第五节 带电粒子在有界磁场

合集下载

(完整word版)带电粒子在有界磁场中运动(超经典)..

(完整word版)带电粒子在有界磁场中运动(超经典)..

带电粒子在有界磁场中运动的临界问题“临界问题"大量存在于高中物理的许多章节中,如“圆周运动中小球能过最高点的速度条件”“动量中的避免碰撞问题"等等,这类题目中往往含有“最大"、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。

带电粒子在有界磁场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。

一、解题方法画图→动态分析→找临界轨迹。

(这类题目关键是作图,图画准了,问题就解决了一大半,余下的就只有计算了──这一般都不难。

)二、常见题型(B为磁场的磁感应强度,v0为粒子进入磁场的初速度)分述如下:第一类问题:例1 如图1所示,匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF。

一电子从CD边界外侧以速率v0垂直匀强磁场射入,入射方向与CD边界夹角为θ。

已知电子的质量为m,电荷量为e,为使电子能从磁场的另一侧EF射出,求电子的速率v0至少多大?分析:如图2,通过作图可以看到:随着v0的增大,圆半径增大,临界状态就是圆与边界EF相切,然后就不难解答了.第二类问题:例2如图3所示,水平线MN下方存在垂直纸面向里的磁感应强度为B的匀强磁场,在MN线上某点O正下方与之相距L的质子源S,可在纸面内360°范围内发射质量为m、电量为e、速度为v0=BeL/m的质子,不计质子重力,打在MN上的质子在O点右侧最远距离OP=________,打在O点左侧最远距离OQ=__________.分析:首先求出半径得r=L,然后作出临界轨迹如图4所示(所有从S发射出去的质子做圆周运动的轨道圆心是在以S为圆心、以r=L为半径的圆上,这类问题可以先作出这一圆──就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆),OP=,OQ=L。

【练习】如图5所示,在屏MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直纸面向里。

P为屏上的一小孔,PC与MN垂直。

带电粒子在有界磁场磁场中的运动

带电粒子在有界磁场磁场中的运动

d
αR O
过程模型:匀速圆周运动 规律:牛顿第二定律 + 圆周运动公式 条件:要求时间最短
t
s v
速度 v 不变,欲使穿过磁场时间最短,须使 s 有最 小值,则要求弦最短。
题1 一个垂直纸面向里的有界匀强磁场形 状如图所示,磁场宽度为 d。在垂直B的平面
内的A点,有一个电量为 -q、质量为 m、速
y B
如粒子带正电,则: 如粒子带负电,则:
60º v
60º
O 120º
x
A. 2mv qB
B. 2mvcosθ qB
C. 2mv(1-sinθ) qB
2mv(1-cosθ)
D. qB
M
D
C
θ θ θθ
P
N
θθ
练、 一个质量为m电荷量为q的带电粒子(不计重力)
从x轴上的P(a,0)点以速度v,沿与x正方向成60º的
束比荷为q/m=2 ×1011 C/kg的正离子,以不同角度α入射,
其中入射角 α =30º,且不经碰撞而直接从出射孔射出的
离子的速度v大小是 (
C)
αa
A.4×105 m/s B. 2×105 m/s
r
C. 4×106 m/s D. 2×106 m/s O′
O
解: 作入射速度的垂线与ab的垂直平分线交于 r
P
B v0
O
AQ
例、如图,A、B为水平放置的足够长的平行板,板间距离为
d =1.0×10-2m,A板上有一电子源P,Q点在P点正上方B
板上,在纸面内从P点向Q点发射速度在0~3.2×107m/s范
围内的电子。若垂直纸面内加一匀强磁场,磁感应强度
B=9.1×10-3T,已知电子质量 m=9.1×10-31kg ,电子电

(完整版)带电粒子在有界磁场中运动的临界问题

(完整版)带电粒子在有界磁场中运动的临界问题

带电粒子在有界磁场中运动的临界问题当某种物理现象变化为另一种物理现象或物体从一种状态变化为另一种状态时,发生这种质的飞跃的转折状态通常称为临界状态。

粒子进入有边界的磁场,由于边界条件的不同,而出现涉及临界状态的临界问题,如带电粒子恰好不能从某个边界射出磁场,可以根据边界条件确定粒子的轨迹、半径、在磁场中的运动时间等。

如何分析这类相关的问题是本文所讨论的内容。

一、带电粒子在有界磁场中运动的分析方法1.圆心的确定因为洛伦兹力F指向圆心,根据F⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场两点),先作出切线找出v的方向再确定F的方向,沿两个洛伦兹力F的方向画其延长线,两延长线的交点即为圆心,或利用圆心位置必定在圆中一根弦的中垂线上,作出圆心位置,如图1所示。

2.半径的确定和计算利用平面几何关系,求出该圆的可能半径(或圆心角),并注意以下两个重要的几何特点:①粒子速度的偏向角φ等于转过的圆心角α,并等于AB弦与切线的夹角(弦切角)θ的2倍,如图2所示,即φ=α=2θ。

②相对的弦切角θ相等,与相邻的弦切角θ′互补,即θ+θ′=180°。

3.粒子在磁场中运动时间的确定若要计算转过任一段圆弧所用的时间,则必须确定粒子转过的圆弧所对的圆心角,利用圆心角α与弦切角的关系,或者利用四边形内角和等于360°计算出圆心角α的大小,并由表达式,确定通过该段圆弧所用的时间,其中T即为该粒子做圆周运动的周期,转过的圆心角越大,所用时间t越长,注意t与运动轨迹的长短无关。

4.带电粒子在两种典型有界磁场中运动情况的分析①穿过矩形磁场区:如图3所示,一定要先画好辅助线(半径、速度及延长线)。

a、带电粒子在穿过磁场时的偏向角由sinθ=L/R求出;(θ、L和R见图标)b、带电粒子的侧移由R2=L2-(R-y)2解出;(y见所图标)c、带电粒子在磁场中经历的时间由得出。

②穿过圆形磁场区:如图4所示,画好辅助线(半径、速度、轨迹圆的圆心、连心线)。

带电粒子在有界磁场中的轨迹确定的几种方法 人教

带电粒子在有界磁场中的轨迹确定的几种方法 人教

2、物理和几何方法
例2:如图所示,在y<0的区域内存在匀强磁场,磁场方向垂直于xy平面并指向纸面外,磁感应强度为B。一带正电的粒子以速度v0从O点射入磁场,入射方向在xy平面内,与x轴正向的夹角为θ。若粒子射出磁场的位置与O点的距离为L,求该粒子的电量和质量之比q/m。
解:
由几何知识:
粒子的运动半径:r=L/2sinθ
2、如图所示,虚线MN是一垂直纸面的平面与纸面的交线,在平面右侧的半空间存在一磁感应强度为B、方向垂直纸面向外的匀强磁场。O是MN上的一点,从O点可以向磁场区域发射电荷量为+q、质量为m、速率为v的粒子,粒子射入磁场时的速度可在纸面内各个方向,已知先后射入的两
个粒子恰好在磁场中给定的P点相遇,P到O的距离为L,不计重力和粒子间的相互作用。 (1)求所考察的粒子在磁场中的轨道半径; (2)求这两个粒子从O点射入磁场的时间间隔。
过a、b两点分别作平行x轴
和y轴的平行线且交于P点;
P
二、确定带电粒子在磁场中运动轨迹的方法
一、带电粒子在匀强磁场中的运动规律
1、物理方法:
3、几何方法:
2、物理和几何方法:
作出带电粒子在磁场中两个位置所受洛仑兹力,沿其方向延长线的交点确定圆心,从而确定其运动轨迹。
作出带电粒子在磁场中某个位置所受洛仑兹力,沿其方向的延长线与圆周上两点连线的中垂线的交点确定圆心,从而确定其运动轨迹。
△t=t1 -t2=2Tθ/π=
4m
Bq
.arccos( )
LBq
2mv
OMP、ONP
周期为:T=2πm/qB
思 考 题
思 考 题
3、如图所示,在xoy平面内有垂直坐标平面且范围足够大的匀强磁场,磁感应强度为B,一带正电荷量q的粒子,质量为m,从O点以某一初速度射入磁场,其轨迹与x、y轴的交点A、B到O点的距离分别为a、b,试求:粒子的初速度。

带电粒子在有界磁场中的轨迹变化与速度关系探讨

带电粒子在有界磁场中的轨迹变化与速度关系探讨

带电粒子在有界磁场中的轨迹变化与速度关系探讨在物理学中,带电粒子在磁场中的运动一直是一个重要的研究领域。

磁场可以对带电粒子施加力,从而改变其运动轨迹。

本文将探讨带电粒子在有界磁场中的轨迹变化与速度之间的关系。

1. 磁场对带电粒子的作用当带电粒子运动时,磁场会对其施加一个力,即洛伦兹力,其大小和方向由洛伦兹力定律所决定。

洛伦兹力的大小与带电粒子的电荷量、速度以及磁场的强度和方向有关。

根据洛伦兹力的方向性质,我们知道带电粒子在有界磁场中的轨迹将发生变化。

2. 圆周运动轨迹当带电粒子的速度垂直于磁场时,洛伦兹力垂直于速度和磁场方向,并产生向心力的作用。

这将导致带电粒子绕磁场线圆周运动。

圆周运动的半径由带电粒子的质量、电荷量、速度以及磁场的强度决定。

根据牛顿第二定律,洛伦兹力与向心力相等,从而可以求得带电粒子的轨道半径。

3. 螺旋运动轨迹当带电粒子的速度与磁场不垂直时,洛伦兹力将不再垂直于速度方向,而是同时包含向心力和垂直于速度方向的速度分量改变力。

这将导致带电粒子绕磁场线进行螺旋运动。

螺旋运动的半径受到速度和磁场方向夹角的影响,速度分量改变力的大小与速度大小以及磁场的强度和方向有关。

4. 速度对轨迹的影响根据前述讨论,可以看出速度是影响带电粒子在有界磁场中轨迹变化的重要因素之一。

速度的大小和方向不仅影响圆周运动的半径,还影响螺旋运动的半径和螺旋的紧致程度。

较大的速度可能导致更大的圆周轨道或螺旋轨迹,速度方向的改变也将导致轨迹的变化。

因此,带电粒子的速度与轨迹变化之间存在着密切的关系。

综上所述,带电粒子在有界磁场中的轨迹变化与速度之间存在着紧密的联系。

磁场通过施加洛伦兹力改变带电粒子的运动方向,从而导致轨迹的变化。

圆周运动和螺旋运动是带电粒子在有界磁场中最常见的轨迹,其半径和紧致程度取决于带电粒子的速度大小和方向。

因此,在研究带电粒子在磁场中的运动时,我们必须考虑速度对轨迹变化的影响。

需要总结的是,在实际应用中,对带电粒子在有界磁场中轨迹变化与速度关系的深入研究,不仅有助于理解物理规律,也为电磁学和粒子物理学等领域的研究提供了基础。

带电粒子在有界磁场中运动(超经典)..

带电粒子在有界磁场中运动(超经典)..

带电粒子在有界磁场中运动的临界问题“临界问题”大量存在于高中物理的许多章节中,如“圆周运动中小球能过最高点的速度条件”“动量中的避免碰撞问题”等等,这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。

带电粒子在有界磁场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。

一、解题方法画图T动态分析T找临界轨迹。

(这类题目关键是作图,图画准了,问题就解决了一大半,余下的就只有计算了——这一般都不难。

)二、常见题型(B为磁场的磁感应强度,V。

为粒子进入磁场的初速度)分述如下:第一类问题:例1如图1所示,匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF。

一电子从CD边界外侧以速率V。

垂直匀强磁场射入,入射方向与CD边界夹角为9。

已知电子的质量为m电荷量为e,为使电子能从磁场的另一侧EF射出,求电子的速率v o至少多大?分析:如图2,通过作图可以看到:随着V。

的增大,圆半径增大,临界状态就是圆与边界EF 相切,然后就不难解答了。

第二类问题:例2如图3所示,水平线MN下方存在垂直纸面向里的磁感应强度为B的匀强磁场,在MN线上某点0正下方与之相距L的质子源S,可在纸面内360°范围内发射质量为m电量为e、速度为v o=BeL/ m的质子,不计质子重力,打在MN上的质子在O点右侧最远距离OP,打在O点左侧最远距离OO ___ 。

分析:首先求出半径得r=L,然后作出临界轨迹如图4所示(所有从S发射出去的质子做圆周运动的轨道圆心是在以S为圆心、以r=L为半径的圆上,这类问题可以先作出这一圆——就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆),【练习】如图5所示,在屏MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直纸面向里。

P为屏上的一小孔,PC与MN垂直。

一群质量为m带电荷量为一q的粒子(不计重力),以相同的速率v,从P处沿垂直于磁场的方向射入磁场区域。

带电粒子在有界磁场中运动

带电粒子在有界磁场中运动

特点:优弧劣弧加起来,仍是一个整圆,圆越多,圆心角之 和越大,所用的时间越长
如图所示,空间存在着两个匀强磁场,其分界线是半径为R的两 个圆,两侧的磁场方向相反且都垂直于纸面,磁感应强度大小都 是B,外面的磁场范围足够大。现有一质量为m,电荷量为q的带 正电的离子(不计重力),从A点沿OA方向射出,离子后来在两 个磁场间不断地飞进飞出,最后又能返回到A点,求其返回到A 点所需的最短时间及对应的发射速度v
常见的几类问题: 1、磁场边界是直线或圆,边界把轨迹圆分成几段,优弧劣弧所 对应的圆心角的联系。 2、粒子进入有界磁场时,粒子的速度大小不确定,方向确定。 3、粒子进入有界磁场时,粒子的速度大小确定,方向不确定。
qB
磁场是直线边界的情形 1、(01全国),在y<0的区域内存在匀强磁场,磁场方向垂直于xy平 面并指向纸面外,磁感强度为B.一带正电的粒子以速度v0从O点射入 磁场,入射方向在xy平面内,与x轴正向的夹角为θ.若粒子射出磁场 y 的位置与O点的距离为L, q 2v0 sin 求该粒子的电量和质量之比q/m θ x m LB
O
v
第三类问题:粒子进入有界磁场时,粒子的速度大小确定,方向 不确定。 如图5所示,圆形区域的半径为r,和坐标原点相切,内有垂直纸 面的匀强磁场,磁感应强度为B,坐标原点有一个粒子源,以一 定大小的速度v0在纸面内向x>0的各个方向发射质量m,电荷量 q的带负电粒子,不计粒子的重力。已知带电粒子作圆周运动的 y 轨道半径R>r,求带电粒子在磁场中运动的最长时间。
y
带 电 微 粒 A 发 射 装 置
R
v
C
O' x
O
4、(09海南物理)如图,ABCD是边长为a的正方形。质量为 m、电荷量为e的电子以大小为v0的初速度沿纸面垂直于BC边射 入正方形区域。在正方形内适当区域中有匀强磁场。电子从BC 边上的任意点入射,都只能从A点射出磁场。不计重力,求: (1)此匀强磁场区域中磁感应强度的方向和大小; (2)此匀强磁场区域的最小面积。

带电粒子在有界磁场中的加速运动

带电粒子在有界磁场中的加速运动

带电粒子在有界磁场中的加速运动带电粒子在有界磁场中的运动是一个重要的物理现象,在理论物理和应用领域都有广泛的研究。

磁场对带电粒子施加力的作用下,使其在磁场方向上受到加速运动,并呈现出一系列特征和规律。

本文将对带电粒子在有界磁场中的加速运动进行探讨。

一、洛伦兹力和带电粒子加速运动洛伦兹力是描述带电粒子在磁场中运动的基本力学定律。

当一个带电粒子以速度v进入磁场时,它会受到磁场力的作用,该力的方向垂直于磁场方向和粒子的速度方向,符合右手定则。

这个力被称为洛伦兹力,用F表示。

洛伦兹力的数学表达式为F = qvBsinθ,其中q是带电粒子的电荷量,v是带电粒子的速度,B是磁场的磁感应强度,θ是速度方向和磁场方向之间的夹角。

根据洛伦兹力公式,可以看出带电粒子在磁场中的加速运动与速度的大小、粒子的电荷量和磁感应强度等因素有关。

速度的大小越大,洛伦兹力的大小也越大;电荷量越大,洛伦兹力也越大;磁感应强度越大,洛伦兹力也越大。

二、带电粒子的轨迹带电粒子在有界磁场中的加速运动会使其沿特定轨迹运动。

根据洛伦兹力的方向以及带电粒子的起始速度和初始位置,可以推导出带电粒子的轨迹。

对于带电粒子在有界磁场中的运动,有两种典型的轨迹,即圆形轨迹和螺旋线轨迹。

1. 圆形轨迹当带电粒子的速度与洛伦兹力垂直时,其轨迹为圆形。

这是因为洛伦兹力的作用方向垂直于速度方向,使得粒子受到一个向心力,使其维持圆形的轨迹。

2. 螺旋线轨迹当带电粒子的速度与洛伦兹力有一个非零的夹角时,其轨迹为螺旋线。

带电粒子在磁场力的作用下不仅会维持圆形运动,还会沿着磁场方向进行螺旋运动。

这是因为洛伦兹力的方向会随着带电粒子的运动而不断改变,使得粒子沿着螺旋线运动。

三、带电粒子加速运动的应用带电粒子在有界磁场中的加速运动不仅有理论上的重要性,还在实际应用中发挥着重要作用。

1. 粒子加速器带电粒子在磁场中的加速运动是粒子加速器工作的基本原理。

通过施加电场和磁场,可以对带电粒子进行加速和聚焦,使其能够达到较高的能量和较高的速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2a 3 mv 3mv , 得B Bq 2aq
r

v
O/
y
B
o
射出点坐标为(0, 3a )
v
a
x
带电粒子在圆形磁场区域的运动
如图中圆形区域内存在垂直 纸面向外的匀强磁场,磁感应强 度为B,现有一电量为q,质量为 m的正离子从a点沿圆形区域的直 径射入,设正离子射出磁场区域 的方向与入射方向的夹角为600, 求此正离子在磁场区域内飞行的 时间及射出磁场时的位置。
直线边界:从同一边界进出磁场具有对称性,入射与出射时速度与 边界的夹角相等。 特例:垂直进入则垂直离开,带电粒子在磁场中做半个圆周运动
练习:如图直线MN上方有磁感应强度为B的匀强 磁场。正、负电子同时从同一点O以与MN成30° 角的同样速度v射入磁场(电子质量为m,电荷为 e),它们从磁场中射出时相距多远?射出的时间 差是多少?
变化3:若初速度向上与边界成α =60度角,则初源自度有什么要求?dB
练习:两板间(长为L,相距为L)存在匀强磁场,
带负电粒子q、m以速度V0从方形磁场的中间射入,
要求粒子最终飞出磁场区域,则B应满足什么要求?
m q
v0
B
L
L
情境:
已知:q、m、 v0、 d、L、B
q m v0 B L
L
求:要求粒子最终 飞出磁场区域,对 粒子的入射速度v0 有何要求?
B B
A
v0
O
A
v0
O
3、带电粒子在有界矩形磁场区的运动
例:一束电子(电量为e)以速度V0垂直射入磁感应强 度为B,宽为d的匀强磁场中,穿出磁场时速度方向与 电子原来入射方向成300角,求:电子的质量和穿过磁 场的时间。
小结: e 1、两洛伦磁力的交点即圆心 2、偏转角:初末速度的夹角。 3、偏转角=圆心角
B
v
M
答案为射出点相距
O
4m 3Bq
N
s
2 mv Be
t
时间差为
关键是找圆心、找半径和用对称。
【例2】 一个质量为m电荷量为q的带电粒子从x轴上 的P(a,0)点以速度v,沿与x正方向成60°的方向 射入第一象限内的匀强磁场中,并恰好垂直于y轴射 出第一象限。求匀强磁场的磁感应强度B和射出点的 坐标。
D v α C α
B
(1)若电子后来又经过D点,则电子的速度大小是多少? (2)电子从C到D经历的时间是多少?(电子质量 me=9.1x10-31kg,电量e=1.6x10-19C)
2、带电粒子在半无界磁场中的运动
如图所示,在x轴上方有匀强磁场B,一个质量为m, 带电量为-q的的粒子,以速度v从O点射入磁场,角θ已 知,粒子重力不计,求 (1)粒子在磁场中的运动时间. (2)粒子离开磁场的位置.
v0 300
B
2dBe/v0 πd/3v0
d
变化1:在上题中若电子的电量e,质量m,磁感应强 度B及宽度d已知,若要求电子不从右边界穿出,则初 速度V0有什么要求? 小结:临界问题的分析方法 1、理解轨迹的变化(从小到大) 2、找临界状态:
(切线夹角平分线找圆心)
B
e
v0 v0
变化2:若初速度向下与边界成α =60度角,则初速度有什么要求?
a
o
rv O
Ө
R
O/ v
注:画好辅助线(半径、速度、轨迹圆的圆心、连心线) m r t tan ,偏角可由 求出。经历时间由 得出 2 R Bq
由对称性,射出线的反向延长线必过磁场圆的圆心。
【例6】如图所示,一个质量为m、电量为q的正离子, 从A点正对着圆心O以速度v射入半径为R的绝缘圆筒 中。圆筒内存在垂直纸面向里的匀强磁场,磁感应强 度的大小为B。要使带电粒子与圆筒内壁碰撞多次后 仍从A点射出,问发生碰撞的最少次数? 并计算此过程中正离子在磁场中运动的时间t ? 设粒子与圆筒内壁碰撞时无能量和电量损失,不计粒 子的重力。
一、带电粒子在无界匀强磁场磁场中的运动
1.匀速圆周运动
带电粒子在无界匀强磁场磁场中, 垂直磁场方向且只受洛伦兹力时。
轨道半径
v qBv m R
2
mv R qB
轨道公式
2R 2m T v qB
不垂直磁场方向且只受洛伦兹力时。
2.螺旋迹径 带电粒子在无界匀强磁场磁场中,
如图所示,在B=9.1x10-4T的匀 强磁场中,C、D是垂直于磁 场方向的同一平面上的两点, 相距d=0.05m。在磁场中运动 的电子经过C点时的速度方向 与CD成α=300角,并与CD在 同一平面内,问:
相关文档
最新文档