高考数学-全国卷(附答案) (13)
五年(2018-22)全国高考数学真题分类汇编(全国卷新高考卷卷等)专题13 计数原理(解析版)

12.(2020年浙江省高考数学试卷·第12题)设 ,则a5=________;a1+a2+a3=________.
【答案】(1).80(2).122
解析: 的通项为 ,令 ,则 , ;
【题目栏目】计数原理\二项式定理\二项展开式通项公式的应用
【题目来源】2020年浙江省高考数学试卷·第12题
2018-2022五年全国各省份高考数学真题分类汇编
专题13计数原理
一、选择题
1.(2022高考北京卷·第8题)若 ,则 ( )
A.40B.41C. D.
【答案】B
解析:令 ,则 ,
令 ,则 ,
故 ,
故选,B.
【题目栏目】计数原理\二项式定理\二项展开式通项公式的应用
【题目来源】2022高考北京卷·第8题
13.(2020天津高考·第11题)在 的展开式中, 的系数是_________.
【答案】【答案】10【解析】因为 的展开式的通项公式为 ,令 ,解得 .所以 的系数为 .故答案为: .
【题目栏目】计数原理\二项式定理\二项展开式通项公式的应用
【题目来源】2020天津高考·第11题
14.(2019年高考浙江文理·第13题)在二项式 的展开式中,常数项是,系数为有理数的项的个数是.
A.5B.8C.10D.15
【答案】C
【解析】根据题意可知,原位大三和弦满足: .
∴ ; ; ; ; .
原位小三和弦满足: .
∴ ; ; ; ; .
故个数之和为10.
故选:C.
【点睛】本题主要考查列举法的应用,以及对新定义的理解和应用,属于基础题.
【题目栏目】计数原理\分类加法计数原理的应用
2020年高考理科数学全国卷1(附答案与解析)

绝密★启用前2020年普通高等学校招生全国统一考试·全国Ⅰ卷理科数学本试卷共6页,23题(含选考题).全卷满分150分.考试用时120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码黏贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。
写在试卷,草稿纸和答题卡上的非答题区域均无效。
4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试卷,草稿纸和答题卡上的非答题区域均无效。
5.考试结束后,请将本试卷和答题卡一并上交。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若1i z =+,则22z z -=( )A .0B .1C .2D .22.设集合{}240A x x =-≤,{}20B x x a =+≤,且{}21A B x x =-≤≤,则a =( )A .4-B .2-C .2D .43.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A .514- B .512- C .514+D .512+4.已知A 为抛物线()2:20C y px p =>上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( )A .2B .3C .6D .95.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据()()1220i i x y i =,,,…,得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( )A .y a bx =+B .2y a bx =+C .x y a be =+D .ln y a b x =+6.函数()432f x x x =-的图像在点()()11f ,处的切线方程为( )A .21y x =--B .21y x =-+毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在------------------此-------------------卷-------------------上-------------------答-------------------题-------------------无------------------效----------------C .23y x =-D .21y x =+7.设函数()πcos 6f x x ω⎛⎫=+ ⎪⎝⎭在[]ππ-,的图像大致如下图,则()f x 的最小正周期为( )A .10π9B .7π6 C .4π3 D .3π28.()25y x x y x ⎛⎫++ ⎪⎝⎭的展开式中33x y 的系数为( )A .5B .10C .15D .20 9.已知()0πα∈,,且3cos28cos 5αα-=,则sin α= ( )A .53B .23C .13D .5910.已知A ,B ,C 为球O 的球面上的三个点,⊙1O 为ABC △的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A .64πB .48πC .36πD .32π11.已知⊙22:2220M x y x y +---=,直线:220l x y ++=,P 为l 上的动点.过点P 作⊙M 的切线PA ,PB ,切点为A ,B ,当PM AB ⋅最小时,直线AB 的方程为( )A .210x y --=B .210x y +-=C .210x y -+=D .210x y ++= 12.若242log 42log aba b +=+则( )A .2a b >B .2a b <C .2a b >D .2a b <二、填空题:本题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件2201010x y x y y +-⎧⎪--⎨⎪+⎩≤,≥,≥,则7z x y =+的最大值为 .14.设a ,b 为单位向量,且1+=a b ,则-=a b .15.已知F 为双曲线()2222:100x y C a b a b-=>,>的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴,若AB 的斜率为3,则C 的离心率为 .16.如图,在三棱锥P ABC -的平面展开图中,1AC =,3AB AD ==,AB AC ⊥,AB AD ⊥,30CAE ∠=,则cos FCB ∠= .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项. (1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前n 项和.18.(12分)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC △是底面的内接正三角形,P 为DO 上一点,66PO DO =. (1)证明:PA PBC ⊥平面; (2)求二面角B PC E --的余弦值.19.(12分)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一轮轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12.(1)求甲连胜四场的概率; (2)求需要进行第五场比赛的概率; (3)求丙最终获胜的概率.20.(12分)已知A ,B 分别为椭圆E :()22211x y a a+=>的左、右顶点,G 为E 上顶点,8AG GB ⋅=.P 为直线6x =上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程; (2)证明:直线CD 过定点.21.(12分)已知函数()2x f x e ax x =+-.(1)当1a =时,讨论()f x 的单调性;(2)当0x ≥时,()3112f x x +≥,求a 的取值范围.(二)选考题:共10分,请考生在22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4—4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线1C 的参数方程为()cos sin kkx t t y t⎧=⎪⎨=⎪⎩,为参数,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos 16sin 30ρθρθ-+=. (1)当1k =时,1C 是什么曲线?(2)当4k =时,求1C 与2C 的公共点的直角坐标.23.[选修4—5:不等式选讲](10分) 已知函数()3121f x x x =+--. (1)画出()y f x =的图像;(2)求不等式()()1f x f x +>的解集.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在------------------此------------------卷------------------上-------------------答------------------题------------------无------------------效----------------2020年普通高等学校招生全国统一考试·全国Ⅰ卷理科数学答案解析一、选择题 1.【答案】D【解析】由题意首先求得22z z -的值,然后计算其模即可.由题意可得:()2212z i i =+=,则()222212z z i i -=-+=-.故2222z z -=-=.故选:D .【考点】复数的运算法则,复数的模的求解 2.【答案】B【解析】由题意首先求得集合A ,B ,然后结合交集的结果得到关于a 的方程,求解方程即可确定实数a 的 值.求解二次不等式240x -≤可得:{}22A x x =-≤≤,求解一次不等式20x a +≤可得:2a B x x ⎧⎫=-⎨⎬⎩⎭≤.由于{}21AB x x =-≤≤,故:12a-=,解得:2a =-.故选:B .【考点】交集的运算,不等式的解法 3.【答案】C【解析】设CD a =,PE b =,利用212PO CD PE =⋅得到关于a ,b 的方程,解方程即可得到答案.如图,设CD a =,PE b =,则PO ==212PO ab =,即22142a b ab -=,化简得24210b b a a ⎛⎫-⋅-= ⎪⎝⎭,解得14b a +=(负值舍去). 故选:C .【考点】正四棱锥的概念及其有关计算 4.【答案】C【解析】利用抛物线的定义建立方程即可得到答案. 设抛物线的焦点为F ,由抛物线的定义知122A p AF x =+=,即1292p=+,解得6p =. 故选:C .【考点】利用抛物线的定义计算焦半径 5.【答案】D【解析】根据散点图的分布可选择合适的函数模型.由散点图分布可知,散点图分布在一个对数函数的图象附近,因此,最适合作为发芽率y 和温度x 的回归方程类型的是ln y a b x =+.故选:D .【考点】函数模型的选择,散点图的分布6.【答案】B【解析】求得函数()y f x =的导数()f x ',计算出()1f 和()1f '的值,可得出所求切线的点斜式方程,化简 即可.()432f x x x =-,()3246f x x x '∴=-,()11f ∴=-,()12f '=-,因此,所求切线的方程为()121y x +=--,即21y x =-+. 故选:B .【考点】利用导数求解函图象的切线方程7.【答案】C【解析】由图可得:函数图象过点409π⎛⎫-⎪⎝⎭,,即可得到4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭,结合409π⎛⎫- ⎪⎝⎭,是函数()f x 图象与x 轴负半轴的第一个交点即可得到4962πππω-⋅+=-,即可求得32ω=,再利用三角函数周期公式即 可得解.由图可得:函数图象过点409π⎛⎫-⎪⎝⎭,,将它代入函数()f x 可得:4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭. 又409π⎛⎫- ⎪⎝⎭,是函数()f x 图象与x 轴负半轴的第一个交点,所以4962πππω-⋅+=-,解得:32ω=.所以函数()f x 的最小正周期为224332T πππω===. 故选:C .【考点】三角函数的性质及转化,三角函数周期公式 8.【答案】C【解析】求得()5x y +展开式的通项公式为515r r rr T C x y -+=(r ∈N 且5r ≤),即可求得2y x x ⎛⎫+ ⎪⎝⎭与()5x y + 展开式的乘积为65rrrC xy -或425r rr C xy-+形式,对r 分别赋值为3,1即可求得33x y 的系数,问题得解.()5x y + 展开式的通项公式为515rrrr T C xy -+=(r ∈N 且5r ≤).所以2y x x ⎛⎫+ ⎪⎝⎭与()5x y +展开式的乘积可表示为:56155rrrr rrr xT xC x y C xy --+==或22542155r r rr r r r T C x y xC y y y x x --++==在615r r r r xT C x y -+=中,令3r =,可得:33345xT C x y =,该项中33x y 的系数为10,在42152r r r r T C x xy y -++=中,令1r =,可得:521332T C y x xy =,该项 中33x y 的系数为5.所以33x y 的系数为10515+=. 故选:C【考点】二项式定理及其展开式的通项公式,赋值法 9.【答案】A【解析】用二倍角的余弦公式,将已知方程转化为关于cos α的一元二次方程,求解得出cos α,再用同角间的三角函数关系,即可得出结论.3cos28cos 5αα-=,得26cos 8cos 80αα--=,即23cos 4cos 40αα--=,解得2cos 3α=-或cos 2α=(舍去),又(0)απ∈,,sin α∴==. 故选:A .【考点】三角恒等变换,同角间的三角函数关系求值 10.【答案】A【解析】由已知可得等边ABC △的外接圆半径,进而求出其边长,得出1OO 的值,根据球截面性质,求出 球的半径,即可得出结论.设圆1O 半径为r ,球的半径为R ,依题意,得24r ππ=,2r ∴=,由正弦定理可得2sin 6023AB r ==,1OO AB ∴==,根据圆截面性质1OO ABC ⊥平面,11OO O A ∴⊥,4R OA =,∴球O 的表面积2464S R ππ==.故选:A .【考点】球的表面积,应用球的截面性质11.【答案】D【解析】由题意可判断直线与圆相离,根据圆的知识可知,四点A ,P ,B ,M 共圆,且AB MP ⊥,根据22PAM PM AB S PA ⋅==△可知,当直线MP l ⊥时,PM AB ⋅最小,求出以MP 为直径的圆的方程,根据圆系的知识即可求出直线AB 的方程.圆的方程可化为()()22114x y -+-=,点M 到直线l的距离为2d ==,所以直线l 与圆相离.依圆的知识可知,四点A ,P ,B ,M 四点共圆,且AB MP ⊥, 所以12222PAMPM AB S PA AM PA ⋅==⨯⨯⨯=△,而PA =,当直线MP l ⊥时,min MP =min 1PA =,此时PM AB ⋅最小.()1:112MP y x ∴-=-即1122y x =+,由1122220y x x y ⎧=+⎪⎨⎪++=⎩解得,10x y =-⎧⎨=⎩. 所以以MP 为直径的圆的方程为()()()1110x x y y -++-=,即2210x y y +--=,两圆的方程相减可得:210x y ++=,即为直线AB 的方程.故选:D .【考点】直线与圆,圆与圆的位置关系的应用,圆的几何性质的应用 12.【答案】B【解析】设()22log x f x x =+,利用作差法结合()f x 的单调性即可得到答案. 设()22log xf x x =+,则()f x 为增函数,因为22422log 42log 2log a b ba b b +=+=+,所以()()()()22222222122log 2log 22log 2log 2log 102a b b b f a f b a b b b -=+-+=+-+==-<,所以()()2f a f b <,所以2a b <.()()()()22222222222222log 2log 2log 2log 22log a b b b b b f a f b a b b b b-=+-+=+-+=--,当1b =时,()()220f a f b -=>,此时()()2f a f b >,有2a b >.当2b =时,()()210f a f b -=-<,此时()()2f a f b <,有2a b <,所以C 、D 错误. 故选:B .【考点】函数与方程的综合应用,构造函数,利用函数的单调性比较大小二、填空题 13.【答案】1【解析】首先画出可行域,然后结合目标函数的几何意义即可求得其最大值. 绘制不等式组表示的平面区域,如图所示,目标函数7z x y =+即:1177y x z =-+,其中z 取得最大值时,其几何意义表示直线系在y 轴上的截距最大,据此结合目标函数的几何意义可知目标函数在点A 处取得最大值,联立直线方程:22010x y x y +-=⎧⎨--=⎩,可得点 A 的坐标为:()10A ,,据此可知目标函数的最大值为:max 1701z =+⨯=.故答案为:1. 14.【解析】整理已知可得:()2a b a b +=+,再利用a ,b 为单位向量即可求得21a b ⋅=-,对a b -变形可得:222a b a a b b -=-⋅+,问题得解.因为a ,b 为单位向量,所以1a b ==,所以()2222221a b a ba ab b a b +=+=+⋅+=+⋅=.解得:21a b ⋅=-. 所以()22223a b a b a a b b -=-=-⋅+=.【考点】向量模的计算公式及转化 15.【答案】2【解析】根据双曲线的几何性质可知,2b BF a=,AF c a =-,即可根据斜率列出等式求解即可.依题可得,3BF AF =,而2bBF a =,AF c a =-,即23ba c a=-,变形得22233c a ac a -=-,化简可得, 2320e e -+=,解得2e =或1e =(舍去).故答案为:2. 【考点】双曲线的离心率的求法,双曲线的几何性质的应用 16.【答案】14-【解析】在ACE △中,利用余弦定理可求得CE ,可得出CF ,利用勾股定理计算出BC 、BD ,可得出BF ,然后在BCF △中利用余弦定理可求得cos FCB ∠的值.AB AC ⊥,AB 1AC =,由勾股定理得2BC ==,同理得BD =,BF BD ∴==ACE △中,1AC =,AE AD ==30CAE ∠=,由余弦定理得2222cos3013211CE AC AE AC AE =+-⋅=+-⨯=,1CF CE ∴==,在BCF△中,2BC =,BF =,1CF =,由余弦定理得2221461cos 22124CF BC BF FCB CF BC +-+-∠===-⋅⨯⨯.故答案为:14-.【考点】利用余弦定理解三角形 三、解答题17.【答案】(1)2-(2)()()11329nn n S -+-=【解析】(1)由已知结合等差中项关系,建立公比q 的方程,求解即可得出结论.设{}n a 的公比为q ,1a 为2a ,3a 的等差中项,1232a a a =+,10a ≠,220q q ∴+-=,1q ≠,2q ∴=-.(2)由(1)结合条件得出{}n a 的通项,根据{}n na 的通项公式特征,用错位相减法,即可求出结论.设{}n na 的前n 项和为n S ,11a =,()12n n a -=-,()()()211122322n n S n -=⨯+⨯-+⨯-++-,①()()()()()()2312122232122n nn S n n --=⨯-+⨯-+⨯-+--+-,②-①②得,()()()()()()()()()211211323122222123nnn nnn n S n n ----+-=+-+-++---=--=--,()()11329nn n S -+-∴=.【考点】等比数列通项公式基本量的计算,等差中项的性质,错位相减法求和 18.【答案】(1)证明:由题设,知DAE △为等边三角形,设1AE =,则DO =,112CO BO AE ===,所以PO =,PC =,PB ==又ABC △为等边三角形,则2sin60BA OA=,所以BA =22234PA PB AB +==,则90APB ∠=,所以PA PB ⊥,同理PAPC ⊥,又PC PB P =,所以PA PBC ⊥平面.(2)5【解析】(1)要证明PA PBC ⊥平面,只需证明PA PB ⊥,PA PC ⊥即可. 由题设,知DAE △为等边三角形, 设1AE =,则DO =,1122CO BO AE ===,所以PO=,4PC ==, 4PB ==,又ABC △为等边三角形,则2sin60BA OA =,所以2BA =,22234PA PB AB +==,则90APB ∠=,所以PA PB ⊥,同理PA PC ⊥,又PCPB P =,所以PA PBC ⊥平面. (2)以O 为坐标原点,OA 为x 轴,ON 为y 轴建立如图所示的空间直角坐标系,分别算出平面PCB 的法向量为n ,平面PCE 的法向量为m ,利用公式cos m <,||||n mn n m ⋅=>计算即可得到答案.过O 作ON BC ∥交AB 于点N ,因为PO ABC ⊥平面,以O 为坐标原点,OA 为x 轴,ON 为y 轴建立如图所示的空间直角坐标系,则1002E ⎛⎫- ⎪⎝⎭,,,004P ⎛⎫ ⎪⎪⎝⎭,,,104B ⎛⎫- ⎪⎪⎝⎭,104C ⎛⎫- ⎪⎪⎝⎭,,14PC ⎛=- ⎝⎭,,14PB ⎛=-⎝⎭,102PE ⎛=- ⎝⎭,,,设平面PCB 的一个法向量为()111n x y z =,,,由0n PC n PB ⎧⋅=⎪⎨⋅=⎪⎩,得1111110x x ⎧--=⎪⎨-+-=⎪⎩,令1x =得11z =-,10y =,所以()201n =-,,,设平面PCE 的一个法向量为()222m x y z =,,由00m PC m PE ⎧⋅=⎪⎨⋅=⎪⎩,得22222020x x ⎧-=⎪⎨-=⎪⎩,令21x =,得2z =2y=,所以 313m ⎛= ⎝,故cos m <,2||||3n m n n m ⋅==⋅⨯,设二面角22143x y +=的大小为θ,则cos θ. 【考点】线面垂直的证明,利用向量求二面角的大小 19.【答案】(1)116(2)34(3)716【解析】(1)根据独立事件的概率乘法公式可求得事件“甲连胜四场”的概率.记事件:M 甲连胜四场,则()411216P M ⎛⎫== ⎪⎝⎭.(2)计算出四局以内结束比赛的概率,然后利用对立事件的概率公式可求得所求事件的概率.记事件A 为甲输,事件B 为乙输,事件C 为丙输,则四局内结束比赛的概率为()()()()411424P P ABAB P ACAC P BCBC P BABA ⎛⎫'=+++=⨯= ⎪⎝⎭,所以,需要进行第五场比赛的概率为314P P '=-=.(3)列举出甲赢的基本事件,结合独立事件的概率乘法公式计算出甲赢的概率,由对称性可知乙赢的概率和甲赢的概率相等,再利用对立事件的概率可求得丙赢的概率.记事件A 为甲输,事件B 为乙输,事件C 为丙输,记事件:M 甲赢,记事件:N 丙赢,则甲赢的基本事件包括:BCBC 、ABCBC 、ACBCB 、BABCC 、BACBC 、BCACB 、BCABC 、BCBAC ,所以,甲赢的概率为()4511972232P M ⎛⎫⎛⎫=+⨯= ⎪⎪⎝⎭⎝⎭.由对称性可知,乙赢的概率和甲赢的概率相等,所以丙赢的概率为()97123216P N =-⨯=.【考点】独立事件概率的计算20.【答案】(1)2219x y +=(2)证明:设()06P y ,,则直线AP 的方程为:()()00363y y x -=+--,即:()039yy x =+.联立直线AP 的方程与椭圆方程可得:()2201939x y y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810y x y x y +++-=,解得:3x =-或20203279y x y -+=+.将20203279y x y -+=+代入直线()039y y x =+可得:02069y y y =+.所以点C 的坐标为2002200327699y y y y ⎛⎫-+ ⎪++⎝⎭,.同理可得:点D 的坐标为200220033211y y y y ⎛⎫-- ⎪++⎝⎭,.∴直线CD 的方程为: 0022********2000022006291233327331191y y y y y y y x y y y y y y ⎛⎫-- ⎪++⎛⎫⎛⎫--⎝⎭-=- ⎪ ⎪-+-++⎝⎭⎝⎭-++,整理可得: ()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫--+=-=- ⎪ ⎪+++--⎝⎭⎝⎭.整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=- ⎪---⎝⎭.故直线CD 过定点302⎛⎫⎪⎝⎭,. 【解析】(1)由已知可得:()0A a -,,()0B a ,,()01G ,,即可求得21AG GB a ⋅=-,结合已知即可求得:29a =,问题得解.依据题意作出如下图象:由椭圆方程()222:11x E y a a +=>可得:()0A a -,,()0B a ,,()01G ,.∴()1AG a =,,()1GB a =-,.∴218AG GB a ⋅=-=,∴29a =.∴椭圆方程为:2219x y +=.(2)设()06P y ,,可得直线AP 的方程为:()039yy x =+,联立直线AP 的方程与椭圆方程即可求得点C 的坐标为2002200327699y y y y ⎛⎫-+ ⎪++⎝⎭,,同理可得点D 的坐标为200220033211y y y y ⎛⎫-- ⎪++⎝⎭,,即可表示出直线CD 的方程, 整理直线CD 的方程可得:()02043233y y x y ⎛⎫=- ⎪-⎝⎭,命题得证. 证明:设()06P y ,,则直线AP 的方程为:()()00363y y x -=+--,即:()039yy x =+.联立直线AP 的方程与椭圆方程可得:()2201939x y y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810yx y x y +++-=,解得:3x =-或20203279y x y -+=+.将20203279y x y -+=+代入直线()039y y x =+可得:02069y y y =+.所以点C 的坐标为2002200327699y y y y ⎛⎫-+ ⎪++⎝⎭,.同理可得:点D 的坐标为200220033211y y y y ⎛⎫-- ⎪++⎝⎭,. ∴直线CD 的方程为:0022200002222000022006291233327331191y y y y y y y x y y y y y y ⎛⎫-- ⎪++⎛⎫⎛⎫--⎝⎭-=-⎪ ⎪-+-++⎝⎭⎝⎭-++, 整理可得:()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫--+=-=- ⎪ ⎪+++--⎝⎭⎝⎭ 整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=- ⎪---⎝⎭. 故直线CD 过定点302⎛⎫ ⎪⎝⎭,. 【考点】椭圆的简单性质,方程思想21.【答案】(1)当()0x ∈-∞,时,()'0f x <,()f x 单调递减,当()0x ∈+∞,时,()'0f x >,()f x 单调递增.(2)274e ⎡⎫-+∞⎪⎢⎣⎭, 【解析】(1)由题意首先对函数二次求导,然后确定导函数的符号,最后确定原函数的单调性即可.当1a =时,()2x x x e f x =+-,()'21x f x e x =+-,由于()''20x f x e =+>,故()'f x 单调递增,注意到()'00f =,故:当()0x ∈-∞,时,()'0f x <,()f x 单调递减,当()0x ∈+∞,时,()'0f x >,()f x 单调递增.(2)首先讨论0x =的情况,然后分离参数,构造新函数,结合导函数研究构造所得的函数的最大值即可确 定实数a 的取值范围.由()3112f x x +≥得,23112x e ax x x +-+,其中0x ≥,①当0x =时,不等式为:11≥,显然成立,符合题意;②当0x >时,分离参数a 得,32112x e x x a x----, 记()32112x e x x g x x ---=-,()()231212'x x e x x g x x ⎛⎫---- ⎪⎝⎭=-,令()()21102x e x x h x x ---=≥,则()'1x h x e x =--,()''10x h x e =-≥,故()'h x 单调递增,()()''00h x h =≥,故函数()h x 单调递增,()()00h x h =≥,由()0h x ≥可得:21102x e x x ---恒成立,故当()02x ∈,时,()'0g x >,()g x 单调递增; 当()2x ∈+∞,时,()'0g x <,()g x 单调递减;因此,()()2max724e g x g -⎡⎤==⎣⎦, 综上可得,实数a 的取值范围是274e ⎡⎫-+∞⎪⎢⎣⎭,. 【考点】导数的几何意义,解析几何,微积分,用导数求函数的单调区间,判断单调性,已知单调性求参数,利用导数求函数的最值(极值),数形结合思想的应用 22.【答案】(1)曲线1C 表示以坐标原点为圆心,半径为1的圆(2)1144⎛⎫⎪⎝⎭,【解析】(1)利用22sin cos 1t t +=消去参数t ,求出曲线1C 的普通方程,即可得出结论.当1k =时,曲线1C 的参数方程为cos sin x t y t=⎧⎨=⎩(t 为参数),两式平方相加得221x y +=,所以曲线1C 表示以坐标原点为圆心,半径为1的圆.(2)当4k =时,0x ≥,0y ≥,曲线1C 的参数方程化为22cos sin tt(t 为参数),两式相加消去参数t ,得1C 普通方程,由cos x ρθ=,sin y ρθ=,将曲线2C 化为直角坐标方程,联立1C ,2C 方程,即可求解.当4k =时,曲线1C 的参数方程为44cos sin x ty t⎧=⎨=⎩(t 为参数),所以数学试卷 第21页(共22页) 数学试卷 第22页(共22页)0x ≥,0y ≥,曲线1C的参数方程化为22cos sin tt(t 为参数),两式相加得曲线1C11,平方得1y x =-,01x ≤≤,01y ≤≤,曲线2C 的极坐标方程为4cos 16sin 30ρθρθ-+=,曲线2C 直角坐标方程为41630x y -+=,联立1C ,2C方程141630y x x y ⎧=-⎪⎨-+=⎪⎩,整理得12130x -=12=136(舍去),14x ∴=,14y =,1C ∴,2C 公共点的直角坐标为1144⎛⎫⎪⎝⎭,.【考点】参数方程与普通方程互化,极坐标方程与直角坐标方程互化23.【答案】(1)因为()3115113133x x f x x x x x ⎧⎪+⎪⎪=--⎨⎪⎪---⎪⎩,≥,<<,≤,作出图象,如图所示:(2)76⎛⎫-∞- ⎪⎝⎭, 【解析】(1)根据分段讨论法,即可写出函数()f x 的解析式,作出图象.因为()3115113133x x f x x x x x ⎧⎪+⎪⎪=--⎨⎪⎪---⎪⎩,≥,<<,≤,作出图象,如图所示:(2)作出函数()1f x +的图象,根据图象即可解出.将函数()f x 的图象向左平移1个单位,可得函数()1f x +的图象,如图所示:由()3511x x --=+-,解得76x =-.所以不等式的解集为76⎛⎫-∞- ⎪⎝⎭,. 【考点】分段函数的图象,利用图象解不等式。
历年高考数学真题(全国卷整理版)

参考公式:如果事件A 、B 互斥,那么球的表面积公式()()()P A B P A P B 24S R如果事件A 、B 相互独立,那么其中R 表示球的半径()()()P A B P A P B 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么334VRn 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(0,1,2,)k kn kn nP k C p p k n …普通高等学校招生全国统一考试一、选择题1、复数131i i=A 2+IB 2-IC 1+2iD 1- 2i2、已知集合A ={1.3. m },B ={1,m} ,AB =A, 则m=A0或3B 0或3C 1或3D 1或33 椭圆的中心在原点,焦距为4 一条准线为x=-4 ,则该椭圆的方程为A216x+212y=1 B212x+28y=1C28x+24y=1 D212x+24y=14 已知正四棱柱ABCD- A 1B 1C 1D 1中,AB=2,CC 1=22E 为CC 1的中点,则直线AC 1与平面BED 的距离为A 2B3C2D 1(5)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列的前100项和为(A)100101(B)99101(C)99100(D)101100(6)△ABC 中,AB 边的高为CD ,若a ·b=0,|a|=1,|b|=2,则(A)(B )(C)(D)(7)已知α为第二象限角,sinα+sinβ=33,则cos2α=(A)5-3(B)5-9(C)59(D)53(8)已知F1、F2为双曲线C:x2-y2=2的左、右焦点,点P在C上,|PF1|=|2PF2|,则cos ∠F1PF2=(A)14(B)35(C)34(D)45(9)已知x=lnπ,y=log52,12z=e,则(A)x<y<z (B)z<x<y (C)z<y<x (D)y<z<x(10) 已知函数y=x2-3x+c的图像与x恰有两个公共点,则c=(A)-2或2 (B)-9或3 (C)-1或1 (D)-3或1(11)将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有(A)12种(B)18种(C)24种(D)36种(12)正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AE=BF=73。
2013年高考数学全国卷1(完整版试题+答案+解析)

2013年普通高等学校招生全国统一考试(全国卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页.考试时间120分钟.满分150分.答题前,考生务必用0.5毫米的黑色签字笔将自己的姓名、座号、考号填写在第Ⅰ卷答题卡和第Ⅱ卷答题纸规定的位置. 参考公式:样本数据n x x x ,,21的标准差nx x x x x x s n 22221)()()(-++-+-=其中x 为样本平均数球的面积公式24R S π=第Ⅰ卷(选择题 共60分)注意事项:1.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上. 2.第Ⅰ卷只有选择题一道大题.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数ii++121(i 是虚数单位)的虚部是 A .23 B .21C .3D .1 2.已知R 是实数集,{}11,12+-==⎭⎬⎫⎩⎨⎧<=x y y N x xM ,则=M C N R A .)2,1(B .[]2,0C .∅D .[]2,13.现有10个数,其平均数是4,且这10个数的平方和是200,那么这个数组的标准差是 A .1 B .2 C .3 D .44.设n S 为等比数列{}n a 的前n 项和,0852=-a a ,则=24S S A .5 B .8 C .8- D .15 5.已知函数)62sin()(π-=x x f ,若存在),0(π∈a ,使得)()(a x f a x f -=+恒成立,则a的值是A .6π B .3π C .4π D .2π 6.已知m 、n 表示直线,γβα,,表示平面,给出下列四个命题,其中真命题为 (1)βααβα⊥⊥⊂=则,,,m n n m (2)m n n m ⊥==⊥则,,,γβγαβα (3),,βα⊥⊥m m 则α∥β (4)βαβα⊥⊥⊥⊥则,,,n m n mA .(1)、(2)B .(3)、(4)C .(2)、(3)D .(2)、(4)7.已知平面上不共线的四点C B A O ,,,,若||,23BC AB OC OB OA -=等于A .1B .2C .3D .4 8.已知三角形ABC ∆的三边长成公差为2的等差数列,且最大角的正弦值为23,则这个三角形的周长是A .18B .21C .24D .15 9.函数xx x f 1lg )(-=的零点所在的区间是 A .(]1,0 B .(]10,1 C .(]100,10 D .),100(+∞ 10.过直线y x =上一点P 引圆22670x y x +-+=的切线,则切线长的最小值为A .22 B . 223 C .210 D .211.已知函数b ax x x f 2)(2-+=.若b a ,都是区间[]4,0内的数,则使0)1(>f 成立的概率是A .43 B .41 C .83D .8512.已知双曲线的标准方程为116922=-y x ,F 为其右焦点,21,A A 是实轴的两端点,设P 为双曲线上不同于21,A A 的任意一点,直线P A P A 21,与直线a x =分别交于两点N M ,,若0=⋅FN FM ,则a 的值为A .916 B .59 C .925 D .516题图第13第Ⅱ卷(非选择题 共90分)注意事项:1. 请用0.5毫米的黑色签字笔将每题的答案填写在第Ⅱ卷答题纸的指定位置.书写的答案如需改动,要先划掉原来的答案,然后再写上新答案.2. 不在指定答题位置答题或超出答题区域书写的答案无效.在试题卷上答题无效. 3. 第Ⅱ卷共包括填空题和解答题两道大题. 二、填空题:本大题共4小题,每小题4分,共16分. 13.如图所示的程序框图输出的结果为__________.14. 若一个底面是正三角形的三棱柱的正视图如下图所示,其在一个球面上,则该球的表面积为__________.15.地震的震级R 与地震释放的能量E 的关系为)4.11(lg 32-=E R .2011年3月11日,日本东海岸发生了9.0级特大地震,2008年中国汶川的地震级别为8.0级,那么2011年地震的能量是2008年地震能量的 倍. 16.给出下列命题: ①已知,,a b m都是正数,且bab a >++11,则a b <; ②已知()f x '是()f x 的导函数,若,()0x R f x '∀∈≥,则(1)(2)f f <一定成立; ③命题“x R∃∈,使得2210x x -+<”的否定是真命题; ④“1,1≤≤y x 且”是“2≤+y x ”的充要条件.其中正确命题的序号是 .(把你认为正确命题的序号都填上)第14题图三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知向量),2cos 2sin 3()2cos ,1(y xx b x a +==→→与共线,且有函数)(x f y =.(Ⅰ)若1)(=x f ,求)232cos(x -π的值;(Ⅱ)在ABC ∆中,角C B A ,,,的对边分别是c b a ,,,且满足b c C a 2cos 2=+,求函数)(B f 的取值范围.18.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,公差,50,053=+≠S S d 且1341,,a a a 成等比数列. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设⎭⎬⎫⎩⎨⎧n n a b 是首项为1,公比为3的等比数列,求数列{}n b 的前n 项和n T .已知四棱锥BCDE A -,其中1====BE AC BC AB ,2=CD ,ABC CD 面⊥,BE∥CD ,F 为AD 的中点. (Ⅰ)求证:EF ∥面ABC ; (Ⅱ)求证:面ACD ADE 面⊥; (III )求四棱锥BCDE A -的体积.20.(本小题满分12分)在某种产品表面进行腐蚀性检验,得到腐蚀深度y 与腐蚀时间x 之间对应的一组数据:现确定的研究方案是:先从这6组数据中选取2组,用剩下的4组数据求线性回归方程,再对被选取的2组数据进行检验.(Ⅰ)求选取的2组数据恰好不相邻的概率;(Ⅱ)若选取的是第2组和第5组数据,根据其它4组数据,求得y 关于x 的线性回归方程26139134ˆ+=x y,规定由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2微米,则认为得到的线性回归方程是可靠的,判断该线性回归方程是否可靠.AB CDEF已知函数1)(2++=x bax x f 在点))1(,1(--f 的切线方程为03=++y x . (Ⅰ)求函数()f x 的解析式;(Ⅱ)设x x g ln )(=,求证:)()(x f x g ≥在),1[+∞∈x 上恒成立.22.(本小题满分14分)实轴长为34的椭圆的中心在原点,其焦点1,2,F F 在x 轴上.抛物线的顶点在原点O ,对称轴为y 轴,两曲线在第一象限内相交于点A ,且12AF AF ⊥,△12AF F 的面积为3. (Ⅰ)求椭圆和抛物线的标准方程;(Ⅱ)过点A 作直线l 分别与抛物线和椭圆交于C B ,,若AB AC 2=,求直线l 的斜率k .参考答案及评分标准一.选择题(本大题共12小题,每小题5分,共60分.)B D B A D B B D BC C B二.填空题(本大题共4小题,每小题4分,共16分.)13.2 14.π31915. 2310 16. ①③三.解答题17.(本小题满分12分) 解:(Ⅰ)∵→a 与→b 共线∴yxx x 2cos 2cos2sin 31=+21)6sin()cos 1(21sin 232cos 2cos 2sin 32++=++=+=πx x x x x x y …………3分∴121)6sin()(=++=πx x f ,即21)6sin(=+πx …………………………………………4分211)6(sin 21)3(cos 2)3(2cos )232cos(22-=-+=--=-=-ππππx x x x…………………………………………6分 (Ⅱ)已知b c C a 2cos 2=+由正弦定理得:CA C A C C A C ABC C A sin cos 2cos sin 2sin cos sin 2)sin(2sin 2sin cos sin 2+=++==+∴21cos =A ,∴在ABC ∆中 ∠3π=A …………………………………………8分 21)6sin()(++=πB B f∵∠3π=A ∴320π<<B ,6566πππ<+<B …………………………………………10分∴1)6sin(21≤+<πB ,23)(1≤<B f ∴函数)(B f 的取值范围为]23,1( …………………………………………12分18.(本小题满分12分) 解:(Ⅰ)依题意得⎪⎩⎪⎨⎧+=+=⨯++⨯+)12()3(5025452233112111d a a d a d a d a …………………………………………2分 解得⎩⎨⎧==231d a , …………………………………………4分 1212)1(23)1(1+=+=-+=-+=∴n a n n d n a a n n 即,.……………………………6分(Ⅱ)13-=n nna b ,113)12(3--⋅+=⋅=n n n n n a b …………………………………………7分 123)12(37353-⋅+++⋅+⋅+=n n n T n n n n n T 3)12(3)12(3735333132⋅++⋅-++⋅+⋅+⋅=- ……………………9分n n n n T 3)12(3232323212+-⋅++⋅+⋅+=--nnn n n 323)12(31)31(3231⋅-=+---⋅+=- ∴nn n T 3⋅= …………………………………………12分19.(本小题满分12分)解:(Ⅰ)取AC 中点G,连结FG 、BG , ∵F,G 分别是AD,AC 的中点∴FG ∥CD,且FG=21DC=1 .∵BE ∥CD ∴FG 与BE 平行且相等∴EF ∥BG . ……………………………2分ABC BG ABC EF 面面⊂⊄,∴EF ∥面ABC ……………………………4分 (Ⅱ)∵△ABC 为等边三角形 ∴BG ⊥AC 又∵DC ⊥面ABC,BG ⊂面ABC ∴DC ⊥BGABCDEF G∴BG 垂直于面ADC 的两条相交直线AC,DC ,∴BG ⊥面ADC . …………………………………………6分 ∵EF ∥BG ∴E F ⊥面ADC∵EF ⊂面ADE ,∴面ADE ⊥面ADC . …………………………………………8分 (Ⅲ)连结EC,该四棱锥分为两个三棱锥E -ABC 和E -ADC .43631232313114331=+=⨯⨯+⨯⨯=+=---ACD E ABC E BCDE A V V V .………………………12分另法:取BC 的中点为O ,连结AO ,则BC AO ⊥,又⊥CD 平面ABC ,∴C CD BC AO CD =⊥ , , ∴⊥AO 平面BCDE ,∴AO 为BCDE A V -的高,43232331,2321)21(,23=⨯⨯=∴=⨯+==-BCDE A BCDE V S AO . 20.(本小题满分12分)解:(Ⅰ)设6组数据的编号分别为1,2,3,4,5,6.设抽到不相邻的两组数据为事件A ,从6组数据中选取2组数据共有15种情况:(1,2)(1,3)(1,4)(1,5)(1,6)(2,3)(2,4)(2,5)(2,6)(3,4)(3,5)(3,6)(4,5)(4,6)(5,6),其中事件A 包含的基本事件有10种. …………………………………………3分所以321510)(==A P .所以选取的2组数据恰好不相邻的概率是32. ………………………6分(Ⅱ) 当10=x 时,;2|1026219|,262192613910134ˆ<-=+⨯=y……………………………………9分 当30=x 时,;2|1626379|,263792613930134ˆ<-=+⨯=y所以,该研究所得到的回归方程是可靠的. …………………………………………12分 21.(本小题满分12分)解:(Ⅰ)将1-=x 代入切线方程得2-=y ∴211)1(-=+-=-ab f ,化简得4-=-a b . …………………………………………2分 222)1(2)()1()(x xb ax x a x f +⋅+-+='12424)(22)1(-===-+=-'bb a b a f . …………………………………………4分解得:2,2-==b a∴122)(2+-=x x x f . …………………………………………6分 (Ⅱ)由已知得122ln 2+-≥x x x 在),1[+∞上恒成立化简得22ln )1(2-≥+x x x即022ln ln 2≥+-+x x x x 在),1[+∞上恒成立 . …………………………………………8分 设22ln ln )(2+-+=x x x x x h ,21ln 2)(-++='xx x x x h ∵1≥x ∴21,0ln 2≥+≥xx x x ,即0)(≥'x h . …………………………………………10分 ∴)(x h 在),1[+∞上单调递增,0)1()(=≥h x h∴)()(x f x g ≥在),1[+∞∈x 上恒成立 . …………………………………………12分22.(本小题满分14分)解(1)设椭圆方程为22221(0)x y a b a b+=>>,12,AF m AF n ==由题意知⎪⎪⎩⎪⎪⎨⎧==+=+6344222mn n m c n m …………………………………………2分解得92=c ,∴39122=-=b .∴椭圆的方程为131222=+y x …………………………………………4分 ∵3=⨯c y A ,∴1=A y ,代入椭圆的方程得22=A x ,将点A 坐标代入得抛物线方程为y x 82=. …………………………………………6分(2)设直线l 的方程为)22(1-=-x k y ,),(),,(2211y x C y x B2013年高考数学全国卷1(完整版试题+答案+解析)- 11 - / 11 由AB AC 2= 得)22(22212-=-x x , 化简得22221=-x x …………………………………………8分 联立直线与抛物线的方程⎪⎩⎪⎨⎧=-=-yx x k y 8)22(12, 得0821682=-+-k kx x ∴k x 8221=+① …………………………………………10分 联立直线与椭圆的方程⎪⎩⎪⎨⎧=+-=-124)22(122y x x k y 得0821632)2168()41(2222=--+-++k k x k k x k ∴22241821622kk k x +-=+② …………………………………………12分 ∴2222418216)228(222221=++---=-kk k k x x 整理得:0)4121)(2416(2=+--k k k ∴42=k ,所以直线l 的斜率为42 . …………………………………………14分。
2013年高考数学全国卷(理科)

2013年普通高等学校招生全国统一考试(全国卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页.考试时间120分钟.满分150分.答题前,考生务必用0.5毫米的黑色签字笔将自己的姓名、座号、考号填写在第Ⅰ卷答题卡和第Ⅱ卷答题纸规定的位置. 参考公式:样本数据n x x x ,,21的标准差nx x x x x x s n 22221)()()(-++-+-=其中x 为样本平均数 球的面积公式 24R S π=第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数i i++121(i 是虚数单位)的虚部是 A .23 B .21C .3D .12.已知R 是实数集,{}11,12+-==⎭⎬⎫⎩⎨⎧<=x y y N x x M ,则=M C N R A .)2,1(B .[]2,0C.∅ D .[]2,13.现有10个数,其平均数是4,且这10个数的平方和是200,那么这个数组的标准差是 A .1 B .2 C .3 D .44.设n S 为等比数列{}n a 的前n 项和,0852=-a a ,则=24S S A .5 B .8 C .8- D .15 5.已知函数)62sin()(π-=x x f ,若存在),0(π∈a ,使得)()(a x f a x f -=+恒成立,则a的值是 A .6π B .3π C .4π D .2π 6.已知m 、n 表示直线,γβα,,表示平面,给出下列四个命题,其中真命题为(1)βααβα⊥⊥⊂=则,,,m n n m (2)m n n m ⊥==⊥则,,,γβγαβα (3),,βα⊥⊥m m 则α∥β(4)βαβα⊥⊥⊥⊥则,,,n m n mA .(1)、(2)B .(3)、(4)C .(2)、(3)D .(2)、(4)7.已知平面上不共线的四点C B A O ,,,,若||,23BC AB OC OB OA -=等于A .1B .2C .3D .48.已知三角形ABC ∆的三边长成公差为2的等差数列,且最大角的正弦值为23,则这个三角形的周长是A .18B .21C .24D .15 9.函数xx x f 1lg )(-=的零点所在的区间是 A .(]1,0 B .(]10,1 C .(]100,10 D .),100(+∞10.过直线y x =上一点P 引圆22670x y x +-+=的切线,则切线长的最小值为A .22 B . 223 C .210 D .211.已知函数b ax x x f 2)(2-+=.若b a ,都是区间[]4,0内的数,则使0)1(>f 成立的概率是 A .43 B .41 C .83D .8512.已知双曲线的标准方程为116922=-y x ,F 为其右焦点,21,A A 是实轴的两端点,设P 为双曲线上不同于21,A A 的任意一点,直线P A P A 21,与直线a x =分别交于两点N M ,,若0=⋅FN FM ,则a 的值为A .916 B .59 C .925 D .516第Ⅱ卷(非选择题 共90分)注意事项:请用0.5毫米的黑色签字笔将每题的答案填写在第Ⅱ卷答题纸的指定位置.书写的答案如需改动,要先划掉原来的答案,然后再写上新答案. 不在指定答题位置答题或超出答题区域书写的答案无效.在试题卷上答题无效.第Ⅱ卷共包括填空题和解答题两道大题.二、填空题:本大题共4小题,每小题4分,共16分. 13.如图所示的程序框图输出的结果为__________.14. 若一个底面是正三角形的三棱柱的正视图如下图所示,其顶点都在一个球面上,则该球的表面积为__________.15.E 的关系为)4.11(lg 32-=E R .2011年3月11日,日本东海岸发生了9.0级特大地震,2008年中国汶川的地震级别为8.0级,那么2011年地震的能量是2008年地震能量的 倍. 16.给出下列命题: ①已知,,a b m都是正数,且bab a >++11,则a b <; ②已知()f x '是()f x 的导函数,若,()0x R f x '∀∈≥,则(1)(2)f f <一定成立; ③命题“x R ∃∈,使得2210x x -+<”的否定是真命题; ④“1,1≤≤y x 且”是“2≤+y x ”的充要条件.其中正确命题的序号是 .(把你认为正确命题的序号都填上)三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知向量),2cos 2sin 3()2cos ,1(y xx b x a +==→→与共线,且有函数)(x f y =.(Ⅰ)若1)(=x f ,求)232cos(x -π的值;(Ⅱ)在ABC ∆中,角C B A ,,,的对边分别是c b a ,,,且满足b c C a 2cos 2=+,求函数)(B f 的取值范围. 18.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,公差,50,053=+≠S S d 且1341,,a a a 成等比数列.第14题图(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设⎭⎬⎫⎩⎨⎧n n a b 是首项为1,公比为3的等比数列,求数列{}n b 的前n 项和n T .19.(本小题满分12分)已知四棱锥BCDE A -,其中1====BE AC BC AB ,2=CD ,ABC CD 面⊥,BE ∥CD ,F 为AD 的中点.(Ⅰ)求证:EF ∥面ABC ; (Ⅱ)求证:面ACD ADE 面⊥; (III )求四棱锥BCDE A -的体积.AB CDEF20.(本小题满分12分)在某种产品表面进行腐蚀性检验,得到腐蚀深度y 与腐蚀时间x 之间对应的一组数据:现确定的研究方案是:先从这6组数据中选取2组,用剩下的4组数据求线性回归方程,再对被选取的2组数据进行检验.(Ⅰ)求选取的2组数据恰好不相邻的概率;(Ⅱ)若选取的是第2组和第5组数据,根据其它4组数据,求得y 关于x 的线性回归方程26139134ˆ+=x y,规定由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2微米,则认为得到的线性回归方程是可靠的,判断该线性回归方程是否可靠.21.(本小题满分12分) 已知函数1)(2++=x bax x f 在点))1(,1(--f 的切线方程为03=++y x . (Ⅰ)求函数()f x 的解析式;(Ⅱ)设x x g ln )(=,求证:)()(x f x g ≥在),1[+∞∈x 上恒成立.22.(本小题满分14分)实轴长为34的椭圆的中心在原点,其焦点1,2,F F 在x 轴上.抛物线的顶点在原点O ,对称轴为y 轴,两曲线在第一象限内相交于点A ,且12AF AF ⊥,△12AF F 的面积为3. (Ⅰ)求椭圆和抛物线的标准方程;(Ⅱ)过点A 作直线l 分别与抛物线和椭圆交于C B ,,若AB AC 2=,求直线l 的斜率k .参考答案及评分标准选择题(本大题共12小题,每小题5分,共60分.) B D B A D B B D B C C B填空题(本大题共4小题,每小题4分,共16分.)13.2 14.π31915. 2310 16. ①③三.解答题 17.(本小题满分12分) 解:(Ⅰ)∵→a 与→b 共线∴yxx x 2cos 2cos2sin 31=+21)6sin()cos 1(21sin 232cos 2cos 2sin 32++=++=+=πx x x x x x y …………3分∴121)6sin()(=++=πx x f ,即21)6sin(=+πx …………………………………………4分211)6(sin 21)3(cos 2)3(2cos )232cos(22-=-+=--=-=-ππππx x x x…………………………………………6分 (Ⅱ)已知b c C a 2cos 2=+ 由正弦定理得:CA C A C C A C ABC C A sin cos 2cos sin 2sin cos sin 2)sin(2sin 2sin cos sin 2+=++==+∴21cos =A ,∴在ABC ∆中 ∠3π=A …………………………………………8分 21)6sin()(++=πB B f∵∠3π=A ∴320π<<B ,6566πππ<+<B …………………………………………10分∴1)6sin(21≤+<πB ,23)(1≤<B f ∴函数)(B f 的取值范围为]23,1( …………………………………………12分18.(本小题满分12分) 解:(Ⅰ)依题意得⎪⎩⎪⎨⎧+=+=⨯++⨯+)12()3(5025452233112111d a a d a d a d a …………………………………………2分 解得⎩⎨⎧==231d a , …………………………………………4分1212)1(23)1(1+=+=-+=-+=∴n a n n d n a a n n 即,.……………………………6分(Ⅱ)13-=n nna b ,113)12(3--⋅+=⋅=n n n n n a b …………………………………………7分 123)12(37353-⋅+++⋅+⋅+=n n n T n n n n n T 3)12(3)12(3735333132⋅++⋅-++⋅+⋅+⋅=- ……………………9分n n n n T 3)12(3232323212+-⋅++⋅+⋅+=--nnn n n 323)12(31)31(3231⋅-=+---⋅+=- ∴nn n T 3⋅= …………………………………………12分 19.(本小题满分12分) 解:(Ⅰ)取AC 中点G,连结FG 、BG , ∵F,G 分别是AD,AC 的中点∴FG ∥CD,且FG=21DC=1 .∵BE ∥CD ∴FG 与BE 平行且相等∴EF ∥BG . ……………………………2分ABC BG ABC EF 面面⊂⊄,∴EF ∥面ABC ……………………………4分(Ⅱ)∵△ABC 为等边三角形 ∴BG ⊥AC 又∵DC ⊥面ABC,BG ⊂面ABC ∴DC ⊥BG∴BG 垂直于面ADC 的两条相交直线AC,DC ,∴BG ⊥面ADC . …………………………………………6分 ∵EF ∥BG ∴EF ⊥面ADC∵EF ⊂面ADE ,∴面ADE ⊥面ADC . …………………………………………8分 (Ⅲ)连结EC,该四棱锥分为两个三棱锥E -ABC 和E -ADC .43631232313114331=+=⨯⨯+⨯⨯=+=---ACD E ABC E BCDE A V V V . (12)分另法:取BC 的中点为O ,连结AO ,则BC AO ⊥,又⊥CD 平面ABC ,∴C CD BC AO CD =⊥ , , ∴⊥AO 平面BCDE ,∴AO 为BCDE A V -的高,43232331,2321)21(,23=⨯⨯=∴=⨯+==-BCDE A BCDE V S AO . ABCDEF G20.(本小题满分12分) 解:(Ⅰ)设6组数据的编号分别为1,2,3,4,5,6.设抽到不相邻的两组数据为事件A ,从6组数据中选取2组数据共有15种情况:(1,2)(1,3)(1,4)(1,5)(1,6)(2,3)(2,4)(2,5)(2,6)(3,4)(3,5)(3,6)(4,5)(4,6)(5,6),其中事件A 包含的基本事件有10种. …………………………………………3分所以321510)(==A P .所以选取的2组数据恰好不相邻的概率是32. ………………………6分(Ⅱ) 当10=x 时,;2|1026219|,262192613910134ˆ<-=+⨯=y ……………………………………9分当30=x 时,;2|1626379|,263792613930134ˆ<-=+⨯=y所以,该研究所得到的回归方程是可靠的. …………………………………………12分21.(本小题满分12分) 解:(Ⅰ)将1-=x 代入切线方程得2-=y ∴211)1(-=+-=-ab f ,化简得4-=-a b . …………………………………………2分222)1(2)()1()(x xb ax x a x f +⋅+-+=' 12424)(22)1(-===-+=-'bb a b a f . (4)分解得:2,2-==b a ∴122)(2+-=x x x f . …………………………………………6分(Ⅱ)由已知得122ln 2+-≥x x x 在),1[+∞上恒成立 化简得22ln )1(2-≥+x x x即022ln ln 2≥+-+x x x x 在),1[+∞上恒成立 . …………………………………………8分设22ln ln )(2+-+=x x x x x h ,21ln 2)(-++='xx x x x h ∵1≥x ∴21,0ln 2≥+≥xx x x ,即0)(≥'x h . …………………………………………10分∴)(x h 在),1[+∞上单调递增,0)1()(=≥h x h∴)()(x f x g ≥在),1[+∞∈x 上恒成立 . …………………………………………12分22.(本小题满分14分)解(1)设椭圆方程为22221(0)x y a b a b+=>>,12,AF m AF n ==由题意知⎪⎪⎩⎪⎪⎨⎧==+=+6344222mn n m c n m …………………………………………2分解得92=c ,∴39122=-=b .∴椭圆的方程为131222=+y x …………………………………………4分 ∵3=⨯c y A ,∴1=A y ,代入椭圆的方程得22=A x , 将点A 坐标代入得抛物线方程为y x 82=. …………………………………………6分(2)设直线l 的方程为)22(1-=-x k y ,),(),,(2211y x C y x B 由AB AC 2= 得)22(22212-=-x x ,化简得22221=-x x …………………………………………8分联立直线与抛物线的方程⎪⎩⎪⎨⎧=-=-yx x k y 8)22(12,得0821682=-+-k kx x∴k x 8221=+① …………………………………………10分联立直线与椭圆的方程⎪⎩⎪⎨⎧=+-=-124)22(122y x x k y得0821632)2168()41(2222=--+-++k k x k k x k∴22241821622kkk x +-=+② …………………………………………12分- 11 - / 11 ∴2222418216)228(222221=++---=-kk k k x x 整理得:0)4121)(2416(2=+--k k k ∴42=k ,所以直线l 的斜率为42 . …………………………………………14分。
2020年新高考全国卷Ⅰ数学高考试题(山东)(附答案)

2020年普通高等学校招生全国统一考试数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}2.2i 12i -= +A.1B.−1C.i D.−i3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有A.120种B.90种C.60种D.30种4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为A .20°B .40°C .50°D .90°5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是 A .62% B .56% C .46%D .42%6.基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e)rtI t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) A .1.2天 B .1.8天 C .2.5天D .3.5天7.已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅的取值范围是 A .()2,6- B .()6,2- C .()2,4-D .()4,6-8.若定义在R 的奇函数f (x )在(0),-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是 A .[)1,1][3,-+∞ B .3,1][,[01]-- C .[)1,0][1,-+∞ D .1,0]3][[1,-二、选择题:本题共4小题,每小题5分,共20分。
2012年高考新课标全国卷文科数学试题(附答案)

2012年普通高等学校招生全国统一考试(新课标全国卷)文科数学试题一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.(1)已知集合A={x |x 2−x −2〈0},B={x |−1〈x 〈1},则(A )A 错误!B (B )B 错误!A (C )A=B (D )A ∩B=∅(2)复数z =32i i -++的共轭复数是 (A )2i + (B )2i - (C )1i -+ (D )1i --(3)在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线112y x =+上,则这组样本数据的样本相关系数为(A)−1 (B)0 (C )错误! (D )1 (4)设1F ,2F 是椭圆E :2222x y a b+=1(a >b >0)的 左、 右焦点,P 为直线32a x =上一点,△21F PF 是底角为030的等腰三角形,则E 的离心率为(A )12 (B )23 (C )34 D 。
45(5)已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC内部,则z x y =-+的取值范围是(A)(1-错误!,2) (B )(0,2) (C )(错误!-1,2) (D )(0,1+错误!)(6)如果执行右边的程序框图,输入正整数N (N ≥2)和实数1a ,2a ,…,N a ,输出A ,B ,则(A)A +B 为1a ,2a ,…,N a 的和(B)2A B +为1a ,2a ,…,N a 的算术平均数 (C )A 和B 分别为1a ,2a ,…,N a 中的最大数和最小数(D)A 和B 分别为1a ,2a ,…,N a 中的最小数和最大数(7)如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A )6(B )9(C )12(D )18(8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为错误!,则此球的体积为(A )错误!π (B)4错误!π (C )4错误!π (D)6错误!π(9)已知ω〉0,0ϕπ<<,直线x =4π和x =54π是函数()sin()f x x ωϕ=+图像的两条相邻的对称轴,则ϕ=(A )错误! (B )错误! (C)错误! (D )错误!(10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A 、B 两点,||AB =43,则C 的实轴长为(A )2 (B )22 (C )4 (D )8(11)当0〈x ≤错误!时,4log x a x <,则a 的取值范围是(A )(0,错误!) (B )(错误!,1) (C )(1,错误!) (D )(错误!,2)(12)数列{n a }满足1(1)21n n n a a n ++-=-,则{n a }的前60项和为(A )3690 (B)3660 (C)1845 (D)1830二.填空题:本大题共4小题,每小题5分。
历年高考数学真题(全国卷整理版)完整版完整版.doc

参考公式:如果事件A 、B 互斥,那么球的表面积公式()()()P AB P A P B 24S R如果事件A 、B 相互独立,那么其中R 表示球的半径()()()P A B P A P B 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么334VRn 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(0,1,2,)kkn kn n P k C p p k n …普通高等学校招生全国统一考试一、选择题1、复数131i i=A 2+IB 2-IC 1+2iD 1- 2i2、已知集合A ={1.3. m },B ={1,m} ,AB =A, 则m=A0或3B 0或3C 1或3D 1或33 椭圆的中心在原点,焦距为4 一条准线为x=-4 ,则该椭圆的方程为A216x+212y=1 B212x+28y=1C28x+24y=1 D212x+24y=14 已知正四棱柱ABCD- A 1B 1C 1D 1中,AB=2,CC 1=22E 为CC 1的中点,则直线AC 1与平面BED 的距离为A 2B3C2D 1(5)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列的前100项和为(A)100101(B)99101(C)99100(D)101100(6)△ABC 中,AB 边的高为CD ,若a ·b=0,|a|=1,|b|=2,则(A)(B )(C)(D)(7)已知α为第二象限角,sinα+sinβ=33,则cos2α=(A)5-3(B)5-9(C)59(D)53(8)已知F1、F2为双曲线C:x2-y2=2的左、右焦点,点P在C上,|PF1|=|2PF2|,则cos ∠F1PF2=(A)14(B)35(C)34(D)45(9)已知x=lnπ,y=log52,12z=e,则(A)x<y<z (B)z<x<y (C)z<y<x (D)y<z<x(10) 已知函数y=x2-3x+c的图像与x恰有两个公共点,则c=(A)-2或2 (B)-9或3 (C)-1或1 (D)-3或1(11)将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有(A)12种(B)18种(C)24种(D)36种(12)正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AE=BF=73。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学-全国卷(附答案)第Ⅰ卷一、 选择题共12小题。
每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项1.已知集合{}{}2|20,|55A x x x B x x =->=-<<,则( ) A.A∩B=∅ B.A ∪B=R C.B ⊆A D.A ⊆B2.若复数z 满足(34)|43|i z i -=+,则z 的虚部为( ) A.4- B.45- C.4 D.453. 为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学.初中.高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是 ( )A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样4.已知双曲线C :22221x y a b -=(0,0a b >>)的离心率为52,则C 的渐近线方程为 A.14y x =± B.13y x =± C.12y x =± D.y x =± 5.运行如下程序框图,如果输入的[1,3]t ∈-,则输出s 属于A.[3,4]- B .[5,2]- C.[4,3]- D.[2,5]-6.如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为 ( )A.35003cm πB. 38663cm πC. 313723cm πD. 320483cm π 7.设等差数列{}n a 的前n 项和为11,2,0,3n m m m S S S S -+=-==,则m=( )A.3B.4C.5D.68.某几何体的三视图如图所示,则该几何体的体积为A .168π+B .88π+C .1616π+D .816π+9.设m 为正整数,2()m x y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b ,若137a b =,则m =( )A.5B.6C.7D.810.已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交椭圆于,A B 两点。
若AB 的中点坐标为(1,1)-,则E 的方程为 ( ) A.2214536x y += B.2213627x y += C.2212718x y += D.221189x y += 11.已知函数()f x =22,0ln(1),0x x x x x ⎧-+≤⎨+>⎩,若|()f x |≥ax ,则a 的取值范围是A .(,0]-∞B .(,1]-∞C .[2,1]-D .[2,0]-12.设n n n A B C ∆的三边长分别为,,n n n a b c ,n n n A B C ∆的面积为n S ,1,2,3,n =L ,若11111,2b c b c a >+=,111,,22n n nn n n n n c a b a a a b c +++++===,则( ) A.{S n }为递减数列 B.{S n }为递增数列C.{S 2n -1}为递增数列,{S 2n }为递减数列D.{S 2n -1}为递减数列,{S 2n }为递增数列二.填空题:本大题共四小题,每小题5分13.已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t)b ,若b ·c =0,则t=_____.14.若数列{n a }的前n 项和为S n =2133n a +,则数列{n a }的通项公式是n a =______. 15.设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=______16.若函数()f x =22(1)()x x ax b -++的图像关于直线2x =-对称,则()f x 的最大值是______.三.解答题:解答应写出文字说明,证明过程或演算步骤17.(本小题满分12分)如图,在△ABC 中,∠ABC =90°,AB= 3 ,BC=1,P 为△ABC 内一点,∠BPC =90°(Ⅰ)若PB=12,求PA ; (Ⅱ)若∠APB =150°,求tan ∠PBA 。
18.(本小题满分12分)如图,三棱柱ABC-A 1B 1C 1中,CA=CB ,AB=A A 1,∠BA A 1=60°.(Ⅰ)证明AB ⊥A 1C ;(Ⅱ)若平面ABC ⊥平面AA 1B 1B ,AB=CB=2,求直线A 1C 与平面BB 1C 1C 所成角的正弦值。
19.(本小题满分12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n 。
如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验。
假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独 立,(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需 的费用记为X (单位:元),求X 的分布列及数学期望。
20.(本小题满分12分)已知圆M :22(1)1x y ++=,圆N :22(1)9x y -+=,动圆P 与M 外切并且与圆N 内切,圆心P 的轨迹为曲线 C.(Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB|.21.(本小题满分共12分)已知函数()f x =2x ax b ++,()g x =()xe cx d +,若曲线()yf x =和曲线()yg x =都过点P(0,2),且在点P 处有相同的切线42y x =+(Ⅰ)求a ,b ,c ,d 的值;(Ⅱ)若x ≥-2时,()f x ≤()kg x ,求k 的取值范围。
22.(本小题满分10分)选修4—1:几何证明选讲 如图,直线AB 为圆的切线,切点为B ,点C 在圆上,∠ABC 的角平分线BE 交圆于点E ,DB 垂直BE 交圆于D 。
(Ⅰ)证明:DB=DC ;(Ⅱ)设圆的半径为1,BC= ,延长CE 交AB 于点F ,求△BCF 外接圆的半径。
23.(本小题10分)选修4—4:坐标系与参数方程 已知曲线C 1的参数方程为45cos 55sin x t y t =+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为2sin ρθ=。
(Ⅰ)把C 1的参数方程化为极坐标方程;(Ⅱ)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π)。
24.(本小题满分10分)选修4—5:不等式选讲已知函数()f x =|21||2|x x a -++,()g x =3x +.(Ⅰ)当a =2时,求不等式()f x <()g x 的解集;(Ⅱ)设a >-1,且当x ∈[2a -,12)时,()f x ≤()g x ,求a 的取值范围. 参考答案一、选择题1.B. 2.D. 3.C. 4.C 5.A 6.A 7.C 8.A 9.B 10.D 11.D 12.B二、填空题13.t =2. 14.n a =1(2)n --. 15.255-. 16.16. 三解答题17.(Ⅰ)由已知得,∠PBC=o 60,∴∠PBA=30o,在△PBA 中,由余弦定理得2PA =o 11323cos3042+-⨯⨯=74,∴PA=72; (Ⅱ)设∠PBA=α,由已知得,PB=sin α,在△PBA 中,由正弦定理得,o o 3sin sin150sin(30)αα=-,化简得,3cos 4sin αα=,∴tan α=34,∴tan PBA ∠=34. 18.(Ⅰ)取AB 中点E ,连结CE ,1A B ,1A E ,∵AB=1AA ,1BAA ∠=060,∴1BAA ∆是正三角形,∴1A E ⊥AB , ∵CA=CB , ∴CE ⊥AB , ∵1CE A E ⋂=E ,∴AB ⊥面1CEA ,∴AB ⊥1AC ; ……6分(Ⅱ)由(Ⅰ)知EC ⊥AB ,1EA ⊥AB ,又∵面ABC ⊥面11ABB A ,面ABC ∩面11ABB A =AB ,∴EC ⊥面11ABB A ,∴EC ⊥1EA , ∴EA ,EC ,1EA 两两相互垂直,以E 为坐标原点,EA u u u r 的方向为x 轴正方向,|EA u u u r |为单位长度,建立如图所示空间直角坐标系O xyz -,有题设知A(1,0,0),1A (0,3,0),C(0,0,3),B(-1,0,0),则BC u u u r =(1,0,3),1BB u u u r =1AA u u u r =(-1,0,3),1A C u u u r =(0,-3,3), ……9分设n =(,,)x y z 是平面11CBB C 的法向量,则100BC BB ⎧•=⎪⎨•=⎪⎩u u u r u u u r n n ,即3030x z x y ⎧+=⎪⎨+=⎪⎩,可取n =(3,1,-1), ∴1cos ,A C u u u r n =11|A C A C •u u u r u u u r n |n ||105, ∴直线A 1C 与平面BB 1C 1C 所成角的正弦值为105. ……12分 19.设第一次取出的4件产品中恰有3件优质品为事件A ,第一次取出的4件产品中全为优质品为事件B,第二次取出的4件产品都是优质品为事件C ,第二次取出的1件产品是优质品为事件D ,这批产品通过检验为事件E ,根据题意有E=(AB)∪(CD),且AB 与CD 互斥,∴P(E)=P(AB)+P(CD)=P(A)P(B|A)+P(C)P(D|C)=3244111()()222C ⨯⨯+411()22⨯=364.…6分 (Ⅱ)X 的可能取值为400,500,800,并且P(X=400)=1-3344111()()222C ⨯-=1116,P(X=500)=116,P(X=800)=33411()22C ⨯=14, ∴X 的分布列为X400 500 800 P 1116 116 14……10分EX=400×1116+500×116+800×14=506.25 ……12分 20.由已知得圆M 的圆心为M (-1,0),半径1r =1,圆N 的圆心为N (1,0),半径2r =3.设动圆P 的圆心为P (x ,y ),半径为R.(Ⅰ)∵圆P 与圆M 外切且与圆N 内切,∴|PM|+|PN|=12()()R r r R ++-=12r r +=4,由椭圆的定义可知,曲线C 是以M ,N 为左右焦点,场半轴长为23的椭圆(左顶点除外),其方程为221(2)43x y x +=≠-. (Ⅱ)对于曲线C 上任意一点P (x ,y ),由于|PM|-|PN|=22R -≤2,∴R ≤2,当且仅当圆P 的圆心为(2,0)时,R=2.∴当圆P 的半径最长时,其方程为22(2)4x y -+=,当l 的倾斜角为090时,则l 与y 轴重合,可得|AB|=23.当l 的倾斜角不为090时,由1r ≠R 知l 不平行x 轴,设l 与x 轴的交点为Q ,则||||QP QM =1R r ,可求得Q (-4,0),∴设l :(4)y k x =+,由l 于圆M 相切得2|3|11k k =+,解得24k =±. 当k =24时,将224y x =+代入221(2)43x y x +=≠-并整理得27880x x +-=,解得1,2x =4627-±,∴|AB|=2121||k x x +-=187. 当k =-24时,由图形的对称性可知|AB|=187, 综上,|AB|=187或|AB|=23. 21.(Ⅰ)由已知得(0)2,(0)2,(0)4,(0)4f g f g ''====,而()f x '=2x b +,()g x '=()xe cx d c ++,∴a =4,b =2,c =2,d =2;……4分 (Ⅱ)由(Ⅰ)知,2()42f x x x =++,()2(1)xg x e x =+,设函数()F x =()()kg x f x -=22(1)42x ke x x x +---(2x ≥-), ()F x '=2(2)24x ke x x +--=2(2)(1)x x ke +-,有题设可得(0)F ≥0,即1k ≥,令()F x '=0得,1x =ln k -,2x =-2,(1)若21k e ≤<,则-2<1x ≤0,∴当1(2,)x x ∈-时,()F x <0,当1(,)x x ∈+∞时,()F x >0,即()F x 在1(2,)x -单调递减,在1(,)x +∞单调递增,故()F x 在x =1x 取最小值1()F x ,而1()F x =21112242x x x +---=11(2)x x -+≥0,∴当x ≥-2时,()F x ≥0,即()f x ≤()kg x 恒成立,(2)若2k e =,则()F x '=222(2)()x e x e e +-,∴当x ≥-2时,()F x '≥0,∴()F x 在(-2,+∞)单调递增,而(2)F -=0, ∴当x ≥-2时,()F x ≥0,即()f x ≤()kg x 恒成立,(3)若2k e >,则(2)F -=222ke --+=222()e k e ---<0,∴当x ≥-2时,()f x ≤()kg x 不可能恒成立,综上所述,k 的取值范围为[1,2e ].22.(Ⅰ)连结DE ,交BC 与点G.由弦切角定理得,∠ABF=∠BCE ,∵∠ABE=∠CBE ,∴∠CBE=∠BCE ,BE=CE , 又∵DB ⊥BE ,∴DE 是直径,∠DCE=090,由勾股定理可得DB=DC. (Ⅱ)由(Ⅰ)知,∠CDE=∠BDE ,BD=DC ,故DG 是BC 的中垂线,∴3. 设DE 中点为O ,连结BO ,则∠BOG=o 60,∠ABE=∠BCE=∠CBE=o 30,∴CF ⊥BF , ∴Rt △BCF 3. 23. 将45cos 55sin x t y t=+⎧⎨=+⎩消去参数t ,化为普通方程22(4)(5)25x y -+-=, 即1C :22810160x y x y +--+=,将cos sin x y ρθρθ=⎧⎨=⎩代入22810160x y x y +--+=得, 28cos 10sin 160ρρθρθ--+=,∴1C 的极坐标方程为28cos 10sin 160ρρθρθ--+=;(Ⅱ)2C 的普通方程为2220x y y +-=,由222281016020x y x y x y y ⎧+--+=⎪⎨+-=⎪⎩解得11x y =⎧⎨=⎩或02x y =⎧⎨=⎩,∴1C 与2C 2,4π),(2,)2π. 24.当a =-2时,不等式()f x <()g x 化为|21||22|30x x x -+---<,[来源:]设函数y =|21||22|3x x x -+---,y =15, 212, 1236, 1x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩, 其图像如图所示从图像可知,当且仅当(0,2)x ∈时,y <0,∴原不等式解集是{|02}x x <<. (Ⅱ)当x ∈[2a -,12)时,()f x =1a +,不等式()f x ≤()g x 化为13a x +≤+, ∴2x a ≥-对x ∈[2a -,12)都成立,故2a -≥2a -,即a ≤43, ∴a 的取值范围为(-1,43].。