高二数学期中测试卷
2023-2024学年河北省部分高中高二(上)期中数学试卷【答案版】

2023-2024学年河北省部分高中高二(上)期中数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线l :2x +√3y −1=0的斜率为( ) A .−2√33B .−√32C .2√33D .√322.若方程x 2+y 2+4x +2y ﹣m =0表示一个圆,则m 的取值范围是( ) A .(﹣∞,﹣5)B .(﹣5,+∞)C .(﹣∞,5)D .(5,+∞)3.已知F 1,F 2分别是椭圆E :x 29+y 25=1的左、右焦点,P 是椭圆E 上一点,若|PF 1|=2,则|PF 2|=( )A .1B .2C .3D .44.如图,在三棱锥P ﹣ABC 中,P A ⊥平面ABC ,AB ⊥AC ,且PD →=3DC →,则BD →在AC →方向上的投影向量为( )A .34AC →B .−23AC →C .−34AC →D .23AC →5.若圆O 1:x 2+y 2=25与圆O 2:(x ﹣7)2+y 2=r 2(r >0)相交,则r 的取值范围为( ) A .[2,10]B .(2,10)C .[2,12]D .(2,12)6.若A (2,2,1),B (0,0,1),C (2,0,0),则点A 到直线BC 的距离为( ) A .2√305B .√305C .2√55D .√557.已知双曲线C :x 2a 2−y 2b2=1(a >0,b >0)的右焦点为F ,过F 作双曲线C 的其中一条渐近线l 的垂线,垂足为A (第一象限),并与双曲线C 交于点B ,若FB →=BA →,则l 的斜率为( ) A .2B .1C .12D .−748.已知实数x ,y 满足2x ﹣y +2=0,则√(x −9)2+y 2+√x 2+y 2−4x −4y +8的最小值为( ) A .3√13B .10+√13C .108D .117二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,E ,F 分别是AB ,BC 的中点,则( )A .BC →−A 1A →=AD 1→B .BC →−A 1A →=2AD 1→C .EF →=12A 1C 1→D .EF →=A 1C 1→10.在同一直角坐标系中,直线l :y =mx +1与曲线C :x 2+my 2=1的位置可能是( )A .B .C .D .11.已知F 1,F 2分别是椭圆E :x 2a2+y 2b 2=1(a >b >0)的左、右焦点,P 是椭圆E 上一点,且|PF 1|=43|PF 2|,cos ∠PF 2F 1=35,则下列结论正确的有( ) A .椭圆E 的离心率为57B .椭圆E 的离心率为45C .PF 1⊥PF 2D .若△PF 1F 2内切圆的半径为2,则椭圆E 的焦距为1012.苏州博物馆(图一)是地方历史艺术性博物馆,建筑物的顶端可抽象为如图二所示的上、下两层等高的几何体,其中上层EFGH ﹣NPQM 是正四棱柱,下层底面ABCD 是边长为4的正方形,E ,F ,G ,H 在底面ABCD 的投影分别为AD ,AB ,BC ,CD 的中点,若AF =√5,则下列结论正确的有( )A .该几何体的表面积为32+8√2+4√6B .将该几何体放置在一个球体内,则该球体体积的最小值为36πC .直线CP 与平面ABF 所成角的正弦值为√63D .点M 到平面BFG 的距离为√63三、填空题:本题共4小题,每小题5分,共20分.13.已知点N 是点M (3,3,4)在坐标平面Oxz 内的射影,则|ON →|= . 14.若双曲线C :x 2m+1+y 2m 2−m−2=1的实轴长与虚轴长相等,则m = .15.过点M(√3,0)作圆C :x 2+(y ﹣1)2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为 .16.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,AM =2MB ,N 为DD 1的中点,记平面CMN 与平面ADD 1A 1的交线为l ,则直线l 与直线AC 1所成角的余弦值为 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知直线l 1:x +ay ﹣a +2=0与l 2:2ax +(a +3)y +a ﹣5=0. (1)当a =1时,求直线l 1与l 2的交点坐标; (2)若l 1∥l 2,求a 的值.18.(12分)如图,在正四棱锥P ﹣ABCD 中,E ,F 分别为P A ,PC 的中点,DG →=2GP →. (1)证明:B ,E ,G ,F 四点共面.(2)记四棱锥P ﹣BEGF 的体积为V 1,四棱锥P ﹣ABCD 的体积为V 2,求V 1V 2的值.19.(12分)已知P 是圆C :x 2+y 2=12上一动点,过P 作x 轴的垂线,垂足为Q ,点M 满足PQ →=2PM →,记点M 的轨迹为E . (1)求E 的方程;(2)若A ,B 是E 上两点,且线段AB 的中点坐标为(−85,25),求|AB |的值.20.(12分)如图,这是某圆弧形山体隧道的示意图,其中底面AB 的长为16米,最大高度CD 的长为4米,以C 为坐标原点,AB 所在的直线为x 轴建立直角坐标系. (1)求该圆弧所在圆的方程;(2)若某种汽车的宽约为2.5米,高约为1.6米,车辆行驶时两车的间距要求不小于0.5米以保证安全,同时车顶不能与隧道有剐蹭,则该隧道最多可以并排通过多少辆该种汽车?(将汽车看作长方体)21.(12分)如图,在斜三棱柱ABC ﹣A 1B 1C 1中,△ABC 是边长为2的等边三角形,M ,Q 分别为AC ,A 1B 1的中点,且MQ ⊥AB . (1)证明:MC 1⊥AB .(2)若BB 1=4,MQ =√15,求平面MB 1C 1与平面MC 1Q 夹角的余弦值.22.(12分)如图,已知F 1(−√10,0),F 2(√10,0)分别是双曲线E :x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点,P(−2√103,√63)是E 上一点. (1)求E 的方程.(2)过直线l :x =1上任意一点T 作直线l 1,l 1与E 的左、右两支相交于A ,B 两点.直线l 1关于直线l 对称的直线为l 2(与l 1不重合),l 2与E 的左、右两支相交于C ,D 两点.证明:∠ABD =∠ACD .2023-2024学年河北省部分高中高二(上)期中数学试卷参考答案与试题解析一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线l :2x +√3y −1=0的斜率为( ) A .−2√33B .−√32C .2√33D .√32解:将l 的方程转化为y =−2√33x +√33,则l 的斜率为−2√33. 故选:A .2.若方程x 2+y 2+4x +2y ﹣m =0表示一个圆,则m 的取值范围是( ) A .(﹣∞,﹣5)B .(﹣5,+∞)C .(﹣∞,5)D .(5,+∞)解:因为方程x 2+y 2+4x +2y ﹣m =0表示一个圆,所以42+22+4m >0,解得m >﹣5. 故选:B .3.已知F 1,F 2分别是椭圆E :x 29+y 25=1的左、右焦点,P 是椭圆E 上一点,若|PF 1|=2,则|PF 2|=( )A .1B .2C .3D .4解:椭圆E :x 29+y 25=1,可知a =3,因为P 是椭圆E 上一点,所以|PF 1|+|PF 2|=2a =6,所以|PF 2|=6﹣|PF 1|=4. 故选:D .4.如图,在三棱锥P ﹣ABC 中,P A ⊥平面ABC ,AB ⊥AC ,且PD →=3DC →,则BD →在AC →方向上的投影向量为( )A .34AC →B .−23AC →C .−34AC →D .23AC →解:因为P A ⊥平面ABC ,AB ⊥AC ,所以P A ⊥AB ,P A ⊥AC ,故以A 为坐标原点,AB ,AC ,P A 所在直线分别为x ,y ,z 轴建立空间直角坐标系,令AB =a ,AC =b ,P A =c ,则A (0,0,0),B (a ,0,0),C (0,b ,0),D(0,34b ,14c), 则AC →=(0,b ,0),BD →=(−a ,34b ,14c),所以BD →在AC →方向上的投影向量为AC →⋅BD →|AC →|⋅AC →|AC →|=34b 2|b|⋅AC →|b|=34AC →.故选:A .5.若圆O 1:x 2+y 2=25与圆O 2:(x ﹣7)2+y 2=r 2(r >0)相交,则r 的取值范围为( ) A .[2,10]B .(2,10)C .[2,12]D .(2,12)解:∵O 1与O 2相交, ∴|r ﹣5|<|O 1O 2|<|r +5|, 又|O 1O 2|=7,∴|r ﹣5|<7<|r +5|,解得2<r <12. 故选:D .6.若A (2,2,1),B (0,0,1),C (2,0,0),则点A 到直线BC 的距离为( ) A .2√305B .√305C .2√55D .√55解:由题意得,BA →=(2,2,0),BC →=(2,0,−1),则BA →在BC →上的投影向量的模为|BA →⋅BC →||BC →|=√5,则点A 到直线BC 的距离为√|BA →|2−(|BA →⋅BC →||BC →|)2=√(√8)2−(4√5)2=2√305. 故选:A .7.已知双曲线C :x 2a 2−y 2b2=1(a >0,b >0)的右焦点为F ,过F 作双曲线C 的其中一条渐近线l 的垂线,垂足为A (第一象限),并与双曲线C 交于点B ,若FB →=BA →,则l 的斜率为( )A .2B .1C .12D .−74解:由已知直线l 的方程为y =b ax ,即bx ﹣ay =0,点F (c ,0),则|FA|=|bc|√b +(−a)2=b ,因为FB →=BA →,所以B 为线段AF 的中点,则|BF|=b2, 设双曲线C 的左焦点为F 1,则|BF 1|=2a +b2, 在△BFF 1中,由余弦定理可得:cos ∠BFF 1=|BF|2+|FF 1|2−|BF 1|22|BF||FF 1|=b 24+4c 2−(2a+b 2)22×b2×2c=2b−ac, 又cos ∠BFF 1=bc ,所以a =b ,故l 的斜率为1, 故选:B .8.已知实数x ,y 满足2x ﹣y +2=0,则√(x −9)2+y 2+√x 2+y 2−4x −4y +8的最小值为( ) A .3√13B .10+√13C .108D .117解:√(x −9)2+y 2+√x 2+y 2−4x −4y +8=√(x −9)2+y 2+√(x −2)2+(y −2)2, 该式表示直线l :2x ﹣y +2=0上一点到P (9,0),Q (2,2)两点距离之和的最小值. 而P ,Q 两点在l 的同一侧,设点P 关于l 对称的点P ′(x 0,y 0),则{y 0−0x 0−9=−122×x 0+92−y 0+02+2=0,解得{x 0=−7y 0=8,∴P ′(﹣7,8),故√(x −9)2+y 2+√x 2+y 2−4x −4y +8≥|P′Q|=√(−7−2)+(8−2)2=3√13. 故选:A .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,E ,F 分别是AB ,BC 的中点,则( )A .BC →−A 1A →=AD 1→B .BC →−A 1A →=2AD 1→C .EF →=12A 1C 1→D .EF →=A 1C 1→解:BC →−A 1A →=AD →+AA 1→=AD 1→,A 正确,B 不正确,又因为EF →=12A 1C 1→,故C 正确,D 不正确. 故选:AC .10.在同一直角坐标系中,直线l :y =mx +1与曲线C :x 2+my 2=1的位置可能是( )A .B .C .D .解:A .取m =1,则直线l :y =x +1与曲线C :x 2+y 2=1满足图中的位置关系,因此A 正确; B .联立{y =mx +1x 2+my 2=1,化为(1+m 3)x 2+2m 2x +m ﹣1=0,若直线l :y =mx +1与曲线C :x 2+my 2=1有交点,则Δ=4m 4﹣4(1+m 3)(m ﹣1)=m 3﹣m +1>0. 由曲线C :x 2+my 2=1结合图形,则0<1m <1,∴m >1,满足Δ>0,因此B 正确;C .由曲线C :x 2+my 2=1结合图形,则0<1m <1,∴m >1,直线l 与椭圆应该有交点,因此C 不正确;D .由图可知:直线l 经过点(1,0),则m =﹣1,联立{y =−x +1x 2−y 2=1,化为x =1,y =0,即直线l 与双曲线的交点为(1,0),因此D 正确. 故选:ABD .11.已知F 1,F 2分别是椭圆E :x 2a2+y 2b 2=1(a >b >0)的左、右焦点,P 是椭圆E 上一点,且|PF 1|=43|PF 2|,cos ∠PF 2F 1=35,则下列结论正确的有( ) A .椭圆E 的离心率为57B .椭圆E 的离心率为45C .PF 1⊥PF 2D .若△PF 1F 2内切圆的半径为2,则椭圆E 的焦距为10解:A 、B 选项,由椭圆的定义得,|PF 1|+|PF 2|=2a ,已知|PF 1|=43|PF 2|,解得|PF 1|=87a ,|PF 2|=67a ,由cos ∠PF 2F 1=|PF 2|2+|F 1F 2|2−|PF 1|22|PF 2||F 1F 2|=4c 2−47a 2247ac=35, 整理得5a 2+18ac ﹣35c 2=0,即(a +5c )(5a ﹣7c )=0,则a =﹣5c (舍去)或a =75c ,即c a=57,故椭圆E 的离心率为57,故A 正确,B 不正确;C 选项,由a =75c ,得|F 1F 2|=2c =107a ,则|PF 1|2+|PF 2|2=|F 1F 2|2,故PF 1⊥PF 2,故C 正确; D 选项,由PF 1⊥PF 2,△PF 1F 2内切圆的半径为2,得2c =2a ﹣4,因为a =75c ,所以c =5,即椭圆E 的焦距为10,故D 正确. 故选:ACD .12.苏州博物馆(图一)是地方历史艺术性博物馆,建筑物的顶端可抽象为如图二所示的上、下两层等高的几何体,其中上层EFGH ﹣NPQM 是正四棱柱,下层底面ABCD 是边长为4的正方形,E ,F ,G ,H 在底面ABCD 的投影分别为AD ,AB ,BC ,CD 的中点,若AF =√5,则下列结论正确的有( )A .该几何体的表面积为32+8√2+4√6B .将该几何体放置在一个球体内,则该球体体积的最小值为36πC .直线CP 与平面ABF 所成角的正弦值为√63D .点M 到平面BFG 的距离为√63解:设F ,G 在平面ABCD 的投影分别为AB ,BC 的中点R ,S ,由于AF =√5,AB =4,所以F 到平面ABCD 的距离为FR =√AF 2−(12AB)2=1, 由于上、下两层等高,所以P 到平面ABCD 的距离为2,又FG =RS =12AC =2√2,由于GS =FR =1,BS =RB =12×4=2 所以BG =GC =√GS 2+BS 2=√5=BF =AF ,所以△AFB ≌△BGC ,同理可得△CDH ≌△ADE ≌△AFB ≌△BGC ,△BFG ≌△CHG ≌△DEH ≌△AEF , 则点B 到FG 的距离为√BF 2−(12FG)2=√(√5)2−(√2)2=√3,则△ABF 的面积为12AB ⋅FR =12×4×1=2,△BFG 的面积为12×2√2×√3=√6,故该几何体的表面积4×2+4×√6+4×4+2√2×2√2+2√2×4=32+8√2+4√6,故A 正确; 将该几何体放置在一个球体内,要使该球体体积最小,则球心在该几何体上下底面中心所连直线上, 且A 、B 、C 、D ,N 、P 、Q 、M 均在球面上,设球心到下底面ABCD 的距离为x , 由于四边形MNPQ 为边长为2√2的正方形,四边形ABCD 为边长为4的正方形, 则其对角线长度分别为4,4√2,则(2√2)2+x 2=22+(2−x)2,解得x =0,则该球体的半径为2√2,体积为4π3×(2√2)3=64√2π3,故B 错误;以A 为坐标原点建立如图所示的空间直角坐标系,则C (4,4,0),P (2,0,2),B (4,0,0),F (2,0,1),G (4,2,1),M (2,4,2),CP →=(−2,−4,2),BF →=(﹣2,0,1),BG →=(0,2,1),BM →=(﹣2,4,2), 平面ABF 的一个法向量为m →=(0,1,0),则cos <CP →,m →>=−42√6=−√63,设直线CP 与平面ABF 所成角为θ,则sinθ=|cos <CP →,m →>|=√63,故直线CP 与平面ABF 所成角的正弦值为√63,故C 正确; 设平面BFG 的法向量为n →=(x 1,y 1,z 1),则{n →⋅BF →=−2x 1+z 1=0n →⋅BG →=2y 1+z 1=0,令x 1=1,得n →=(1,﹣1,2), 则点M 到平面BFG 的距离为|n →⋅BM →||n →|=222=√63,故D 正确. 故选:ACD .三、填空题:本题共4小题,每小题5分,共20分.13.已知点N 是点M (3,3,4)在坐标平面Oxz 内的射影,则|ON →|= 5 . 解:由题可知,N (3,0,4),则ON →=(3,0,4),∴|ON →|=√32+42=5. 故答案为:5.14.若双曲线C :x 2m+1+y 2m 2−m−2=1的实轴长与虚轴长相等,则m = 1 .解:由题可知(m +1)+(m 2﹣m ﹣2)=0,解得m =1或m =﹣1(舍去),∴m =1. 故答案为:1.15.过点M(√3,0)作圆C :x 2+(y ﹣1)2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为 √3x −y =0 .解:圆C :x 2+(y ﹣1)2=1①,则圆心C (0,1), 以C (0,1),M (√3,0)为直径的圆的方程为:(x −√32)2+(y −12)2=1②,①﹣②可得,√3x −y =0,故直线AB 的方程为√3x −y =0. 故答案为:√3x −y =0.16.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,AM =2MB ,N 为DD 1的中点,记平面CMN 与平面ADD 1A 1的交线为l ,则直线l 与直线AC 1所成角的余弦值为7√111111.解:设I ∩AA 1=P ,连接NP ,MP ,直线NP 即为直线l .易证得MP ∥CN ,由AM =2MB ,N 为DD 1的中点,得AP =13AA 1,以D 为坐标原点,DA .DC ,DD 1所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,设AB =6,则得:N (0,0,3),P (6,0,2),A (6,0,0),C 1(0,6,6), NP →=(6,0,﹣1),AC 1→=(﹣6,6,6), 所以得:|cos <NP →,AC 1→>|=|NP →⋅AC 1→||NP →|⋅|AC 1→|=37×63=7√111111,故直线与直线 AC 1 所成角的余弦值为7√111111.故答案为:7√111111. 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知直线l 1:x +ay ﹣a +2=0与l 2:2ax +(a +3)y +a ﹣5=0. (1)当a =1时,求直线l 1与l 2的交点坐标; (2)若l 1∥l 2,求a 的值. 解:(1)因为a =1,所以l 1:x +y +1=0,l 2:2x +4y ﹣4=0,即x +2y ﹣2=0, 联立{x +y +1=0x +2y −2=0解得{x =−4y =3,故直线l 1与l 2的交点坐标为(﹣4,3).(2)因为l 1∥l 2,所以2a 2﹣a ﹣3=0,解得a =﹣1或a =32, 当a =﹣1时,l 1与l 2重合,不符合题意. 当a =32时,l 1与l 2不重合,符合题意. 故a =32.18.(12分)如图,在正四棱锥P ﹣ABCD 中,E ,F 分别为P A ,PC 的中点,DG →=2GP →. (1)证明:B ,E ,G ,F 四点共面.(2)记四棱锥P ﹣BEGF 的体积为V 1,四棱锥P ﹣ABCD 的体积为V 2,求V 1V 2的值.解:(1)证明:因为E ,F 分别为P A ,PC 的中点, 所以BE →=12BA →+12BP →,BF →=12BC →+12BP →, 所以BG →=BD →+DG →=BD →+23DP →=BD →+23(BP →−BD →)=13BD →+23BP →=13BA →+13BC →+23BP →=23(12BA →+12BP →)+23(12BC →+12BP →)=23BE →+23BF →, 故B ,E ,G ,F 四点共面;(2)由正四棱锥的对称性知,V 1=2V E ﹣PBG ,V 2=2V A ﹣PBD , 设点E 到平面PBG 的距离为d 1,点A 到平面PBD 的距离为d 2,由E 是P A 的中点得d 2=2d 1, 由DG →=2GP →得S △PBD =3S △PBG ,所以V 1V 2=V E−PBG V A−PBD=13S △PBG ⋅d 113S △PBD ⋅d 2=16.19.(12分)已知P 是圆C :x 2+y 2=12上一动点,过P 作x 轴的垂线,垂足为Q ,点M 满足PQ →=2PM →,记点M 的轨迹为E . (1)求E 的方程;(2)若A ,B 是E 上两点,且线段AB 的中点坐标为(−85,25),求|AB |的值. 解:(1)设M (x ,y ),则Q (x ,0), 因为PQ →=2PM →,则P (x ,2y ), 因为P 在圆C 上,所以x 2+(2y )2=12, 故E 的方程为x 212+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),若A ,B 是E 上两点,则{x 1212+y 123=1x 2212+y 223=1, 两式相减得x 12−x 2212+y 12−y 223=0,即y 1−y 2x 1−x 2=−x 1+x 24(y 1+y 2).因为线段AB 的中点坐标为(−85,25),所以y 1−y 2x 1−x 2=−x 1+x 24(y 1+y 2)=1,所以k AB =1,则直线AB 的方程为y =x +2.联立方程组{y =x +2x 212+y 23=1,整理得5x 2+16x +4=0,其中Δ>0, 则x 1+x 2=−165,x 1x 2=45, |AB|=√1+12√(x 1+x 2)2−4x 1x 2=4√225. 20.(12分)如图,这是某圆弧形山体隧道的示意图,其中底面AB 的长为16米,最大高度CD 的长为4米,以C 为坐标原点,AB 所在的直线为x 轴建立直角坐标系. (1)求该圆弧所在圆的方程;(2)若某种汽车的宽约为2.5米,高约为1.6米,车辆行驶时两车的间距要求不小于0.5米以保证安全,同时车顶不能与隧道有剐蹭,则该隧道最多可以并排通过多少辆该种汽车?(将汽车看作长方体)解:(1)由圆的对称性可知,该圆弧所在圆的圆心在y轴上,由图形可得A(﹣8,0),B(8,0),D(0,4),设该圆的半径为r米,则r2=82+(r﹣4)2,解得r=10,圆心为(0,﹣6),故该圆弧所在圆的方程为x2+(y+6)2=100.(2)设与该种汽车等高且能通过该隧道的最大宽度为d米,则(d2)2+(6+1.6)2=102,解得d=2√42.24.若并排通过4辆该种汽车,则安全通行的宽度为4×2.5+3×0.5=11.5<2√42.24.隧道能并排通过4辆该种汽车;若并排通过5辆该种汽车,则安全通行的宽度为5×2.5+4×0.5=14.5>2√42.24,故该隧道不能并排通过5辆该种汽车.综上所述,该隧道最多可以并排通过4辆该种汽车.21.(12分)如图,在斜三棱柱ABC﹣A1B1C1中,△ABC是边长为2的等边三角形,M,Q分别为AC,A1B1的中点,且MQ⊥AB.(1)证明:MC1⊥AB.(2)若BB1=4,MQ=√15,求平面MB1C1与平面MC1Q夹角的余弦值.(1)证明:因为△A1B1C1是等边三角形,Q为A1B1的中点,所以C1Q⊥A1B1,又AB∥A1B1,所以C1Q⊥AB,因为MQ⊥AB,C1Q∩MQ=Q,所以AB⊥平面MC1Q,又MC1⊂平面C1MQ,所以MC1⊥AB;(2)解:取AB靠近点A的四等分点N,连接MN,NQ,易证得MN∥C1Q,则MN⊥AB,且MN=√32,由BB 1=4,得QN =3√72,因为MQ =√15,所以MQ 2+MN 2=QN 2, 即MQ ⊥MN ,又MQ ⊥AB ,从而MQ ⊥平面ABC ,以M 为坐标原点,MN 所在直线为x 轴,MQ 所在直线为z 轴,建立如图所示的空间直角坐标系,则M (0,0,0),B 1(0,1,√15),C 1(−√3,0,√15), 则MB 1→=(0,1,√15),MC 1→=(−√3,0,√15), 设平面MB 1C 1的法向量为m →=(x ,y ,z ),则有{m →⋅MB 1→=y +√15z =0m →⋅MC 1→=−√3x +√15z =0,令z =1,得m →=(√5,−√15,1),由图可知,n →=(0,1,0)是平面MC 1Q 的一个法向量,设平面MB 1C 1与平面MC 1Q 的夹角为θ,则cosθ=|m →⋅n →||m →||n →|=√1521=√357.22.(12分)如图,已知F 1(−√10,0),F 2(√10,0)分别是双曲线E :x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点,P(−2√103,√63)是E 上一点. (1)求E 的方程.(2)过直线l :x =1上任意一点T 作直线l 1,l 1与E 的左、右两支相交于A ,B 两点.直线l 1关于直线l 对称的直线为l 2(与l 1不重合),l 2与E 的左、右两支相交于C ,D 两点.证明:∠ABD =∠ACD .解:(1)∵F 1(−√10,0),F 2(√10,0)分别是双曲线E :x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点,P(−2√103,√63)是E 上一点,∴{a 2+b 2=10409a2−69b2=1,解得a 2=4,b 2=6,∴E 的方程为x 24−y 26=1.(2)证明:设T (1,m ),由题意得直线l 1的斜率存在且不等于0, 设直线l 的方程为y ﹣m =k (x ﹣1),则直线l 2的方程为y ﹣m =﹣k (x ﹣1), 设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4), 联立方程组{y −m =k(x −1)x 24−y 26=1,整理得(3﹣2k 2)x 2+(4k 2﹣4km )x ﹣2k 2+4km ﹣2m 2﹣12=0,Δ=(4k 2﹣4km )2﹣(12﹣8k 2)(﹣2k 2+4km ﹣2m 2﹣12)=﹣72k 2﹣48km +24m 2+144>0, 则x 1+x 2=4k 2−4km 2k 2−3,x 1x 2=2k 2−4km+2m 2+122k 2−3,|AT |=√1+k 2|x 1−1|,|BT |=√1+k 2|x 2﹣1|,|CT |=√1+k 2|x 3﹣1|,|DT |=√1+k 2|x 4﹣1|, ∴|AT ||BT |=(1+k 2)|(x 1﹣1)(x 2﹣1)|=(1+k 2)|x 1x 2﹣(x 1+x 2)+1| =(1+k 2)|2k 2−4km+2m 2+122k 2−3−4k 2−4km 2k 2−3+1|=(1+k 2)|2m 2+92k 2−3|,同理,|CT ||DT |=(1+k 2)|2m 2+92k 2−3,∴|AT||DT|=|CT||BT|,∴△ACT ∽△DBT ,∴∠ABD =∠ACD .。
2023-2024学年山东省聊城市高二(上)期中数学试卷【答案版】

2023-2024学年山东省聊城市高二(上)期中数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合 1.设a ∈R ,则“直线ax +y ﹣1=0与直线x +ay +1=0平行”是“a =1”的( ) A .充分不必要条件 B .充要条件C .必要不充分条件D .既不充分也不必要条件2.经过两条直线l 1:x +y =2,l 2:2x ﹣y =1的交点,且直线的一个方向向量v →=(−6,4) 的直线方程为( ) A .2x ﹣y ﹣1=0B .2x +y ﹣3=0C .3x ﹣2y ﹣5=0D .2x +3y ﹣5=03.已知SA ⊥平面ABC ,AB ⊥AC ,SA =AB =1,BC =√5,则空间的一个单位正交基底可以为( ) A .{AB →,12AC →,AS →} B .{AB →,AC →,AS →} C .{AB →,12AC →,12AS →} D .{AS →,AB →,√55BC →}4.椭圆x 216+y 24=1和x 236+y 224=1( )A .长轴长相等B .短轴长相等C .焦距相等D .顶点相同5.已知圆M :x 2+y 2﹣2ay =0(a >0)截直线x +y =0所得线段的长度是2√2,则圆M 与圆N :(x ﹣1)2+(y ﹣1)2=1的位置关系是( ) A .内切B .相交C .外切D .相离6.布达佩斯的伊帕姆维泽蒂博物馆收藏的达•芬奇方砖,在正六边形上画了具有视觉效果的正方体图案(如图1),把三片这样的达•芬奇方砖形成图2的组合,这个组合表达了图3所示的几何体.如图3中每个正方体的棱长为1,则点A 到平面QGC 的距离是( )A .14B .12C .√22D .√327.已知圆C :(x ﹣2)2+y 2=64,F (﹣2,0)为圆内一点,将圆折起使得圆周过点F (如图),然后将纸片展开,得到一条折痕l ,这样继续下去将会得到若干折痕,观察这些折痕围成的轮廓是一条圆锥曲线,则该圆锥曲线的方程为( )A .x 216+y 212=1B .x 24+y 2=1C .x 24+y 23=1D .x 216+y 24=18.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,O 是AC 中点,点P 在线段A 1C 1上,若直线OP 与平面A 1BC 1所成的角为θ,则sin θ的取值范围是( )A .[√23,√33] B .[13,12]C .[√34,√33] D .[14,13]二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得О分.9.若直线过点A (1,2),且在两坐标轴上截距的绝对值相等,则直线l 方程可能为( ) A .x ﹣y +1=0B .x +y ﹣3=0C .2x ﹣y =0D .x ﹣y ﹣1=010.已知点P 在圆C :x 2+y 2﹣4x =0上,直线AB :y =x +2,则( ) A .直线AB 与圆C 相交 B .直线AB 与圆C 相离C .点P 到直线AB 距离最大值为2√2+2D .点P 到直线AB 距离最小值为2√2−111.正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,已知平面α⊥AC 1,则关于α截此正方体所得截面的判断正确的是( )A .截面形状可能为正三角形B .截面形状可能为正方形C .截面形状可能为正六边形D .截面面积最大值为√312.已知椭圆C :x 225+y 29=1,F 1,F 2分别为它的左右焦点,A ,B 分别为它的左右顶点,点P 是椭圆上的一个动点,下列结论中正确的有( ) A .存在P 使得∠F 1PF 2=π2 B .cos ∠F 1PF 2的最小值为−18C .直线P A 与直线PB 斜率乘积为定值925D .PF 1⊥PF 2,则△F 1PF 2的面积为9三、填空题:本题共4小题,每小题5分,共20分.13.与圆x 2+y 2﹣2x +4y +3=0同圆心,且过点(1,1)的圆的方程是 .14.如图,P A ⊥平面ABCD ,底面ABCD 是正方形,E ,F 分别为PD ,PB 的中点,点G 在线段AP 上,AC 与BD 交于点O ,P A =AB =2,若OG ∥平面EFC ,则AG = .15.点P (﹣2,﹣1)到直线l :(2+λ)x +λy ﹣2﹣λ=0(λ为任意实数)的距离的最大值是 . 16.2023年第19届亚运会在中国浙江杭州举行,杭州有很多圆拱的悬索拱桥,经测得某圆拱索桥(如图)的跨度|AB |=100米,拱高|OP |=10米,在建造圆拱桥时每隔5米需用一根支柱支撑,则与OP 相距30米的支柱MN 的高度是 米.(注意:√10≈3.162)四、解答题:本题共6小题,第17题10分,其它每题共70分.解答应写出文字说明、证明过程或 17.(10分)已知直线l :mx ﹣y +1﹣m =0和圆C :x 2+(y ﹣1)=5. (1)求证:对任意实数m ,直线l 和圆C 总有两个不同的交点; (2)设直线l 和圆C 交于A ,B 两点.若|AB|=√17,求l 的倾斜角.18.(12分)如图,在四棱锥P ﹣ABCD 中,P A ⊥平面ABCD ,PB 与底面所成的角为45°,底面ABCD 为直角梯形,∠ABC =∠BAD =90°,AD =2,P A =BC =1.(1)求直线PC 与平面PBD 所成角的正弦值;(2)求平面P AB 与平面PCD 所成的锐二面角的余弦值.19.(12分)已知圆C :x 2+y 2﹣4x ﹣6y +9=0. (1)过点P (3,5)作圆C 的切线l ,求l 的方程;(2)若圆C 2:x 2+y 2+2x ﹣4y ﹣4=0与圆C 相交于A 、B 两点,求|AB |. 20.(12分)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为√22,上顶点为A (0,1). (1)求E 的方程;(2)过点P(0,√3)斜率为k 的直线l 与椭圆E 交于不同的两M 、N ,且MN =8√27,求k 的值. 21.(12分)如图,四棱台ABCD ﹣A 1B 1C 1D 1中,上、下底面均是正方形,且侧面是全等的等腰梯形,AB =2A 1B 1=4,E 、F 分别为DC 、BC 的中点,上下底面中心的连线O 1O 垂直于上下底面,且O 1O 与侧棱所在直线所成的角为45°. (1)求证:BD 1∥平面C 1EF ;(2)线段BF 上是否存在点M ,使得直线A 1M 与平面C 1EF 所成的角的正弦值为3√2222,若存在,求出线段BM 的长;若不存在,请说明理由.22.(12分)已知椭圆Γ:x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1(−√2,0)和F 2(√2,0),Γ的下顶点为A ,直线l :x +y −4√2=0,点M 在l 上. (1)若a =2,线段AM 的中点在x 轴上,求M 的坐标;(2)椭圆Γ上存在一个点P (a cos θ,b sin θ)(θ∈[0,2π]),P 到l 的距离为d ,使|PF 1|+|PF 2|+d =6,当a 变化时,求d 的最小值.2023-2024学年山东省聊城市高二(上)期中数学试卷参考答案与试题解析一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合 1.设a ∈R ,则“直线ax +y ﹣1=0与直线x +ay +1=0平行”是“a =1”的( ) A .充分不必要条件 B .充要条件C .必要不充分条件D .既不充分也不必要条件解:若直线ax +y ﹣1=0与直线x +ay +1=0平行,则{a 2−1=0a +1≠0⇒a =1; 若a =1,则直线x +y ﹣1=0与直线x +y +1=0平行,∴直线ax +y ﹣1=0与直线x +ay +1=0平行是a =1的充分必要条件. 故选:B .2.经过两条直线l 1:x +y =2,l 2:2x ﹣y =1的交点,且直线的一个方向向量v →=(−6,4) 的直线方程为( ) A .2x ﹣y ﹣1=0B .2x +y ﹣3=0C .3x ﹣2y ﹣5=0D .2x +3y ﹣5=0解:根据题意,{x +y =22x −y =1,解可得{x =1y =1,即两直线的交点为(1,1),设A (1,1),设直线上任意一点为M ,其坐标为(x ,y ), 直线的一个方向向量v →=(−6,4),则MA →∥v →,则有4(x ﹣1)=﹣6(y ﹣1),即4x +6y ﹣10=0,变形可得2x +3y ﹣5=0, 故要求直线的方程为2x +3y ﹣5=0. 故选:D .3.已知SA ⊥平面ABC ,AB ⊥AC ,SA =AB =1,BC =√5,则空间的一个单位正交基底可以为( )A .{AB →,12AC →,AS →}B .{AB →,AC →,AS →} C .{AB →,12AC →,12AS →}D .{AS →,AB →,√55BC →}解:由于SA ⊥平面ABC , 所以:SA ⊥AB ,SA ⊥AC , 由于AB ⊥AC ,AB =1,BC =√5, 所以AC =2.所以空间的一个单位正交基底可以为{AB →,12AC →,AS →}.故选:A .4.椭圆x 216+y 24=1和x 236+y 224=1( )A .长轴长相等B .短轴长相等C .焦距相等D .顶点相同解:椭圆x 216+y 24=1中a 2=16,b 2=4,故c 2=16﹣4=12,x 236+y 224=1中a 2=36,b 2=24,故c 2=36﹣24=12,故两个椭圆的a ,b 都不相等,而c 相等,故焦距相等. 故选:C .5.已知圆M :x 2+y 2﹣2ay =0(a >0)截直线x +y =0所得线段的长度是2√2,则圆M 与圆N :(x ﹣1)2+(y ﹣1)2=1的位置关系是( ) A .内切B .相交C .外切D .相离解:圆的标准方程为M :x 2+(y ﹣a )2=a 2(a >0), 则圆心为(0,a ),半径R =a , 圆心到直线x +y =0的距离d =a2, ∵圆M :x 2+y 2﹣2ay =0(a >0)截直线x +y =0所得线段的长度是2√2, ∴2√R 2−d 2=2√a 2−a 22=2√a22=2√2,即√a 22=√2,即a 2=4,a =2,则圆心为M (0,2),半径R =2,圆N :(x ﹣1)2+(y ﹣1)2=1的圆心为N (1,1),半径r =1,则MN =√12+12=√2, ∵R +r =3,R ﹣r =1,∴R ﹣r <MN <R +r ,即两个圆相交. 故选:B .6.布达佩斯的伊帕姆维泽蒂博物馆收藏的达•芬奇方砖,在正六边形上画了具有视觉效果的正方体图案(如图1),把三片这样的达•芬奇方砖形成图2的组合,这个组合表达了图3所示的几何体.如图3中每个正方体的棱长为1,则点A 到平面QGC 的距离是( )A .14B .12C .√22D .√32解:建立空间直角坐标系如图,则A (1,1,0),C (0,2,0),G (0,0,2),Q (1,0,2), GQ →=(1,0,0),GC →=(0,2,−2),CA →=(1,−1,0), 设平面QGC 的一个法向量为n →=(x ,y ,z),由{n →⋅GQ →=x =0n →⋅GC →=2y −2z =0,取z =1,得n →=(0,1,1), ∴点A 到平面QGC 的距离是|n →⋅CA →||n →|=√2=√22. 故选:C .7.已知圆C :(x ﹣2)2+y 2=64,F (﹣2,0)为圆内一点,将圆折起使得圆周过点F (如图),然后将纸片展开,得到一条折痕l ,这样继续下去将会得到若干折痕,观察这些折痕围成的轮廓是一条圆锥曲线,则该圆锥曲线的方程为( )A .x 216+y 212=1B .x 24+y 2=1C .x 24+y 23=1D .x 216+y 24=1解:F (﹣2,0),C (2,0),点F 关于折痕l 的对称点A 在圆周上,折痕l 为线段AF 的垂直平分线,折痕l 与AC 相交于点P ,如图所示:则有|P A |=|PF |,可知|PF |+|PC |=|P A |+|PC |=|AC |=8>|FC |=4,所以点P 的轨迹是以F ,C 为左、右焦点的椭圆,其中长轴2a =8,焦距2c =4, 所以点P 的轨迹方程为x 216+y 212=1,即折痕围成轮廓的圆锥曲线的方程为x 216+y 212=1.故选:A .8.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,O 是AC 中点,点P 在线段A 1C 1上,若直线OP 与平面A 1BC 1所成的角为θ,则sin θ的取值范围是( )A .[√23,√33] B .[13,12]C .[√34,√33] D .[14,13]解:设正方体棱长为1,A 1P A 1C 1=λ(0≤λ≤1).以D 为原点,分别以DA ,DC ,DD 1为坐标轴建立空间直角坐标系, 则O (12,12,0),P (1﹣λ,λ,1),∴OP →=(12−λ,λ−12,1),∵易证DB 1⊥平面A 1BC 1,∴DB 1→=(1,1,1)是平面A 1BC 1的一个法向量. ∴sin θ=|cos <OP →,DB 1→>|=1√3√2(λ−12)2+1,当λ=12时sin θ取得最大值√33,当λ=0或1时,sin θ取得最小值√23. 故选:A .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得О分.9.若直线过点A(1,2),且在两坐标轴上截距的绝对值相等,则直线l方程可能为()A.x﹣y+1=0B.x+y﹣3=0C.2x﹣y=0D.x﹣y﹣1=0解:当直线经过原点时,斜率为k=2−01−0=2,所求的直线方程为y=2x,即2x﹣y=0;当直线不过原点时,设所求的直线方程为x±y=k,把点A(1,2)代入可得1﹣2=k,或1+2=k,求得k=﹣1,或k=3,故所求的直线方程为x﹣y+1=0,或x+y﹣3=0;综上知,所求的直线方程为2x﹣y=0、x﹣y+1=0,或x+y﹣3=0.故选:ABC.10.已知点P在圆C:x2+y2﹣4x=0上,直线AB:y=x+2,则()A.直线AB与圆C相交B.直线AB与圆C相离C.点P到直线AB距离最大值为2√2+2D.点P到直线AB距离最小值为2√2−1解:圆C:x2+y2﹣4x=0,即(x﹣2)2+y2=4,圆心为C(2,0),半径r=2,则圆心C到直线AB的距离d=|2+2−0|√1+(−1)2=2√2>r,所以直线AB与圆C相离,又点P在圆C上,所以点P到直线AB距离最大值为2√2+2,点P到直线AB距离最小值为2√2−2,故正确的有B、C.故选:BC.11.正方体ABCD﹣A1B1C1D1的棱长为1,已知平面α⊥AC1,则关于α截此正方体所得截面的判断正确的是()A.截面形状可能为正三角形B.截面形状可能为正方形C.截面形状可能为正六边形D.截面面积最大值为√3解:如图所示,当截面为B 1CD 1时,截面为正三角形,选项A 正确;当截面过棱A 1B 1,B 1B ,BC ,CD ,DD 1,D 1A 1的中点时,截面为正六边形,选项C 正确; 当截面为正六边形时,面积最大,因为MN =√2,GH =√22,OE =√(12)2+(√24)2=√64, 所以S =2×12×(√22+√2)×√64=3√34,选项D 错误; 与AC 1垂直的截面不可能是正方形,选项B 错误. 故选:AC .12.已知椭圆C :x 225+y 29=1,F 1,F 2分别为它的左右焦点,A ,B 分别为它的左右顶点,点P 是椭圆上的一个动点,下列结论中正确的有( ) A .存在P 使得∠F 1PF 2=π2B .cos ∠F 1PF 2的最小值为−18C .直线P A 与直线PB 斜率乘积为定值925D .PF 1⊥PF 2,则△F 1PF 2的面积为9解:由椭圆的方程可得a =5,b =3,所以c =4,由题意可得A (﹣5,0),B (5,0),F 1(﹣4,0),F 2(4,0),设上顶点为D (0,3),A 中,DF 1→•DF 2→=(﹣4,﹣3)•(4,﹣3)=﹣16+9=﹣7<0,所以∠F 1PF 2的最大角为钝角, 所以存在P 使得∠F 1PF 2为直角,所以A 正确;B 中,设|PF 1|=m ,|PF 2|=n ,由椭圆的定义可得m +n =2a =10,cos ∠F 1PF 2=m 2+n 2−(2c)22mn =(m+n)2−2mn−642mn =36−2mn 2mn =18mn−1, 因为mn ≤(m+n 2)2=25,当且仅当m =n 时取等号,所以cos ∠F 1PF 2≥1825−1=−725,即cos ∠F 1PF 2的最小值为−725,所以B 不正确; C 中,设P (x 0,y 0),则x 0225+y 029=1,所以y 02=9(1−x 0225),可得k P A •k PB =y 0x 0+5•y 0x 0−5=y 02x 02−25=9(1−x 0225)x 02−25=−925,所以C 不正确;D 中,PF 1⊥PF 2,由B 选项及由勾股定理可得:m 2+n 2=(2c )2=64,即(m +n )2﹣2mn =64, 即2mn =100﹣64=36,所以mn =18,所以S △F 1PF 2=12mn =9,所以D 正确. 故选:AD .三、填空题:本题共4小题,每小题5分,共20分.13.与圆x 2+y 2﹣2x +4y +3=0同圆心,且过点(1,1)的圆的方程是: (x ﹣1)2+(y +2)2=9 . 解:圆x 2+y 2﹣2x +4y +3=0的标准方程为(x ﹣1)2+(y +2)2=2, 则圆心C (1,﹣2), ∵圆过点A (1,1), ∴半径R =|AC |=3,则圆的标准方程为(x ﹣1)2+(y +2)2=9. 故答案为:(x ﹣1)2+(y +2)2=9.14.如图,P A ⊥平面ABCD ,底面ABCD 是正方形,E ,F 分别为PD ,PB 的中点,点G 在线段AP 上,AC 与BD 交于点O ,P A =AB =2,若OG ∥平面EFC ,则AG =23.解:由题意建立如图所示的空间直角坐标系, A (0,0,0),因为P A =AB =2,C (2,2,0),B (2,0,0),D (0,2,0),P (0,0,2),O (1,1,0),因为E ,F 分别是PD ,PB 中点,设G (0,0,b ),设平面EFC 的法向量为n →=(x ,y ,z ), 因为OG ∥平面EFC ,所以OG →•n →=0,OG →=(﹣1,﹣1,b ), 所以E (0,1,1),F (1,0,1),则EF →=(1,﹣1,0), CE →=(﹣2,﹣1,1),则{n →⋅EF →=0n →⋅CE →=0,即{x −y =0−2x −y +z =0,令x =1,则y =1,z =3,所以n →=(1,1,3), 所以OG →•n →=−1﹣1+3b =0,解得b =23, 所以AG =b =23. 故答案为:23.15.点P (﹣2,﹣1)到直线l :(2+λ)x +λy ﹣2﹣λ=0(λ为任意实数)的距离的最大值是 √10 . 解:直线l :(2+λ)x +λy ﹣2﹣λ=0(λ为任意实数), 整理得:λ(x +y ﹣1)+(2x ﹣2)=0, 故{x +y −1=02x −2=0,解得{x =1y =0,故直线l 恒过点Q (1,0),故点P (﹣2,﹣1)到直线l 的最大距离d =√(−2−1)2+(−1−0)2=√10. 故答案为:√10.16.2023年第19届亚运会在中国浙江杭州举行,杭州有很多圆拱的悬索拱桥,经测得某圆拱索桥(如图)的跨度|AB |=100米,拱高|OP |=10米,在建造圆拱桥时每隔5米需用一根支柱支撑,则与OP 相距30米的支柱MN 的高度是 6.48 米.(注意:√10≈3.162)解:以O 为原点,以AB 所在直线为x 轴,以OP 所在直线为y 轴建立平面直角坐标系, 设圆心坐标(0,a ),P (0,10),A (﹣50,0), 则圆拱所在圆的方程为x 2+(y ﹣a )2=r 2,所以{(10−a)2=r 2(−50)2+a 2=r 2,解得a =﹣120,r 2=16900, 所以圆的方程为x 2+(y +120)2=16900.将x =﹣30代入圆方程,得:900+(y +120)2=16900, 因为y >0,所以y =40√10−120≈40×3.162﹣120=6.48, 所以MN 的高度是6.48米. 故答案为:6.48.四、解答题:本题共6小题,第17题10分,其它每题共70分.解答应写出文字说明、证明过程或 17.(10分)已知直线l :mx ﹣y +1﹣m =0和圆C :x 2+(y ﹣1)=5. (1)求证:对任意实数m ,直线l 和圆C 总有两个不同的交点; (2)设直线l 和圆C 交于A ,B 两点.若|AB|=√17,求l 的倾斜角.(1)证明:由直线l :mx ﹣y +1﹣m =0,得m (x ﹣1)﹣y +1=0,由{x −1=0−y +1=0,得{x =1y =1,∴直线l :mx ﹣y +1﹣m =0过定点p (1,1),代入圆C :x 2+(y ﹣1)2=5,得12+(1﹣1)2=1<5,∴点p (1,1)在圆C :x 2+(y ﹣1)2=5内部, ∴对任意的m ,直线l 与圆C 总有两个不同的交点.(2)解:直线l 的斜率存在,由|AB|=√17,圆的半径为√5,得圆心到直线l :mx ﹣y +1﹣m =0的距离为√5−174=√32. 则√m 2+1=√32,解得:m =±√3.∴直线l 为y =√3x +1−√3或y =−√3x +1−√3.直线l 的倾斜角为60°或120°.18.(12分)如图,在四棱锥P ﹣ABCD 中,P A ⊥平面ABCD ,PB 与底面所成的角为45°,底面ABCD 为直角梯形,∠ABC =∠BAD =90°,AD =2,P A =BC =1. (1)求直线PC 与平面PBD 所成角的正弦值;(2)求平面P AB 与平面PCD 所成的锐二面角的余弦值.解:(1)∵P A ⊥面ABCD ,∴P A ⊥AB ,P A ⊥AD ,又∠BAD =90°, ∴AB ⊥AD ,∵为PB 与底面所成的角为45°, ∴∠PBA =45°,故AB =P A =1,以A 为坐标原点,AB ,AD ,AP 所在直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系O ﹣xyz , 则B (1,0,0),D (0,2,0),P (0,0,1),C (1,1,0), 则PC →=(1,1,﹣1),PB →=(1,0,﹣1),PD →=(0,2,﹣1), 设平面PBD 的一个法向量为m →=(x ,y ,z ),则{m →⋅PB →=0m →⋅PD →=0,即{x −z =02y −z =0,取z =2,则x =2,y =1,此时m →=(2,1,2), 设直线PC 与平面PBD 所成的角为θ, 则sin θ=|cos <m →,PC →>|=|m →⋅PC→|PC →||m →|||√3×3|√39. 所以直线PC 与平面PBD 所成角的正弦值为√39. (2)平面P AB 的一个法向量j →=(0,1,0) 设平面PCD 的一个法向量为n →=(x ,y ,z ), 则{n →⋅PC →=0n →⋅PD →=0,即{x +y −z =02y −z =0, 取y =l ,则z =2,x =l ,此时n →=(1,1,2), cos <n →,j →>=n →⋅j→|n →||j →|=6×1=√66, 所以平面P AB 与平面PCD 所成的锐二面角的余弦值为√66.19.(12分)已知圆C :x 2+y 2﹣4x ﹣6y +9=0. (1)过点P (3,5)作圆C 的切线l ,求l 的方程;(2)若圆C 2:x 2+y 2+2x ﹣4y ﹣4=0与圆C 相交于A 、B 两点,求|AB |.解:(1)圆C 1方程可化为(x ﹣2)2+(y ﹣3)=4,则圆心C 1(2,3),半径为2, 由 (3﹣2)2+(5﹣3)2>4,可知点P 在圆外, 设l 的方程为y ﹣5=k (x ﹣3),即kx ﹣y +5﹣3k =0, 则圆心C 1到直线l 的距离为√1+k 2=2,解得k =0或k =−43,∴l 的方程为4x +3y ﹣27=0或y =5.(2)把两圆的方程相减可得直线AB 的方程为6x +2y ﹣13=0, 则圆心C 到直线AB 的距离d =|6×2+2×3−13|√36+4=√104<2,直线与圆相交,所以|AB |=2√4−1016=3√62. 20.(12分)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的离心率为√22,上顶点为A (0,1).(1)求E 的方程;(2)过点P(0,√3)斜率为k 的直线l 与椭圆E 交于不同的两M 、N ,且MN =8√27,求k 的值. 解:(1)由离心率e =c a =√22,则a =√2c , 又上顶点A (0,1),知b =1,又b 2=a 2﹣c 2=1,可知c =1,a =√2, ∴椭圆E 的方程为x 22+y 2=1;(2)设直线l :y =kx +√3,设M (x 1,y 1),N (x 2,y 2), 则{y =kx +√3x 22+y 2=1,整理得:(1+2k 2)x 2+4√3kx +4=0,Δ=(4√3k)2−4×4×(1+2k 2)>0,即k 2>1, ∴x 1+x 2=−4√3k 1+2k2,x 1x 2=41+2k2,∴|MN|=√1+k 2|x 1−x 2|=√1+k 2√(x 1+x 2)2−4x 1x 2=4√(1+k 2)(k 2−1)1+2k2=8√27, 即17k 4﹣32k 2﹣57=0,解得:k 2=3或−1917(舍去), ∴k =±√3.21.(12分)如图,四棱台ABCD ﹣A 1B 1C 1D 1中,上、下底面均是正方形,且侧面是全等的等腰梯形,AB =2A 1B 1=4,E 、F 分别为DC 、BC 的中点,上下底面中心的连线O 1O 垂直于上下底面,且O 1O 与侧棱所在直线所成的角为45°. (1)求证:BD 1∥平面C 1EF ;(2)线段BF 上是否存在点M ,使得直线A 1M 与平面C 1EF 所成的角的正弦值为3√2222,若存在,求出线段BM 的长;若不存在,请说明理由.解:(1)证明:因为OO 1⊥平面ABCD ,以点O 为坐标原点,DA ,OF →,OO 1→的方向分别为x 轴,y 轴,z 轴的正方向,建立如图所示的空间直角坐标系.因为侧棱所在直线与上下底面中心的连线OO 1所成的角为45°,则B (2,2,0),D 1(−1,−1,√2),C 1(−1,1,√2),F (0,2,0),E (﹣2,0,0),A 1(1,−1,√2),所以BD 1→=(−3,−3,√2),CE 1→=(−1,−1,√2),EF →=(2,2,0), 设平面C 1EF 的一个法向量为n →=(x ,y ,z ),则{n →⋅EF →=x +y =0n →⋅C 1E →=x +y +√2z =0,令x =1,则n →=(1,﹣1,0), 因为BD 1→=(﹣3,﹣3,√2),所以n →•BD 1→=0,所以n →⊥BD 1→, 又因为BD 1⊂平面C 1EF ,所以BD 1∥平面 C 1EF ;(2)假设边BC 上存在点M (x ,2,0)满足条件,x ∈[﹣2,2], 则A 1M →=(x ﹣1,3,−√2),设直线A 1M 与平面C 1EFF 所成角为θ,由题意可得sin θ=|cos <A 1M →,n →>|=|A 1M →⋅n →||A 1M →|⋅|n →|=|x−4|√2⋅√x 2−2x+12=3√2222, 化简得x 2﹣35x +34=0,则x =1或x =34(舍去),即存在点M 符合题意,此时BM =1. 22.(12分)已知椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(−√2,0)和F 2(√2,0),Γ的下顶点为A ,直线l :x +y −4√2=0,点M 在l 上. (1)若a =2,线段AM 的中点在x 轴上,求M 的坐标;(2)椭圆Γ上存在一个点P (a cos θ,b sin θ)(θ∈[0,2π]),P 到l 的距离为d ,使|PF 1|+|PF 2|+d =6,当a 变化时,求d 的最小值.解:(1)由题意可得a =2,b =c =√2,所以Γ:x 24+y 22=1,A(0,−√2),因为AM 的中点在x 轴上, 所以点M 的纵坐标为√2, 将y =√2代入x +y −4√2=0中, 解得x =3√2, 则M(3√2,√2); (2)易知d =|acosθ+bsinθ−42|2=6−2a ,因为椭圆在直线的左下方, 所以acosθ+bsinθ−422=6−2a ,即4√2−√a 2+b 2sin(θ+φ)=6√2−2√2a , 又a 2=b 2+2,可得√2a 2−2sin(θ+φ)=2√2a −2√2, 此时√a 2−1sin(θ+φ)=2a −2,|sin(θ+φ)|=√a 2−1≤1,整理得(a ﹣1)(3a ﹣5)≤0, 即1≤a ≤53,所以d =6−2a ≥6−2×53=83. 故d 的最小值为83.。
2024高二数学期中考试题及答案

2024高二数学期中考试题及答案一、选择题(每小题3分,共计60分)1. 已知函数f(x)=2x^3-3x^2-12x+5,求f(-1)的值是多少?A) -9 B) -7 C) 7 D) 92. 若集合A={1,2,3,4},集合B={2,3,4,5},则A∪B的元素个数是多少?A) 4 B) 5 C) 7 D) 83. 设函数f(x)=4x-1,g(x)=2x+3,求满足f(g(x))=1的x的值。
A) 0 B) -1 C) 1 D) 24. 在等差数列an中,若a1=3,d=4,an=19,则n的值是多少?A) 4 B) 5 C) 6 D) 75. 已知直角三角形的两条直角边分别为3和4,求斜边的长度是多少?A) 5 B) 7 C) 25 D) 49二、填空题(每小题4分,共计40分)1. 若集合A={1,2,3,4,5},集合B={4,5,6,7},则A∩B的元素个数是_________。
2. 设函数f(x)=3x+2,则f(-1)的值是_________。
3. 在等差数列an中,若a1=2,d=3,an=23,则n的值是_________。
4. 男生与女生的比例是3:5,班级总人数为80,女生人数是_________。
5. 若正方形的边长为x+2,其面积是_________。
6. 已知平行四边形的底边长为5,高为3,其面积是_________。
7. 若正方形的对角线长为10,边长是_________。
8. 设函数f(x)=x^2+2x-1,g(x)=x-1,则f(g(2))的值是_________。
9. 若直角三角形的两条直角边分别为6和8,斜边的长度是_________。
10. 设集合A={a,b,c},集合B={c,d,e},则A×B的元素个数是_________。
三、解答题(共计40分)1. 若函数f(x)满足f(2x-1)=2x^2-2x,则求f(x)的表达式。
2. 已知数列{an}的通项公式为an=n^2-3n-4,求数列{an}的首项和前6项的和。
2023-2024学年山东省普高联考高二(上)期中数学试卷【答案版】

2023-2024学年山东省普高联考高二(上)期中数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知点A (3,2,3),B (1,1,4),则A 、B 的中点的坐标为( ) A .(1,12,−12)B .(2,32,72)C .(4,3,7)D .(−1,−12,12)2.已知直线l 1:2x +2y ﹣5=0,l 2:4x +ny +1=0,若l 1∥l 2,则n 的值为( ) A .﹣6B .6C .4D .﹣43.过点A (1,1)的直线l 与圆M :x 2+y 2﹣6x =0相交的所有弦中,弦长最短为( ) A .5B .2C .√5D .44.已知空间四边形OABC ,其对角线是OB ,AC ,M ,N 分别是对边OA ,BC 的中点,点G 在线段MN 上,且MG =3GN ,用基底向量OA →,OB →,OC →表示向量OG →应是( ) A .OG →=18OA →+38OB →+38OC →B .OG →=18OA →−38OB →+38OC →C .OG →=16OA →+13OB →+13OC →D .OG →=16OA →−13OB →+13OC →5.已知实数x ,y 满足方程x 2+y 2﹣2x =0,则y+1x+1的最大值是( )A .34B .43C .0D .126.战国时期成书《经说》记载:“景:日之光,反蚀人,则景在日与人之间”.这是中国古代人民首次对平面镜反射的研究,体现了传统文化中的数学智慧.在平面直角坐标系xOy 中,一条光线从点(2,3)射出,经y 轴反射后与圆x 2﹣6x +y 2+4y +12=0相切,则反射光线所在直线的斜率为( ) A .−43或−34B .17C .57D .567.已知中心在原点,半焦距为4的椭圆x 2m 2+y 2n 2=1(m >0,n >0,m ≠n)被直线方程2x ﹣y +9=0截得的弦的中点横坐标为﹣4,则椭圆的标准方程为( ) A .x 28+y 24=1 B .x 232+y 216=1C .x 28+y 24=1或y 28+x 24=1D .x 232+y 216=1或y 232+x 216=18.苏州有很多圆拱的悬索拱桥(如寒山桥),经测得某圆拱索桥(如图)的跨度AB =100米,拱高OP =10米,在建造圆拱桥时每隔5米需用一根支柱支撑,则与OP 相距30米的支柱MN 的高度是( )米.(注意:√10取3.162)A .6.48B .4.48C .2.48D .以上都不对二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.空间直角坐标系中,已知O (0,0,0),OA →=(−1,2,1),OB →=(−1,2,−1),OC →=(2,3,−1),则( ) A .|AB →|=2B .△ABC 是直角三角形C .与OA →平行的单位向量的坐标为(√66,−√63,−√66)D .{OA →,OB →,OC →}可以作为空间的一组基底10.在如图所示的三棱锥O ﹣ABC 中,OA =OC =OB =1,OA ⊥面OBC ,∠BOC =π3,下列结论正确的为( )A .直线AB 与平面OBC 所成的角为45° B .二面角O ﹣BC ﹣A 的正切值为√33C .O 到面ABC 的距离为√217D .异面直线OC ⊥AB11.已知直线l :kx ﹣y +2k =0(k ∈R )和圆O :x 2+y 2=8,则( ) A .直线l 恒过定点(2,0)B .存在k 使得直线l 与直线l 0:x ﹣2y +2=0垂直C .直线l 与圆O 相交D .若k =1,则圆O 上到直线l 的距离为√2的点有四个12.已知抛物线y 2=4x ,焦点F ,过点P (1,1)作斜率互为相反数的两条直线分别交抛物线于A ,B 及C ,D 两点.则下列说法正确的是( ) A .抛物线的准线方程为x =﹣1 B .若|AF |=5,则直线AP 的斜率为1 C .若PA →=3BP →,则直线AB 的方程为y =xD .∠CAP =∠BDP三、填空题:本题共4小题,每小题5分,共20分.13.过P (﹣1,a )、Q (a +1,4)两点的直线的倾斜角为45°,那么实数a = .14.a →=(1,−1,2),b →=(−2,1,0),c →=(−3,1,k),若a →,b →,c →共面,则实数k = . 15.古希腊数学家阿波罗尼斯在《圆锥曲线论》中记载了用平面截圆锥得到圆锥曲线的方法.如图,将两个完全相同的圆锥对顶放置(两圆锥的顶点和轴都重合),已知两个圆锥的底面直径均为4,侧面积均为2√5π.记过两个圆锥轴的截面为平面α,平面α与两个圆锥侧面的交线为AC ,BD .已知平面β平行于平面α,平面β与两个圆锥侧面的交线为双曲线C 的一部分,且C 的两条渐近线分别平行于AC ,BD ,则该双曲线C 的离心率为 .16.如图,已知菱形ABCD 中,AB =2,∠BAD =120°,E 为边BC 的中点,将△ABE 沿AE 翻折成△AB 1E (点B 1位于平面ABCD 上方),连接B 1C 和B 1D ,F 为B 1D 的中点,则在翻折过程中,AE 与B 1C 的夹角为 ,点F 的轨迹的长度为 .四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知点A (1,2,﹣1),B (2,k ,﹣3),C (0,5,1),向量a →=(−3,4,5). (1)若AB →⊥a →,求实数k 的值;(2)求向量AC →在向量a →方向上的投影向量.18.(12分)已知△ABC 的顶点A (5,1),B (1,3),C (4,4). (1)求AB 边上的高所在直线的方程; (2)求△ABC 的外接圆的方程.19.(12分)如图,在长方体ABCD ﹣A 1B 1C 1D 1中,M 为BB 1上一点,已知BM =2,CD =3,AD =4,AA 1=5.(1)求直线A 1C 和平面ABCD 的夹角; (2)求点A 到平面A 1MC 的距离.20.(12分)已知定点A (1,﹣2),点B 为圆(x +1)2+(y +4)2=4上的动点. (1)求AB 的中点C 的轨迹方程;(2)若过定点P(12,−2)的直线l 与C 的轨迹交于M ,N 两点,且|MN|=√3,求直线l 的方程.21.(12分)如图,该几何体是由等高的半个圆柱和14个圆柱拼接而成.C ,E ,D ,G 在同一平面内,且CG=DG .(1)证明:平面BFD ⊥平面BCG ;(2)若直线GC 与平面ABG 所成角的正弦值为√105,求平面BFD 与平面ABG 所成角的余弦值.22.(12分)“工艺折纸”是一种把纸张折成各种不同形状物品的艺术活动,在我国源远流长,某些折纸活动蕴含丰富的数学知识,例如:用一张圆形纸片,按如下步骤折纸(如图):步骤1:设圆心是E,在圆内异于圆心处取一定点,记为F;步骤2:把纸片折叠,使圆周正好通过点F(即折叠后图中的点A与点F重合);步骤3:把纸片展开,并留下一道折痕,记折痕与AE的交点为P;步骤4:不停重复步骤2和3,就能得到越来越多的折痕.现取半径为4的圆形纸片,设点F到圆心E的距离为2√3,按上述方法折纸.以线段EF的中点为原点,线段EF所在直线为x轴建立平面直角坐标系xOy,记动点P的轨迹为曲线C.(1)求C的方程;(2)设轨迹C与x轴从左到右的交点为点A,B,点P为轨迹C上异于A,B,的动点,设PB交直线x=4于点T,连结AT交轨迹C于点Q.直线AP、AQ的斜率分别为k AP、k AQ.(ⅰ)求证:k AP•k AQ为定值;(ⅱ)证明直线PQ经过x轴上的定点,并求出该定点的坐标.2023-2024学年山东省普高联考高二(上)期中数学试卷参考答案与试题解析一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知点A (3,2,3),B (1,1,4),则A 、B 的中点的坐标为( ) A .(1,12,−12)B .(2,32,72)C .(4,3,7)D .(−1,−12,12)解:因为A (3,2,3),B (1,1,4),所以中点M(3+12,2+12,3+42)=(2,32,72). 故选:B .2.已知直线l 1:2x +2y ﹣5=0,l 2:4x +ny +1=0,若l 1∥l 2,则n 的值为( ) A .﹣6B .6C .4D .﹣4解:因为l 1∥l 2,所以42=n 2≠1−5⇒n =4.故选:C .3.过点A (1,1)的直线l 与圆M :x 2+y 2﹣6x =0相交的所有弦中,弦长最短为( ) A .5B .2C .√5D .4解:将A (1,1)代入x 2+y 2﹣6x ,得到12+12﹣6×1<0,所以点A 在圆内, 再根据x 2+y 2﹣6x =0可得圆心坐标M (3,0),可知当l 与AM 垂直时,弦长最小, 因为AM =√5,即最短弦长为的一半为√32−(√5)2=2,所以最短弦长为2×2=4. 故选:D .4.已知空间四边形OABC ,其对角线是OB ,AC ,M ,N 分别是对边OA ,BC 的中点,点G 在线段MN 上,且MG =3GN ,用基底向量OA →,OB →,OC →表示向量OG →应是( )A .OG →=18OA →+38OB →+38OC →B .OG →=18OA →−38OB →+38OC →C .OG →=16OA →+13OB →+13OC →D .OG →=16OA →−13OB →+13OC →解:∵OG →=OM →+MG →=OM →+34MN →=OM →+34(MO →+OC →+CN →)=OM →+34MO →+34OC →+34×12CB →=14OM →+34OC →+38(OB →−OC →)=18OA →+38OB →+38OC → 故选:A .5.已知实数x ,y 满足方程x 2+y 2﹣2x =0,则y+1x+1的最大值是( )A .34B .43C .0D .12解:C 的方程x 2+y 2﹣2x =0可化为(x ﹣1)2+y 2=1, 它表示圆心(1,0),半径为1的圆,y+1x+1表示圆上的点与点P (﹣1,﹣1)的连线的斜率k , 设过圆上点与点P (﹣1,﹣1)的直线方程为y +1=k (x +1), 则圆心(1,0)到直线y +1=k (x +1)的距离d =|2k−1|√k +1≤1,可得0≤k ≤43,即最大值为43,故选:B .6.战国时期成书《经说》记载:“景:日之光,反蚀人,则景在日与人之间”.这是中国古代人民首次对平面镜反射的研究,体现了传统文化中的数学智慧.在平面直角坐标系xOy 中,一条光线从点(2,3)射出,经y 轴反射后与圆x 2﹣6x +y 2+4y +12=0相切,则反射光线所在直线的斜率为( ) A .−43或−34B .17C .57D .56解:根据题意,设B 与点(2,3)关于y 轴的对称,则B 的坐标为(﹣2,3), 则反射光线经过点B ,且与圆x 2﹣6x +y 2+4y +12=0相切,设反射光线所在直线的方程为:y﹣3=k(x+2),即kx﹣y+2k+3=0,圆x2﹣6x+y2+4y+12=0的标准方程为(x﹣3)2+(y+2)2=1,则圆心为(3,﹣2),半径r=1,由圆心(3,﹣2)到反射光线的距离等于半径可得:√1+k2=1,即12k2+25k+12=0,解得k=−43或k=−34.故选:A.7.已知中心在原点,半焦距为4的椭圆x2m2+y2n2=1(m>0,n>0,m≠n)被直线方程2x﹣y+9=0截得的弦的中点横坐标为﹣4,则椭圆的标准方程为()A.x28+y24=1B.x232+y216=1C.x28+y24=1或y28+x24=1D.x232+y216=1或y232+x216=1解:设直线2x﹣y+9=0与椭圆相交于A(x1,y1),B(x2,y2)两点,由{x12m2+y12n2=1x22 m2+y22n2=1,得(x1+x2)(x1−x2)m2+(y1+y2)(y1−y2)n2=0,得k=y1−y2x1−x2=−n2m2×x1+x2y1+y2=2,弦的中点坐标是M(﹣4,1),直线AB的斜率k=2,所以n2m2=12,m2=2n2,又m2﹣n2=16,所以m2=32,n2=16,椭圆的标准方程为x232+y216=1.故选:B.8.苏州有很多圆拱的悬索拱桥(如寒山桥),经测得某圆拱索桥(如图)的跨度AB=100米,拱高OP=10米,在建造圆拱桥时每隔5米需用一根支柱支撑,则与OP相距30米的支柱MN的高度是()米.(注意:√10取3.162)A.6.48B.4.48C.2.48D.以上都不对解:以O为原点,以AB所在直线为x轴,以OP所在直线为y轴建立平面直角坐标系,设圆心坐标(0,a),P(0,10),A(﹣50,0),则圆拱所在圆的方程为x 2+(y ﹣a )2=r 2, ∴{(10−a)2=r 2(−50)2+a 2=r 2,解得a =﹣120,r 2=16900, ∴圆的方程为x 2+(y +120)2=16900.将x =﹣30代入圆方程,得:900+(y +120)2=16900, ∵y >0,∴y =40√10−120≈40×3.162﹣120=6.48. 故选:A .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.空间直角坐标系中,已知O (0,0,0),OA →=(−1,2,1),OB →=(−1,2,−1),OC →=(2,3,−1),则( ) A .|AB →|=2B .△ABC 是直角三角形C .与OA →平行的单位向量的坐标为(√66,−√63,−√66)D .{OA →,OB →,OC →}可以作为空间的一组基底 解:因为OA →=(−1,2,1),OB →=(−1,2,−1),所以AB →=OB →−OA →=(0,0,−2),所以|AB →|=2,选项A 正确; 又因为OC →=(2,3,−1),所以BC →=OC →−OB →=(3,1,0), 所以AB →⋅BC →=0,所以△ABC 是直角三角形,选项B 正确; 因为|OA →|=√1+4+1=√6, 所以与OA →平行的单位向量的坐标为:±OA →|OA →|=±(√66,−√63,−√66),选项C 错误; 假设OA →,OB →,OC →共面,则存在唯一的有序数对(x ,y )使OA →=xOB →+yOC →,即(﹣1,2,1)=x (﹣1,2,﹣1)+y (2,3,﹣1)=(﹣x +2y ,2x +3y ,﹣x ﹣y ), 所以{−1=−x +2y 2=2x +3y 1=−x −y ,此方程组无解,故OA →,OB →,OC →不共面,故可作为空间一组基底,选项D 正确. 故选:ABD .10.在如图所示的三棱锥O ﹣ABC 中,OA =OC =OB =1,OA ⊥面OBC ,∠BOC =π3,下列结论正确的为( )A .直线AB 与平面OBC 所成的角为45° B .二面角O ﹣BC ﹣A 的正切值为√33C .O 到面ABC 的距离为√217D .异面直线OC ⊥AB解:选项A ,因为OA ⊥面OBC ,故∠ABO 为直线AB 与平面OBC 所成的角, 又OA =OC =OB =1,所以tan ∠ABO =1,故直线AB 与平面OBC 所成的角是45°,故A 正确; 选项B ,取BC 中点为D ,连接OD ,AD ,因为OA =OB =OC =1,OA ⊥平面OBC ,∠BOC =π3,所以AB =AC =√2,BC =1,OD ⊥BC ,AD ⊥BC , 因为OD ∩AD =D ,所以BC ⊥平面AOD ,故∠ODA 为二面角O ﹣BC ﹣A 的平面角,则tan ∠ODA =OA OD =2√33, 故二面角O ﹣BC ﹣A 的正切值为2√33,故B 错误;选项C ,因为AB =AC =√2,BC =1,所以AD =√72,设O 到面ABC 的距离为h ,则由V A ﹣OBC =V O ﹣ABC ,可得:13×√34×1=13×12×√72×ℎ,解得ℎ=√217,故C 正确;选项D ,若OC ⊥AB ,又OC ⊥OA ,且AB ∩OA =A ,则OC ⊥面OAB , 则有OC ⊥OB ,与∠BOC =π3矛盾,故D 错误.故选:AC .11.已知直线l :kx ﹣y +2k =0(k ∈R )和圆O :x 2+y 2=8,则( ) A .直线l 恒过定点(2,0)B .存在k 使得直线l 与直线l 0:x ﹣2y +2=0垂直C .直线l 与圆O 相交D .若k =1,则圆O 上到直线l 的距离为√2的点有四个解:由直线l :kx ﹣y +2k =0,整理成k (x +2)﹣y =0,则直线恒过定点(﹣2,0),故A 错误; 若直线l :kx ﹣y +2k =0与直线l 0:x ﹣2y +2=0垂直, 则k +2=0,解得k =﹣2,故B 正确;因为(﹣2)2+0=4<8,所以定点(﹣2,0)在圆O :x 2+y 2=8内部, 所以直线l 与圆O 相交,故C 正确; 当k =1时,直线l 化为x ﹣y +2=0, 圆心O 到直线的距离d =|2|√2=√2,圆O 半径2√2, 因为d <r 且d =12r ,所以圆O 到直线l 距离为√2的点有三个,故D 错误.故选:BC .12.已知抛物线y 2=4x ,焦点F ,过点P (1,1)作斜率互为相反数的两条直线分别交抛物线于A ,B 及C ,D 两点.则下列说法正确的是( ) A .抛物线的准线方程为x =﹣1 B .若|AF |=5,则直线AP 的斜率为1 C .若PA →=3BP →,则直线AB 的方程为y =xD .∠CAP =∠BDP解:对于选项A :因为抛物线方程为y 2=4x ,可得该抛物线的准线方程为x =﹣1,故选项A 正确; 对于选项B :不妨设A (x 0,y 0),因为|AF |=5,所以x 0+p2=x 0+1=5,x 0=4,解得y 0=±4, 又P (1,1),则直线AP 的斜率为4−14−1=1或−4−14−1=−53,故选项B 错误; 对于选项C :不妨设A (x 1,y 1),B (x 2,y 2),因为P (1,1),所以BP →=(1−x 2,1−y 2),PA →=(x 1−1,y 1−1), 因为PA →=3BP →,所以{3(1−x 2)=x 1−13(1−y 2)=y 1−1,得{x 1=4−3x 2y 1=4−3y 2.因为y 12=4x 1,所以(4−3y 2)2=4(4−3x 2),即3y 22−8y 2=−4x 2, 因为y 22=4x 2,所以4y 22−8y 2=0,y 2=0或y 2=2,当y 2=0时,x 2=0,解得x 1=4,y 1=4; 当y 2=2时,x 2=1,解得x 1=1,y 1=﹣2,此时直线AB 的斜率不存在,直线CD 的斜率为0,不符合题意;则A (4,4),B (0,0),此时直线AB 的方程为y =x ,故选项C 正确. 对于选项D :易知直线AB ,CD 的斜率存在,不妨设直线AB :y =k (x ﹣1)+1, 则直线CD :y =﹣k (x ﹣1)+1,A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4), 联立{y =k(x −1)+1y 2=4x ,即{x =1k (y −1)+1y 2=4x,消去x 并整理得y 2−4k y +4k −4=0,因为P (1,1)在抛物线内部,所以Δ>0, 由韦达定理得y 1+y 2=4k ,y 1y 2=4k−4,因为|AP|=√1+1k 2|y 1−1|,|BP|=√1+1k2|y 2−1|, 所以|AP|⋅|BP|=(1+1k 2)|(y 1−1)(y 2−1)|=(1+1k2)|y 1y 2−(y 1+y 2)+1| =(1+1k 2)|4k −4−4k +1|=3(1+1k2), 同理得|CP|⋅|DP|=3[1+1(−k)2]=3(1+1k 2),所以|AP |•|BP |=|CP |•|DP |,即|AP||DP|=|CP||BP|,又∠CP A =∠BPD ,所以△APC ∽△BPD ,则∠CAP =∠BDP ,故选项D 正确. 故选:ACD .三、填空题:本题共4小题,每小题5分,共20分.13.过P (﹣1,a )、Q (a +1,4)两点的直线的倾斜角为45°,那么实数a = 1 . 解:过P (﹣1,a )、Q (a +1,4)两点的直线的倾斜角为45°, 则k PQ =tan45°=1,又k PQ =4−aa+2=1⇒a =1. 故答案为:1.14.a →=(1,−1,2),b →=(−2,1,0),c →=(−3,1,k),若a →,b →,c →共面,则实数k = 2 . 解:因为a →,b →,c →共面,所以存在x ,y ∈R ,使得c →=xa →+yb →, 又因为a →=(1,−1,2),b →=(−2,1,0),c →=(−3,1,k), 所以(﹣3,1,k )=x (1,﹣1,2)+y (﹣2,1,0), 所以{−3=x −2y1=−x +y k =2x ,解得x =1,y =2,k =2.故答案为:2.15.古希腊数学家阿波罗尼斯在《圆锥曲线论》中记载了用平面截圆锥得到圆锥曲线的方法.如图,将两个完全相同的圆锥对顶放置(两圆锥的顶点和轴都重合),已知两个圆锥的底面直径均为4,侧面积均为2√5π.记过两个圆锥轴的截面为平面α,平面α与两个圆锥侧面的交线为AC ,BD .已知平面β平行于平面α,平面β与两个圆锥侧面的交线为双曲线C 的一部分,且C 的两条渐近线分别平行于AC ,BD ,则该双曲线C 的离心率为 √5 .解:以AC ,BD 的交点在平面β内的射影为坐标原点,两圆锥的轴在平面β内的射影为y 轴,在平面β内与x轴垂直的直线为x轴,建立平面直角坐标系.根据题意可设双曲线C的方程为x2a2−y2b2=1(a>0,b>0).∵两个圆锥的底面直径均为4,则底面半径为2,又侧面积均为2√5π,∴一个圆锥的母线长为√5.则双曲线C的渐近线方程为y=±2x,即ba=2.∴双曲线的离心率为e=ca=√c2a2=√a2+b2a2=√1+(ba)2=√5.故答案为:√5.16.如图,已知菱形ABCD中,AB=2,∠BAD=120°,E为边BC的中点,将△ABE沿AE翻折成△AB1E (点B1位于平面ABCD上方),连接B1C和B1D,F为B1D的中点,则在翻折过程中,AE与B1C的夹角为90°,点F的轨迹的长度为π2.解:在菱形ABCD中,∠BAD=120°,E为边BC的中点,所以AE⊥BC,在翻折过程中,有AE⊥B1E,AE⊥CE,因为B1E∩CE=E,B1E、CE⊂平面B1CE,所以AE⊥平面B1CE,又B1C⊂平面B1CE,所以AE⊥B1C,即AE与B1C的夹角为90°;分别取AB ,AB 1的中点M 和N ,连接EM ,EN ,FN ,因为N ,F 分别为AB 1和B 1D 的中点, 所以FN =12AD ,FN ∥AD ,又E 为BC 的中点,所以CE =12BC =12AD ,CE ∥AD ,所以FN =CE ,FN ∥CE ,所以点F 的轨迹与点N 的轨迹相同,即从点M 到点N 的轨迹,因为AE ⊥平面B 1CE ,所以点B 1的轨迹是以E 为圆心,BE 为半径的圆, 所以点N 的轨迹是以AE 的中点为圆心,BE 2为半径的圆, 所以点N 的轨迹长度为12×2π×BE2=π×12=π2,即点F 的轨迹长度为π2.故答案为:90°,π2.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知点A (1,2,﹣1),B (2,k ,﹣3),C (0,5,1),向量a →=(−3,4,5). (1)若AB →⊥a →,求实数k 的值;(2)求向量AC →在向量a →方向上的投影向量.解:(1)由题意,AB →=(1,k −2,−2),a →=(−3,4,5), 因为AB →⊥a →,所以AB →⋅a →=0,即﹣3+4k ﹣8﹣10=0,得k =214. (2)由题意,AC →=(−1,3,2),a →=(−3,4,5),所以向量AC →在向量上a →上的投影向量为:(AC →⋅a →|a →|)a →|a →|=3+12+10√9+16+253√210,2√25,√22)=(−32,2,52).18.(12分)已知△ABC 的顶点A (5,1),B (1,3),C (4,4). (1)求AB 边上的高所在直线的方程;(2)求△ABC 的外接圆的方程. 解:(1)∵A (5,1),B (1,3), ∴直线AB 的斜率k AB =1−35−1=−12, ∴AB 边上的高所在直线的斜率为2, ∵AB 边上的高所在直线过点C (4,4),∴AB 边上的高所在直线的方程为y ﹣4=2(x ﹣4),即2x ﹣y ﹣4=0. (2)∵CA →=(1,−3),CB →=(−3,−1), ∴CA →⋅CB →=0,即△ABC 为以角C 为直角的直角三角形, 故△ABC 的外接圆以AB 中点(3,2)为圆心,|AB|2=12√(1−5)2+(3−1)2=√5为半径,∴△ABC 的外接圆的方程为(x ﹣3)2+(y ﹣2)2=5.19.(12分)如图,在长方体ABCD ﹣A 1B 1C 1D 1中,M 为BB 1上一点,已知BM =2,CD =3,AD =4,AA 1=5.(1)求直线A 1C 和平面ABCD 的夹角; (2)求点A 到平面A 1MC 的距离.解:(1)依题意:AA 1⊥平面ABCD ,连接AC ,则A 1C 与平面ABCD 所成夹角为∠A 1CA ,∵AA 1=5,AC =√32+42=5, ∴△A 1CA 为等腰三角形, ∴∠A 1CA =π4,∴直线A 1C 和平面ABCD 的夹角为π4,(2)(空间向量),如图建立坐标系,则A (0,0,0),C (3,4,0),A 1(0,0,5),M (3,0,2), ∴AC →=(3,4,0),A 1C →=(3,4,﹣5),MC →=(0,4.﹣2), 设平面A 1MC 的法向量n →=(x ,y ,z ),由{n →⋅A 1C →=3x +4y −5z =0n →⋅MC →=4y −2z =0,可得n →=(2,1,2), ∴点A 到平面A 1MC 的距离d =|AC →⋅n →||n →|=3×2+4×1√2+1+2=103.20.(12分)已知定点A (1,﹣2),点B 为圆(x +1)2+(y +4)2=4上的动点. (1)求AB 的中点C 的轨迹方程;(2)若过定点P(12,−2)的直线l 与C 的轨迹交于M ,N 两点,且|MN|=√3,求直线l 的方程.解:定点A (1,﹣2),点B 为圆(x +1)2+(y +4)2=4上的动点. (1)设点C 的坐标为(x ,y ),则点B 的坐标为(2x ﹣1,2y +2), ∵点B 为圆(x +1)2+(y +2)2=4上的动点,∴(2x ﹣1+1)2+(2y +2+4)2=4,即x 2+(y +3)2=1, ∴AB 的中点C 的轨迹方程为x 2+(y +3)2=1;(2)当直线l的斜率存在时,设直线l的方程为y+2=k(x−12 ),∵圆的半径r=1且|MN|=√3,∴圆心到直线的距离d=1 2,∴d=|1−k2|√1+k=12,解得k=34,∴直线l的方程为y+2=34(x−12),即6x﹣8y﹣19=0;当直线l的斜率不存在时,直线l的方程为x=1 2,此时|MN|=√3,满足条件;综上,直线l的方程为x=12或6x﹣8y﹣19=0.21.(12分)如图,该几何体是由等高的半个圆柱和14个圆柱拼接而成.C,E,D,G在同一平面内,且CG=DG.(1)证明:平面BFD⊥平面BCG;(2)若直线GC与平面ABG所成角的正弦值为√105,求平面BFD与平面ABG所成角的余弦值.解:(1)证明:如图,连接CE,DG,因为该几何体是由等高的半个圆柱和14个圆柱拼接而成,CG=DG,所以∠ECD=∠DCG=45°,所以∠ECG=90°,所以CE⊥CG,因为BC∥EF,BC=EF,所以四边形BCEF 为平行四边形, 所以BF ∥CE , 所以BF ⊥CG ,因为BC ⊥平面ABF ,BF ⊂平面ABF , 所以BC ⊥BF ,因为BC ,CG ⊂平面BCG ,BC ∩CG =C , 所以BF ⊥平面BCG , 因为BF ⊂平面BFD , 所以平面BFD ⊥平面BCG .(2)如图,以A 为坐标原点建立空间直角坐标系,设AF =2,AD =t ,则A (0,0,0),B (0,2,0),F (2,0,0),D (0,0,t ),G (﹣1,1,t ),C (0,2,t ),则AB →=(0,2,0),AG →=(−1,1,t),GC →=(1,1,0), 设平面ABG 的一个法向量为m →=(x ,y ,z), 则{m →⋅AB →=0,m →⋅AG →=0,所以{m →⋅AB →=(x ,y ,z)⋅(0,2,0)=2y =0m →⋅AG →=(x ,y ,z)⋅(−1,1,t)=−x +y +tz =0,令z =1,y =0,x =t ,所以m →=(t ,0,1),记直线GC 与平面ABG 所成的角为θ,则sinθ=|cos〈GC →,m →〉|=|GC →⋅m →||GC →||m →|=|t|√2×√t +1=√105,解得t =2(负值舍去),即AD =2,设平面BFD 的一个法向量为n →=(x′,y′,z′),FB →=(−2,2,0),FD →=(−2,0,2),则{n →⋅FB →=0n →⋅FD →=0即{−2x ′+2y ′=0−2x′+2z′=0,令x ′=1,则n →=(1,1,1), 所以cos <m →,n →>=m →⋅n →|m →||n →|=√2+1⋅√1+1+1=35×3=√155,所以平面BFD 与平面ABG 所成角的余弦值为√155. 22.(12分)“工艺折纸”是一种把纸张折成各种不同形状物品的艺术活动,在我国源远流长,某些折纸活动蕴含丰富的数学知识,例如:用一张圆形纸片,按如下步骤折纸(如图): 步骤1:设圆心是E ,在圆内异于圆心处取一定点,记为F ;步骤2:把纸片折叠,使圆周正好通过点F (即折叠后图中的点A 与点F 重合); 步骤3:把纸片展开,并留下一道折痕,记折痕与AE 的交点为P ; 步骤4:不停重复步骤2和3,就能得到越来越多的折痕.现取半径为4的圆形纸片,设点F 到圆心E 的距离为2√3,按上述方法折纸.以线段EF 的中点为原点,线段EF 所在直线为x 轴建立平面直角坐标系xOy ,记动点P 的轨迹为曲线C . (1)求C 的方程;(2)设轨迹C 与x 轴从左到右的交点为点A ,B ,点P 为轨迹C 上异于A ,B ,的动点,设PB 交直线x =4于点T ,连结AT 交轨迹C 于点Q .直线AP 、AQ 的斜率分别为k AP 、k AQ . (ⅰ)求证:k AP •k AQ 为定值;(ⅱ)证明直线PQ 经过x 轴上的定点,并求出该定点的坐标.解:(1)因为|PE|+|PF|=|PA|+|PE|=4>|EF|=2√3, 所以点P 的轨迹是以E ,F 为焦点,且长轴长2a =4的椭圆, 焦距2c =|EF|=2√3, 此时b 2=a 2﹣c 2=1, 则轨迹C 方程为x 24+y 2=1;(2)证明:(i )不妨设P (x 1,y 1),Q (x 2,y 2),T (4,m ), 由题可知A (﹣2,0),B (2,0),第21页(共21页) 则k AP =y 1x 1+2,k AQ =k AT =m−04−(−2)=m 6, 因为k BP =k BT =y 1x 1−2=m 2, 所以m =2y 1x 1−2, 所以k AP ⋅k AQ =y 1x 1+2⋅m 6=y 1x 1+2⋅y 13(x 1−2)=y 123(x 12−4),① 因为点P 在椭圆上,所以x 124+y 12=1,② 联立①②,解得k AP •k AQ =−112, 故k AP •k AQ 为定值;(ii )证明:不妨设直线PQ 的方程为x =ty +n ,P (x 1,y 1),Q (x 2,y 2),联立{x =ty +nx 24+y 2=1,消去x 并整理得(t 2+4)y 2+2tny +n 2﹣4=0, 由韦达定理得{y 1+y 2=−2tn t 2+4y 1y 2=n 2−4t 2+4, 由(i )知k AP ⋅k AQ =−112, 即y 1x 1+2⋅y 2x 2+2=y 1y 2(ty 1+n+2)(ty 2+n+2)=−112, 整理得n 2−44n 2+16n+16=−112, 解得n =1或n =﹣2(舍去),所以直线PQ 的方程为x =ty +1,故直线PQ 经过定点(1,0).。
2024-2025学年高二上学期期中模拟考试数学试题含解析

2024-2025学年高二数学上学期期中模拟卷(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:沪教版2020必修第三册第十~十一章。
5.难度系数:0.72。
一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.不重合的两个平面最多有条公共直线【答案】1【解析】根据平面的位置关系可知,不重合两平面平行或相交,当相交时,有且只有一条公共直线.故答案为:12.已知球的表面积是16π,则该球的体积为.3.空间中一个角∠A的两边和另一个角∠B的两边分别平行,若∠A=,则∠B=;【答案】【解析】如图,若角∠A 的两边和角∠B 的两边分别平行,且方向相同,则∠A 与∠B 相等此时70B A ∠=∠=︒;②当角∠A 的两边和角∠B 的两边分别平行,且一边方向相同另一边方向相反,则∠A 与∠B 互补,此时180110B A ∠=︒-∠=︒.故答案为70︒或110︒.4.如图,正三棱柱的底面边长为2,高为1,则直线1B C 与底面ABC 所成的角的大小为(结果用反三角函数值表示).5.在空间中,给出下面四个命题,其中真命题为.(填序号)①过平面α外的两点,有且只有一个平面与平面α垂直;②若平面β内有不共线三点到平面α的距离都相等,则αβ∥;③若直线l 与平面α内的任意一条直线垂直,则l α⊥;④两条异面直线在同一平面内的射影一定是两条相交直线.【答案】③【解析】①过平面α外两点可确定一条直线,当这条直线垂直于平面α时,有无数个平面垂直于平面α,故①错误;②若三点在平面α同侧,则αβ∥;若三点在平面α两侧,则α与β相交,故②错误;③直线l 与平面α内的任意一条直线垂直,则l 垂直于平面α内两条相交直线,由线面垂直的判定定理可得l α⊥,故③正确;④两条异面直线在同一个平面内的射影有可能是两条相交直线,也可能是两条平行直线,还可能是一个点和一条直线,故④错误;故答案为:③6.正四棱锥P -ABCD 的所有棱长均相等,E 是PC 的中点,那么异面直线BE 与P A 所成角的余弦值为.连接AC 交BD 于O 点,连接OE ,则OE 因为⊥PO 面ABCD ,所以PO DB ⊥,又因为所以直在角三角形EOB 中,设PA a =,则故答案为:33.7.如图,有一圆锥形粮堆,其轴截面是边长为6m 的正ABC V ,粮堆母线AC 的中点P 处有一老鼠正在偷吃粮食,此时小猫正在B 处,它要沿圆锥侧面到达P 处捕捉老鼠,则小猫所经过的最短路程是m .【答案】35【解析】解:由题意得:圆锥的底面周长是6π,则66180n ππ=,解得:180n ︒=可知圆锥侧面展开图的圆心角是180︒,如图所示:则圆锥的侧面展开图中:()3m AP =,6(m)AB =,90BAP ︒∠=所以在圆锥侧面展开图中:()223635m BP =+=故答案为:358.已知一球体刚好和圆台的上、下底面及侧面都相切,且圆台上底面的半径为2,下底面的半径为1,则该圆台的侧面积为.【答案】9π【解析】圆台的轴截面如下图示:截面中圆为内切球的最大圆,且2AF DF AG DH ====,1BE CE BG CH ====,所以3AB CD ==,而上下底面周长分别为4π、2π,故该圆台的侧面积为13(2π4π)9π2⨯⨯+=.故答案为:9π9.如图,已知三棱柱111ABC A B C -的体积为3,P ,Q ,R 分别为侧棱1AA ,1BB ,1CC 上的点,且1AP CR AA +=,则Q ACRP V -=.则111332Q ACRP V d S d -=⋅⋅=⋅⋅⋅设三棱柱111ABC A B C -的体积故答案为:1.10.已知大小为π6的二面角的一个面内有一点,它到二面角的棱的距离为6,则这个点到另一个面的距离为.11.正方形ABCD 中,E ,F 分别为线段AB ,BC 的中点,连接DE ,DF ,EF ,将ADE V ,CDF V ,BEF △分别沿DE ,DF ,EF 折起,使A ,B ,C 三点重合,得到三棱锥O DEF -,则该三棱锥外接球半径R 与内切球半径r 的比值为.【答案】26【解析】在正方形ABCD 中,,AD AE CD ⊥12.空间给定不共面的A,B,C,D四个点,其中任意两点间的距离都不相同,考虑具有如下性质的平面α:A,B,C,D中有三个点到的距离相同,另一个点到α的距离是前三个点到α的距离的2倍,这样的平面α的个数是___________个【答案】32【解析】首先取3个点相等,不相等的那个点由4种取法;然后分3分个点到平面α的距离相等,有以下两种可能性:(1)全同侧,这样的平面有2个;(2)不同侧,必然2个点在一侧,另一个点在一侧,1个点的取法有3种,并且平面过三角形两个点边上的中位线,考虑不相等的点与单侧点是否同侧有两种可能,每种情况下都唯一确定一个平面,故共有6个,⨯=个,所有这两种情况共有8个,综上满足条件的这样的平面共有4832故答案为:32二、选择题(本题共有4题,满分18分,第13-14题每题4分,第15-16题每题5分;每题有且只有一个正确选项)13.下列几何体中,多面体是()A.B.C.D.【答案】B【解析】A选项中的几何体是球,是旋转体;B选项中的几何体是三棱柱,是多面体;C 选项中的几何体是圆柱,旋转体;D 选项中的几何体是圆锥,是旋转体.故选B.14.已知两个平面α、β,在下列条件下,可以判定平面α与平面β平行的是().A .α、β都垂直于一个平面γB .平面α内有无数条直线与平面β平行C .l 、m 是α内两条直线,且l ∥β,m ∥βD .l 、m 是两条异面直线,且l ∥α,m ∥α,l ∥β,m ∥β【答案】D【解析】对于A ,如在正方体1111ABCD A B C D -中,平面11AAC C 和平面11AA B B 都与平面ABCD 垂直,但这两个平面不平行,所以A 错误,对于B ,如在正方体1111ABCD A B C D -中,平面11AAC C 和平面11AA B B ,平面11AAC C 中所有平行于交线1AA 的直线都与平面11AA B B 平行,但这两个平面不平行,所以B 错误,对于C ,如在正方体1111ABCD A B C D -中,平面11AAC C 和平面11AA B B ,,M N 分别为11,A B AB 的中点,则1,MN BB 在平面11AA B B 内,且都与平面11AAC C 平行,但这两个平面不平行,所以C 错误.对于D ,因为l 、m 是两条异面直线,所以将这两条直线平移到共面α时,一定在α内形成两条相交直线,由面面平行的判定定理可知,该结论正确.故选:D15.将3个1212⨯的正方形沿邻边的中点剪开分成两部分(如图1);将这6部分接于一个边长为六边形边上(如图2),若拼接后的图形是一个多面体的表面展开图,则该多面体的体积是()A .17282B .864C .576D .2【答案】B【解析】折成的多面体如图①所示,将其补形为正方体,如图②,所求多面体体积为正方体的一半,又依题易求得正方体的边长为12,故3112864,2V =⨯=故选:B.16.如图,在正方体1111ABCD A B C D -中,E 是棱BC 的中点,F 是侧面11BCC B 上的动点,且1A F ∥平面1AD E .设1A F 与平面11BCC B 所成的角为1,A F α与1AD 所成的角为β,那么下列结论正确的是()A .α的最小值为arctan2,β的最小值为arctan3B .α的最小值为arctan3,β的最大值为2πC .α的最小值大于arctan2,β的最小值大于arctan3D .α的最大值小于arctan3,β的最大值小于2π设正方体的棱长为2,因为MN GE ∥,且MN ⊄MN ∴∥平面1AEGD ;同理1A N ∥平面1AEGD ,且∴平面1A MN ∥平面AEGD ∵11A B ⊥面11BB C C ,所以又1AD MN ,所以1A F 与1AD 所成的角为111tan A B B Fα∴=;当F 为MN 中点时,此时当F 与M 或N 重合时,此时2tan 22α∴≤≤,arctan2对于β,当F 为MN 中点时,当F 与M 或N 重合时,β()221252A F ⎛⎫∴=-= ⎪ ⎪⎝⎭tan 3β∴=,tan 3β∴≥,arctan 3β≤≤又arctan3 1.4≈,arctan2故选:A.三、解答题(本大题共有5题,满分78分,第17-19题每题14分,第20、21题每题18分.)17.如图,长方体1111ABCD A B C D -中,1AB AD ==,12AA =,点P 为1DD 的中点.(1)求证:直线1BD //平面PAC ;(2)求异面直线1BD 与AP 所成角的大小.【解析】(1)设AC 和BD 交于点O ,则O 为BD 的中点,连接PO ,(1分)∵P 是1DD 的中点,∴1//PO BD ,(3分)又∵PO ⊂平面PAC ,1⊄BD 平面PAC ,∴直线1BD //平面PAC ;(6分)(2)由(1)知,1//PO BD ,∴APO ∠即为异面直线1BD 与AP 所成的角,(8分)∵PA PC =12AO AC ==且PO AO ⊥,∴1sin2AO APO AP ∠==.又(0,90]APO ∠∈︒︒,∴30APO ∠=︒故异面直线1BD 与AP 所成角的大小为30︒.(14分)18.如图,在圆柱中,底面直径AB 等于母线AD ,点E 在底面的圆周上,且AF D E ⊥,F 是垂足.(1)求证:AF DB ⊥;(2)若圆柱与三棱锥D ABE -的体积的比等于3π,求直线DE 与平面ABD 所成角的大小.【解析】(1)证明:根据圆柱性质,DA ⊥平面ABE ,因为EB ⊂平面ABE ,所以DA EB ⊥,又因为AB 是圆柱底面的直径,点E 在圆周上,所以AE EB ⊥,因为AE DA A ⋂=且,AE DA ⊂平面DAE ,所以EB ⊥平面DAE ,(2分)又因为AF ⊂平面DAE ,所以EB AF ⊥,因为AF D E ⊥,且EB DE E =I ,且,EB DE ⊂平面DEB ,所以AF ⊥平面DEB ,又因为DB ⊂平面DEB ,所以AF DB ⊥.(6分)(2)解:过点E 作EH AB ⊥,H 是垂足,连接DH ,根据圆柱性质,平面ABD ⊥平面ABE ,且平面ABD ⋂平面ABE AB =,且EH ⊂平面ABE ,所以EH ⊥平面ABD ,因为DH ⊂平面ABD ,所以DH 是ED 在平面ABD 上的射影,从而EDH ∠是DE 与平面ABD 所成的角,(8分)设圆柱的底面半径为R ,则2DA AB R ==,所以圆柱的体积为32πV R =,且21233D ABEABE R V AD S EH -=⋅=⋅ ,由:3πD ABE V V -=,可得EH R =,可知H 是圆柱底面的圆心,且AH R =,且DH =,在直角EDH 中,可得tan EH EDH DH ∠==EDH ∠=(14分)19.如图,将边长为2的正方形ABCD 沿对角线BD 折叠,使得平面ABD ⊥平面CBD ,AE ⊥平面ABD ,且2AE(1)求证:直线EC 与平面ABD 没有公共点;(2)求点C 到平面BED 的距离.【解析】(1)取BD 的中点F ,连接CF 、AF ,如图,依题意,在BCD △中,,BC CD BC CD =⊥,则CF BD ⊥,而平面ABD ⊥平面CBD ,平面ABD ⋂平面CBD BD =,CF ⊂平面CBD ,于是得CF ⊥平面ABD ,且2CF =因为AE ⊥平面ABD ,且2AE =//AE CF ,且AE CF =,从而得四边形AFCE 为平行四边形,//EC AF ,(4分)又AF ⊂平面ABD ,EC ⊂/平面ABD ,则//EC 平面ABD ,所以直线EC 与平面ABD 没有公共点;(6分)(2)因为CF ⊥平面ABD ,AF ⊂平面ABD ,所以CF AF ⊥,因为BD AF ⊥,BD CF F = ,,BD CF ⊂平面,CBD 所以AF ⊥平面,CBD 因为//,EC AF ,于是得EC ⊥平面CBD ,因为AE ⊥平面ABD ,,AB AD ⊂平面ABD ,所以,AE AB AE AD ⊥⊥,(8分)因为EC AF ==EB ED =,则等腰BED 底边BD 上的高2h ==,12BED S BD h =⋅= ,而2BCD S =,设点C 到平面BED 的距离为d ,由C BED E BCD V V --=得1133BED BCD S d S EC ⋅=⋅ ,即2=,解得1d =,所以点C 到平面BED 的距离为1(14分)20.如图所示,在四棱锥P ABCD -中,底面四边形ABCD 是菱形,底面,AC BD O PAC = △是边长为2的等边三角形,PB =PD ,AP =4AF(1)求证:PO ⊥底面ABCD (2)求直线CP 与OF 所成角的大小.(3)在线段PB 上是否存在点M ,使得//CM 平面BDF ?如果存在,求BMBP的值;如果不存在,请说明理由.【解析】(1)因为底面ABCD 是菱形,且AC BD O = ,所以O 为AC ,BD 中点,在PBD △中,PB =PD ,可得PO ⊥BD ,因为在PAC 中,PA =PC ,O 为AC ,BD 中点,所以PO ⊥AC ,(3分)又因为AC ⋂BD =O ,所以PO ⊥底面ABCD .(4分)(2)连接OF ,取AP 中点为E ,连接OE ,因为底面ABCD 是菱形,AC ⋂BD =O ,由O 为AC 中点,且E 为AP 中点,AP =4AF ,所以F 为AE 中点,所以CP //OE .,故∠EOF 为直线CP 与OF 所成的角,(8分)又由PAC 为等边三角形,且E 为中点,所以∠EOF =30o .(10分)(3)存在,13BM BP =,连接CE ,ME ,因为AP =4AF ,E 为AP 中点,所以13EF FP =,又因为13BM BP =,所以在PFB △中,EF BMFP BP =,即EM //BF ,(12分)因为EM ⊄平面BDF ,BF ⊂平面BDF ,所以EM //平面BDF ,由(2)知EC //OF ,因为EC ⊄平面BDF ,OF ⊂平面BDF ,所以EC //平面BDF ,因为EC ⋂EM =E ,所以平面EMC //平面BDF ,因为CM ⊂平面EMC ,所以CM //平面BDF .(18分)21.在棱长均为2的正三棱柱111ABC A B C -中,E 为11B C 的中点.过AE 的截面与棱111,BB AC 分别交于点F ,G.(1)若F 为1BB 的中点,试确定点G 的位置,并说明理由;(2)在(1)的条件下,求截面AGEF 与底面ABC 所成锐二面角的正切值;(3)设截面AFEG 的面积为0S ,AEG △面积为1S ,AEF △面积为2S ,当点F 在棱1BB 上变动时,求2012S S S 的取值范围.【解析】(1)在平面11BCC B 内延长1CC ,FE 相交于点P ,则P ∈平面AGEF ,又1P CC ∈⊂平面11ACC A ,则有平面AGEF 平面11ACC A AG =,P AG ∈,即A ,G ,P 三点共线.(2分)因为E 为11B C 的中点,F 为1BB 的中点,所以11112PC B F CC ==,所以113PC PC =,又因为1//GC AC ,所以1113GC PC AC PC ==,所以111112333GC AC A C ===,即点G 为棱11AC 上靠近点1C 的三等分点.(4分)(2)在平面11BCC B 内延长CB ,EF 相交于点Q ,连接AQ ,则平面AGEF 平面ABC AQ =,在平面11ACC A 内作GM AC ⊥于点M ,则GM ⊥平面ABC ,又AQ ⊂平面ABC ,所以G M AQ ⊥,在平面ABC 内作MN AQ ⊥于点N ,连接GN ,又,GM MN ⊂平面GMN ,GM MN M ⋂=,所以AQ ⊥平面GMN ,GN ⊂平面GMN ,所以AQ GN ⊥,所以GNM ∠为截面AGEF 与底面ABC 所成锐二面角的平面角.(6分)在AQC 中,作CH AQ ⊥于点H ,11BQ C E ==,2AC =,3CQ =,60AC B ∠= ,12222ABC S =⨯⨯⨯=△AQC S =由余弦定理2222cos 4967AQ AC CQ AC CQ ACQ =+-⋅⋅∠=+-=,则AQ122AQC S AQ CH ==⋅ ,可得3217CH =,所以237MN CH ==,又22G M AA ==,所以21tan 3GM GNM MN ∠==,故截面AGEF 与底面ABC (10分)(3)设1GC m =,则[]0,1m ∈,2PG mGA m=-.设PGE 的面积为S ,所以12S m S m=-,又因为21S S S =+,所以1222S m S -=,且1221,122S m S -⎡⎤=∈⎢⎥⎣⎦,故()22120121212212S S S S SS S S S S S +==++,令12S t S =,则1,12t ⎡⎤∈⎢⎥⎣⎦,(11分)设()112,12g t t t t ⎛⎫⎡⎤=++∈ ⎪⎢⎥⎣⎦⎝⎭,当12112t t ≤<≤时,()()()()121212121212111t t g t g t t t t t t t t t --=+--=-,120t t -<,120t t >,1210t t -<,则()()120g t g t ->,即()()12g t g t >,所以()12g t t t =++在1,12t ⎡⎤∈⎢⎥⎣⎦上单调递减,所以()()min 14g t g ==,()max 1922g t g ⎛⎫== ⎪,所以()94,2g t ⎡⎤∈⎢⎥,。
2023-2024学年湖南省长沙二中高二(上)期中数学试卷【答案版】

2023-2024学年湖南省长沙二中高二(上)期中数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求. 1.已知集合M ={x |(x ﹣2)(x ﹣6)<0},N ={x |1<x <5},则M ∩N =( ) A .{x |2<x <5}B .{x |1<x <5}C .{x |2<x <6}D .{x |1<x <6}2.已知复数z 满足(1+i )z =3+5i ,则|z |=( ) A .2B .3C .4D .√173.国家射击运动员甲在某次训练中10次射击成绩(单位:环):7,6,9,7,4,8,9,10,7,5,则这组数据第70百分位数为( ) A .7B .8C .8.5D .94.过点(4,0)的直线l 与圆x 2+y 2﹣4x ﹣8y +16=0相切,则直线l 的方程为( ) A .3x +4y ﹣12=0或y =0 B .3x +4y ﹣12=0或x =4C .4x +3y ﹣12=0或y =0D .4x +3y ﹣12=0或x =45.我国古代数学名著《九章算术》中,将底面为矩形且一侧棱垂直于底面的四棱锥称为阳马.如图,四棱锥P ﹣ABCD 是阳马,P A ⊥平面ABCD ,且PM →=2MC →,若AB →=a →,AD →=b →,AP →=c →,则BM →=( )A .13a →+23b →−13c → B .23a →+23b →−12c →C .−13a →+23b →−12c →D .−13a →+23b →+13c →6.已知圆锥的侧面积是16π,其侧面展开图是顶角为π2的扇形,则该圆锥的体积为( ) A .2√15π3B .4√15π3C .8√15π3D .16√15π37.已知F 1,F 2分别为椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,A 是椭圆C 的左顶点,点P 在过A 且斜率为√34的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则椭圆C 的离心率为( ) A .14B .13C .12D .238.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,O 是AC 中点,点P 在线段A 1C 1上,若直线OP 与平面A 1BC 1所成的角为θ,则sin θ的取值范围是( )A .[√23,√33]B .[13,12]C .[√34,√33]D .[14,13]二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求. 9.已知函数f(x)=sin(2x +2π3),则( ) A .f (x )的最小正周期为π B .f (x )的图象关于直线x =7π12对称 C .f(x +π3)是偶函数D .f (x )的单调递减区间为[kπ−π12,kπ+5π12](k ∈Z)10.已知三条直线2x ﹣3y +1=0,4x +3y +5=0,mx ﹣y ﹣1=0能构成三角形,则实数m 的取值可能为( ) A .2B .−43C .−23D .4311.如图,两条异面直线a ,b 所成的角为60°,在直线a ,b 上分别取点A ,O 和点C ,B ,使AO ⊥OC ,OC ⊥CB .已知AO =4,CB =3,AB =7,则线段OC 的长为( )A .6B .8C .2√3D .√312.已知双曲线C :x 28−y 24=1的左、右顶点分别为A ,B ,P 是C 上任意一点,则下列说法正确的是( ) A .C 的渐近线方程为y =±√22xB .若直线y =kx 与双曲线C 有交点,则|k|≥√22C .点P 到C 的两条渐近线的距离之积为83D .当点P 与A ,B 两点不重合时,直线P A ,PB 的斜率之积为2 三、填空题:本题共4小题,每小题5分,共20分.13.已知点A (1,2),B (3,4),则线段AB 的垂直平分线的方程是 . 14.已知cos(π4−α)=√210,α∈(π2,π),则cos α= .15.如图,棱长为1的正方体A 1A 2A 3A 4﹣A 5A 6A 7A 8的八个顶点分别为A 1,A 2,⋯,A 8,记正方体12条棱的中点分别为A 9,A 10,⋯,A 20,6个面的中心为A 21,A 22,⋯,A 26,正方体的中心为A 27.记m j =A 1A →7⋅A 1A →j ,j ∈{1,2,…,27},其中A 1A 7是正方体的体对角线.则m 1+m 2+…+m 27= .16.已知椭圆C :x 24+y 23=1的左、右焦点分别为F 1,F 2,M 为C 上任意一点,N 为圆E :(x ﹣5)2+(y﹣4)2=1上任意一点,则|MN |﹣|MF 1|的最小值为 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)为配合创建全国文明城市,某市交警支队全面启动路口秩序综合治理,重点整治机动车不礼让行人的行为.经过一段时间的治理,从市交警队数据库中调取了10个路口的车辆违章数据,根据这10个路口的违章车次的数量绘制如图所示的频率分布直方图,统计数据中凡违章车次超过30次的路口设为“重点路口”.(1)根据直方图估计这10个路口的违章车次的中位数;(2)现从“重点路口”中随机抽取两个路口安排交警去执勤,求抽出来的路口中有且仅有一个违章车次在(40,50]的概率.18.(12分)已知函数F(x)=log a (1−x 2)(a >0,且a ≠1). (1)判断函数F (x )的奇偶性,并说明理由; (2)若F(m +1)>F(12−2m),求m 的取值范围.19.(12分)已知圆C :(x +1)2+(y ﹣2)2=25,直线l :(2+a )x +(1+a )y +a =0. (1)求证:直线l 恒过定点;(2)直线l 被圆C 截得的弦长何时最长、何时最短?并求截得的弦长最短时a 的值以及最短弦长. 20.(12分)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,且3acosC +√3csinA =3b . (1)求A ;(2)若a =2,且△ABC 为锐角三角形,求△ABC 周长的取值范围.21.(12分)如图,在正三棱柱ABC ﹣A 1B 1C 1中,AA 1=2,AB =1.点D ,E ,F 分别在棱AA 1,BB 1,CC 1上,A 1D =CF =23,BE =1.M 为AC 中点,连接BM . (1)证明:BM ∥平面DEF ;(2)点P 在棱BB 1上,当二面角P ﹣DF ﹣E 为30°时,求EP 的长.22.(12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点A (2,0),且右焦点为F (√3,0).(1)求C 的标准方程;(2)过点(1,0)且斜率不为0的直线l 与C 交于M ,N 两点,直线x =4分别交直线AM ,AN 于点 E ,F ,以EF 为直径的圆是否过定点?若是,求出定点坐标;若不是,请说明理由.2023-2024学年湖南省长沙二中高二(上)期中数学试卷参考答案与试题解析一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求. 1.已知集合M ={x |(x ﹣2)(x ﹣6)<0},N ={x |1<x <5},则M ∩N =( ) A .{x |2<x <5}B .{x |1<x <5}C .{x |2<x <6}D .{x |1<x <6}解:因为M ={x |(x ﹣2)(x ﹣6)<0}={x |2<x <6},N ={x |1<x <5}, 所以M ∩N ={x |2<x <5}. 故选:A .2.已知复数z 满足(1+i )z =3+5i ,则|z |=( ) A .2B .3C .4D .√17解:复数z =3+5i1+i =(3+5i)(1−i)(1+i)(1−i)=8+2i2=4+i ,有|z|=√17. 故选:D .3.国家射击运动员甲在某次训练中10次射击成绩(单位:环):7,6,9,7,4,8,9,10,7,5,则这组数据第70百分位数为( ) A .7B .8C .8.5D .9解:将10次射击成绩按照从小到大顺序排序为:4,5,6,7,7,7,8,9,9,10, 因为10×70%=7,所以第70百分位数为8+92=8.5,故选:C .4.过点(4,0)的直线l 与圆x 2+y 2﹣4x ﹣8y +16=0相切,则直线l 的方程为( ) A .3x +4y ﹣12=0或y =0 B .3x +4y ﹣12=0或x =4C .4x +3y ﹣12=0或y =0D .4x +3y ﹣12=0或x =4解:圆x 2+y 2﹣4x ﹣8y +16=0化为标准方程为(x ﹣2)2+(y ﹣4)2=4,得圆心(2,4),半径为2, 当直线l 的斜率不存在时,直线l :x =4,此时直线l 与圆x 2+y 2﹣4x ﹣8y +16=0相切,符合题意;当直线l 的斜率存在时,设直线l 的方程为y =k (x ﹣4),即kx ﹣y ﹣4k =0, 圆心(2,4)到直线l 的距离为d =√k +1=√k +1,由相切得d =r =2, 所以√k 2+1=2,平方化简得k =−34,求得直线方程为3x +4y ﹣12=0,综上,直线l 的方程为3x +4y ﹣12=0或x =4. 故选:B .5.我国古代数学名著《九章算术》中,将底面为矩形且一侧棱垂直于底面的四棱锥称为阳马.如图,四棱锥P ﹣ABCD 是阳马,P A ⊥平面ABCD ,且PM →=2MC →,若AB →=a →,AD →=b →,AP →=c →,则BM →=( )A .13a →+23b →−13c → B .23a →+23b →−12c →C .−13a →+23b →−12c →D .−13a →+23b →+13c →解:PM →=2MC →,则PM →=23PC →, 若AB →=a →,AD →=b →,AP →=c →,则BM →=BP →+PM →=BP →+23PC →=AP →−AB →+23(AC →−AP →)=13AP →+23AC →−AB → =13AP →+23(AB →+AD →)−AB →=13AP →−13AB →+23AD → =−13a →+23b →+13c →.故选:D .6.已知圆锥的侧面积是16π,其侧面展开图是顶角为π2的扇形,则该圆锥的体积为( )A .2√15π3B .4√15π3C .8√15π3D .16√15π3解:设圆锥母线长为a ,底面半径为r ,侧面积是16π,则π•r •a =16π,有ar =16, 侧面展开图顶角为π2=2πr a,有a =4r ,解得r =2,a =8,则圆锥的高ℎ=√a 2−r 2=√82−22=2√15, 故V =13Sℎ=13πr 2ℎ=13⋅π⋅22⋅2√15=8√15π3. 故选:C .7.已知F 1,F 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,A 是椭圆C 的左顶点,点P 在过A 且斜率为√34的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则椭圆C 的离心率为( ) A .14B .13C .12D .23解:由题意可知:A (﹣a ,0),F 1(﹣c ,0),F 2(c ,0), 直线AP 的方程为:y =√34(x +a ),由∠F 1F 2P =120°,|PF 2|=|F 1F 2|=2c ,则P (2c ,√3c ), 代入直线AP :√3c =√34(2c +a ),整理得:a =2c , ∴离心率e =ca =12. 故选:C .8.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,O 是AC 中点,点P 在线段A 1C 1上,若直线OP 与平面A 1BC 1所成的角为θ,则sin θ的取值范围是( )A .[√23,√33]B .[13,12]C .[√34,√33]D .[14,13]解:设正方体棱长为1,A 1PA 1C 1=λ(0≤λ≤1).以D 为原点,分别以DA ,DC ,DD 1为坐标轴建立空间直角坐标系, 则O (12,12,0),P (1﹣λ,λ,1),∴OP →=(12−λ,λ−12,1),∵易证DB 1⊥平面A 1BC 1,∴DB 1→=(1,1,1)是平面A 1BC 1的一个法向量. ∴sin θ=|cos <OP →,DB 1→>|=1√3√2(λ−12)2+1,当λ=12时sin θ取得最大值√33,当λ=0或1时,sin θ取得最小值√23. 故选:A .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求. 9.已知函数f(x)=sin(2x +2π3),则( ) A .f (x )的最小正周期为π B .f (x )的图象关于直线x =7π12对称 C .f(x +π3)是偶函数D .f (x )的单调递减区间为[kπ−π12,kπ+5π12](k ∈Z)解:对于A ,由三角函数的性质,可得f (x )的最小正周期为T =2π2=π,所以A 正确; 对于B ,当x =7π12时,可得f(7π12)=sin(2×7π12+2π3)=sin 11π6≠±1, 所以f (x )的图象不关于直线x =7π12对称,所以B 错误; 对于C ,由f(x +π3)=sin[2(x +π3)+2π3]=sin(2x +4π3),此时函数f(x +π3)为非奇非偶函数,所以C 错误; 对于D ,令π2+2kπ≤2x +2π3≤3π2+2kπ,k ∈Z ,解得kπ−π12≤x ≤kπ+5π12,k ∈Z ,即函数的递减区间为[kπ−π12,kπ+5π12],k ∈Z ,所以D 正确. 故选:AD .10.已知三条直线2x ﹣3y +1=0,4x +3y +5=0,mx ﹣y ﹣1=0能构成三角形,则实数m 的取值可能为( ) A .2B .−43C .−23D .43解:因为三条直线2x ﹣3y +1=0,4x +3y +5=0,mx ﹣y ﹣1=0能构成三角形, 所以直线mx ﹣y ﹣1=0与2x ﹣3y +1=0,4x +3y +5=0都不平行, 且直线mx ﹣y ﹣1=0不过2x ﹣3y +1=0与4x +3y +5=0的交点,直线mx ﹣y ﹣1=0与2x ﹣3y +1=0,4x +3y +5=0都不平行时,m ≠23,且m ≠−43, 联立{2x −3y +1=04x +3y +5=0,解得{x =−1y =−13, 即直线2x ﹣3y +1=0与4x +3y +5=0的交点坐标为(−1,−13), 代入直线mx ﹣y ﹣1=0中,得m =−23,结合题意可知m ≠−23, 对照各个选项,可知实数m 的取值可以为2或43,故选:AD .11.如图,两条异面直线a ,b 所成的角为60°,在直线a ,b 上分别取点A ,O 和点C ,B ,使AO ⊥OC ,OC ⊥CB .已知AO =4,CB =3,AB =7,则线段OC 的长为( )A .6B .8C .2√3D .√3解:因为AB →=AO →+OC →+CB →,平方得AB →2=(AO →+OC →+CB →)2=AO →2+OC →2+CB →2+2AO →⋅OC →+2OC →⋅CB →+2CB →⋅AO →. 因为a ,b 所成的角为60°,所以〈CB →,AO →〉=60°或〈CB →,AO →〉=120°.当〈CB →,AO →〉=60°时,AO →⊥OC →,OC →⊥CB →, 代入数据可得:72=42+OC →2+32+2×4×3×12, 所以OC →2=12,所以|OC →|=2√3;当〈CB →,AO →〉=120°时,AO →⊥OC →,OC →⊥CB →, 代入数据可得:72=42+OC →2+32−2×4×3×12, 所以OC →2=36,所以|OC →|=6.综上所述,|OC →|=2√3或|OC →|=6,即OC 的长为6或2√3. 故选:AC .12.已知双曲线C :x 28−y 24=1的左、右顶点分别为A ,B ,P 是C 上任意一点,则下列说法正确的是( )A .C 的渐近线方程为y =±√22xB .若直线y =kx 与双曲线C 有交点,则|k|≥√22C .点P 到C 的两条渐近线的距离之积为83D .当点P 与A ,B 两点不重合时,直线P A ,PB 的斜率之积为2 解:双曲线C :x 28−y 24=1,则a =2√2,b =2, 对于A ,C 的渐近线方程为y =±b a x =±√22x ,A 正确; 对于B ,由双曲线的渐近线方程为y =±√22x 可知, 若直线y =kx 与双曲线C 有交点,则|k|<√22,B 错误; 对于C ,设点P (x ,y ),则x 28−y 24=1⇒x 2−2y 2=8,点P 到C 的两条渐近线的距离之积为√2y|√12+(√2)2√2y|√12+(√2)2=|x 2−2y 2|3=83,C 正确;对于D ,易得A(−2√2,0),B(2√2,0),设P (x ,y ),则y 2=4(x 28−1)(x ≠±2√2), 所以直线P A ,PB 的斜率之积为x+2√2×x−2√2=y 2x 2−8=4(x 28−1)x 2−8=12,D 错误.故选:AC .三、填空题:本题共4小题,每小题5分,共20分.13.已知点A (1,2),B (3,4),则线段AB 的垂直平分线的方程是 x +y ﹣5=0 . 解:因为A (1,2),B (3,4),所以线段AB 的中点为(2,3),垂直平分线的斜率k =1−k AB =−1,所以线段AB 的垂直平分线的方程为y ﹣3=﹣(x ﹣2),即x +y ﹣5=0. 故答案为:x +y ﹣5=0.14.已知cos(π4−α)=√210,α∈(π2,π),则cos α= −35 . 解:因为cos(π4−α)=√210,又α∈(π2,π), 所以π4−α∈(−3π4,−π4),所以sin(π4−α)=−√1−cos(π4−α)2=√1−150=−7√210, cosα=cos[π4−(π4−α)]=cos π4cos(π4−α)+sin π4sin(π4−α) =√22×√210+√22×(−7√210)=−35. 故答案为:−35.15.如图,棱长为1的正方体A 1A 2A 3A 4﹣A 5A 6A 7A 8的八个顶点分别为A 1,A 2,⋯,A 8,记正方体12条棱的中点分别为A 9,A 10,⋯,A 20,6个面的中心为A 21,A 22,⋯,A 26,正方体的中心为A 27.记m j =A 1A →7⋅A 1A →j ,j ∈{1,2,…,27},其中A 1A 7是正方体的体对角线.则m 1+m 2+…+m 27=812.解:建立如图所示的空间直角坐标系,则A 1(0,0,0),A 2(1,0,0),A 3(1,1,0),A 4(0,1,0),A 5(0,0,1),A 6(1,0,1),A 7(1,1,1),A 8(0,1,1), 设向量A 1A j →=(x ,y ,z),而A 1A 7→=(1,1,1), 故m j =A 1A j →⋅A 1A 7→=x +y +z ,故m 1+m 2+…+m 27表示各点的坐标和的和,现各点的横坐标之和为X ,纵坐标之和为Y ,竖坐标之和为Z , 根据对称性可得X =Y =Z =1×9+12×9+0×9=272, 故m 1+m 2+⋯+m 27=3×272=812, 故答案为:812.16.已知椭圆C :x 24+y 23=1的左、右焦点分别为F 1,F 2,M 为C 上任意一点,N 为圆E :(x ﹣5)2+(y﹣4)2=1上任意一点,则|MN |﹣|MF 1|的最小值为 4√2−5 . 解:如图,M 为椭圆C 上任意一点,N 为圆E :(x ﹣5)2+(y ﹣4)2=1上任意一点, 则|MF 1|+|MF 2|=4,|MN |≥|ME |﹣1(当且仅当M 、N 、E 共线时取等号), ∴|MN |﹣|MF 1|=|MN |﹣(4﹣|MF 2|)=|MN |+|MF 2|﹣4≥|ME |+|MF 2|﹣5≥|EF 2|﹣5, ∵F 2(1,0),E (5,4),则|EF 2|=√(5−1)2+(4−0)2=4√2, ∴|MN |﹣|MF 1|的最小值为:4√2−5. 故答案为:4√2−5.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)为配合创建全国文明城市,某市交警支队全面启动路口秩序综合治理,重点整治机动车不礼让行人的行为.经过一段时间的治理,从市交警队数据库中调取了10个路口的车辆违章数据,根据这10个路口的违章车次的数量绘制如图所示的频率分布直方图,统计数据中凡违章车次超过30次的路口设为“重点路口”.(1)根据直方图估计这10个路口的违章车次的中位数;(2)现从“重点路口”中随机抽取两个路口安排交警去执勤,求抽出来的路口中有且仅有一个违章车次在(40,50]的概率.解:(1)由频率分布直方图可知,该中位数为30+0.10.4×(40−30)=32.5;(2)由频率分布直方图可知,违章车次在(30,40]的路口有10×0.04×10=4个,设为a,b,c,d,违章车次在(40,50]的路口有10×0.02×10=2个,A,B,现从“重点路口”中随机抽取两个路口安排交警去执勤,共有ab,ac,ad,bc,bd,cd,aA,bA,cA,dA,aB,bB,cB,dB,AB,共15个,其中抽出来的路口中有且仅有一个违章车次在(40,50]的事件为:aA,bA,cA,dA,aB,bB,cB,dB,共8个,故抽出来的路口中有且仅有一个违章车次在(40,50]的概率为:815.18.(12分)已知函数F(x)=log a(1−x2)(a>0,且a≠1).(1)判断函数F(x)的奇偶性,并说明理由;(2)若F(m+1)>F(12−2m),求m的取值范围.解:(1)F(x)为偶函数,理由如下:由1﹣x2>0得﹣1<x<1,即函数F(x)的定义域为(﹣1,1),可知F(x)的定义域关于原点中心对称.又F(−x)=log a(1−x2)=F(x),故F(x)为偶函数;(2)因为F(x)为偶函数,所以不等式F(m+1)>F(12−2m)即F(|m+1|)>F(|12−2m|),由复合函数的单调性可知,当a>1时,y=log a t在(0,+∞)上单调递增,而t=1﹣x2在(0,1)上单调递减,故F(x)在(0,1)内单调递减,则F(x)在(﹣1,0)内单调递增;当0<a <1时,y =log a t 在(0,+∞)上单调递减,而t =1﹣x 2在(0,1)上单调递减,故F (x )在(0,1)内单调递增,则F (x )在(﹣1,0)内单调递减;(i )当a >1时,由已知有{−1<m +1<1−1<12−2m <1|m +1|<|12−2m|,解得−14<m <−16;(ii )当0<a <1时,由已知有{ −1<m +1<1−1<12−2m <1|m +1|>|12−2m|,解得−16<m <0,故当a >1时,m 的取值范围为(−14,−16);当0<a <1时,m 的取值范围为(−16,0). 19.(12分)已知圆C :(x +1)2+(y ﹣2)2=25,直线l :(2+a )x +(1+a )y +a =0. (1)求证:直线l 恒过定点;(2)直线l 被圆C 截得的弦长何时最长、何时最短?并求截得的弦长最短时a 的值以及最短弦长. 解:(1)直线l :(2+a )x +(1+a )y +a =0,即a (x +y +1)+(2x +y )=0, 联立{x +y +1=02x +y =0,解得{x =1y =−2,所以不论a 取何值,直线l 必过定点P (1,﹣2);(2)由C :(x +1)2+(y ﹣2)2=25,知圆心C (﹣1,2),半径为5.当直线l 过圆心C 时,直线被圆截得的弦长最长, 当直线l ⊥CP 时,直线被圆截得的弦长最短. 直线l 的斜率为k =−2+a1+a ,k CP =−2−21−(−1)=−2, 有−2+a1+a ⋅(−2)=−1,解得a =−53. 此时直线l 的方程是x ﹣2y ﹣5=0.圆心C(﹣1,2)到直线x﹣2y﹣5=0的距离为d=|−1−4−5|5=2√5,所以最短弦长是2√r2−d2=2√25−20=2√5.20.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,且3acosC+√3csinA=3b.(1)求A;(2)若a=2,且△ABC为锐角三角形,求△ABC周长的取值范围.解:(1)由已知和正弦定理得3sinAcosC+√3sinCsinA=3sinB,又sin B=sin(A+C)=sin A cos C+sin C cos A,∴√3sinCsinA=3sinCcosA,又sin C≠0,∴√3sinA=3cosA,有tanA=√3,又A∈(0,π),∴A=π3;(2)∵a=2,且A=π3,∴由正弦定理有bsinB =csinC=2sinπ3=4√33,从而b=4√33sinB,c=4√33sinC,∵sinC=sin(A+B)=sin(π3+B),∴b+c=4√33[sinB+sin(π3+B)]=4√33(32sinB+√32cosB)=4sin(B+π6),又△ABC为锐角三角形,有B∈(0,π2),且A+B=π3+B∈(π2,π),∴B∈(π6,π2),∴B+π6∈(π3,2π3),有sin(B+π6)∈(√32,1],故b+c∈(2√3,4],从而△ABC周长的取值范围为(2+2√3,6].21.(12分)如图,在正三棱柱ABC﹣A1B1C1中,AA1=2,AB=1.点D,E,F分别在棱AA1,BB1,CC1上,A1D=CF=23,BE=1.M为AC中点,连接BM.(1)证明:BM∥平面DEF;(2)点P 在棱BB 1上,当二面角P ﹣DF ﹣E 为30°时,求EP 的长.(1)证明:取DF 中点N ,连接EN ,MN , 又M 为AC 中点,所以MN 为梯形ADFC 的中位线, 所以MN ∥AD ,MN =AD+CF2=1, 又BE ∥AD ,故MN ∥BE ,且MN =BE , 故四边形BMNE 为平行四边形,则BM ∥NE , 因为NE ⊂平面DEF ,BM ⊄平面DEF , 故BM ∥平面DEF ;(2)解:以M 为坐标原点,BM 所在直线为x 轴,AC 所在直线为y 轴,MN 所在直线为z 轴, 建立空间直角坐标系M ﹣xyz ,如图所示:则D(0,−12,43),E(√32,0,1),F(0,12,23),设P(√32,0,a), 可得DE →=(√32,12,−13),DF →=(0,1,−23),DP →=(√32,12,a −43), 设平面DEF的法向量为n 1→=(x 1,y 1,z 1),则n 1→⊥DE →,n 1→⊥DF →,则有{n 1→⋅DE →=0n 1→⋅DF →=0,即{√32x 1+12y 1−13z 1=0y 1−23z 1=0, 取z 1=3,则y 1=2,x 1=0,得n 1→=(0,2,3), 设平面PDF的法向量为n 2→=(x 2,y 2,z 2),由n 2→⊥DP →,n 2→⊥DF →,则有{n 2→⋅DP →=0n 2→⋅DF →=0,即{√32x 2+12y 2+(a −43)z 2=0y 2−23z 2=0, 取z 2=3,则y 2=2,x 2=2√3−2√3a ,得n 2→=(2√3−2√3a ,2,3),由二面角P ﹣DF ﹣E 为30°,得|n 1→⋅n 2→||n 1→|⋅|n 2→|=√32, 即√13⋅√12a 2−24a+25=√32,解得a =1±√136, 故|EP|=√136.22.(12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点A (2,0),且右焦点为F (√3,0).(1)求C 的标准方程;(2)过点(1,0)且斜率不为0的直线l 与C 交于M ,N 两点,直线x =4分别交直线AM ,AN 于点 E ,F ,以EF 为直径的圆是否过定点?若是,求出定点坐标;若不是,请说明理由. 解:(1)由题意知,a =2,c =√3, 所以b 2=a 2﹣c 2=4﹣3=1, 所以C 的标准方程为x 24+y 2=1.(2)设直线l 的方程为x =ty +1,M (x 1,y 1),N (x 2,y 2), 联立{x =ty +1x 24+y 2=1,得(t 2+4)y 2+2ty ﹣3=0, 所以y 1+y 2=−2t t 2+4,y 1y 2=−3t 2+4, 因为A (2,0),所以直线AM 的方程为y =y1x 1−2(x ﹣2),令x =4,则y E =2y 1x 1−2,即E (4,2y 1x 1−2),同理可得,F (4,2y 2x 2−2),由对称性知,若定点存在,则定点在x 轴上,设为P (x 0,0),则PE →⋅PF →=0, 所以(4﹣x 0,2y 1x 1−2)•(4﹣x 0,2y 2x 2−2)=0,即(4﹣x 0)2+2y 1x 1−2•2y 2x 2−2=0, 因为(x 1﹣2)(x 2﹣2)=(ty 1﹣1)(ty 2﹣1)=t 2y 1y 2﹣t (y 1+y 2)+1=t 2•(−3t 2+4)﹣t (−2t t 2+4)+1=4t 2+4, 所以(4﹣x 0)2+4⋅(−3t 2+4)4t 2+4=0,即(4﹣x 0)2=3,所以x0=4±√3,故以EF为直径的圆过定点,定点坐标为(4−√3,0)或(4+√3,0).。
北京市2023-2024学年高二下学期期中测试数学试卷含答案

北京市2023~2024学年第二学期高二数学期中测试(答案在最后)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1页至第2页;第Ⅱ卷第2页至第6页,答题纸第1页至第3页.共150分,考试时间120分钟.请在答题纸上侧密封线内书写班级、姓名、准考证号.考试结束后,将本试卷的答题纸交回.第Ⅰ卷(选择题共40分)一、选择题(本大题共10小题,每小题4分,共40分.)1.函数1()f x x =在3x =处的瞬时变化率为()A.3- B.9- C.13-D.19-【答案】D 【解析】【分析】根据给定条件,求出函数()f x 在3x =处的导数值即得.【详解】由1()f x x =,求导得21()f x x'=-,所以1(3)9f '=-.故选:D2.设函数()y f x =的导函数图象如图所示,则()f x 的解析式可能是()A.()exf x = B.()ln f x x=C.()e xf x x =⋅ D.()ln f x x x=⋅【答案】D 【解析】【分析】由图象可得导函数的定义域及单调性,再逐项求导并判断得解.【详解】观察图象知,函数()y f x =的导函数定义域为(0,)+∞,且在(0,)+∞上单调递增,有一个正零点,对于A ,()e x f x '=,其定义域为R ,无零点,不符合题意,A 不是;对于B ,()ln f x x =定义域为(0,)+∞,求导得1()f x x'=,函数()f x '在(0,)+∞上单调递减,不符合题意,B 不是;对于C ,()(1)e x f x x '=+定义域为R ,而零点为1-,不符合题意,C 不是;对于D ,函数()ln f x x x =⋅定义域为(0,)+∞,()1ln f x x '=+在(0,)+∞上单调递增,有唯一零点1ex =,符合题意,D 是.故选:D3.设ξ的分布列如表所示,又设25ηξ=+,则()E η等于()ξ1234P16161313A.76B.176C.173D.323【答案】D 【解析】【分析】根据分布列求出()E ξ,再根据期望的性质计算可得.【详解】解:依题意可得111117()123466336E ξ=⨯+⨯+⨯+⨯=,所以1732()(25)2()52563E E E ηξξ=+=+=⨯+=.故选:D .4.已知函数()sin cos f x x x =+,()f x '为()f x 的导函数,则()A.()()2sin f x f x x '+=B.()()2cos f x f x x '+=C.()()2sin f x f x x -'-=D.()()2cos f x f x x-'-=【答案】B 【解析】【分析】根据基本初等函数的求导公式结合导数的加法运算法则即可得出答案.【详解】解:因为()sin cos f x x x =+,所以()cos sin f x x x '=-,所以()()2cos f x f x x '+=,()()2sin f x f x x '-=.故选:B.5.从1,2,3,4,5中不放回地抽取2个数,则在第1次抽到偶数的条件下,第2次抽到奇数的概率是()A.25B.12C.35D.34【答案】D 【解析】【分析】设事件i A 为“第i 次抽到偶数”,i =1,2,则所求概率为()()()12211n A A P A A n A =∣【详解】设事件i A 为“第i 次抽到偶数”,i =1,2,则事件“在第1次抽到偶数的条件下,第2次抽到奇数”的概率为:()()()1122321124111C C 3C C 4n A A P A A n A ===∣.故选:D.6.某校高二年级计划举办篮球比赛,采用抽签的方式把全年级10个班分为甲、乙两组,每组5个班,则高二(1)班、高二(2)班恰好都在甲组的概率是()A.14B.29C.49D.12【答案】B 【解析】【分析】利用概率的古典概型计算公式结合组合的应用即可求得结果.【详解】易知将10个班分为甲、乙两组共有510C 种分组方式,其中高二(1)班、高二(2)班恰好都在甲组的情况共有38C 种,所以高二(1)班、高二(2)班恰好都在甲组的概率是38510C 2C 9P ==.故选:B7.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为A.0.648B.0.432C.0.36D.0.312【解析】【详解】试题分析:该同学通过测试的概率为,故选A .考点:次独立重复试验.8.设函数()324f xax bx x =++的极小值为-8,其导函数()y f x ='的图象过点(-2,0),如图所示,则()f x =()A.32243x x x --+ B.3224x x x --+C.34x x -+ D.3224x x x-++【答案】B 【解析】【分析】由题设2()324f x ax bx '=++,根据所过的点可得31b a =+,结合图象求出极小值点并代入()f x 求参数,即可得解析式,注意验证所得参数是否符合题设.【详解】由题设,2()324f x ax bx '=++,则(2)12440f a b '-=-+=,故31b a =+,所以2()32(31)4(32)(2)f x ax a x ax x '=+++=++,令()0f x '=,可得2x =-或23x a=-,由图知:a<0且2x =-处有极小值,所以8488a b -+-=-,即1a =-,2b =-,经验证满足题设,故32()24f x x x x =--+.故选:B9.一道考题有4个答案,要求学生将其中的一个正确答案选择出来.某考生知道正确答案的概率为13,而乱猜时,4个答案都有机会被他选择,则他答对正确答案的概率是()A.13B.512C.12D.712【答案】C【分析】依题意分两种情况对答对正确答案进行讨论,再利用全概率公式计算可得结论.【详解】根据题意可设“知道正确答案”为事件A ,“他答对正确答案”为事件B ;易知()()13P AB P A ==;而()()()()6141123P AB P A P B =-=⨯=;因此他答对正确答案的概率是()()()216131P B P AB P AB =+=+=.故选:C10.设P 为曲线e x y =上一点,Q 为曲线ln y x =上一点,则|PQ |的最小值为()A.2B.1C.D.2【答案】C 【解析】【分析】由导数求出两曲线的切线【详解】e x y =,e x y '=,0x =时,1y '=,1y =,所以1y x =+是e x y =图象的一条切线,切点为(0,1),ln y x =,1y x'=,1x =时,1y '=,0y =,所以1y x =-是ln y x =的图象的一条切线,切点为(1,0),10101k -==--,这两条切线平行,两切点连线恰好与切线垂直,|PQ |的最小值即为两切点间的距离.所以min PQ =,故选:C .第Ⅱ卷(非选择题共110分)二、填空题(本大题共5小题,每小题5分,共25分.)11.设函数()ln xf x x=,则(1)f '=___.【答案】1【解析】【分析】求出函数的导函数,代入计算可得;【详解】解:因为()ln x f x x =,所以()21ln x f x x -'=,所以()21ln1111f -'==;故答案为:112.某不透明纸箱中共有8个小球,其中2个白球,6个红球,它们除颜色外均相同.一次性从纸箱中摸出4个小球,摸出红球个数为X ,则()E X =______.【答案】3【解析】【分析】根据给定条件,可得X 服从超几何分布,再利用超几何分布的期望公式计算即得.【详解】依题意,摸出红球个数X 服从超几何分布,63,484p n ===,所以()3==E X np .故答案为:313.已知随机变量X 的分布列如下:X012Pp0.6若() 1.2E X =,则p =______;当p =______时,()D X 最大.【答案】①.0.1##110②.0.2##15【解析】【分析】根据给定条件,利用分布列的性质,期望公式计算得p 值;利用方差与期望的关系建立关于p 的函数,探讨函数的最大值即可.【详解】由() 1.2E X =,得010.62(0.4) 1.2p p ⨯+⨯+⨯-=,因此0.1p =;依题意,() 1.42E X p =-,2222()010.62(0.4) 2.24E X p p p =⨯+⨯+⨯-=-,因此()()()()()()2222 2.24 1.4240.20.4D X E X E Xp p p =-=---=--+,则当0.2p =时,()D X 取得最大值.故答案为:0.1;0.214.李明自主创业,经营一家网店,每售出一件A 商品获利8元.现计划在“五一”期间对A 商品进行广告促销,假设售出A 商品的件数m (单位:万件)与广告费用x (单位:万元)符合函数模型231m x =-+.若要使这次促销活动获利最多,则广告费用x 应投入_______万元.【答案】3【解析】【分析】设李明获得的利润为()f x 万元,求出()f x 关于x 的表达式,利用基本不等式可求得()f x 的最小值及其对应的x 的值.【详解】设李明获得的利润为()f x 万元,则0x ≥,则()()2161688324251252111f x m x x x x x x x ⎛⎫⎡⎤=-=--=--=-+≤- ⎪⎢⎥+++⎝⎭⎣⎦25817=-=,当且仅当1611x x +=+,因为0x ≥,即当3x =时,等号成立.故答案为:3.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.15.函数()e ln kxf x x =⋅(k 为常数)的图象可能为______.(选出所有可能的选项)①②③④【答案】①②③【解析】【分析】求导可得()1e ln kxf x k x x ⎛⎫=+⎪⎝⎭',并构造函数()1ln g x k x x=+,对参数k 的取值进行分类讨论并得出函数()g x 的最值,进而求得函数()f x 的单调性,即可求得结论.【详解】易知函数()e ln kxf x x =⋅的定义域为()0,∞+,则()1e ln kxf x k x x ⎛⎫=+⎪⎝⎭',令()1ln g x k x x =+,可得()2211k kx g x x x x='-=-;显然当0k =时,()ln f x x =,没有对应函数图象;因此0k ≠,当0k <时,易知()210kx g x x -'=<在()0,∞+恒成立,可知()1ln g x k x x=+在()0,∞+上单调递减,易知()110g =>,即()10f '>;当x 趋近于+∞时,()1ln g x k x x=+趋近于-∞;即存在()01,x ∞∈+,使得()00g x =,也即()00f x '=;所以当()00,x x ∈时,()00f x '>,此时()f x 单调递增,当()0,x x ∞∈+时,()00f x '<,此时()f x 单调递减,又易知()10f =,且1x >时()0f x >,1x <时()0f x <,此时图象可能为③;当0k >时,令()210kx g x x -'==,解得1x k=;当10,x k ⎛⎫∈ ⎪⎝⎭时,()0g x '<,此时()g x 在10,k ⎛⎫⎪⎝⎭上单调递减;当1,x k ∞⎛⎫∈+⎪⎝⎭时,()0g x '>,此时()g x 在1,k ∞⎛⎫+ ⎪⎝⎭上单调递增;即()()min 11ln 1ln g x g k k k k k k ⎛⎫==+=-⎪⎝⎭,若0e k <≤时,()()min 1ln 0g x k k =-≥,即()1e ln 0kxf x k x x ⎛⎫=+≥ ⎪⎝⎭'恒成立,此时函数()f x 单调递增,且()10f =,此时图象可能为①;若e k >时,()()min 1ln 0g x k k =-<,即存在两个实数根12,x x ,且()12,0,1x x ∈满足()1ln 0g x k x x=+=,不妨取()120,1x x <∈,因此可得当()10,x x ∈时,()0g x '>,此时()g x 在()10,x 上单调递增;当()12,x x x ∈时,()0g x '<,此时()g x 在()12,x x 上单调递减;当()2,x x ∞∈+时,()0g x '>,此时()g x 在()2,x ∞+上单调递增;且()10f =,因此图象可能为②.由于()0f x =时,1x =,函数不可能有2个零点,故④不可能,故答案为:①②③【点睛】关键点点睛:本题关键在于对函数()f x 求导,构造函数并对参数k 的取值进行分类讨论,进而得出函数单调性即可得出结论.三、解答题:(本大题共6小题,共85分.解答应写出文字说明,证明过程或演算步骤.)16.已知函数32()324f x x x x=+-(1)求()f x 的图象在点(1,(1))f 处的切线方程;(2)求()f x 的单调区间.【答案】(1)1550x y ++=;(2)单调递增区间是(,4),(2,)-∞-+∞,单调递减区间是(4,2)-.【解析】【分析】(1)求出函数()f x 的导数,利用导数的几何意义求出切线方程即得.(2)由(1)的导函数,解导函数大于0,小于0的不等式即可.【小问1详解】函数32()324f x x x x =+-,求导得2()3624f x x x '=+-,则(1)15f '=-,而(1)20f =-,所以()f x 的图象在点(1,(1))f 处的切线方程为2015(1)y x +=--,即1550x y ++=.【小问2详解】函数32()324f x x x x =+-的定义域为R ,由(1)得)()34((2)f x x x +'=-,由()0f x '>,得<4x -或2x >,由()0f x '<,得42x -<<,所以函数()f x 的单调递增区间是(,4),(2,)-∞-+∞,单调递减区间是(4,2)-.17.某地区组织所有高一学生参加了“科技的力量”主题知识竟答活动,根据答题得分情况评选出一二三等奖若干,为了解不同性别学生的获奖情况,从该地区随机抽取了500名参加活动的高一学生,获奖情况统计结果如下:性别人数获奖人数一等奖二等奖三等奖男生200101515女生300252540假设所有学生的获奖情况相互独立.(1)分别从上述200名男生和300名女生中各随机抽取1名,求抽到的2名学生都获一等奖的概率;(2)用频率估计概率,从该地区高一男生中随机抽取1名,从该地区高一女生中随机抽取1名,以X 表示这2名学生中获奖的人数,求X 的分布列和数学期望EX ;(3)用频率估计概率,从该地区高一学生中随机抽取1名,设抽到的学生获奖的概率为0p ;从该地区高一男生中随机抽取1名,设抽到的学生获奖的概率为1p ;从该地区高一女生中随机抽取1名,设抽到的学生获奖的概率为2p ,试比较0p 与122p p +的大小.(结论不要求证明)【答案】(1)1240(2)分布列见解析,期望12EX =(3)1202p p p +>【解析】【分析】(1)直接计算概率11102511200300C C ()C C P A =;(2)X 的所有可能取值为0,1,2,求出高一男生获奖概率和高一女生获奖概率,再计算概率得到分布列,最后计算期望即可;(3)计算出01350p =,12124p p +=,比较大小即可.【小问1详解】设事件A 为“分别从上述200名男生和300名女生中各随机抽取1名,抽到的2名学生都获一等奖”,则11102511200300C C 1()C C 240P A ==,【小问2详解】随机变量X 的所有可能取值为0,1,2.记事件B 为“从该地区高一男生中随机抽取1名,该学生获奖”,事件C 为“从该地区高一女生中随机抽取1名,该学生获奖”.由题设知,事件B ,C 相互独立,且()P B 估计为1015151,()2005P C ++=估计为252540330010++=.所以1328(0)()()()1151050P X P BC P B P C ⎛⎫⎛⎫====-⨯-= ⎪ ⎪⎝⎭⎝⎭,131319(1)()()()()()1151051050P X P BC BC P B P C P B P C ⎛⎫⎛⎫==⋃=+=⨯-+-⨯=⎪ ⎪⎝⎭⎝⎭,133(2)()()()51050P X P BC P B P C ====⨯=.所以X 的分布列为X012P28501950350故X 的数学期望()2819310125050502E X =⨯+⨯+⨯=【小问3详解】1202p p p +>,理由:根据频率估计概率得04090135250050200p +===,由(2)知115p =,2310p =,故1213150510224200p p ++===,则1202p p p +>.18.为了解甲、乙两厂的产品质量,从甲、乙两厂生产的产品中分别抽取了几件测量产品中的微量元素x 的含量(单位:毫克).规定微量元素x 的含量满足:160170x ≤<(单位:毫克)为优质品.甲企业的样本频率分布直方图和乙企业的样本频数分布表如下:含量频数[)150,1551[)155,1602[)160,1654[)165,1702[]170,1751(1)从乙厂抽取的产品中随机抽取2件,求抽取的2件产品中优质品数ξ的分布列及其数学期望;(2)从甲乙两厂的产品中各随机抽取2件,求其中优质品数之和为2的概率;(3)在(2)的条件下,写出甲乙两厂的优质品数之和η的数学期望.(结论不要求证明)【答案】(1)分布列见解析,65(2)37100;(3)115.【解析】【分析】(1)求出ξ的可能值及对应的概率,列出分布列并求出数学期望.(2)利用频率估计概率,求出甲乙厂产品中优质品率,再分别求出抽出的2件产品中优质品数的概率,进而求出优质品数和为2的概率.(3)由(2)的信息求出η的分布列及数学期望.【小问1详解】乙厂抽取的10件产品中优质品数有6件,ξ的可能取值为0,1,2,11224664222101010C C C C 281(0),(1),(0)C 15C 15C 3P P P ξξξ=========,所以ξ的分布列为:ξ012P21581513数学期望为2816()012151535E ξ=⨯+⨯+⨯=.【小问2详解】记甲乙两厂的优质品数分别为,X Y ,由样本频率估计:甲厂产品中优质品率为12,乙厂产品中优质品率为35,21221111111(0)(1),(1)C (1),(2)()2422224P X P X P X ==-===⋅⋅-====,()212234331239(0)(1),(1)C (1,2(5255525525P Y P Y P Y ==-===⋅⋅-====,(2)(0,2)(1,1)(2,0)P X Y P X Y P X Y P X Y +====+==+==191121437425225425100=⨯+⨯+⨯=,所以优质品数之和为2的概率为37100.【小问3详解】由(2)知,η的可能值为0,1,2,3,4,14111214137(0),(1),(2)425254252255100P P P ηηη==⨯===⨯+⨯===,191123199(3),(4)22542510425100P P ηη==⨯+⨯===⨯=,所以η的数学期望11373911()01234255100101005E η=⨯+⨯+⨯+⨯+⨯=.19.已知函数()1e xaxf x +=(1)当13a =-时,求()f x 的极值;判断此时()f x 是否有最值,如果有请写出最值(结论不要求证明)(2)若()f x 是单调函数,求a 的取值范围.【答案】(1)()f x 的极小值为413e -,无极大值;最小值为413e-,无最大值;(2){}0【解析】【分析】(1)求函数()f x 求导,代入13a =-得出函数()f x 在定义域内的单调性可得()f x 在4x =处取得极小值()4143e f =-,也是最小值;(2)对参数a 的取值范围进行分类讨论,得出不同情况下的单调性,满足()f x 是单调函数即可得出结论.【小问1详解】易知()f x 的定义域为R ,由()1exaxf x +=可得()()()2e 1e 1e e x xxxa ax a axf x -+--==',当13a =-时,()111433e 3ex xxx f x --+-==',令()0f x '=可得4x =;因此当(),4x ∞∈-时,()0f x '<,此时()f x 在(),4∞-上单调递减,当()4,x ∞∈+时,()0f x '>,此时()f x 在()4,∞+上单调递增,因此可得()f x 在4x =处取得极小值()4143ef =-;所以()f x 的极小值为413e -,无极大值;根据极值与最值得关系可得,此时()f x 在4x =处也取得最小值413e -,无最大值;【小问2详解】由(1)可知,()1e xa axf x '--=,显然当0a =时,()10ex f x '-=<恒成立,此时()f x 为R 上单调递减函数,满足题意;当0a ≠时,令()10e x a axf x --'==,解得1a x a-=;由一次函数1ax y a -=+-的性质可知,当0a >时,1ax y a -=+-为单调递减,若1,a x a ∞-⎛⎫∈- ⎪⎝⎭,()0f x '>,此时()f x 为1,a a ∞-⎛⎫- ⎪⎝⎭上单调递增函数;若1,a x a ∞-⎛⎫∈+⎪⎝⎭,()0f x '<,此时()f x 为1,a a ∞-⎛⎫+ ⎪⎝⎭上单调递减函数;显然此时()f x 不是单调函数,不满足题意;当a<0时,1ax y a -=+-为单调递增,若1,a x a ∞-⎛⎫∈- ⎪⎝⎭,()0f x '<,此时()f x 为1,a a ∞-⎛⎫- ⎪⎝⎭上单调递减函数;若1,a x a ∞-⎛⎫∈+⎪⎝⎭,()0f x '>,此时()f x 为1,a a ∞-⎛⎫+ ⎪⎝⎭上单调递增函数;显然此时()f x 不是单调函数,不满足题意;综上可知,0a =;即a 的取值范围为{}0.20.已知函数()(m )e ,x f x x m R =-∈,.(1)若2m =,求()f x 在区间[1,2]-上的最大值和最小值;(2)设()()=g x x f x ,求证:()g x 恰有2个极值点;(3)若[2,1]x ∀∈-,不等式e 2x k x ≥+恒成立,求k 的最小值.【答案】(1)()()max min e,0f x f x ==.(2)证明见解析(3)min ek =【解析】【分析】(1)求得()(1)e x f x x '=-,令()0f x '=,可得1x =,求得函数的单调区间,结合极值的概念与计算,即可求解;(2)求得2()[(2)]e x g x x m x m '=----,结合0∆>,得到方程2(2)0x m x m ---=有两个不同的根,结合极值点的定义,即可求解;(3)根据题意转化为[2,1]x ∀∈-,不等式2e x x k +≥恒成立,设2()xx h x +=e,利用导数求得函数()h x 的单调性与最大值,即可求解.【小问1详解】解:由函数()(2)e x f x x =-,可得()(1)e x f x x '=-,令()0f x '=,可得1x =,则()(),,x f x f x '的关系,如图下表:x1-(1,1)-1(1,2)2()f x '+0-()f x 3(1)ef -=极大值(1)ef =(2)0f =综上可得,函数max min ()(1),()(2)0f x f e f x f ====.【小问2详解】解:由函数2()()()x g x xf x mx x e ==-,可得22()(2)e [(2)]e x x g x mx x m x x m x m '=-+-=----,因为22(2)440m m m ∆=-+=+>,所以方程2(2)0x m x m ---=有两个不同的根,设为12,x x 且12x x <,则有x1()x -∞,1x 12()x x ,2x 2(,)x ∞+()g x '-0+0-()g x极小值极大值综上可得,函数()g x 恰有2个极值点.【小问3详解】解:因为e 0x >,所以[2,1]x ∀∈-,不等式2e xx k +≥恒成立,设2()xx h x +=e,可得2(2)(1)()x x x x e x e x h x e e -+--'==,所以()(),,x h x h x '的关系,如图下表:x 2-(2,1)--1-(1,1)-1()h x '+0-()h x (2)0h -= 极大值(1)eh -=3(1)eh =所以max ()(1)e k h x h ≥=-=,所以实数k 的最小值为e .【点睛】方法技巧:对于利用导数研究不等式的恒成立与有解问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3、根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.21.对任意正整数n ,记集合(){}121212,,,,,,,n nnn A a a a a a aa a a n =⋅⋅⋅⋅⋅⋅∈++⋅⋅⋅+=N ,(){}121212,,,,,,,2n n n n B b b b b b b b b b n =⋅⋅⋅⋅⋅⋅∈++⋅⋅⋅+=N .()12,,,n n a a a A α=⋅⋅⋅∈,()12,,,n n b b b B β=⋅⋅⋅∈,若对任意{}1,2,,i n ∈⋅⋅⋅都有i i a b ≤,则记αβ<.(1)写出集合2A 和2B ;(2)证明:对任意n A α∈,存在n B β∈,使得αβ<;(3)设集合(){},,,n nnS A B αβαβαβ=∈∈<.求证:nS中的元素个数是完全平方数.【答案】(1)()()(){}22,0,0,2,1,1A =,()()()()(){}24,0,3,1,2,2,1,3,0,4B =(2)证明见解析(3)证明见解析【解析】【分析】(1)根据集合n A 与n B 的定义,写出集合2A 和2B 即可;(2)任取()12,,,n n a a a A α=⋅⋅⋅∈,令()121,1,,1n a a a β=++⋅⋅⋅+,只需证明n B β∈,即可证明结论成立;(3)通过集合n A 、n B 、n S 的定义,说明满足条件的解对()()()1212,,,,,,,nna a ab b b ⋅⋅⋅⋅⋅⋅与方程12n x x x n ++⋅⋅⋅+=的两解组成对()()()1212,,,,,,,n n a a a z z z ⋅⋅⋅⋅⋅⋅是一一对应的关系.进而证明n S 中的元素个数是完全平方数.【小问1详解】()()(){}22,0,0,2,1,1A =,()()()()(){}24,0,3,1,2,2,1,3,0,4B =【小问2详解】任取()12,,,n n a a a A α=⋅⋅⋅∈,令()121,1,,1n a a a β=++⋅⋅⋅+,则αβ<,同时1i a +∈N ,{}1,2,,i n ∈⋅⋅⋅且()1112n niii i a n an ==+=+=∑∑,则n B β∈,所以对任意n A α∈,存在n B β∈,使得αβ<;【小问3详解】设方程:12n x x x n ++⋅⋅⋅+=①,122n y y y n ++⋅⋅⋅+=②()12,,,n a a a ⋅⋅⋅是方程①的解,()12,,,n b b b ⋅⋅⋅是方程②的解;若()12,,,n a a a α=⋅⋅⋅,()12,,,n b b b β=⋅⋅⋅,αβ<,即()()()1212,,,,,,,nna a ab b b ⋅⋅⋅ 是一个满足条件的解对,令i i i z b a =-(1i =,2,…,n ),则122n z z z n n n ++⋅⋅⋅+=-=,则(1z ,2z ,…,n z )是方程①的解,即当()()()1212,,,,,,,nna a ab b b ⋅⋅⋅⋅⋅⋅是满足条件的解对时,()()()1212,,,,,,,nna a a z z z ⋅⋅⋅⋅⋅⋅是方程①的一对解对;反之()()()1212,,,,,,,nna a a z z z ⋅⋅⋅⋅⋅⋅是方程①的解时,令i i i b a z =+,则()()()1212,,,,,,,nna a ab b b ⋅⋅⋅⋅⋅⋅是满足条件的解对.即满足条件的解对()()()1212,,,,,,,nna a ab b b ⋅⋅⋅⋅⋅⋅与方程①的两解组成对()()()1212,,,,,,,nna a a z z z ⋅⋅⋅⋅⋅⋅是一一对应的关系.所以满足条件解对个数2m m m ⨯=,即n S 中的元素个数是完全平方数.。
2023-2024学年河南省郑州市中牟县高二(上)期中数学试卷【答案版】

2023-2024学年河南省郑州市中牟县高二(上)期中数学试卷一、单选题(本题共8个小题,每小题5分,共40分.请将每小题四个选项中唯一正确的答案填在答题卷的相应位置上.)1.已知直线l 经过两点(0,0),(0,1),直线l 的倾斜角是直线m 的倾斜角的两倍,则直线m 的斜率是( ) A .0B .1C .﹣2D .不存在2.如图,E ,F 分别是长方体ABCD ﹣A 'B 'C 'D '的棱AB ,CD 的中点,下列结论正确的是( )A .AA ′→−CB →=AD′→B .AA ′→+AB →+BC →=C′A →C .AB →−AD →+B′D′→=EC →D .AB →+CF →=AF →3.若点P (x ,y )满足方程√(x −1)2+(y −2)2=|3x+4y+12|5,则点P 的轨迹是( ) A .圆 B .椭圆C .双曲线D .抛物线4.双曲线x 2a 2−y 2b 2=1过点(√2,√3),离心率为2,则该双曲线的标准方程为( )A .x 23−y 2=1B .x 2−y 23=1 C .x 22−y 23=1 D .x 23−y 22=15.当方程x 2+y 2﹣2kx ﹣4y +2k 2﹣4k ﹣10=0所表示的圆取最大面积时,圆心到直线l :x +y ﹣2=0的距离为( ) A .2√3B .√22C .√2D .2√26.已知点A (0,0,2),B (﹣1,1,2),C (1,1,0),则点A 到直线BC 的距离是( ) A .√63B .√62C .√55D .3√627.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左右焦点分别为F 1,F 2,直线l 过点F 1,且与椭圆交于A ,B 两点,若△ABF 2的周长为40,∠F 1AF 2=60°,△F 1AF 2的面积为64√33,则椭圆的焦距为( ) A .8B .10C .12D .148.将地球看作半径为rkm 的球体,如图所示,将空间直角坐标系的原点置于球心,赤道位于xOy 平面上,z 轴的正方向为球心指向正北极方向,本初子午线(弧ASB ̂,是0度经线)位于xoz 平面上,且交x 轴于点S (r ,0,0).已知赤道上一点E(12r ,√32r ,0)位于东经60度,则地球上位于西经60度,北纬30度的空间点P 的横坐标约为( )(结果保留整数,参考数值:r ≈6.371,√2≈1.41,√3≈1.73,√6≈2.45.)A .﹣2755B .2755C .﹣2246D .2246二、多选题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有错选或不选的得0分.)9.已知平面α过点A (1,﹣1,2),其法向量n →=(2,﹣1,2),则下列点不在α内的是( ) A .(2,3,3)B .(3,﹣3,4)C .(﹣1,2,0)D .(﹣2,0,1)10.若直线l :kx ﹣y +k =0与曲线C :√1−(x −1)2=y −1有两个不同的交点,则实数k 的值可以是( ) A .32B .1C .76D .4311.已知焦点在x 轴上的椭圆C :x 2m+y 21−m=1的离心率为√22,F 1,F 2分别为C 的左右焦点,P 为C 上一动点,则( ) A .焦距为2√33B .左顶点为(−√2,0)C .△F 1PF 2的面积的最大值为13D .满足△F 1PF 2的面积为√36的点P 恰有2个 12.已知圆C :x 2+y 2﹣6x +5=0,则下列说法正确的是( ) A .若点(x ,y )为圆C 上一点,则yx 的最大值为3√55B .点(2,√2)在圆C 内C .圆C 与圆E :x 2+y 2﹣4x ﹣2y +4=0的公共弦长为√142D .直线√5x −2y −√5=0与圆C 相切三、填空题(本题共4个小题,每小题5分,共20分.请把答案直接填在答题卷的相应位置上.)13.已知{a ,b ,c }是空间的一个单位正交基底,p →=a →−2b →+3c →,若p →=x(a →+b →)+y(a →−b →)+zc →,则x +y +z = .14.已知抛物线y 2=2px (p >0)的准线过双曲线x 23−y 2=1的一个焦点,则p = .15.已知点M (m ,n )在过N (﹣2,0)且与直线2x ﹣y =0垂直的直线上,则圆C :(x −3√5)2+(y +1)2=4上的点到点M (m ,n )的轨迹的距离的最小值为 . 16.设直线y =2x +t (t ≠0)与双曲线x 2a 2−y 2b 2=1(a >0,b >0)两条渐近线分别交于点A ,B ,若点P (4t ,0)满足|P A |=|PB |,则该双曲线的渐近线方程是 .四、解答题(本题共6个小题,共70分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.)17.(10分)已知直线l 过点A (1,﹣4),且倾斜角的余弦值是2√55,直线l 1与l 平行,l 1与两坐标轴围成的三角形的面积为1,求直线l 与l 1的方程. 18.(12分)已知双曲线x 2a 2−y 2b 2=1(a >0,b >0)的一条渐近线过点(2,√3).(1)求双曲线的离心率;(2)若双曲线的一个焦点在抛物线y 2=4√7x 的准线上,求双曲线的方程.19.(12分)如图,四棱锥P ﹣ABCD 中,PD ⊥底面ABCD ,底面ABCD 是直角梯形,AB ∥CD ,∠ADC =90°,CD =4,AD =√3,AB =1,PD =4,M 为侧棱PD 上靠近点P 的四等分点. (1)证明:AM ∥平面PBC ;(2)求二面角P ﹣BC ﹣D 的平面角的余弦值.20.(12分)已知圆C 的圆心在直线y =12x 上,且过圆C 上一点M (1,3)的切线方程为y =3x . (Ⅰ)求圆C 的方程;(Ⅱ)设过点M 的直线l 与圆交于另一点N ,以MN 为直径的圆过原点,求直线l 的方程.21.(12分)如图,已知四棱锥P ﹣ABCD 的底面是菱形,对角线AC ,BD 交于点O ,OA =4,OB =3,OP=4,OP ⊥底面ABCD ,设点M 满足PM →=12MC →.(1)求直线P A 与平面BDM 所成角的正弦值; (2)求点P 到平面BDM 的距离.22.(12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,上顶点为M ,直线FM 的斜率为−√22,且原点到直线FM 的距离为√63. (1)求椭圆C 的标准方程;(2)若不经过点F 的直线l :y =kx +m (k <0,m >0)与椭圆C 交于A ,B 两点,且与圆x 2+y 2=1相切.试探究△ABF 的周长是否为定值,若是,求出定值;若不是,请说明理由.2023-2024学年河南省郑州市中牟县高二(上)期中数学试卷参考答案与试题解析一、单选题(本题共8个小题,每小题5分,共40分.请将每小题四个选项中唯一正确的答案填在答题卷的相应位置上.)1.已知直线l 经过两点(0,0),(0,1),直线l 的倾斜角是直线m 的倾斜角的两倍,则直线m 的斜率是( ) A .0B .1C .﹣2D .不存在解:∵直线l 经过两点(0,0),(0,1), ∴直线l 的倾斜角为90°,又直线l 的倾斜角是直线m 的倾斜角的两倍, ∴直线m 的倾斜角为45°,k m =tan45°=1. 故选:B .2.如图,E ,F 分别是长方体ABCD ﹣A 'B 'C 'D '的棱AB ,CD 的中点,下列结论正确的是( )A .AA ′→−CB →=AD′→B .AA ′→+AB →+BC →=C′A →C .AB →−AD →+B′D′→=EC →D .AB →+CF →=AF →解:AA ′→−CB →=AA′→+BC →=BB′→+B′C′→=BC ′→=AD′→,故A 正确;AA ′→+AB →+BC →=AA′→+AC →=CC ′→+AC →=AC′→,故B 错误; AB →−AD →+B′D′→=DB →+BD →=0→,故C 错误; AB →+CF →=AB →+BE →=AE →,故D 错误. 故选:A .3.若点P (x ,y )满足方程√(x −1)2+(y −2)2=|3x+4y+12|5,则点P 的轨迹是( ) A .圆B .椭圆C .双曲线D .抛物线解:√(x −1)2+(y −2)2表示点P (x ,y )与点(1,2)之间的距离,|3x+4y+12|5表示点P (x ,y )到直线3x +4y +12=0的距离,即点P 到定点(1,2)的距离等于到定直线3x +4y +12=0的距离, 且定点(1,2)不在直线3x +4y +12=0上, 由抛物线的定义可知,点P 的轨迹是抛物线. 故选:D . 4.双曲线x 2a 2−y 2b 2=1过点(√2,√3),离心率为2,则该双曲线的标准方程为( )A .x 23−y 2=1 B .x 2−y 23=1C .x 22−y 23=1D .x 23−y 22=1解:∵双曲线x 2a 2−y 2b 2=1离心率为2,∴e =ca =2,则c =2a ,得c 2=a 2+b 2=4a 2,可得b 2=3a 2,又过点(√2,√3),结合选项只有B 选项符合题意, 故选:B .5.当方程x 2+y 2﹣2kx ﹣4y +2k 2﹣4k ﹣10=0所表示的圆取最大面积时,圆心到直线l :x +y ﹣2=0的距离为( ) A .2√3B .√22C .√2D .2√2解:由圆的方程:x 2+y 2﹣2kx ﹣4y +2k 2﹣4k ﹣10=0可得圆的标准方程为(x ﹣k )2+(y ﹣2)2=﹣k 2+4k +14,可得圆心C (k ,2),半径为r ,则r 2=﹣k 2+4k +14,开口向下,对称轴为k =2的抛物线, 所以当k =2时,r 2最大,此时圆的面积最大,且圆心C (2,2), 所以圆心到直线l :x +y ﹣2=0的距离为d =|2+2−2|√2=√2. 故选:C .6.已知点A (0,0,2),B (﹣1,1,2),C (1,1,0),则点A 到直线BC 的距离是( ) A .√63B .√62C .√55D .3√62解:因为A (0,0,2),B (﹣1,1,2),C (1,1,0),AB →=(−1,1,0),BC →=(2,0,−2), ∴点A 到直线BC 的距离为d =|AB →|√1−cos 2<AB →,BC →>=√2×√1−(−2√2×2√2)2=√62.故选:B .7.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左右焦点分别为F 1,F 2,直线l 过点F 1,且与椭圆交于A ,B 两点,若△ABF 2的周长为40,∠F 1AF 2=60°,△F 1AF 2的面积为64√33,则椭圆的焦距为( ) A .8B .10C .12D .14解:∵AB 过左焦点F 1,∴△ABF 2的周长为|AB |+|AF 2|+|BF 2|=|AF 1|+|BF 1|+|AF 2|+|BF 2|=4a =40, ∴a =10,又|F 1F 2|=2c ,设|AF 1|=t 1,|AF 2|=t 2, 则根据椭圆的定义可得:t 1+t 2=20,在△F 1AF 2中,∠F 1AF 2=60°,所以根据余弦定理可得|AF 1|2+|AF 2|2−2|AF 1|⋅|AF 2|cos60°=|F 1F 2|2,即t 12+t 22−2t 1t 2⋅cos60°=4c 2,即(t 1+t 2)2−3t 1t 2=4c 2,所以,t 1t 2=(t 1+t 2)2−4c 23=4a 2−4c 23=400−4c 23,所以由三角形面积公式可得:S △F 1AF 2=12t 1t 2•sin60°=12×13×(400﹣4c 2)×√32①, 又∵S △F 1AF 2=12(|AF 1|+|AF 2|+|F 1F 2|)×4√33=12(2a +2c)×4√33=(10+c)×4√33②, 由①②可知12×13×(400−4c 2)×√32=(10+c)×4√33, 整理可得100﹣c 2=4(10+c ),即(10﹣c )(10+c )=4(10+c ), 因为c >0,则10﹣c =4,解得c =6,故该椭圆的焦距为2c =12. 故选:C .8.将地球看作半径为rkm 的球体,如图所示,将空间直角坐标系的原点置于球心,赤道位于xOy 平面上,z 轴的正方向为球心指向正北极方向,本初子午线(弧ASB ̂,是0度经线)位于xoz 平面上,且交x 轴于点S (r ,0,0).已知赤道上一点E(12r ,√32r ,0)位于东经60度,则地球上位于西经60度,北纬30度的空间点P 的横坐标约为( )(结果保留整数,参考数值:r ≈6.371,√2≈1.41,√3≈1.73,√6≈2.45.)A .﹣2755B .2755C .﹣2246D .2246解:设点P 投影到xOy 平面上的点为P ′,则|OP |=r ,|OP ′|=r cos60°=12r , 因为OP ′与x 轴正向的夹角为30°,由OP ′在x 轴的投影为12r cos30°=√34r =1.734×6.371×1000≈2755,所以P 点横坐标为2755. 故选:B .二、多选题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有错选或不选的得0分.)9.已知平面α过点A (1,﹣1,2),其法向量n →=(2,﹣1,2),则下列点不在α内的是( ) A .(2,3,3)B .(3,﹣3,4)C .(﹣1,2,0)D .(﹣2,0,1)解:面α过点A (1,﹣1,2),其法向量n →=(2,﹣1,2), 对于A ,(1,﹣1,2)﹣(2,3,3)=(﹣1,﹣4,﹣1), ∵(﹣1,﹣4,﹣1)•(2,﹣1,2)=﹣2+4﹣2=0, ∴(2,3,3)在平面α内,故A 错误;对于B ,(3,﹣3,4)﹣(2,﹣1,2)=(1,﹣2,2), (1,﹣2,2)•(2,﹣1,2)=2+2+4=8, ∴(3,﹣3,4)不在平面α内,故B 正确;对于C ,(﹣1,2,0)﹣(1,﹣1,2)=(﹣2,3,﹣2),(﹣2,3,﹣2)•(2,﹣1,2)=﹣4﹣3﹣4=﹣11, ∴(﹣1,2,0)不在平面α内,故C 正确;对于D ,(﹣2,0,1)﹣(1,﹣1,2)=(﹣3,1,﹣1), (﹣3,1,﹣1)•(2,﹣1,2)=﹣6﹣1﹣2=﹣9, ∴(﹣2,0,1)不在平面α内,故D 正确. 故选:BCD .10.若直线l :kx ﹣y +k =0与曲线C :√1−(x −1)2=y −1有两个不同的交点,则实数k 的值可以是( ) A .32B .1C .76D .43解:直线kx ﹣y +k =0化成y =kx +k ,可得它必定经过点A (﹣1,0),而曲线C :√1−(x −1)2=y −1可变形整理为(x ﹣1)2+(y ﹣1)2=1(y ≥1),B (2,1),C (0,1), ∴该曲线是以(1,1)为圆心,半径为1的圆位于直线y =1上部的部分, 设直线与圆相切时的斜率为k 2,直线过点(0,1)与圆有两个交点时的斜率为k 1. 可得当直线kx ﹣y +k =0与曲线有两个不同的交点时,斜率k 满足k 1≤k <k 2. 由圆心(1,1)到直线kx ﹣y +k =0的距离d =|2k−1|√1+k =1,解得k 2=43,而k 1=1−00+1=1,由此可得1≤k <43. 故选:BC .11.已知焦点在x 轴上的椭圆C :x 2m+y 21−m=1的离心率为√22,F 1,F 2分别为C 的左右焦点,P 为C 上一动点,则( ) A .焦距为2√33B .左顶点为(−√2,0)C .△F 1PF 2的面积的最大值为13D .满足△F 1PF 2的面积为√36的点P 恰有2个 解:由椭圆的焦点在x 轴上,所以m >1﹣m >0,可得m ∈(12,1),由椭圆的方程可得a 2=m ,b 2=1﹣m ,所以c =√a 2−b 2=√2m −1,离心率e =c a =√22, 即√2m−1√m=√22,解得m =23,b =√1−23=√33, A 中,焦距2c =2√2m −1=2√2×23−1=2√33,所以A 正确; B 中,因为a =√m =√63,所以左顶点(−√63,0),所以B 不正确;C 中,S △PF 1F 2=12•2c •b =√33•√33=13,所以C 正确;D 中,S △PF 1F 2=12•2c •|y P |=√33•|y P |=√36,可得|y P |=12<b ,所以这样的三角形有4个,所以D 不正确.故选:AC .12.已知圆C :x 2+y 2﹣6x +5=0,则下列说法正确的是( ) A .若点(x ,y )为圆C 上一点,则yx 的最大值为3√55B .点(2,√2)在圆C 内C .圆C 与圆E :x 2+y 2﹣4x ﹣2y +4=0的公共弦长为√142D .直线√5x −2y −√5=0与圆C 相切解:由圆C :x 2+y 2﹣6x +5=0,得(x ﹣3)2+y 2=4, 所以圆心为C (3,0),半径为2,对于A :设yx =k ,则y =kx ,由圆与直线y =kx 有公共点,所以√k 2≤2,解得−2√55≤k ≤2√55,y x 的最大值为2√55,故A 错误;对于B :由(2﹣3)2+(√2)2=3<4,点(2,√2)在圆C 内,故B 正确; 对于C :由圆E :x 2+y 2﹣4x ﹣2y +4=0,两圆方程相减可得公共弦所在直线的方程为2x ﹣2y ﹣1=0, 圆C 的圆心C 到直线的距离为d =|6−0−1|√2+2=5√24,所以圆C 截圆C 的弦长为2√4−(524)2=√142,所以圆C 与圆E :x 2+y 2﹣4x ﹣2y +4=0的公共弦长为√142,故C 正确;圆心C 到直线√5x −2y −√5=0的距离d =|√5×3−0−√5|√5+4=2√53≠2,所以直线直线√5x −2y −√5=0与圆C 相交,故D 错误.故选:BC .三、填空题(本题共4个小题,每小题5分,共20分.请把答案直接填在答题卷的相应位置上.) 13.已知{a ,b ,c }是空间的一个单位正交基底,p →=a →−2b →+3c →,若p →=x(a →+b →)+y(a →−b →)+zc →,则x +y +z = 4 .解:由题意,{a ,b ,c }是空间的一组单位正交基底,又a →−2b →+3c →=x(a →+b →)+y(a →−b →)+zc →=(x +y)a →+(x −y)b →+zc →, 由空间向量基本定理,可得{x +y =1x −y =−2z =3,解得{ x =−12y =32z =3,所以x +y +z =4.故答案为:4.14.已知抛物线y 2=2px (p >0)的准线过双曲线x 23−y 2=1的一个焦点,则p = 4 .解:已知抛物线y 2=2px (p >0)的准线过双曲线x 23−y 2=1的一个焦点,由抛物线y 2=2px (p >0)的准线方程为x =−p2,双曲线x 23−y 2=1的焦点坐标为(﹣2,0),(2,0),则−p2=−2,则p =4. 故答案为:4.15.已知点M (m ,n )在过N (﹣2,0)且与直线2x ﹣y =0垂直的直线上,则圆C :(x −3√5)2+(y +1)2=4上的点到点M (m ,n )的轨迹的距离的最小值为 1 .解:过点(﹣2,0)且与直线2x ﹣y =0垂直的直线方程为:y =−12(x +2),化为x +2y +2=0. ∴m +2n +2=0.由圆C :(x −3√5)2+(y +1)2=4,可得圆心C (3√5,﹣1),半径r =2. ∴圆心C 到直线m +2n +2=0的距离d =|35−2+2|5=3.∴要求的最小值=3﹣2=1. 故答案为:1.16.设直线y =2x +t (t ≠0)与双曲线x 2a 2−y 2b 2=1(a >0,b >0)两条渐近线分别交于点A ,B ,若点P (4t ,0)满足|P A |=|PB |,则该双曲线的渐近线方程是 y =±3x . 解:双曲线x 2a 2−y 2b 2=1(a >0,b >0)的两条渐近线方程为y =±bax ,设A (x 1,y 1),B (x 2,y 2),AB 的中点坐标为H (x 0,y 0);所以x 12a 2−y 12b 2=0,x 22a 2−y 22b 2=0, 两式相减得:x 12−x 22a 2=y 12−y 22b 2,化简得:b 2x 0a 2=(y 1−y 2)y 0x 1−x 2=2y 0,①,由于点H (x 0,y 0)在直线y =2x +t 上,则y 0=2x 0+t ;由于|P A |=|PB |,所以k PH =yx 0−4t =−12,②,联立①②得:t =52x 0,y 0=92x 0,代入b 2x 0a 2=(y 1−y 2)y 0x 1−x 2=2y 0,得到b a=3,所以渐近线的方程为y =±3x . 故答案为:y =±3x .四、解答题(本题共6个小题,共70分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.)17.(10分)已知直线l 过点A (1,﹣4),且倾斜角的余弦值是2√55,直线l 1与l 平行,l 1与两坐标轴围成的三角形的面积为1,求直线l 与l 1的方程. 解:设直线l 的倾斜角为α(0≤α<π), 因为cosα=2√55,所以tanα=12, 因为直线l 过点A (1,﹣4),所以直线l 的方程为y +4=12(x −1),即x ﹣2y ﹣9=0, 因为直线l 1与l 平行,所以可设直线l 1的方程为y =12x +m , 令y =0得x =﹣2m ,令x =0,得y =m , 故三角形的面积S =12|﹣2m |•|m |=1, 所以m 2=1,解得m =±1,即直线l 1的方程是x ﹣2y +2=0或x ﹣2y ﹣2=0. 18.(12分)已知双曲线x 2a 2−y 2b 2=1(a >0,b >0)的一条渐近线过点(2,√3).(1)求双曲线的离心率;(2)若双曲线的一个焦点在抛物线y 2=4√7x 的准线上,求双曲线的方程. 解:(1)易知双曲线x 2a 2−y 2b 2=1(a >0,b >0)的渐近线为y =±ba x ,若双曲线的一条渐近线过点(2,√3), 可得b 2a 2=34,则该双曲线的离心率e =√1+b2a2=√72;(2)易知抛物线y 2=4√7x 的准线为x =−√7,因为双曲线的一个焦点在抛物线y 2=4√7x 的准线上,所以c =√7, 由(1)知c 2a 2=74,可得a 2=4,b 2=3,则双曲线的方程为x 24−y 23=1.19.(12分)如图,四棱锥P ﹣ABCD 中,PD ⊥底面ABCD ,底面ABCD 是直角梯形,AB ∥CD ,∠ADC =90°,CD =4,AD =√3,AB =1,PD =4,M 为侧棱PD 上靠近点P 的四等分点. (1)证明:AM ∥平面PBC ;(2)求二面角P ﹣BC ﹣D 的平面角的余弦值.(1)证明:取PC 上取一点Q ,使PQ =14PC ,连接MQ 、BQ , 由题知PM =14PD ,所以MQ ∥CD ,MQ =14CD . 又因为AB ∥CD ,AB =14CD ,所以AB ∥MQ ,AB =MQ , 所以四边形ABQM 为平行四边形,所以AM ∥BQ .因为AM ⊄平面PBC ,BQ ⊂平面PBC ,所以直线AM ∥平面PBC . (2)解:因为PD ⊥平面ABCD ,AD ⊥CD ,以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立如图所示的空间直角坐标系,所以D (0,0,0)、A(√3,0,0)、B(√3,1,0)、C (0,4,0)、P (0,0,4), 设平面PBC 的法向量为n →=(x ,y ,z),CB →=(√3,−3,0),CP →=(0,−4,4),则{n →⋅CB →=√3x −3y =0n →⋅CP →=−4y +4z =0,取y =1,则n →=(√3,1,1), 易知平面BCD 的一个法向量为m →=(0,0,1),所以,cos <m →,n →>=m →⋅n →|m →|⋅|n →|=1√5=√55,由图可知,二面角P ﹣BC ﹣D 的平面角为锐角,故二面角P ﹣BC ﹣D 的余弦值为√55. 20.(12分)已知圆C 的圆心在直线y =12x 上,且过圆C 上一点M (1,3)的切线方程为y =3x . (Ⅰ)求圆C 的方程;(Ⅱ)设过点M 的直线l 与圆交于另一点N ,以MN 为直径的圆过原点,求直线l 的方程. 解:(Ⅰ)由题意,过M 点的直径所在直线方程为y ﹣3=−13(x ﹣1); 由{y −3=−13(x −1)y =12x解得{x =4y =2,∴圆心坐标为(4,2);半径r 2=(4﹣1)2+(2﹣3)2=10; ∴圆C 的方程为(x ﹣4)2+(y ﹣2)2=10;(Ⅱ)解法一:以MN 为直径的圆过原点,∴OM ⊥ON ; 又k OM =3,∴k ON =−13; ∴直线ON 方程为y =−13x ; 由{y =−13x(x −4)2+(y −2)2=10,可得N 点坐标为(3,﹣1);∴直线MN 方程为y+13+1=x−31−3,即直线l 的方程为y =﹣2x +5;解法二:当l 不与x 轴垂直时,设直线l 的方程为y ﹣3=k (x ﹣1), 且M (x 1,y 1),N (x 2,y 2); 由{y −3=k(x −1)(x −4)2+(y −2)2=10, 解得(1+k 2)x 2﹣2(k 2﹣k +4)x +(k ﹣1)2+6=0,∴x 1+x 2=2k 2−2k+81+k2,x 1x 2=(k−1)2+61+k2;∵x 1=1,y 1=3,∴x 2=(k−1)2+61+k2,y 2=k 2+6k+31+k2,由题意OM ⊥ON ,∴x 1x 2+y 1y 2=0; ∴k 2−2k+71+k 2+3k 2+18k+91+k 2=0,解得k =﹣2;当l 与x 轴垂直时,解得N (1,1),与题意不符 ∴直线l 的方程为y =﹣2x +5.21.(12分)如图,已知四棱锥P ﹣ABCD 的底面是菱形,对角线AC ,BD 交于点O ,OA =4,OB =3,OP=4,OP ⊥底面ABCD ,设点M 满足PM →=12MC →.(1)求直线P A 与平面BDM 所成角的正弦值; (2)求点P 到平面BDM 的距离.解:(1)∵平面ABCD 是菱形,∴AC ⊥BD .以O 为坐标原点,以OA ,OB ,OP 为坐标轴建立空间直角坐标系O ﹣ABP 如图所示:则A (4,0,0),B (0,3,0),C (﹣4,0,0),D (0,﹣3,0),P (0,0,4), ∴PA →=(4,0,﹣4),DB →=(0,6,0),PC →=(﹣4,0,﹣4),BP →=(0,﹣3,4). ∵PM →=12MC →,∴PM →=13PC →=(−43,0,−43),BM →=BP →+PM →=(−43,﹣3,83).设平面BDM 的法向量n →=(x ,y ,z ),则{6y =0−43x −3y +83z =0, 令x =2,则z =1,∴平面BDM 的一个法向量n →=(2,0,1), ∴cos <PA →,n →>=PA →⋅n→|PA →||n →|=44√2×√5=√1010, ∴直线P A 与平面BDM 所成角的正弦值为√1010. ( 2)OP →=(0,0,4), ∴cos <OP →,n →>=OP →⋅n→|OP →||n →|=4×5=√55, ∴OP 与平面BDM 所成角的正弦值为√55, ∴P 到平面BDM 的距离d =|OP |×√55=4√55. 22.(12分)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,上顶点为M ,直线FM 的斜率为−√22,且原点到直线FM 的距离为√63. (1)求椭圆C 的标准方程;(2)若不经过点F 的直线l :y =kx +m (k <0,m >0)与椭圆C 交于A ,B 两点,且与圆x 2+y 2=1相切.试探究△ABF 的周长是否为定值,若是,求出定值;若不是,请说明理由. 解:(1)可设F (c ,0),M (0,b ),可得−bc =−√22, 直线FM 的方程为bx +cy =bc ,即有√b 2+c2=√63,解得b =1,c =√2,a =√3,则椭圆方程为x 23+y 2=1;(2)设A (x 1,y 1),B (x 2,y 2). (x 1>0,x 2>0),连接OA ,OQ ,在△OAQ 中,|AQ |2=x 12+y 12﹣1=x 12+1−x 123−1=23x 12,即|AQ |=√63x 1,同理可得|BQ |=√63x 2,∴|AB|=|AQ|+|BQ|=√63(x1+x2),∴|AB|+|AF|+|BF|=√63(x1+x2)+√3−√63x1+√3−√63x2=2√3,∴△ABF的周长是定值2√3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
太和一中
2013—2014学年度高二(上)期中测试卷(文班卷)
一、选择题(每题5分,共50分,每题只有一个正确答案)
1. 则且,,,,b a R c b a >∈ ( ) A. bc ac > B.
b
a 1
1< C.22b a > D.33b a > 2.等比数列}{n a 中,0>n a ,982=a a ,则5a 等于 ( ) A .1 B .3 C .9 D .27
3.设三角形ABC 中,内角A ,B,C 的对边分别为,,,c b a 若
A a
B c
C b sin cos cos =+,则ABC ∆的形状为 ( ) A.直角三角形 B.锐角三角形 C.钝角三角形 D.不确定
4.不等式
023
42<++-x x x 的解集为 ( ) A.(1,3) B.)2,(--∞∪(1,3) C.(-2,1)∪(3,+∞) D.)2,(--∞
0≥x
5. 不等式组 43≥+y x 所表示的平面区域的面积等于 ( ) 43≤+y x
A .23 B.32 C. 34 D. 4
3
6.小明玩投放石子游戏,从A 出发走1米放1枚石子,第二次走4米又放了
3枚石子,第三次走7米再放5枚石子,再走10米放7枚石子,…… 照此规律走到B 处放下35枚 石子。
则从A 到B 的路程等于 ( )
A. 324米
B. 325米
C. 477米
D. 478米 7. 三角形ABC 中,内角A ,B,C 的对边分别为,,,c b a 若C a c b cos 2
1
=-,
则A 等于 ( )
A .6π
B .3π
C .656ππ或
D .323ππ或
8.关于x 的不等式08222<--a ax x (0>a )的解集为(21,x x ),且1512=-x x , 则a 等于 ( )
A.25
B. 27
C.415
D. 215
9.三角形ABC 中,内角A ,B,C 的对边分别为,,,c b a 若角A ,B ,C 依次成等差数列, 且 3,1==b a ,则ABC S ∆ 等于 ( ) A .2 B .3 C .
2
3
D .2 10.函数)(x f 满足:)()(2121x f x f x x ≠≠时,当,且对任意正数y x ,都有)()()(y f x f xy f +=, 若数列}{n a 满足),3()()(1f a f a f n n =-+273=a ,则1a 的值为 ( )
A. 1
B. 3
C.6
D.9
二、填空题(本大题共5小题,每小题5分,共25分 .把答案填在答卷中相应横线上)
11.=-a c c b a 成等差数列,则若9,,,,2 .
12.三角形ABC 中,内角A ,B,C 的对边分别为,,,c b a 已知
2=a ,3=b ,ο60=B ,则A= . 13.已知0>x ,0>y ,y x xy 2+=,若2-≥m xy 恒成立, 则实数m 的最大值是 . 14.数列}{n a 满足21=a ,且对任意的+∈N n m ,,都有n m
m n a a a
=+,
则3a = ;n n S n a 项和的前}{= .
15.从某电视塔的正东方向的A 处,测得塔顶的仰角为ο60,从电视塔的 西偏南ο30的B 处,测得塔顶的仰角为ο45,若A ,B 之间的距离为35米,
则此塔的高度为 米.
三、解答题(本大题共6小题,共75分,解答应写出文字说明,证明过程和演算步骤)
16.(本题满分12分)
已知数列{n a }的首项51=a ,前n 项和为n S ,且
521++=+n S S n n ()(+∈N n . (1)求证数列{+n a 1}为等比数列; (2)求数列{n a }的通项公式。
17.(本题满分12分)
(1)的最小值。
求且y
x y x y x 4
1,1,0,0+=+>>
(2).0)(:22
<---a a x x x 的一元二次不等式解关于
18.(本题满分12分)
锐角三角形ABC 中,内角A ,B,C 的对边分别为,,,c b a 且bc c b a
-+=2
22
.
(1)求A ;
(2)求C B sin sin +的取值范围。
19.(本题满分13分) 在等比数列}{n a 中,323
2=a a ,325=a .
(1)求数列}{n a 的通项公式;
(2)设数列}{n a 的前n 项和为n S ,求+++32132S S S ……n nS +.
20.(本题满分13分)
已知三角形ABC 中,内角A ,B,C 的对边分别为,
,,c b a
A b
B a b cos sin 3-=.
(1)求A ;
(2)若c b ABC a ,,3,2求的面积为
∆=.
(3)若的取值范围求c b a +=,2.
21.(本题满分13分)
已知各项都不相等的等差数列}{n a 的前6项和为60,且的等比中项和为2116a a a . (1)求数列}{n a 的通项公式;
(2)若数列}{n b 满足n n n a b b =-+1(+∈N n ),且31=b ,
n n
T n 项和的前求数列
}b 1
{ .。