课程设计-- 电气化铁道供电系统与设计
电气化铁道供电系统

(2)接触网
• 架在电气化铁道上空,向电力机车供电的输 电线路。
架空式接触网组成
2、电力机车
• 电力机车由车体、车底架、走行部、车钩缓 冲装置、制动装置和一整套电气设备等组成。 机车的走行部为两台三轴转向架。 • 电力机车是靠顶部升起的受电弓从接触网上 取得电能后并转换成机械能牵引列车运行的。
• 我国目前使用的干线电力机车主要是国产韶设备及其电路
– (1)主电路:
• • • • • 受电弓 主断路器 主变压器 调压装置 电抗器
– (2)辅助电路 – (3)控制电路
电力机车的电气设备及其电路
思考与练习
• 1. 电力机车主要由 、 、 车钩缓冲装 置、制动装置和一整套电气设备组成。 • 2.电力机车的电气设备主要由三条电路: 、 和 。 • 3. 电力机车上的主电路的电气设备依次是: 受电弓、主断电路、 调压装置、 、 、 制动电阻。
电气化铁道供电系统
三、电力机车
• 采用电力机车牵引的铁道称为电气化铁道。电气化 铁道由牵引供电系统和电力机车两部分组成。
1、牵引供电系统
• 将电能从电力系统传送到电力机车的电力设 备总称为电气化铁道的牵引供电系统,牵引 供电系统主要包括牵引变电所和接触网两部 分。
(1)牵引变电所
• 将电力系统高压输电线传来的110kV的三相交 流电,转换为单向交流电,并传送到邻近区 间的接触网上。
电气化铁路牵引供电系统设计与分析

电气化铁路牵引供电系统设计与分析电气化铁路牵引供电系统是现代火车运输中不可或缺的关键部分。
它为电力机车或电动列车提供所需的功率,并确保它们在铁路线上平稳高效地运行。
本文将对电气化铁路牵引供电系统的设计与分析进行探讨,包括系统架构、供电方式以及系统性能等方面。
首先,我们需要了解电气化铁路牵引供电系统的基本架构。
该系统主要由接触网、接触装置、牵引变电所和牵引变流所等组成。
接触网是指铺设在铁路线上方的电气导线,通过接触装置和牵引变电所提供电力源。
牵引变电所负责将接触网提供的交流电或直流电转换为适用于牵引系统的电能。
而牵引变流所则将牵引变电所输出的电能转换为适用于电力机车或电动列车的电流。
在设计电气化铁路牵引供电系统时,需考虑到供电方式。
目前,电气化铁路牵引供电系统主要采用两种方式:交流供电和直流供电。
交流供电方式具有传输损耗小、设备便宜和传统技术成熟等优势,因此在大部分电气化铁路中较为常见。
而直流供电方式则具有电气设备轻巧、牵引系统效率高以及对长距离输电有优势等特点,因此在一些特定的电气化铁路中得到了广泛应用。
除了架构和供电方式,我们还需要对电气化铁路牵引供电系统的性能进行分析。
系统性能的评估主要涉及电源质量、能源利用率和牵引负载等方面。
电源质量包括电压稳定性和电流质量两方面衡量,需保证电压稳定在一定范围内,以及电流的波动小、谐波含量低。
能源利用率则为系统能源转换效率的指标,高效利用能源可减少能源消耗和环境污染。
牵引负载则是指牵引设备对供电系统的电流需求,需要考虑设备起动、加速、减速和制动等工况。
此外,为了确保电气化铁路牵引供电系统的可靠性和安全性,还需要考虑过载保护、维护和故障处理等因素。
过载保护是指当系统负荷超过一定限制时,自动断开供电以防止设备过热和损坏。
维护则包括定期检查设备和及时修复故障。
故障处理则需在设备故障发生时快速定位并及时修复,以确保系统正常运行。
在电气化铁路牵引供电系统的设计和分析过程中,还有许多其他因素需要考虑。
电气化铁道供电系统与设计课程设计报告

电气化铁道供电系统与设计课程设计报告班级:学号:姓名:指导教师:年月日一、题目某牵引变电所位于大型编组站内, 向两条复线电气化铁路干线的两个方向供电区段供电, 已知列车正常情况的计算容量为27000 kV A(三相变压器), 并以10kV电压给车站电力照明机务段等地区负荷供电, 容量计算为2700 kV A, 各电压侧馈出数目及负荷情况如下: 25kV回路(1路备): 两方向年货运量与供电距离分别为, , 。
10kV共4回路(2路备)。
二、供电电源由系统区域变电所以双回路110kV输送线供电。
本变电所位于电气化铁路的首端, 送电线距离30km, 主变压器为SCOTT接线。
三、题目分析及解决方案框架确定2.1.选题背景、负荷分析和原始数据在保证电气化铁道供电安全可靠的同时, 也要求供电设备最经济的利用, 因此选择合适容量的变压器是很有现实意义的。
本文在这方面对已有的计算公式进行了分析, 并提出了一个较为准确的变电所有效电流公式, 说明在某些情况下机组的选择必须进一步考虑实际的运行情况。
牵引变电所是电气化铁路牵引供电系统的核心部分, 它的主要任务是将电力系统输送来的三相高压电变化成适合电力机车使用的电能。
而电气主接线反映牵引变电所设施的主要电气设备以及这些设备的规格、型号、技术参数以及连接方式。
通过电气主接线可以了解牵引变电所设施的规模大小、设备情况。
由上述资料可知, 本牵引变电所担负着重要的牵引负荷供电任务(一级负荷), 馈线数目多、影响范围广, 应保证安全可靠的供电。
10KV地区负荷主要为编组站自动化驼峰、信号自动闭塞、照明及其它自动装置等, 应有足够的可靠性。
2.2.牵引变压器台数和容量的选择牵引变压器是牵引供电系统的重要设备, 其容量大小关系到能否完成国家交给的运输任务的问题。
从安全运行和经济方面来看, 容量过小会使牵引变压器长期过载, 将造成其寿命缩短, 甚至烧毁;反之, 容量过大将使牵引变压器长期不能满载运行, 从而造成其容量浪费, 损耗增加, 使运营成本增大。
电气化铁路供电系统设计

摘要本毕业设计介绍了电气化铁道供变电技术,以交流电气化铁道为重点,加强了对牵引供电系统的认识。
牵引供电系统又以牵引变电所为重点,介绍了供电系统一次设备和二次电气设备,对变电所一次电气设备的构成、类型、工作原理做了一定的介绍;对变电所的二次装置的构成、工作原理进行了比较详细的介绍。
本设计主要以电力牵引供变电系统为主,对其结构特点进行系统分析,包括主电路、控制电路、计量回路。
事故预告,报警回路;高低压电器等。
同时对电力牵引供变电系统供电方式的特点进行分析,对典型故障案例进行深入分析,提出解决方案,包括组织流程、安全、技术、处理措施。
本设计书还对接触网和牵引变电所倒闸部分进行了分析,更便于掌握牵引变电所的运行状态。
关键词:交流电气化设备供电系统供电方式结构特点ABSTRACTThe graduation design specification introduces electrified railway for substation technology, with ac electrified railway as the key point, to strengthen the understanding of the traction power supply system. Traction power supply system and focusing on traction substation, this paper introduces a power supply system and the secondary electrical equipment, equipment for substation once electrical equipment structure, type, principle of work done some introduction; The second device for substation structure, working principle are detailed introduced. This design is mainly for electric traction substation system is given priority to, on the structure characteristic of system analysis, including the main circuit and control circuit, measurement circuit. The accident forecast, alarm circuit, high and low voltage electric apparatus, etc. At the same time on the electric traction substation system for the power-supply modes, analyzes the characteristic of typical fault cases analysis, and proposes the solutions, including organizational processes, safety, technology, handling measures. This proponent of catenary and traction substation pour brake parts are analyzed, more facilitate master traction substation operation.Key words: Ac electrified equipment power supply system Power-supply modes Structure characteristics目录1 电力牵引供电系统概述 (1)1.1电力牵引特点 (1)1.2电力系统简介 (1)1.3牵引供变电系统的组成 (2)1.4牵引供电方式 (4)1.5接触网 (8)2 牵引变电所电气主接线 (11)2.1电气主接线概述 (11)2.2牵引变电所110kv侧的电气主接线 (11)3 牵引供电系统主要电气设备 (15)3.1电气设备的概述 (15)3.2牵引变压器 (15)3.2.1变压器的分类 (15)3.2.2油侵式电力变压器结构,构成部件的作用。
电气化铁道供电系统与设计课程设计指导手册自动化学院模板

电气化铁道供电系统与设计课程设计指导手册自动化学院《电气化铁道供电系统与设计》课程设计指导手册兰州交通大学自动化学院电气工程系-6-18电气化铁道供电系统与设计课程设计学院:自动化学院适用专业:电气工程及其自动化课程设计名称:电气化铁道供电系统课程设计课程代码:0508941学分数:1 学时数:16一、课程设计目的本课程设计是学生在学完《电气化铁道供电系统与设计》课程之后、进行的一个综合性的教学实践环节。
经过本课程设计一方面使学生获得综合运用学过的知识进行牵引变电所主接线设计和电气设备选型的基本能力,另一方面能巩固与扩大学生的电气综合设计知识,为毕业设计做准备,为后续课程的学习及今后从事科学研究、工程技术工作打下较坚实的基础。
经过本课程设计,学生能运用电气基础课程中的基本理论和实践知识,正确地解决牵引变电所的电气主接线设计等问题。
经过牵引变电所的电气主接线设计的训练,提高电气设计能力,学会使用相关的手册及图册资料:1、掌握牵引变压器容量计算的基本方法能够根据牵引负荷的大小正确计算牵引变压器的计算容量、校核容量和安装容量。
2、掌握牵引变电所110kV侧主接线设计的基本方法能够根据牵引变电所在牵引供电系统中的重要性,正确在电气主接线的四种接线形式中进行选择,做出110kV侧主接线的设计。
3、掌握牵引变压器型号选择的基本方法能够根据变压器的容量和牵引网向电力机车的供电方式正确选择牵引变压器的型号。
4、掌握牵引变电所馈线侧主接线设计的基本方法能够根据牵引变电所向接触网的供电方式,正确进行馈线数目、备用方式和接线形式的和设计。
5、掌握牵引变电所主接线中电气设备选型的基本方法能够正确对主接线中电气设备某两种,如:断路器,隔离开关,电流互感器,电压互感器,避雷器,自用电变压器,地方负荷用变压器等进行正确选型。
二、课程设计的要求学生要按照课程设计指导书的要求,根据题目所给原始参数进行设计。
本课程设计的基本步骤是:1、分析问题及解决方案框架确定2、牵引变压器容量计算正确进行牵引变压器的计算容量、校核容量和安装容量的计算。
电气化铁路牵引供电系统设计

电气化铁路牵引供电系统设计随着科技的不断进步和社会的不断发展,交通运输也在不断地优化和完善。
其中,铁路交通作为安全、快捷、环保的一种交通方式越来越受到人们的重视。
电气化铁路的建设是铁路交通发展的重要组成部分。
电气化铁路牵引供电系统是电气化铁路运行的重要设施,其设计直接关系到铁路交通的安全和稳定性。
本文将从设计的基础需求、技术要求以及具体实现等方面分析电气化铁路牵引供电系统的设计。
一、基础需求电气化铁路牵引供电系统的设计需要满足以下基础需求:1.安全性:电气化铁路是一种高速运行的交通方式,因此对安全性要求极高。
供电系统需要具备一定的安全措施,如过载、电压等保护装置,确保列车在运行过程中不会因供电系统故障而发生问题。
2.稳定性:电气化铁路供电系统需要保持电压、电流等参数稳定,确保供电质量良好。
同时,还需要考虑到运行过程中温度、湿度等因素的影响,对供电系统进行综合考虑和设计,确保供电系统长期稳定运行。
3.高效性:电气化铁路是一种高效的交通方式,需要牵引供电系统具备一定的效率。
既要保证足够的供电能力,又要降低能耗,提高供电系统的效率。
4.兼容性:供电系统需要兼容不同类型的列车,以及各种不同的运行情况。
同时还需要兼容不同的铁路线路等。
二、技术要求电气化铁路牵引供电系统需要满足以下技术要求:1.电压等级:供电系统需要提供足够的电压和电流,同时还需要与不同的列车进行匹配。
供电系统的电压等级需要根据实际情况进行选择,以确保其能够满足实际需求。
2.配电系统:供电系统需要具备相应的配电系统,以保证能够有序地为列车供电。
同时还需要考虑到配电过程中的损耗等问题,尽可能降低能耗,提高效率。
3.牵引变流器:牵引变流器是电气化铁路配电系统的核心部分,需要具备稳定的输出电压和电流。
同时还需要具备过流、过压等保护机制,以保证列车在运行过程中的安全。
4.供电系统保护:供电系统需要具备过载、短路等保护机制,及时发现和排除故障,以保证供电系统的安全、稳定运行。
电气化铁路供电系统的设计与实现

电气化铁路供电系统的设计与实现一、导言电气化铁路是现代交通运输的必需品,概念简单来说就是用电力作为牵引能源的铁路交通系统。
电气化铁路的供电系统是电气化铁路的重要组成部分,供电系统的设计与实现是电气化铁路建设的重要环节,本文将就此展开讨论。
二、供电系统的基本概念供电系统是支持电气化铁路正常运行的关键基础设施之一,它主要由供电站、电气化变电站、牵引变压器、接触网、集电装置、地线以及设备和通信控制系统等部分组成。
其中,供电站是供应电力给电气化铁路的核心部分,电气化变电站负责将高压输电线路的电压转换为低压直流电,牵引变压器用于将低压直流电转换为适合交流电驱动的电能,接触网则是供电系统的主要能量输出装置,集电装置用于对接触网所输出的电能进行集电,地线则是用于保证安全的配套设施。
三、供电系统的设计原则为了保证电气化铁路运行的安全性和运行效率,供电系统的设计必须符合一定的原则。
首先,供电系统必须满足稳定、可靠、高效、安全的电力供应要求。
其次,供电系统的设计需要考虑供电站覆盖面积、变电站的布局、接触网构造等因素,要在满足技术要求和经济需求的前提下进行合理布局和安排。
此外,供电系统的设计还需要考虑在地形条件不同的地方下如何解决供电站、变电站、接触网和车站等相互关联的问题。
四、供电系统的实现方法在实现供电系统的过程中,需要考虑到系统的可靠性、稳定性和灵活性等因素。
供电系统具体的实现方法根据不同的技术要求和经济条件进行选择。
一般情况下,供电系统的实现技术主要有以下几种:1. 直供直流电力系统(DC)该方法主要是通过直流电传输来实现电气化铁路的供电,其特点是输电损耗较小,系统结构简单,稳定性和可靠性高。
但由于操作难度较大,需要专业技术人员进行操作,因此使用范围相对较窄。
2. 交流电力系统(AC)该方法主要是通过交流电传输来实现电气化铁路的供电,其特点是输电噪音小,相对稳定,且操纵容易。
但对于电气化铁路的大规模使用来说,支持的电压和频率等参数需要与国家标准保持一致,造成的成本相对较高。
电气化铁道供电系统课程设计

电气化铁道供电系统与设计课程设计报告班级:学号:姓名指导教师:评语:1. 题目某牵引变电所丙采用直接供电方式向复线区段供电,牵引变压器类型为110/27.5kV,三相V-v接线,两供电臂电流归算到27.5kV侧电流如表1所示。
表1 已知参数供电臂供电臂长度km端子平均电流A有效电流A 短路电流A 穿越电流A左臂21.9 β238 318 917 206右臂24.7 α184 266 1052 2172. 题目分析及解决方案框架确定在设计过程中,先按给定的计算条件求出牵引变压器供应牵引负荷所必须的最小容量,然后按列车紧密运行时供电臂的有效电流与充分利用牵引变压器过负荷能力,求出所需要的容量,称为校核容量。
这是为确保牵引变压器安全运行所必须的容量。
最后计算容量和校核容量,再考虑其他因素(如备用方式等),然后按实际系列产品的规格选定牵引的台数和容量,称为安装容量或设计容量。
然后再变压器型号的基础之上,选取室外110kV侧母线,室外27.5kV侧母线以及室外10kV侧母线的型号。
三相V,v结线牵引变压器是近年新研制的产品,它是将两台容量相等或不相等的单相变压器器身安装于同一油箱内组成的。
三相V-v结线牵引变电所中装设两台V,v 结线牵引变压器,一台运行,一台固定备用。
三相V-v结线牵引变电所不但保持了单相V-v结线牵引变电所的牵引变压器容量得到充分利用,可供应牵引变电所自用电和地区三相负载,主接线较简单,设备较少,投资较省,对电力系统的负须影响比单线小,对接触网的供电可实现双边供电等优点,最可取的是,解决了单相V-v结线牵引变电所不便于采用固定备用及其自动投入的问题。
考虑到V-v接线中装有两台变压器的特点,在确定110kV侧主接线时我们采用桥形接线。
按照向复线区段供电的要求,其牵引侧母线的馈线数目较多,为了保障操作的灵活性和供电的可靠性,我们选用馈线断路器100%备用接线,这种接线也便于故障断路器的检修。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电气化铁道供电系统与设计课程设计报告班级:电气081班学号: 200809012姓名:段有春指导教师:王秀华2011 年7 月15日一、 题目某牵引变电所丙采用直接供电方式向复线区段供电,牵引变压器类型为110/27.5kV ,三相V,v 接线,两供电臂电流归算到27.5kV 侧电流如下表所示。
二、 题目分析及解决方案框架确定三相V ,v 结线牵引变电所中装设两台三相V ,v 结线牵引变压器,一台运行,一台固定备用。
三相V ,v 结线牵引变压器是近年来新研制的产品,它是将两台容量相等的单相变压器器身安装于同一油箱内组成的。
原理电路如图1所示。
原边绕组接成固定的V 结线,V 的顶点(2A 与1X 连接点)为C 相,1A 、2X 分别为A相、B 相。
副边绕组四个端子全部引出在油箱外部,根据牵引供电的要求,即可接成正“V ”,也可接成反“V ”。
接成正“V ”时,2a 与1x 连接为C 相,即正“V ”的顶点;1a 、2x 分别为a 相、b 相。
接成反“V ”时,1a 与2x 连接为c 相,即反“V ”的顶点;1x 、2a 分别为a 相、b 相。
在牵引变电所中安装时,三相V ,v 结线牵引变压器原边A 、C 、B 三相分别接入电力系统中的三相;副边c 相与轨道、接地网连接,a 相、b 相分别接到牵引侧两相母线上,然后分别向对应的供电臂牵引网供电,也是60°接线。
三相V ,v 结线牵引变电所不但保持了单相V ,v 结线牵引变电所的主要优点,而且完全克服了单相V ,v 结线牵引变电所的缺点。
最可取的是解决了单相V ,v 结线牵引变电所不便于采用固定备用及自动投入的问题。
同时,三相V ,v 结线牵引变电所有两台独立的铁芯和对应绕组通过电磁感应进行变换和传递;两台的容量可以相等,也可以不相等;两台的副边电压可以相同,也可以不相同,有利于实现分相有载或无载调压。
为牵引变压器的选型提供了一种新的结线型式。
A B C BAC 2X 1A 2A 1X TT R R图1 三相V ,v 结线牵引变电所三、 设计过程牵引变电所的电气主接线分为三个部分来分别设计:110KV 侧的主接线、牵引侧的主接线、三相V ,v 直接供电方式变压器接线。
3.1 牵引变电所110kV 侧主接线设计依据该牵引变电所负荷等级,要求两路电源进线,因有系统功率穿越,属通过式变电所,110kV 侧采用图2所示的单母线分段接线。
若考虑经济运行也可采用图3所示的外桥接线。
此设计中着重考虑满足供电的可靠性和运行操作中的安全、灵活及便利,因此采用单母线分段接线。
3.2 牵引变电所馈线侧主接线设计由于27.5kV(或55kV)馈线断路器的跳闸次数较多,为了提高供电的可靠性,按馈线断路器备用方式不同,牵引变电所27.5kV 侧馈线的接线方式一般有下列三种:(1)馈线断路器100%备用的接线馈线断路器100%备用的接线如图4所示。
这种接线当工作断路器需检修时,即由备用断路器代替。
断路器的转换操作方便,供电可靠性高,但一次投资较大。
(2)馈线断路器50%备用的接线馈线断路器50%备用的接线如图5所示。
这种接线每两条馈线设一台备用断路器,通过隔离开关的转换,备用断路器可代替其中任一台断路器工作。
QFd L1L2QFQS1QS2 QS3QF1QF2图2 单母线分段接线图3 外桥接线A相母线B相母线送左臂上行送左臂下行送右臂上行送右臂下行图4 馈线断路器100%备用A相母线B相母线左臂上行左臂下行右臂上行右臂下行图5 馈线断路器50%备用(3)带旁路母线和旁路断路器的接线带旁路母线和旁路断路器的接线如图6所示。
一般每2至4条馈线设一旁路断路器。
通过旁路母线,旁路断路器可代替任一馈线断路器工作。
这种接线方式适用于每相牵引母线馈线数目较多的场合,以减少备用断路器的数量。
A相母线B相母线旁路母线图6 带有旁路母线和旁路断路器的接线考虑到牵引变压器类型为单相变压器,且此牵引变电所只为区间正线供电,为了提高供电的可靠性,同时避免较大的一次性投资,牵引变电所27.5kV 侧馈线断路器采用50%备用的接线。
3.3 三相V ,v 直接供电方式变压器接线采用直接供电方式时,三相V ,v 变压器原边绕组接成固定的V 接线,低压侧两个绕组接成正“V ”或反“V ”。
低压侧两次边绕组,各取一端联至27.5kV 的a 相和b 相母线上,它们的公共端接至接地网和钢轨。
三相V ,v 直接供电方式变压器接线如图7所示。
图7 三相V ,v 变压器直接供电方式接线3.4 牵引变压器容量计算(1)三相V,v 接线牵引变压器绕组的有效电流三相V ,v 接线牵引变压器是由两台单相牵引变压器联接而成,每台变压器供给所管辖供电臂的负荷。
所以其绕组有效电流vx I 即为馈线有效电流,故V X 1X I I = (1)VX1X1I I = (2) 式中vx I ——为绕组电流有效值。
根据题意,VX1318A I =,VX2266A I =(2)计算三相V-V 接线牵引变压器的计算容量三相V ,V 接线牵引变压器是由两台单相牵引变压器联接而成,,其两台变压器计算容量分别为VXA XA A S U U I I == (3)V X B X B B S U U I I == (4)A V X A 27.53188745k V AS U I ==⨯= B V X B 27.52667315S U I k V A =⨯== (3)变压器校核容量单相V ,v 结线牵引变压器的最大容量为abmax amax S UI = (5)b m xb b m a x S U I = (6) 式中amax I ——为供电臂(a )的最大电流,bmax I ——为供电臂(b )的最大电流。
abmax amax 27.591725217.5S UI kVA ==⨯=bbmax bmax 27.5105228930S UI kVA ==⨯=在最大容量的基础之上,再考虑牵引变压器的过负荷能力后所确定的容量,就可以得到校核容量,即maxj K S S = (7)式中,K 为牵引变压器过负荷倍数,取K=1.5。
则可得abmax 25217.5/1.516811.67aj S S K kVA ===bj bbmax 28930/1.519286.67S K kVA S ===j aj bj ()(16811.6719286.67)36098.34KkVA S S S =+=+=(4)确定三相V,v 接线牵引变压器的安装容量及型号选择将三相V ,v 接线的变压器的计算容量和校核容量进行比较,并结合采用移动备用方式和系列产品,选用三相V ,v 变压器的安装容量为2×20000KV A 。
由变压器允许过电荷50%可知:移动备用方式下bmax (220000) 1.560000KVA S =⨯⨯=。
已知bmax abmax bbmax (S +S )max 54147.5VA S k ==,故选用的安装容量是合适的。
考虑到在采用移动备用方式的情况下,当两台并联运行的牵引变压器一台发生故障停电后,为了使另一台单独运行而不影响铁路正常运输,安装容量选用21600032000kVA kVA ⨯=变压器。
因为:16000 1.316380(87457315)16060kVA kVA kVA kVA kVA ⨯=>+=因此选择16000/110型号的变压器。
3.5 绘制电气主结线图为保证供电可靠性,牵引变压器采用固定备用方式。
因采用单相牵引变压器,同一牵引变电所馈线电压同相,且省去牵引变电所出口处电分相装置,改善了电力机车运行的弓网关系。
此种接线适用于高速电气化铁路的机车运行。
唯一不足的是,会产生较大的负序和谐波。
电气主接线如附录二所示。
3.6 开关设备的选择(1)高压断路器的选择对于开断电路中负荷电流和短路电流的高压断路器,首先应按使用地点和负荷种类及特点选择断路器的类型和型号、即户内或户外式,以及灭弧介质的种类,并能满足下列条件:① 断路器的额定电压,应不低于电网的工作电压,即εg U U ≥式中εU 、g U ——分别为制造厂给出的短路器额定电压和网络的工作电压,伏或千伏。
② 断路器的额定电流εI ,应不小于电路中的最大长期负荷电流,即εg I I ≥式中g I ——断路器的最大长期负荷电流,安或千安。
③ 根据断路器的断路能力,即按照制造厂给定的额定切断电流eq I 、或额定断路容量ed S 选择断路器切断短路电流(或短路功率)的能力。
为此,应使额定切断电流eq I 不小于断路器灭弧触头刚分离瞬间电路内短路电流的有效值dt I ,或在一定工作电压下应使断路容量ed S 不小于短路功率dt S 。
即eq I ≥dt I或 ed S eeq I ≥dt S (三相系统) 式中,dt I ——短路后t 秒短路电流有效值(周期分量),对快速断路器,取dt I =I , t ≤0.1;dt S ——短路后t 秒短路功率,对快速熔断器dt S =d S 。
对于牵引系统,牵引网电压为27.5千伏,当采用三相35千伏系列的断路器时,断路器容量需按下式换算:'ed S =355.27·ed S =ed 0.78S 式中,ed S ——35千伏断路器用在27.5千伏系统中的三相断路容量。
牵引网馈电线用单相断路器,按额定断路容量选择时应满足的条件为(eq I 不变):(2)ed S =27.5eq I ⋅≥(2)dt S 式中(2)ed S 、(2)dt S ——分别为单相断路器的额定断路容量和单相牵引网中短路后t秒的短路功率。
为了求得短路电流有效值dt I ,必须确定切断短路的计算时间js t ,即从短路发生到灭弧触头分开时为止的全部时间,它等于继电保护动作时间b t 和断路器固有动作时间g t 之和,故js t =b t +g t 。
在设计和电气设备选择中,由实际选择的保护装置与断路器型号,可得到b t 和g t 的实际值,但如无此数据时,一般可按下述情况选取。
对快速动作的断路器,取g t =0.05秒,而对于非快速动作的断路器,js t =0.1~0.15秒;对于继电保护,应按具有最小动作时间的速断主保护作为动作时间,即b t =0.05秒,因此,对于快速动作的断路器,切断短路的计算时间js t =0.05~0.1秒,对于非快速动作的断路器,js t =0.15~0.2秒。
可知,短路发生后js t >0.1秒,因短路电流的非周期分量已接近衰减完毕,此时短路电流即为短路周期分量电流的有效值。
当js t ≤0.1秒时,则须计入短路电流的周期分量。
④ 校验短路电流通过时的机械稳定性在短路电流作用下,对断路器将产生较大的机械应力,为此,制造厂给出了能保证机械稳定性的极限通过电流瞬时值gf i ,即在此电流通过下不致引起触头熔接或由于机械应力而产生任何机械变形。