1+66d =32a 1+48d .∴20a 1=18d ,∴a 1d =1820=910.答案:91016.用[x ]表示不超过x 的最大整数,如[0.78]=0,[3.01]=3,如果定义数列{x n }的通项公式为x n =[n5](n ∈N *),则x 1+x 2+…+x 5n =________.解析:x 5n =[5n5]=[n ]=n ,则x 1+x 2+…+x 5n =5[x 5+x 10+x 15+…+x 5(n -1)]+x 5n =5(1+2+…+n -1)+n =52n 2-32n .答案:52n 2-32n三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(本小题10分)三个数成等比数列,其积为512,如果第一个数与第三个数各减2,则成等差数列.求这三个数.解:设三数为aq,a ,aq .由题意,得⎩⎪⎨⎪⎧a 3=512,(a q -2)+(aq -2)=2a , 解得⎩⎪⎨⎪⎧a =8,q =2或⎩⎪⎨⎪⎧a =8,q =12.所以这三个数为4,8,16或16,8,4.18.(本小题12分)求和:(a -1)+(a 2-2)+…+(a n -n ),a ≠0. 解:原式=(a +a 2+…+a n )-(1+2+…+n )=(a +a 2+…+a n )-n (n +1)2=⎩⎪⎨⎪⎧a (1-a n )1-a-n (n +1)2(a ≠1),n -n 22(a =1).19.(本小题12分)已知数列{a n }是等差数列,a 2=6,a 5=18;数列{b n }的前n 项和是T n ,且T n +12b n =1.(1)求数列{a n }的通项公式; (2)求证:数列{b n }是等比数列. 解:(1)设{a n }的公差为d ,∴⎩⎪⎨⎪⎧a 1+d =6,a 1+4d =18,解得a 1=2,d =4. ∴a n =2+4(n -1)=4n -2.(2)证明:当n =1时,b 1=T 1,由T 1+12b 1=1,得b 1=23.当n ≥2时,∵T n =1-12b n ,Tn -1=1-12b n -1,∴T n -T n -1=12(bn -1-b n ).∴b n =12(b n -1-b n ).∴b n =13b n -1. ∴{b n }是以23为首项,13为公比的等比数列.20.(本小题12分)假设某市2007年新建住房400万平方米,其中有250万平方米是中低价房.预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,该市历年所建中低价房的累计面积(以2007年为累计的第一年)等于4750万平方米?解:设n 年后该市每年所建中低价房的面积为a n , 由题意可知{a n }是等差数列,其中a 1=250,d =50,则S n =250n +n (n -1)2×50=25n 2+225n .令25n 2+225n =4750,即n 2+9n -190=0, 解得n =-19或n =10. 又n 是正整数,∴n =10.到2016年底,该市历年所建中低价房的累计面积等于4750万平方米. 21.(本小题12分)设a 1=1,a 2=53,an +2=53an +1-23a n (n ∈N *).(1)令b n =an +1-a n (n ∈N *),求数列{b n }的通项公式;(2)求数列{na n }的前n 项和S n .解:(1)因为b n +1=a n +2-a n +1=53a n +1-23a n -a n +1=23(a n +1-a n )=23b n ,所以数列{b n }是首项为b 1=a 2-a 1=23,公比为23的等比数列,所以b n =(23)n (n =1,2,…).22.(本小题12分)将数列{a n }中的所有项按每一行比上一行多一项的规则排成如下数表:a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 a 10记表中的第一列数a 1,a 2,a 4,a 7,…构成的数列为{b n },b 1=a 1=1.S n 为数列{b n }的前n 项和,且满足2b nb n S n -S 2n=1(n ≥2).(1)证明数列{1S n}成等差数列,并求数列{b n }的通项公式;(2)上表中,若从第三行起,每一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当a 81=-491时,求上表中第k (k ≥3)行所有项的和.解:(1)证明:由已知,当n ≥2时,2b nb n S n -S 2n=1,又因为S n =b 1+b 2+…+b n ,又因为S 1=b 1=a 1=1,所以数列{1S n }是首项为1,公差为12的等差数列.由上可知1S n =1+12(n -1)=n +12,即S n =2n +1.所以当n ≥2时,b n =S n -S n -1=2n +1-2n =-2n (n +1). 因此b n =⎩⎪⎨⎪⎧1,n =1,-2n (n +1),n ≥2. (2)设题表中从第三行起,每行的公比都为q ,且q >0.因为1+2+…+12=12×132=78,所以表中第1行至第12行共含有数列{a n }的前78项.故a 81在表中第13行第三列,因此a 81=b 13·q 2=-491.又b 13=-213×14,所以q =2.记表中第k (k ≥3)行所有项的和为S ,即S =b k (1-q k )1-q =-2k (k +1)·1-2k 1-2=2k (k +1)(1-2k )(k ≥3).。
高中数学必修5《第2章 数列》年单元测试卷

高中数学必修5《第2章数列》年单元测试卷一、选择题(本大题共12个小题,每小题5分,共60分.)1.在等比数列a n中a7•a11=6,a4+a14=5,则等于()A.B.C.或D.或2.已知等比数列{a n}的前n项和为S n,a1=1,且满足S n,S n+2,S n+1成等差数列,则a3等于()A.B.﹣C.D.﹣3.在等差数列{a n}中,已知a4+a8=16,则该数列前11项和S11=()A.58 B.88 C.143 D.1764.已知﹣1,a1,a2,8成等差数列,﹣1,b1,b2,b3,﹣4成等比数列,那么的值为()A.﹣5 B.5C.D.5.等差数列{a n}中,a1=﹣8,它的前16项的平均值是7,若从中抽取一项,余下的15项的平均值为7.2,则抽取的是()A.第7项B.第8项C.第15项D.第16项6.已知{a n}为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=()A.7B.5C.﹣5 D.﹣77.记数列{a n}的前n项和为S n,且S n=2(a n﹣1),则a2=()A.4B.2C.1D.﹣28.某工厂去年产值为a,计划今后五年内每年比上一年产值增长10%,从今年起到第五年,这个工厂的总产值是()A.1.14a B.1.1(1.15﹣1)a C.10(1.15﹣1)a D.11(1.15﹣1)a9.一个等差数列共有10项,其中奇数项的和为26,偶数项的和为15,则这个数列的第6项是()A.3B.4C.5D.610.等比数列{a n}中,|a1|=1,a5=﹣8a2,a5>a2,则a n=()A.(﹣2)n﹣1B.﹣(﹣2n﹣1)C.(﹣2)n D.﹣(﹣2)n11.已知数列{a n}中,a1=3,a2=6,a n+2=a n+1﹣a n,则a2009=()A.6B.﹣6 C.3D.﹣312.等比数列{a n}中,a1=512,公比q=﹣,用M n表示它的前n项之积,即M n=a1•a2•a3…a n,则数列{M n}中的最大项是()A.M11B.M10C.M9D.M8二、填空题(本大题共4小题,每小题4分,共16分.将正确答案填在题中横线上)13.已知等比数列{a n}为递增数列.若a1>0,且2(a n+a n+2)=5a n+1,则数列{a n}的公比q=_________.14.在等比数列{a n}中,前n项和S n=3n+a,则通项公式为_________.15.有三个数成等比数列,其和为21,若第三个数减去9,则它们成等差数列,这三个数分别为_________.16.等差数列{a n}前n项和S n,若S10=S20,则S30=_________.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(12分)若{a n}是公差d≠0的等差数列,通项为a n,{b n}是公比q≠1的等比数列,已知a1=b1=1,且a2=b2,a6=b3.(1)求d和q.(2)是否存在常数a,b,使对一切n∈N*都有a n=log a b n+b成立,若存在求之,若不存在说明理由.18.(12分)已知数列{a n}的前n项和S n=10n﹣n2(n∈N*),又b n=|a n|(n∈N*),求{b n}的前n项和T n.19.(12分)一个等差数列前12项的和为354,前12项中偶数项的和与奇数项的和的比为32:27,求公差d.20.(12分)某专卖店销售一新款服装,日销售量(单位为件)f (n)与时间n(1≤n≤30、n∈N*)的函数关系如下图所示,其中函数f (n)图象中的点位于斜率为5和﹣3的两条直线上,两直线交点的横坐标为m,且第m天日销售量最大.(Ⅰ)求f (n)的表达式,及前m天的销售总数;(Ⅱ)按以往经验,当该专卖店销售某款服装的总数超过400件时,市面上会流行该款服装,而日销售量连续下降并低于30件时,该款服装将不再流行.试预测本款服装在市面上流行的天数是否会超过10天?请说明理由.21.(12分)已知数列{a n}是等差数列,且a1=2,a1+a2+a3=12.(1)求数列{a n}的通项公式;(2)令b n=a n x n(x∈R),求数列{b n}前n项和的公式.22.(14分)已知正项数列{a n}的前n项和为S n,且a n和S n满足:4S n=(a n+1)2(n=1,2,3…),(1)求{a n}的通项公式;(2)设b n=,求{b n}的前n项和T n;(3)在(2)的条件下,对任意n∈N*,T n>都成立,求整数m的最大值.必修5第二章单元测试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的.)1.(5分)在等比数列a n中a7•a11=6,a4+a14=5,则等于()A.B.C.或D.或考点:等比数列的性质.专题:计算题.分析:根据等比中项的性质可知a7•a11=a4•a14求得a4•a14的值,进而根据韦达定理判断出a4和a14为方程x2﹣5x+6=0的两个根,求得a4和a14,则可求.解答:解:a7•a11=a4•a14=6∴a4和a14为方程x2﹣5x+6=0的两个根,解得a4=2,a14=3或a4=3,a14=2∴=或故选C.点评:本题主要考查等比数列的性质.解题过程灵活利用了韦达定理,把数列的两项当做方程的根来解,简便了解题过程.2.(5分)已知等比数列{a n}的前n项和为S n,a1=1,且满足S n,S n+2,S n+1成等差数列,则a3等于()A.B.﹣C.D.﹣考点:等比数列的前n项和;等差数列的性质.专题:计算题;等差数列与等比数列.分析:由已知结合等差数列的定义可得,S n+2﹣S n=S n+1﹣S n+2,从而可得a n+2与a n+1的递推关系,结合等比数列的通项可求a3.解答:解:∵S n、S n+2、S n+1成等差数列,∴S n+2﹣S n=S n+1﹣S n+2.∴a n+2+a n+1=﹣a n+2,∴又a1=1,∴a3=.故选C点评:本题主要考查了利用数列的递推关系构造等比数列求解数列的通项公式,属于基础试题3.(5分)(2012•辽宁)在等差数列{a n}中,已知a4+a8=16,则该数列前11项和S11=()A.58 B.88 C.143 D.176考点:等差数列的性质;等差数列的前n项和.专题:计算题.分析:根据等差数列的定义和性质得a1+a11=a4+a8=16,再由S11=运算求得结果.解答:解:∵在等差数列{a n}中,已知a4+a8=16,∴a1+a11=a4+a8=16,∴S11==88,故选B.点评:本题主要考查等差数列的定义和性质,等差数列的前n项和公式的应用,属于中档题.4.(5分)已知﹣1,a1,a2,8成等差数列,﹣1,b1,b2,b3,﹣4成等比数列,那么的值为()A.﹣5 B.5C.D.考点:等比数列的性质;等差数列的性质.专题:计算题.分析:由﹣1,a1,a2,8成等差数列,利用等差数列的性质列出关于a1与a2的两个关系式,联立组成方程组,求出方程组的解得到a1与a2的值,再由﹣1,b1,b2,b3,﹣4成等比数列,利用等比数列的性质求出b12=4,再根据等比数列的性质得到b12=﹣b2>0,可得出b2小于0,开方求出b2的值,把a1,a2及b2的值代入所求式子中,化简即可求出值.解答:解:∵﹣1,a1,a2,8成等差数列,∴2a1=﹣1+a2①,2a2=a1+8②,由②得:a1=2a2﹣8,代入①得:2(2a2﹣8)=﹣1+a2,解得:a2=5,∴a1=2a2﹣8=10﹣8=2,又﹣1,b1,b2,b3,﹣4成等比数列,∴b12=﹣b2>0,即b2<0,∴b22=(﹣1)×(﹣4)=4,开方得:b2=﹣2,则==﹣5.故选A点评:此题考查了等差数列的性质,以及等比数列的性质,熟练掌握性质是解本题的关键,同时在求b2值时,应先判断得出b2的值小于0,进而开方求出.5.(5分)等差数列{a n}中,a1=﹣8,它的前16项的平均值是7,若从中抽取一项,余下的15项的平均值为7.2,则抽取的是()A.第7项B.第8项C.第15项D.第16项考点:等差数列的通项公式;等差数列的性质.专题:计算题;等差数列与等比数列.分析:由已知及等差数列的求和公式可求S16,然后可求抽取的一项的值,结合a1,可求a16,进而可求d=(a16﹣a1),代入等差数列的通项公式可求n解答:解:由等差数列的求和公式可得S16==7×16,∵7×16﹣x=7.2×15,∴x=4,又a1=﹣8,∴a16=22,d=(a16﹣a1)=2,∴a n=﹣8+(n﹣1)•2=4,解得n=7故选A点评:本题主要考查了等差数列的通项公式及求和公式的简单应用,属于基础试题6.(5分)(2012•黑龙江)已知{a n}为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=()A.7B.5C.﹣5 D.﹣7考点:等比数列的性质;等比数列的通项公式.专题:计算题.分析:由a4+a7=2,及a5a6=a4a7=﹣8可求a4,a7,进而可求公比q,代入等比数列的通项可求a1,a10,即可解答:解:∵a4+a7=2,由等比数列的性质可得,a5a6=a4a7=﹣8∴a4=4,a7=﹣2或a4=﹣2,a7=4当a4=4,a7=﹣2时,,∴a1=﹣8,a10=1,∴a1+a10=﹣7当a4=﹣2,a7=4时,q3=﹣2,则a10=﹣8,a1=1∴a1+a10=﹣7综上可得,a1+a10=﹣7故选D点评:本题主要考查了等比数列的性质及通项公式的应用,考查了基本运算的能力.7.(5分)(2010•龙岩二模)记数列{a n}的前n项和为S n,且S n=2(a n﹣1),则a2=()A.4B.2C.1D.﹣2考点:数列的求和;数列递推式.专题:计算题.分析:先根据题设中递推式求得a1,进而根据S2=2(a2﹣1)求得答案.解答:解:∵S1=2(a1﹣1),∴a1=2∵a1+a2=2(a2﹣1),∴a2=4故选A点评:本题主要考查了数列求和问题.属基础题.8.(5分)某工厂去年产值为a,计划今后五年内每年比上一年产值增长10%,从今年起到第五年,这个工厂的总产值是()A.1.14a B.1.1(1.15﹣1)a C.10(1.15﹣1)a D.11(1.15﹣1)a考点:数列的求和.专题:计算题;应用题.分析:由题意依次列出每年的产值,构成数列,由于从今年起到第五年,可直接列出这个工厂的总产值.得到选项.解答:解:去年产值是a第一年要比去年产值增加10%,那么第一年就是a+10%a,即a(1+0.1)第二年又比第一年增加10%,所以两年是a(1+0.1)(1+0.1)依此类推,第五年是a(1+0.1)(1+0.1)(1+0.1)(1+0.1)(1+0.1),五年总产值为:1.1a+1.12a+…+1.15a=11(1.15﹣1)a故选D点评:本题考查数列求和,数列的知识,考查计算能力,推理能力,是基础题,也是易错题.9.(5分)一个等差数列共有10项,其中奇数项的和为26,偶数项的和为15,则这个数列的第6项是()A.3B.4C.5D.6考点:等差数列的前n项和.专题:计算题;等差数列与等比数列.分析:由题设条件知S偶﹣S奇=5d,从而得到d=﹣2.2,S10=,由此能求出a6的值.解答:解:∵等差数列共有10项,其中奇数项的和为26,偶数项的和为15,S偶﹣S奇=5d,∴d=﹣2.2,S10==5(a5+a6)=5(2a6+2.2)=41,∴a6=3.故选A.点评:本题考查等差数列的通项公式和前n项和公式的求法,解题时要认真审题,注意等价转化思想的合理运用.10.(5分)(2010•江西)等比数列{a n}中,|a1|=1,a5=﹣8a2,a5>a2,则a n=()A.(﹣2)n﹣1B.﹣(﹣2n﹣1)C.(﹣2)n D.﹣(﹣2)n考点:等比数列的性质.专题:计算题.分析:根据等比数列的性质,由a5=﹣8a2得到等于q3,求出公比q的值,然后由a5>a2,利用等比数列的通项公式得到a1大于0,化简已知|a1|=1,得到a1的值,根据首项和公比利用等比数列的通项公式得到a n的值即可.解答:解:由a5=﹣8a2,得到=q3=﹣8,解得q=﹣2,又a5>a2,得到16a1>﹣2a1,解得a1>0,所以|a1|=a1=1则a n=a1q n﹣1=(﹣2)n﹣1故选A点评:此题考查学生灵活运用等比数列的性质及前n项和的公式化简求值,是一道中档题.11.(5分)已知数列{a n}中,a1=3,a2=6,a n+2=a n+1﹣a n,则a2009=()A.6B.﹣6 C.3D.﹣3考点:数列的概念及简单表示法.专题:计算题.分析:由已知条件变形可得数列{a n}的周期为6,可得a2009=a5,在由已知条件求得a5即可解答:解:由条件a n+2=a n+1﹣a n可得:a n+6=a n+5﹣a n+4=(a n+4﹣a n+3)﹣a n+4=﹣a n+3=﹣(a n+2﹣a n+1)=﹣[(a n+1﹣a n)﹣a n+1]=a n,于是可知数列{a n}的周期为6,∴a2009=a5,又a1=3,a2=6,∴a3=a2﹣a1=3,a4=a3﹣a2=﹣3,故a2009=a5=a4﹣a3=﹣6.故选B点评:本题考查数列的周期性,得出周期为6是解决问题的关键,属基础题.12.(5分)等比数列{a n}中,a1=512,公比q=﹣,用M n表示它的前n项之积,即M n=a1•a2•a3…a n,则数列{M n}中的最大项是()A.M11B.M10C.M9D.M8考点:等比数列的性质.专题:计算题;等差数列与等比数列.分析:确定数列的通项,求出M n,即可求得数列{M n}中的最大项.解答:解:由题设a n=512•(﹣)n﹣1,∴M n=a1•a2•a3…a n=[512×(﹣)0]×[512×(﹣)1]×[512×(﹣)2]×…×[512×(﹣)n﹣1]=512n×(﹣)1+2+3+…+(n﹣1)=∵=,∴n=9或10时,取最大值,且n=9时,=1;n=10时,=﹣1,∴M9最大.故选C.点评:本题考查等比数列的通项公式,考查学生的计算能力,属于基础题.此题若直接用列举法可很简明求解:a1=512,a2=﹣256,a3=128,a4=﹣64,a5=32,a6=﹣16,a7=8,a8=﹣4,a9=2,a10=﹣1,当n≥11时,|a n|<1,又M9>0,M10<0,故M9最大.二、填空题(本大题共4小题,每小题4分,共16分.将正确答案填在题中横线上)13.(4分)(2012•辽宁)已知等比数列{a n}为递增数列.若a1>0,且2(a n+a n+2)=5a n+1,则数列{a n}的公比q= 2.考点:等比数列的性质.专题:计算题.分析:由{a n}为递增数列且a1>0可知q>1,由已知可得2()=5a n q,可求q解答:解:∵{a n}为递增数列且a1>0∴q>1∵2(a n+a n+2)=5a n+1,∴2()=5a n q∴2+2q2=5q∴q=2故答案为:2点评:本题主要考查了等比数列的单调性及等比数列通项公式的应用,属于基础试题14.(4分)在等比数列{a n}中,前n项和S n=3n+a,则通项公式为a n=2×3n﹣1.考点:等比数列的前n项和;等比数列的通项公式.专题:计算题;等差数列与等比数列.分析:由S n=3n+a,知a1=S1=3+a,a n=S n﹣S n﹣1=(3n+a)﹣(3n﹣1+a)=2×3n﹣1,由此能求出结果.解答:解:∵S n=3n+a,∴a1=S1=3+a,∵a n=S n﹣S n﹣1=(3n+a)﹣(3n﹣1+a)=2×3n﹣1,∴a1=2.又∵a1=S1=3+a,∴3+a=2,∴a=﹣1.∴a n=2×3n﹣1.故答案为:a n=2×3n﹣1.点评:本题考查数列的通项公式的求法,解题时要认真审题,仔细解答,注意等价转化思想的合理运用.15.(4分)有三个数成等比数列,其和为21,若第三个数减去9,则它们成等差数列,这三个数分别为16,4,1.考点:等比数列的性质;等差数列的性质.专题:计算题;等差数列与等比数列.分析:根据等差数列、等比数列的性质,建立方程组,即可求得结论.解答:解:设三个数为a,b,c,由题意可知,解之得:b=4,a=1,c=16或b=4,a=16,c=1.故答案为:16,4,1.点评:本题考查等差数列、等比数列的性质,考查学生的计算能力,属于中档题.16.(4分)等差数列{a n}前n项和S n,若S10=S20,则S30=0.考点:等差数列的性质.专题:计算题;等差数列与等比数列.分析:利用S10=S20,可得2a1=﹣29d,再利用等差数列的求和公式,即可得到结论.解答:解:∵S10=S20,∴10a1+d=20a1+d,∴2a1=﹣29d.∴S30=30a1+d=15×(﹣29d)+15×29d=0.故答案为:0点评:本题考查等差数列的求和公式,考查学生的计算能力,属于基础题.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(12分)若{a n}是公差d≠0的等差数列,通项为a n,{b n}是公比q≠1的等比数列,已知a1=b1=1,且a2=b2,a6=b3.(1)求d和q.(2)是否存在常数a,b,使对一切n∈N*都有a n=log a b n+b成立,若存在求之,若不存在说明理由.考点:等差数列的通项公式;等比数列的通项公式.专题:等差数列与等比数列.分析:(1)由题意可得a2=1+d=b2=q,a6=1+5d=b3=q2,解之即可;(2)假设存在常数a、b满足等式,可得(3﹣log a4)n+log a4﹣b﹣2=0,进而可得,解之即可.解答:解:(1)由题意可得a2=1+d=b2=q,a6=1+5d=b3=q2,上述两式联立求解可得q=4,d=3.(2)假设存在常数a、b满足等式,由a n=1+(n﹣1)d=3n﹣2,b n=q n﹣1=4n﹣1及a n=log a b n+b得(3﹣log a4)n+log a4﹣b﹣2=0,∵n∈N*,∴,∴a=,b=1,故存在.点评:本题考查等差数列和等比数列的通项公式,涉及方程组的求解,属基础题.18.(12分)已知数列{a n}的前n项和S n=10n﹣n2(n∈N*),又b n=|a n|(n∈N*),求{b n}的前n项和T n.考点:数列的求和.专题:计算题;等差数列与等比数列.分析:由题意可得{b n}是由一个首项为正值,而公差为负的一个等差数列,{a n}的各项取绝对值后得到的一个新数列,因此求{b n}的前n项和可转化为求数列{a n}的和的问题.解答:解:由S n=10n﹣n2可得S n﹣1=10(n﹣1)﹣(n﹣1)2,(n≥2)两式相减可得a n=11﹣2n∵n=1时,a1=S1=10﹣1=9,满足上式∴a n=11﹣2n,∴b n=|11﹣2n|.显然n≤5时,b n=a n=11﹣2n,T n=10n﹣n2.n≥6时,b n=﹣a n=2n﹣11,T n=(a1+a2+…+a5)﹣(a6+a7+…+a n)=2S5﹣S n=50﹣10n+n2故T n=点评:本题考查数列的通项与求和,考查学生分析解决问题的能力,属于中档题.19.(12分)一个等差数列前12项的和为354,前12项中偶数项的和与奇数项的和的比为32:27,求公差d.考点:等差数列的前n项和;等差数列的性质.专题:等差数列与等比数列.分析:由题意可得,可解得它们的值,而S偶﹣S奇=6d,代入可解.解答:解:设首项为a1,公差为d,则由题意可得,解得又S偶﹣S奇=6d,∴d=5.点评:本题考查等差数列的性质和公差的定义,属基础题.20.(12分)某专卖店销售一新款服装,日销售量(单位为件)f (n)与时间n(1≤n≤30、n∈N*)的函数关系如下图所示,其中函数f (n)图象中的点位于斜率为5和﹣3的两条直线上,两直线交点的横坐标为m,且第m天日销售量最大.(Ⅰ)求f (n)的表达式,及前m天的销售总数;(Ⅱ)按以往经验,当该专卖店销售某款服装的总数超过400件时,市面上会流行该款服装,而日销售量连续下降并低于30件时,该款服装将不再流行.试预测本款服装在市面上流行的天数是否会超过10天?请说明理由.考点:函数模型的选择与应用.分析:(1)由函数的图象我们不难得到f (n)是一个分段函数,由函数f (n)图象中的点位于斜率为5和﹣3的两条直线上,我们可以利用待定系数法设出函数的解析式,然后将函数上的点代入函数的解析式,求出参数,进而得到f (n)的表达式,及前m天的销售总数;(2)根据(1)中的解析式,我们求出第13天的销售量,结合(1)的结论,易得第14天时该款服装的总数超过400件,然后计算出日销售量低于30件时的天数,两者之间的差值,即为本款服装在市面上流行的天数.解答:解:(I)根据题意,设f(n)=,(n∈N*)而f(1)=2,∴5+a=2Þa=﹣3.又5m+a=﹣3m+b,∴b=8m+a=8m﹣3,∴f(n)=.(n∈N*)由f(m)=57得m=12.∴f(n)=(n∈N*)前12天的销售总量为5(1+2+3++12)﹣3×12=354件.(II)第13天的销售量为f(13)=﹣3×13+93=54件,而354+54>400件,∴从第14天开始销售总量超过400件,即开始流行.设第x天的日销售量开始低于30件(12<x≤30),即f(x)=﹣3x+93<30,解得x>21.∴从第22天开始日销售量低于30件.∵21﹣13=8,∴该服装流行的时间不超过10天.点评:已知函数图象求函数的解析式,是一种常见的题型,关键是要知道函数的类型,利用待定系数法设出函数的解析式,然后将函数图象上的点的坐标代入求出参数的值,即可得到要求函数的解析式.21.(12分)(2003•北京)已知数列{a n}是等差数列,且a1=2,a1+a2+a3=12.(1)求数列{a n}的通项公式;(2)令b n=a n x n(x∈R),求数列{b n}前n项和的公式.考点:等差数列的通项公式;数列的求和.专题:综合题.分析:(1)本题是一个数列的基本量的运算,根据题目所给的首项和前连续三项的值,写出关于公差的方程,解方程可得结果.(2)构造一个新数列,观察这个数列是有一个等差数列和一个等比数列的积构成的,这种结构要用错位相减法求的结果,解题时注意等比数列的公比与1的关系,进行讨论.解答:解:(1)设数列{a n}的公差为d,则a1+a2+a3=3a1+3d=12.又a1=2,得d=2.∴a n=2n.(2)当x=0时,b n=0,S n=0,当x≠0时,令S n=b1+b2+…+b n,则由b n=a n x n=2nx n,得S n=2x+4x2++(2n﹣2)x n﹣1+2nx n,①xS n=2x2+4x3++(2n﹣2)x n+2nx n+1.②当x≠1时,①式减去②式,得(1﹣x)S n=2(x+x2++x n)﹣2nx n+1=﹣2nx n+1.∴S n=﹣.当x=1时,S n=2+4++2n=n(n+1).综上可得,当x=1时,S n=n(n+1);当x≠1时,S n=﹣.点评:数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用.一方面数列作为一种特殊的函数与函数思想密不可分;另一方面学习数列也为进一步学习数列的极限等内容做好准备.22.(14分)已知正项数列{a n}的前n项和为S n,且a n和S n满足:4S n=(a n+1)2(n=1,2,3…),(1)求{a n}的通项公式;(2)设b n=,求{b n}的前n项和T n;(3)在(2)的条件下,对任意n∈N*,T n>都成立,求整数m的最大值.考点:数列与函数的综合;数列的求和;数列递推式.专题:综合题;等差数列与等比数列.分析:(1)由4S n=(a n+1)2,知4S n﹣1=(a n﹣1+1)2(n≥2),由此得到(a n+a n﹣1)•(a n﹣a n﹣1﹣2)=0.从而能求出{a n}的通项公式.(2)由(1)知b n===(﹣),由此利用裂项求和法能求出T n.(3)由(2)知T n=(1﹣),T n+1﹣T n=(﹣)>0,从而得到[T n]min=T1=.由此能求出任意n∈N*,T n>都成立的整数m的最大值.解答:解:(1)∵4S n=(a n+1)2,①∴4S n﹣1=(a n﹣1+1)2(n≥2),②①﹣②得4(S n﹣S n﹣1)=(a n+1)2﹣(a n﹣1+1)2.∴4a n=(a n+1)2﹣(a n﹣1+1)2.化简得(a n+a n﹣1)•(a n﹣a n﹣1﹣2)=0.∵a n>0,∴a n﹣a n﹣1=2(n≥2).∴{a n}是以1为首项,2为公差的等差数列.∴a n=1+(n﹣1)•2=2n﹣1.(2)b n===(﹣).∴T n=[(1﹣)+()+…+(﹣)]=(1﹣)=.(3)由(2)知T n=(1﹣),T n+1﹣T n=(1﹣)﹣(1﹣)=(﹣)>0.∴数列{T n}是递增数列.∴[T n]min=T1=.∴<,∴m<.∴整数m的最大值是7.。
高中数学必修5第2章数列单元试题.doc

A. 35.在数列{。
”}中, B.5C. 7D. 9a” = (一1)"2如(〃n 2),则°5 =()A . 16J B. 16 c._8数学必修5第2章数列单元试题%1.选择题1.数列1, 3, 6, 10,…的一个通项公式是()(A)a…=n-(n-l)(B)a…=n-l(O a”=十°(〃)——2 22.已知数列乜,3,届,…,J3(2“-1),那么9是数列的()(〃)第12项(B)第13项(C)第14项(〃)第15项3.已知等差数列{a”}的公差dHO,若a§、a9, a阴成等比数列,那么公比为()r -j -t -A. -B. -C. -D.-4 3 2 34.等差数列{&}共有2n+l项,其中奇数项之和为4,偶数项之和为3,则n的值是(6.在等差数列{a”}中,Q1 + 弘 +=39 ,+ 08 =33 则=()C. 24D. 21,前三项的和是12,前三项的积为48,则它的首项是(C. 4D. 6&两个等差数列,它们的前刀项和之比为色出,则这两个数列的第9项之比是()2n-l5 8 8 7A. -B. -C. -D.-3 5 3 49. ------------------------------------------------------------------------------------------------ 设等比数列{a n}中,每项均为正数,且a3• a s=81, log3ai + log3a2d ----------------------------------------------------------------- log3ai0等于A. 5B. 10C. 20D. 4010.设函数f 3满足/(/T+1)二(力WN*)且/(l)二2,则/(20)为()2A. 95B. 97C. 105D. 192二、填空题:11>数列{a讣中,ai=5, a n+i —a n=3则这个数列的通项公式是______________ 。
高中数学必修五第二章《数列》单元测试卷及答案

高中数学必修五第二章《数列》单元测试卷及答案(2套)单元测试题一一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.等差数列{}n a 中,1510a a +=,47a =,则数列{}n a 的公差为( ) A .1B .2C .3D .42.在等比数列{}n a 中,4a 、12a 是方程2310x x +=+的两根,则8a 等于( ) A .1B .1-C .1±D .不能确定3.已知数列{}n a 的通项公式是31,22,n n n a n n +⎧=⎨-⎩为奇数为偶数,则23a a 等于( )A .70B .28C .20D .84.已知0a b c <<<,且a ,b ,c 为成等比数列的整数,n 为大于1的整数,则log a n ,log b n ,log c n 成( )A .等差数列B .等比数列C .各项倒数成等差数列D .以上都不对5.在等比数列{}n a 中,1n n a a +<,且2116a a =,495a a +=,则611a a 等于( ) A .6B .23C .16D .326.在等比数列{}n a 中,11a =,则其前3项的和3S 的取值范围是( ) A .(],1-∞- B .(),01),(-∞∞+C .3,4⎡⎫+∞⎪⎢⎣⎭D .[)3,+∞7.正项等比数列{}n a 满足241a a =,313S =,3log n n b a =,则数列{}n b 的前10项和是( ) A .65B .65-C .25D .25-8.等差数列{}n a 中,若81335a a =,且10a >,n S 为前n 项和,则n S 中最大的是( ) A .21SB .20SC .11SD .10S9.已知等比数列{}n a 的前n 项和为n S ,1316n n S x -⋅=-,则x 的值为( ) A .13B .13-C .12D .12-10.等差数列{}n a 中,n S 是{}n a 前n 项和,已知62S =,95S =,则15S =( )A .15B .30C .45D .6011.一个卷筒纸,其内圆直径为4 cm ,外圆直径为12 cm ,一共卷60层,若把各层都视为一个同心圆, 3.14π=,则这个卷筒纸的长度为(精确到个位) ( ) A .14 mB .15 mC .16 mD .17 m12.数列{}n a 的首项为3,{}n b 为等差数列且1()n n n b a a n ++-∈=N .若32b =-,1012b =,则8a =( ) A .0B .3C .8D .11二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.已知n S 是等比数列{}n a 的前n 项和,52a =-,816a =,则6S 等于________. 14.设S n 为等差数列{}n a 的前n 项和,若33S =,624S =,则9a =__________. 15.在等差数列{}n a 中,n S 为它的前n 项和,若10a >,160S >,170S <则当n =________时,n S 最大.16.数列{}n x 满足1lg 1lg ()n n x x x *++∈=N ,且12100100x x x +++=,则101102200()lg x x x +++=________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知数列{}n a 是首项为1的等差数列,且公差不为零.而等比数列{}n b 的前三项分别是1a ,2a ,6a .(1)求数列{}n a 的通项公式n a ; (2)若1285k b b b +++=,求正整数k 的值.18.(12分)等差数列{}n a 中,24a =,4715a a +=. (1)求数列{}n a 的通项公式; (2)设22n n b a n =-+,求12310b b b b ++++的值.19.(12分)已知公差大于零的等差数列{}n a 的前n 项和为n S ,且满足:34117a a ⋅=,2522a a +=.(1)求数列{}n a 的通项公式n a ; (2)若数列{}n b 是等差数列,且nn b S n c=+,求非零常数c .20.(12分)数列{}n a 的前n 项和为n S ,且11a =,113n n a S +=,1n ≥,n +∈N ,求:(1)数列{}n a 的通项公式; (2)2462n a a a a ++++的值.21.(12分)已知{}n a 是各项均为正数的等比数列,{}n b 是等差数列,且111a b ==,2332a b b +=,2537a b -=;求:(1){}n a 和{}n b 的通项公式;(2)设n n n c a b =,n *∈N ,求数列{}n c 的前n 项和.22.(12分)如图所示,某市2009年新建住房400万平方米,其中250万平方米是中低价房,预计今年后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积比上一年增加50万平方米,那么到哪一年底,(1)该市历年所建中低价房的累计面积(以2009年累计的第一年)将首次不少于4750万平方米?(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%?答 案一、选择题 1.【答案】B【解析】设公差为d ,由题意得11141037a a d a d ++=⎧⎨+=⎩,解得2d =.故选B .2.【答案】B【解析】由题意得,41230a a +=-<,41210a a ⋅=>, ∴40a <,120a <.∴80a <,又∵812421a a a ⋅==,∴81a =-.故选B . 3.【答案】C【解析】由通项公式可得22=a ,30=1a ,∴2320=a a .故选C . 4.【答案】C【解析】∵a ,b ,c 成等比数列,∴2b ac =. 又∵()log log log 2log log log log 112n n c b n n a a c ac b n n n==+=+=,∴log log g 1l 12o c b a n n n=+.故选C . 5.【答案】B【解析】∵492116a a a a ==⋅,又∵495a a +=,且1n n a a <+,∴42a =,93a =,∴45932a a q ==, 又6151123a q a ==.故选B . 6.【答案】C【解析】设等比数列的公比为q ,则22313124S q q q ⎛⎫++++ ⎪⎝⎭==.∴3S 的取值范围是3,4⎡⎫+∞⎪⎢⎣⎭.故选C .7.【答案】D【解析】∵{}n a 为正项等比数列,241a a =, ∴31a =,又∵313S =,∴公比1q ≠. 又∵()3311131a q S q-==-,231aa q =,解得13q =. ∴3333133n n n n a a q--⎛⎫= ⎪⎝⎭==-,∴3log 3n n b a n ==-.∴12b =,107b =-.∴()()11010101052522S b b +⨯-===-.故选D .8.【答案】B【解析】设数列{}n a 的公差为d ,因为81335a a =,所以12390a d +=,即1400a a +=, 所以20210a a +=,又10a >,0d <,故200a >,210a <, 所以n S 中最大的是20S .故选B . 9.【答案】C 【解析】1116a S x ==-, 221113266a S S x x x --+===-,3321136669a S S x x x --+===-, ∵{}n a 为等比数列,∴2213a a a =,∴21466x x x ⎛⎫=- ⎪⎝⎭,解得12x =.故选C .10.【答案】A【解析】解法一:由等差数列的求和公式及6925S S =⎧⎨=⎩知,116562259829a d a d ⨯⎧+=⎪⎪⎨⨯⎪+=⎪⎩,∴1427127a d =-⎧⎪⎪⎨⎪=⎪⎩,∴115151415152S a d ⨯=+=.故选A .解法二:由等差数列性质知,n S n ⎧⎫⎨⎬⎩⎭成等差数列,设其公差为D ,则96522396969S S D -==-=,∴227D =, ∴15952661159927S S D =+=+⨯=,∴1515S =.故选A . 11.【答案】B【解析】纸的厚度相同,且各层同心圆直径成等差数列, 则()126041260480 3.141507.2152l d d d cm m +=ππ+ππ⨯=+⨯6=≈+=,故选B . 12.【答案】B【解析】本题主要考查等差数列的性质及累加法求通项, 由32b =-,1012b =,∴2d =,16b =-,∴28n b n =-, ∵1n n n b a a =-+.∴8877665544332211()()()()()()()a a a a a a a a a a a a a a a a =-+-+-+-+-+-++- ()7654321176278332b b b b b b b a -+⨯-++++++=+=+=.故选B .二、填空题 13.【答案】218【解析】∵{}n a 为等比数列,∴385a a q =, ∴31682q ==--,∴2q =-. 又451a a q =,∴121168a -==-, ∴()()666111212181128S a q q⎡⎤----⎣⎦===-+.14.【答案】15【解析】设等差数列公差为d ,则3113233233S a a d d ⨯=+=+=,11a d +=,① 又161656615242d d S a a ⨯=+=+=,即1258a d +=.② 联立①②两式得11a =-,2d =, 故91818215a a d =-+⨯==+. 15.【答案】8【解析】∵()()()116168911717916802171702a a S a a a a S a ⎧+==+>⎪⎪⎨+⎪==<⎪⎩,∴80a >而10a >,∴数列{}n a 是一个前8项均为正,从第9项起为负值的等差数列,从而n =8时,S n 最大. 16.【答案】102【解析】由题意得110n n x x +=,即数列{}n x 是公比为10的等比数列, 所以100102101102200121001010()x x x x x x ++=++=++⋅,故101102200l (g )102x x x ++=+.三、解答题17.(10分)已知数列{}n a 是首项为1的等差数列,且公差不为零.而等比数列{}n b 的前三项分别是1a ,2a ,6a .(1)求数列{}n a 的通项公式n a ; (2)若1285k b b b +++=,求正整数k 的值.【答案】(1)32n a n =-;(2)4. 【解析】(1)设数列{}n a 的公差为d , ∵1a ,2a ,6a 成等比数列,∴1226a a a =⋅, ∴211()(1)5d d +⨯=+,∴23d d =, ∵0d ≠,∴3d =, ∴11()332n a n n +-⨯=-=. (2)数列{}n b 的首项为1,公比为214a q a ==. ∵121441143k k k b b b -==-+-++, ∴41853k -=,∴4256k =,∴4k =,∴正整数k 的值为4.18.(12分)等差数列{}n a 中,24a =,4715a a +=. (1)求数列{}n a 的通项公式; (2)设22n n b a n =-+,求12310b b b b ++++的值.【答案】(1)2n a n =+;(2)2101. 【解析】(1)设等差数列{}n a 的公差为d . 由已知得11143615a d a d a d +=⎧⎨+++=⎩,解得131a d =⎧⎨=⎩.所以1)2(1n a a n d n -=++=. (2)由(1)可得2n n b n =+. ∴231012310212()()(223210)()b b b b +++=++++⋯+++++ 231022221210((3))=+++++++++()()1021210110122-⨯+=+-()111122552532101===-++.19.(12分)已知公差大于零的等差数列{}n a 的前n 项和为n S ,且满足:34117a a ⋅=,2522a a +=.(1)求数列{}n a 的通项公式n a ; (2)若数列{}n b 是等差数列,且nn b S n c=+,求非零常数c . 【答案】(1)43n a n =-;(2)12-.【解析】(1){}n a 为等差数列, ∵342522a a a a +=+=, 又34117a a ⋅=,∴3a ,4a 是方程2221170x x +=-的两个根. 又公差0d >,∴34a a <,∴39a =,413a =. ∴1129313a d a d +=⎧⎨+=⎩,∴114a d =⎧⎨=⎩,∴43n a n =-.(2)由(1)知,()211422n n n S n n n -⋅+⨯=-=,∴22n n S n c n cn nb ==-++, ∴111b c =+,262b c =+,3153b c=+, ∵{}n b 是等差数列,∴2132b b b =+, ∴220c c +=,∴12c =-(0c =舍去).20.(12分)数列{}n a 的前n 项和为n S ,且11a =,113n n a S +=,1n ≥,n +∈N ,求:(1)数列{}n a 的通项公式; (2)2462n a a a a ++++的值.【答案】(1)21,114,233n n n n a -=⎧⎪=⎨⎛⎫⋅≥⎪ ⎪⎝⎭⎩;(2)316179n ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.【解析】(1)∵11()3n n a S n ++=∈N ,∴11()32,n n a S n n +≥∈=N -,∴两式相减,得113n n n a a a +-=.即()1423n n a a n +=≥.11111333a S ==,211433a a =≠.∴数列{}n a 是从第2项起公比为43的等比数列, ∴21,114,233n n n n a -=⎧⎪=⎨⎛⎫⋅≥⎪ ⎪⎝⎭⎩.(2)由(1)知,数列2a ,4a ,6a ,…,2n a 是首项为13,公比为169的等比数列,∴24621161393161167919nnn a a a a ⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦+++==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-+.21.(12分)已知{}n a 是各项均为正数的等比数列,{}n b 是等差数列,且111a b ==,2332a b b +=,2537a b -=;求:(1){}n a 和{}n b 的通项公式;(2)设n n n c a b =,n *∈N ,求数列{}n c 的前n 项和.【答案】(1)12n n a -=,*n ∈N ,21n b n =-,*n ∈N ;(2)233(2)n n S n -=+,*n ∈N . 【解析】(1)设{}n a 的公比为q ,{}n b 的公差为d .由题意0q >,由已知,有24232310q d q d ⎧-=⎪⎨-=⎪⎩,消去d ,得42280q q --=. 又因为0q >,解得2q =,2d =. 所以{}n a 的通项公式为12n n a -=,*n ∈N ,{}n b 的通项公式为21n b n =-,*n ∈N .(2)由(1)有1)1(22n n c n =--, 设{}n c 的前n 项和为n S , 则0121123252(212)n n S n -=+⨯⨯⨯+-⨯++, 123(212325222)1n n S n ⨯⨯⨯+=-++⨯+,两式相减,得23()()12222122323n n n n S n n -++-⨯-⨯=++---=.所以233(2)n n S n -=+,*n ∈N .22.(12分)如图所示,某市2009年新建住房400万平方米,其中250万平方米是中低价房,预计今年后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积比上一年增加50万平方米,那么到哪一年底,(1)该市历年所建中低价房的累计面积(以2009年累计的第一年)将首次不少于4750万平方米?(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%? 【答案】(1)2018年底;(2)2014年底. 【解析】(1)设中低价房面积构成数列{}n a , 由题意知:{}n a 是等差数列,其中1250a =,50d =, ∴()2125050252252n n n S n n n -+⨯+==,令2252254750n n +≥, 即291900n n -≥+, 解得19n ≤-或10n ≥, ∴10n ≥.故到2018年底,该市历年所建中低价房累计面积首次不少于4750万m 2. (2)设新建住房面积构成等比数列{}n b .由题意知{}n b 为等比数列,1400b =, 1.08q =.∴1400 1.08()n n b -⨯=, 令0.85n n a b >,即1250150400 1.0()()80.85n n -+-⨯>⨯⨯, ∴满足不等式的最小正整数6n =.故到2014年底,当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%.单元测试题二一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在数列{}n a 中,12=a ,1=221n n a a ++,则101a 的值为( ) A .49B .50C .51D .522.已知等差数列{}n a 中,7916a a +=,41a =,则12a 的值是( ) A .15B .30C .31D .643.等比数列{}n a 中,29a =,5243a =,则{}n a 的前4项和为( ) A .81B .120C .168D .1924.等差数列{}n a 中,12324a a a ++=-,18192078a a a ++=,则此数列前20项和等于( ) A .160B .180C .200D .2205.数列{}n a 中,37 ()n a n n +=∈N -,数列{}n b 满足113b =,1(72)2n n b b n n +≥=∈N -且,若log n k n a b +为常数,则满足条件的k 值( ) A .唯一存在,且为13B .唯一存在,且为3C .存在且不唯一D .不一定存在6.等比数列{}n a 中,2a ,6a 是方程234640x x +=-的两根,则4a 等于( )A .8B .8-C .8±D .以上都不对7.若{}n a 是等比数列,其公比是q ,且5a -,4a ,6a 成等差数列,则q 等于( ) A .1或2B .1或2-C .1-或2D .1-或2-8.设等比数列{}n a 的前n 项和为n S ,若105:1:2S S =,则155:S S 等于( ) A .3:4B .2:3C .1:2D .1:39.已知等差数列{}n a 的公差0d ≠且1a ,3a ,9a 成等比数列,则1392410a a a a a a ++++等于( )A .1514B .1213C .1316D .151610.已知{}n a 为等差数列,135105a a a ++=,24699a a a ++=,以n S 表示{}n a 的前n 项和,则使得n S 达到最大值的n 是( ) A .21B .20C .19D .1811.设{}n a 是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为X ,Y ,Z ,则下列等式中恒成立的是( ) A .2X Z Y += B .()()Y Y X Z Z X =-- C .2Y XZ =D .()()Y Y X X Z X =--12.已知数列1,12,21,13,22,31,14,23,32,41,…,则56是数列中的( ) A .第48项 B .第49项 C .第50项 D .第51项二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 1311的等比中项是________.14.已知在等差数列{}n a 中,首项为23,公差是整数,从第七项开始为负项, 则公差为______.15.“嫦娥奔月,举国欢庆”,据科学计算,运载“神六”的“长征二号”系列火箭,在点火第一秒钟通过的路程为2 km ,以后每秒钟通过的路程都增加2 km ,在达到离地面240 km 的高度时,火箭与飞船分离,则这一过程大约需要的时间是______秒.16.等比数列{}n a 的公比为q ,其前n 项的积为n T ,并且满足条件11a >,9910010a a ->,99100101a a -<-.给出下列结论:①01q <<;②9910110a a -<;③100T 的值是n T 中最大的;④使1n T >成立的最大自然数n 等于198.其中正确的结论是________.(填写所有正确的序号)三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知{}n a 为等差数列,且36a =-,60a =. (1)求{}n a 的通项公式;(2)若等比数列{}n b 满足18b =-,2123b a a a =++,求{}n b 的前n 项和公式.18.(12分)已知等差数列{}n a 中,3716a a =-,460a a +=,求{}n a 的前n 项和S n .19.(12分)已知数列{}2log 1()() n a n *∈N -为等差数列,且13a =,39a =. (1)求数列{}n a 的通项公式; (2)证明:213211111n na a a a a a ++++<---.20.(12分)在数列{}n a 中,11a =,122n n n a a =++. (1)设12n n n a b -=.证明:数列{}n b 是等差数列;(2)求数列{}n a 的前n 项和.21.(12分)已知数列{}n a 的前n 项和为n S ,且11a =,11,2,1(,)23n n a S n +==.(1)求数列{}n a 的通项公式; (2)当()132log 3n n b a =+时,求证:数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和1n T nn =+.22.(12分)已知数列{}n a 的各项均为正数,对任意n *∈N ,它的前n 项和n S 满足1()()612n n n S a a =++,并且2a ,4a ,9a 成等比数列.(1)求数列{}n a 的通项公式;(2)设11()1n n n n b a a ++=-,n T 为数列{}n b 的前n 项和,求2n T .答 案一、选择题 1.【答案】D【解析】由1=221n n a a ++得11=2n n a a -+,∴{}n a 是等差数列首项12=a ,公差1=2d ,∴13212)2(n n a n =++-=,∴1011013522a +==.故选D .2.【答案】A【解析】在等差数列{}n a 中,79412a a a a +=+, ∴1216115a =-=.故选A . 3.【答案】B【解析】由352a a q =得3q =.∴213a a q==,44411133120113q S a q --=⨯=--=.故选B . 4.【答案】B【解析】∵123181920120219318()()()()()a a a a a a a a a a a a +++++=+++++ 120()3247854a a +=+=-=,∴12018a a +=.∴12020201802S a a +==.故选B . 5.【答案】B【解析】依题意,133213111127333n n n n b b ---⎛⎫⎛⎫⎛⎫=⋅=⋅= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭, ∴32log 37log 11()3373l g 32o n n k n k ka b n n n -⎛⎫+== ⎪⎭+⎝-+-- 1133log 372log 3k k n ⎛⎫--=+ ⎪⎝⎭, ∵log n k n a b +是常数,∴133log 03k +=,即log 31k =,∴3k =.故选B . 6.【答案】A【解析】∵2634a a +=,2664a a ⋅=,∴2464a =, ∵a 2>0,a 6>0,∴a 4=a 2q 2>0,∴a 4=8.故选A . 7.【答案】C【解析】依题意有4652a a a =-,即24442a a q a q =-,而40a ≠, ∴220q q --=,1)20()(q q +=-.∴1q =-或2q =.故选C . 8.【答案】A【解析】显然等比数列{}n a 的公比1q ≠,则由105510551111221S q q q S q -==+=⇒=--, 故3155315555111132141112S q q S q q ⋅⎛⎫-- ⎪--⎝⎭====⎛⎫---- ⎪⎝⎭.故选A . 9.【答案】C【解析】因为1239a a a =⋅,所以2111()()28a d a a d +=⋅+.所以1a d =. 所以1391241013101331316a a a a d a a a a d +++==+++.故选C .10.【答案】B【解析】∵214365(())3)(a a a a a a d -+-+-=, ∴991053d -=.∴2d =-.又∵135136105a a a a d ++=+=,∴139a =. ∴()()221140204002n n n d n n na n S -=+=-+=--+.∴当20n =时,n S 有最大值.故选B . 11.【答案】D【解析】由题意知n S X =,2n S Y =,3n S Z =. 又∵{}n a 是等比数列,∴n S ,2n n S S -,32n n S S -为等比数列, 即X ,Y X -,Z Y -为等比数列, ∴2()()Y X X Z Y ⋅=--, 即222Y XY X ZX XY +-=-, ∴22=Y XY ZX X --,即()()Y Y X X Z X =--.故选D . 12.【答案】C【解析】将数列分为第1组一个,第2组二个,…,第n 组n 个, 即11⎛⎫ ⎪⎝⎭,12,21⎛⎫ ⎪⎝⎭,123,,321⎛⎫ ⎪⎝⎭,…,12,,,11n n n ⎛⎫⎪-⎝⎭,则第n 组中每个数分子分母的和为1n +,则56为第10组中的第5个, 其项数为1239)550(++++=+.故选C .二、填空题 13.【答案】1±【解析】11的等比中项为a ,由等比中项的性质可知,)2111a ==,∴1a =±.14.【答案】4-【解析】由6723502360a d a d =+≥⎧⎨=+<⎩,解得232356d -≤<-,∵d ∈Z ,∴4d =-. 15.【答案】15【解析】设每一秒钟通过的路程依次为1a ,2a ,3a ,…,n a , 则数列{}n a 是首项12a =,公差2d =的等差数列,由求和公式得()112402n na n d -=+,即(12)240n n n +-=,解得15n =. 16.【答案】①②④【解析】①中,()()9910099100111011a a a a a ⎧--<⎪>⎨⎪>⎩⇒99100101a a >⎧⎨<<⎩100990,1()q a a =∈⇒,∴①正确.②中,29910110010099101011a a a a a a ⎧=⎪⇒⎨<<⎪⎩<,∴②正确. ③中,100991001010090901T T a a T T =⎧⇒⎨<<<⎩,∴③错误. ④中,()()()()99198121981198219799100991001T a a a a a a a a a a a =>==,()()199121981991199991011001T a a a a a a a a a ⋅<==,∴④正确.三、解答题17.【答案】(1)212n a n =-;(2)()413n n S =-. 【解析】(1)设等差数列{}n a 的公差为d . ∵36a =-,60a =,∴112650a d a d +=-⎧⎨+=⎩,解得110a =-,2d =.∴101()2212n a n n =-⨯=-=-. (2)设等比数列{}n b 的公比为q .∵212324b a a a =++=-,18b =-,∴824q -=-,3q =. ∴数列{}n b 的前n 项和公式为()111413n n nS q b q-==--. 18.【答案】()9n S n n =-或(9)n S n n -=-. 【解析】设{}n a 的公差为d ,则()()11112616350a d a d a d a d ++=-⎧⎪⎨+++=⎪⎩,即22111812164a da d a d ⎧++=-⎪⎨=-⎪⎩, 解得182a d =-⎧⎨=⎩,或182a d =⎧⎨=-⎩.因此8()19()n S n n n n n +-=-=-,或81()9()n S n n n n n ==----. 19.【答案】(1)21n n a =+;(2)见解析.【解析】(1)解设等差数列{}2(og )l 1 n a -的公差为d . 由13a =,39a =,得22log 91log 32()(1)d --=+,则1d =. 所以2log 1111()()n a n n +-=⨯-=,即21n n a =+. (2)证明因为11111222n n nn n a a ++==--, ∴12321321111111111112221112222212n n n n n a a a a a a +-⨯+++=++++==-<----. 20.【答案】(1)见解析;(2)1()21n n S n -⋅=+. 【解析】(1)证明由已知122nn n a a =++,得1111122222nn n nn n n nn a b a b a +-++===+=+.∴11n n b b -=+,又111b a ==.∴{}n b 是首项为1,公差为1的等差数列. (2)解由(1)知,n b n =,12n n n n a b -==.∴12n n a n ⋅=-.∴121122322n n S n +⋅⋅+=⋅++-,两边乘以2得:()11221222122n n n S n n =++⋅+-⋅+⋅⋅-,两式相减得:12112222(21?221)1n n n n n n S n n n ++-=-=-++⋅----=,∴1()21n n S n -⋅=+.21.【答案】(1)21,1132,22n n a n n -⎛⎫≥ =⎧⎪=⨯⎪⎝⎨⎭⎪⎩;(2)见解析.【解析】(1)解由已知()1112,212n nn n a S a Sn +-⎧=⎪⎪⎨⎪=⎪⎩≥,得()1322n n a a n +≥=. ∴数列{}n a 是以2a 为首项,以32为公比的等比数列. 又121111222a S a ===,∴()22322n n a a n -⎛⎫≥ ⎪⎝⎭=⨯.∴21,1132,22n n a n n -⎛⎫≥ =⎧⎪=⨯⎪⎝⎨⎭⎪⎩. (2)证明()11log 3lo 3333=2222g n n n n b a -⎡⎤⎛⎫=⨯=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦+.∴()1111111n n b b n n n n +==-++. ∴12233411111111111111122334n n n T b b b b n b b b b n +⎛⎫⎛⎫⎛⎫⎛⎫++++=-+-+-++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=-+ 1111nn n=-=++. 22.【答案】(1)32,n a n n *=-∈N ;(2)22186n T n n -=-. 【解析】(1)∵对任意n *∈N ,有1()()612n n n S a a =++,①∴当1n =时,有1111112()()6S a a a ==++,解得11a =或2.当2n ≥时,有1111())62(1n n n S a a ---=++.②①-②并整理得113()()0n n n n a a a a --+--=. 而数列{}n a 的各项均为正数,∴13n n a a --=. 当11a =时,(1313)2n a n n +-=-=, 此时2249=a a a 成立;当12=a 时,23=(3=11)n a n n +--,此时2249=a a a 不成立,舍去. ∴32,n a n n *=-∈N . (2)212212233445221n n n n T b b b a a a a a a a a a a =++=-+-++-+ 21343522121()()()n n n a a a a a a a a a =-+-++--+242666n a a a --=--242(6)n a a a ++=-+246261862n nn n +-=-⨯-=-。
人教A版高一必修5数学第二章数列单元测试及答案(练习检测试题卷).doc

班姓座A . a” =2“_1B . a n =(-ir (2n-l) c. a n =(-ir (l-2n) 2、 等比数列2, 4, 8, 16,…的前nA . 2n+1-l B. 2n -23、等比数列{%}中,已知a x a” =27, q = 3,则”为( A . B. 4 4、 等比数列{a”}中,a 6 = 6, a 9 = 9 ,则a 等于( A.5、 若数列{%}中,Q 广43-3n,则»最大血 A. 13 B. 14 6、 成等比数列,那么d 等于A.3 C. -2 D. ±27、 等差数列仏}燈皿聖的和是30, A. 130 亠 170 前加项的和是100,则它的前3加项的和是(C. 210D.2608、 敎刻仏}贏项公式是血二--------- n (M + l )(心),若前刀项的和为罟,则项数0为() A. 12 B.11C. 10D. 91、 1°、{a”}为等差数列,01 + 04 + ^7 = 39, 弘+弘+ ^产込弘+。
6 +。
9二浙江省瓯海中学高一数学必修5第二章《数列》单元测试一、选择题(每小题6分)数列1, ~3, 5, -7, 9,…的一个通项公式为( 二、填空题(每小题6分)9、等差数列{爲}中,S 广40, Q] =13,11、在等差数列{a* }中,1 = 20 ,则 Q] + Q]3 =色=(_ig+i ) D . C. InC. 5D. 6 D. 14 或 15 C. 16 ,如果 Q]、等差数列{a”}的首项a. =1(2)+ a :的和(3)在(2)的条件(1)当a = l 时,求{a”}的通项公式14、(本题18分)已知数列{a ”}的前%项和S” =12>在数列{a”}中,fl] =1,且对于任意自然数”,都有a n+1 = a n + n ,贝ija 100 = __________三、解答题13、(本题10分)求数列耳吗斗4护•的前刀项和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修5第二章《数列》单元测试题一、选择题1.数列⋯--,924,715,58,1的一个通项公式是( )A .12)1(3++-=n n n a nn B .12)3()1(++-=n n n a n n C .121)1()1(2--+-=n n a n n D .12)2()1(++-=n n n a n n2.已知{}{},n n a b 都是等比数列,那么 ( ) A. {},{}n n n n a b a b +⋅都一定是等比数列B. {}n n a b +一定是等比数列,但{}n n a b ⋅不一定是等比数列C. {}n n a b +不一定是等比数列,但{}n n a b ⋅一定是等比数列D. {},{}n n n n a b a b +⋅都不一定是等比数列 3.在等比数列}{n a 中,,8,1641=-=a a 则=7a ( )A.4-B. 4±C.2-D.2±4.已知等差数列}{n a 的公差为2,若1a ,3a ,4a 成等比数列,则2a 等于( ) A. 4- B.6- C. 8- D. 10-5.等差数列{n a }中,39||||,a a =公差0,d <那么使前n 项和n S 最大的n 值为( ) A.5 B.6 C.5 或6 D.6或76.n S 等差数列}{n a 的前n 项和,已知59355,9a Sa S ==则( ). A .1 B .1- C .2 D .127.若两个等差数列{n a }、{n b }的前n 项和分别为n A 、n B ,且满足5524-+=n n B A n n ,则1313ab 的值为( ) A.5160 B.6051C.2019D.878.若一个凸多边形的内角度数成等差数列,最小角为100°,最大角为140°,这个凸多边形的边数为( ) A .6 B .8 C .10 D .129.若{}n a 是等比数列,前n 项和21n n S =-,则2222123n a a a a ++++=( )A.2(21)n -B.21(21)3n - C.41n- D.1(41)3n-10.等比数列{}n a 中,0n a >,965=a a ,则313233310log log log log a a a a +++⋅⋅⋅+=( B ) A.12 B.10 C.8 D.32log 5+二、填空题11.等差数列{}n a 中,123420,80a a a a +=+=,则10S =________12.在-9和3之间插入n 个数,使这2+n 个数组成和为-21的等差数列,则=n _______. 13.在等差数列{n a }中,已知1231215,78,155,n n n n a a a a a a S --++=++==则__.n = 14.已知数列{}n a 满足1n n a a n +=+,11=a ,则n a = . 15.已知数列1,,则其前n 项的和等于 .三、解答题16.已知数列{}n a 的前n 项和nn S 23+=,求na17.一个有穷等比数列的首项为1,项数为偶数,如果其奇数项的和为85,偶数项的和为170,求此数列的公比和项数18.已知等比数列{}n b 与数列{}n a 满足*,3N n b n an ∈=(1)判断{}n a 是何种数列,并给出证明; (2)若2021138,b b b m a a 求=+19.甲、乙两物体分别从相距70 m 的两处同时相向运动,甲第一分钟走2 m ,以后每分钟比前1分钟多走1 m ,乙每分钟走5 m .(1)甲、乙开始运动后,几分钟相遇.(2)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前1分钟多走1 m ,乙继续每分钟走5 m ,那么开始运动几分钟后第二次相遇?20.已知数列{}n a 是等差数列,且.12,23211=++=a a a a (1)求数列{}n a 的通项公式;(2)令).(R x x a b nn n ∈=求数列{}n b 前n 项和的公式.21.已知数列{}n a 中,n S 是其前n 项和,并且42(1,2,)1S a n n n =+=+,11a =(1)设nn n a a b 21-=+),2,1( =n ,求证:数列{}n b 是等比数列;(2)求数列{}n a 的通项公式;(3)数列{}n a 中是否存在最大项与最小项,若存在,求出最大项与最小项,若不存在,说明理由.必修5第二章《数列》单元测试题参考答案命题人:王华国 审题人:朱华静一、选择题 1.答案:D提示:本题主要考查对数列通项公式的理解,只需要验证第一项是否满足该通项公式可得到答案. 2.答案:C提示:本题主要考查对等比数列概念的理解,要知道等比数列中不能有零项 3.答案:A提示:本题是对等比数列通项公式的熟悉,先根据首项和第四项可求出公比的立方,再利用通项公式可求出数列第七项. 4.答案:B提示:本题主要考查等差数列和等比数列的概念。
根据431,,a a a 成等比数列可得到)3()2(1121d a a d a +=+,解得81-=a5.答案:C提示:由0,93<=d a a 得0,093<>a a ,于是93a a -=,则06=a ,故0,075<>a a ,所以选择C 6.答案:A提示:由已知可得955292225951913535==++==S Sa a a a a a a a ,于是159=S S 7.答案:A提示:55142))(12(2))(12(221212121121121121--==+-+-=++==------n n B A b b n a a n b b a a b a b a n n n n n n n n n n8.答案:A提示:设边数为n ,则可得到等式2)140100(360180+=-n n ,解得6=n9.答案:D提示:由21nn S =-得等比数列的首项为1,公比为2,于是数列}{2n a 是以1为首项,以4为公比的等比数列,其前n 项和可直接运用公式得到. 10.答案:B提示:10)(log )(log log log log log 565310213103332313==⋅⋅⋅=++++a a a a a a a a a二、填空题 11.答案:700提示:直接由已知条件求出首项和公差,然后再运用前n 项和公式可求出10S . 12.答案:6提示:直接利用等差数列求和公式可求解. 13.答案:10提示:利用等差数列的性质得23121--+=+=+n n n a a a a a a ,再利用等差数列求和公式可得到结果. 14.答案:12)1(+-=n n a n 提示:利用叠加法可求得数列的通项 15.答案:12+n n提示:根据通项)111(2)1(23211+-=+=++++=n n n n n a n ,采用裂项求和的方法可得到结果.三、解答题16.解:111132,32,2(2)n n n n n n n n S S a S S n ----=+=+=-=≥而115a S ==,∴⎩⎨⎧≥==-)2(,2)1(,51n n a n n17.解:设此数列的公比为,(1)q q ≠,项数为2n则22222(1)1()85,170,11n na q q S S q q --====--奇偶 2221122,85,2256,28,14nn S a q n S a -======-偶奇 ∴,2=q 项数为818.解:(1){}n b 是等比数列,依题意可设{}n b 的公比为)0(>q q2(1≥=∴-n q b b n n ) )2(331≥=∴-n q n na a )2(31≥=∴--n q n n a a)2(log 31≥=-∴-n q a a n n 为一常数。
所以{}n a 是以q 3log 为公差的等差数列(2)m a a =+138 所以由等差数列性质得m a a a a =+=+138201m a a a b b b m a a a a a 10202120120213310220)(2021==⇒=⨯+=+++∴+++19.解:(1)设n 分钟后第1次相遇,依题意得2n +2)1(-n n +5n =70 整理得:n 2+13n -140=0,解得:n =7,n =-20(舍去) ∴第1次相遇在开始运动后7分钟.(2)设n 分钟后第2次相遇,依题意有:2n +2)1(-n n +5n =3×70 整理得:n 2+13n -6×70=0,解得:n =15或n =-28(舍去) ∴第2次相遇在开始运动后15分钟.20.解:(1)设数列}{n a 公差为d ,则 ,12331321=+=++d a a a a 又.2,21=∴=d a所以.2n a n =(2)令,21n n b b b S +++= 则由,2nn n n nx x a b ==得,2)22(4212n n n nx x n x x S +-++=- ①,2)22(42132++-+++=n n n nx x n x x xS ②当0≠x 且1≠x 时,①式减去②式,得 ,21)1(22)(2)1(112++---=-++=-n n n nn nx xx x nxx x x S x所以.12)1()1(212xnxx x x S n n n ----=+当0=x 时, 0=n S当1=x 时, )1(242+=+++=n n n S n ,综上可得当1=x 时,)1(+=n n S n当0≠x 且1≠x 时,.12)1()1(212x nx x x x S n n n ----=+ 21.解:(1)证明: ∵142(1)n n S a n +=+≥ ① ∴142(2)n n S a n -=+≥ ②①-②得:1144(2)n n n n S S a a n +--=-≥即1144(2)n n n a a a n +-=-≥∴1122(2)(2)n n n n a a a a n +--=-≥即12(2)n n b b n -=≥ ③∵2412+=a S 即2412+=+a∴52=a∴03252121≠=-=-=a a b∴由③知0≠n b ,故数列{}n b 是首项为3,公比为2等比数列(2)由(1)得123-⨯=n n b ,即11232-+⨯=-n n n a a∴43223221111=⋅=-+-++n n n nn n a a∴数列}2{n n a是首项为21,公差为43的等差数列 ∴414343)1(212-=⨯-+=n n a nn ∴22)13(-⋅-=n n n a (3)∵0)53(22)13(2)23(2211>+=⋅--⋅+=----+n n n a a n n n n n ∴{}n a 为递增数列,故数列{}na 中是没有最大项,存在最小项11a=。