实数章节常见题型归纳

合集下载

实数常考经典题型总结

实数常考经典题型总结

实数考点题型总结类型一:求平方根、算数平方根和立方根1、72964的平方根为 ,算术平方根为 ,立方根为2、√16的平方根为 3467、已知一个数的平方是116,则这个数的平方根是 8、下列式子:①√−53=-√53;②√53=5;③√(−13)2=-13;④√36=±6.其中正确的个数有9、已知2a -1的平方根是±3,3a+2b+4的立方根是3,求a+b 的平方根.10、求下列各式中x 的值:①(x -2)2=25;②-8(1-x )3=27. 类型二:平方根、算数平方根和立方根的性质1、若|x+2|+√y −3=0,则xy 的值为2、若a 2=25,|b|=3,则a+b 的值是3、若一个正数的两个平方根是2a-1和-a+2,则a= ,这个正数是 .4、化简√(3.14−π)2−|2−π|=5、(x 2+1)2的算术平方根是6、若√x =√−x 有意义,则√x +1= .7、若√x −1+√1−x +k =2,则x= ,k=8、若一个数的平方根等于它的立方根,则这个数是 ,一个数的立方根是它本身,这个数是9、若√2a +13+√2−a 3=0,则a=10、若√(3a +2)33−√(a −2)33=2,则a=11、若a ≠0,则√−a 33a =12、一个正数x 的平方根是2a-3与5-a ,一个负数y 的立方根是它本身,求x+y 的值。

类型三:实数的相关定义1、把下列各数分别填入相应的集合中:√23,16,√7,-π,-227,√2,√203,−√5,√83,√259,0,0.5757757775…(相邻两个5之间7的个数逐次加1)有理数集合{ };无理数集合{ }.2、下列各数中是无理数的是( )A .√400B .√4C .√0.4D .√0.04 3、写出两个和为1的无理数 (只写一组即可).类型四:实数的相关性质:估算、计算器的使用、比较大小、数轴表达等1、估计√6+1的值在( )A .2到3之间B .3到4之间C .4到5之间D .5到6之间2、一个正方形的面积是15,估计它的边长大小在( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间34、任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[√3]=1.现对72进行如下操作:,这样对72只需进行3次操作后变为1,类似的,①对81只需进行此操作后变为1;②只需进行3次操作后变为1的所有正整数中,最大的是.5、请你写出一个大于0而小于1的无理数.67、如果a+b<0,且b>0,那么a、b、-a、-b的大小关系为()A.a<b<-a<b B.-b<a<-a<bC.a<-b<-a<b D.a<-b<b<-a8、(√22)−2,(-2)-1与20的大小关系是()9、设a=√3-√2,b=2-√3,c=√5-2,则a,b,c的大小关系是()A.a>b>c B.a>c>b C.c>b>a D.b>c>aA.丙<乙<甲B.乙<甲<丙C.甲<乙<丙D.甲=乙=丙11、用计算器求√2013≈.(结果精确到0.1)12、用计算器比较:5√13,4√14,3√15的大小(用小于符号连接).13、14、√2+1的倒数与√2−√3的相反数的和为.15、实数a,b在数轴上的位置如图所示,以下说法正确的是()A.a+b=0 B.b<a C.ab>0 D.|b|<|a|16、在如图所示的数轴上,点B与点C关于点A对称,A、B两点对应的实数分别是√3和-1,则点C所对应的实数是()A .1+√3B .2+√3C .2√3-1D .2√3+117、数轴上A 、B 两点对应的实数分别是√2和2,若点A 关于点B 的对称点为点C ,则点C 所对应的实数为 .径画弧,交正半轴于一点,则这个点表示的实数是( )2√219、如图,数轴上点N 表示的数可能是( )A .√10B .√5C .3 .√220、若将三个数−√3,√7,√11表示在数轴上,其中能被如图所示的墨迹覆盖的数是 .21、若实数a ,b 在数轴上对应的点的位置如图所示,则化简|a+b|+|b-a|的结果是 .22、如图,半圆的直径AB= .类型五:二次根式:意义、性质、相关计算、应用等1、下列各式①√−12;②√(−3)2;③√9×(−3);④√−2−5;⑤√a 2+b 2;⑥√10−3;⑦√−a (其中a <0)中,其中二次根式有 个.2、若式子√2−x x−1有意义,则x 的取值范围为3、若y =√x −2+√2−x −1,则x y 的值是A .x ≥-2B .x ≠-2C .x ≥2且x ≠4D .x ≠25、下列二次根式中属于最简二次根式的是( )A .√14B .√48C .√ab D .√4a +4 6、在式子√18,√√0.5m ,√x 2+4,√2a ,√a−b a+b 中,是最简二次根式的式子有 个. 7、计算题:⑴ (π-3.14)0+(12)-1+|-2√2|-√8 ⑵ √48÷√3-√12×√12+√24⑶ 3×20-(12)2+2√3−1 ⑷ √18−12÷2−1+1√2+1−(√2−1)8、化简求值:已知x=12+√3,y=12−√3,求x 2-y 2的值.9、矩形的两条边长分别是2√3+√2和2√3−√2,求该矩形的面积和对角线的长.10、已知a ,b ,c 为三角形的三边,化简√(a +b −c )2+√(b −c −a )2+√(b +c −a )2.11、已知直角三角形的两条直角边长分别为,a =4+√2,b =4−√2,求斜边c 及斜边上的高h .12、教师节快到了,为了表示对老师的敬意,小号同学特地做了两张大小不同的正方形的壁画送给老师,其中一张面积为800cm 2,另一张面积为450cm 2,他想如果再用金色彩带把壁画的边镶上会更漂亮,他手上现有1.2m 长的金色彩带,请你帮助算一算,他的金色彩带够用吗?如果不够,还需买多长的金色彩带?(√2≈1.414,结果保留整数)13、如图,矩形内两相邻正方形的面积分别为2和6,请计算大矩形内阴影部分的面积.14、数学课上张老师和学生们做了一个数字游戏,老师手里拿了一枝笔说:“现在你们学习了二次根式,如果x 表示√10的整数部分,y 代表它的小数部分,我这枝笔的价格是(√10+x )y 元,那么你们猜一下这枝笔的价格是多少?谁猜对了,这枝笔就奖给谁”你能猜出这枝笔的价格吗?15、阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+2√2=(1+√2)2.善于思考的小明进行了以下探索:设a+b √2=(m+n √2)2(其中a 、b 、m 、n 均为整数),则有a+b √2=m 2+2n 2+2mn √2.∴a=m 2+2n 2,b=2mn .这样小明就找到了一种把类似a+b √2的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a 、b 、m 、n 均为正整数时,若a+b √3=(m +n √3)2,用含m 、n 的式子分别表示a 、b ,得:a= ,b= ;(2)利用所探索的结论,找一组正整数a 、b 、m 、n 填空: + √3=( + √3)2;(3)若a+4√3=(m +n √3)2,且a 、m 、n 均为正整数,求a 的值?。

实数_知识点+题型归纳

实数_知识点+题型归纳

第六章实数知识讲解+题型归纳知识讲解一、实数的组成1、实数又可分为正实数,零,负实数2.数轴:数轴的三要素——原点、正方向和单位长度。

数轴上的点与实数一一对应二、相反数、绝对值、倒数1. 相反数:只有符号不同的两个数互为相反数。

数a的相反数是-a。

正数的相反数是负数,负数的相反数是正数,零的相反数是零. 性质:互为相反数的两个数之和为0。

2.绝对值:表示点到原点的距离,数a 的绝对值为3.倒数:乘积为1的两个数互为倒数。

非0实数a的倒数为1a. 0没有倒数。

4.相反数是它本身的数只有0;绝对值是它本身的数是非负数(0和正数);倒数是它本身的数是±1.三、平方根与立方根1.平方根:如果一个数的平方等于a,这个数叫做a的平方根。

数a的平方根记作(a>=0)特性:一个正数有两个平方根,它们互为相反数,零的平方根还是零。

负数没有平方根。

正数a的正的平方根也叫做a的算术平方根,零的算术平方根还是零。

开平方:求一个数的平方根的运算,叫做开平方。

2.立方根:如果一个数的立方等于a,则称这个数为a立方根。

数a的立方根用3a表示。

任何数都有立方根,一个正数有一个正的立方根;一个负数有一个负的立方根,零的立方根是零。

开立方:求一个数的立方根(三次方根)的运算,叫做开立方。

四、实数的运算有理数的加法法则:a)同号两数相加,取相同的符号,并把绝对值相加;b)异号两数相加。

绝对值相等时和为0;绝对值不相等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值. 任何数与零相加等于原数。

2.有理数的减法法则:减去一个数等于加上这个数的相反数。

3.乘法法则:a)两数相乘,同号得正,异号得负,并把绝对值相乘;零乘以任何数都得零.a| |ab)几个不为0的有理数相乘,积的符号由负因数的个数决定,当负因数的个数为奇数时,积为负,为偶数,积为正c)几个数相乘,只要有一个因数为0,积就为04.有理数除法法则:a)两个有理数相除(除数不为0)同号得正,异号得负,并把绝对值相除。

实数 知识点题型归纳

实数 知识点题型归纳

特性:一个正数有两个平方根,它们互为相反数,零的平方根还是零。

实数第六章负数没有平方根。

知识讲解+题型归纳 a 的算术平方根,零的算术平方根还是零。

正数a的正的平方根也叫做:求一个数的平方根的运算,叫做开平方。

开平方知识讲解的a 。

数2.立方根:如果一个数的立方等于a,则称这个数为a立方根实数的组成一、立方根用表示。

任何数都有立方根,一个正数有一个正的立方根;一个负数有一个负的1、实数又可分为正实数,零,负实数立方根,零的立方根是零。

数轴:数轴的三要素——原点、正方向和单位长度。

数轴上的点与实2. 开立方:求一个数的立方根(三次方根)的运算,叫做开立方。

数一一对应四、实数的运算二、相反数、绝对值、倒数有理数的加法法则:。

正a的相反数是-a相反数:只有符号不同的两个数互为相反数。

数1.a)同号两数相加,取相同的符号,并把绝对值相加;性质:互数的相反数是负数,负数的相反数是正数,零的相反数是零.b)异号两数相加。

绝对值相等时和为0;绝对值不相等时,取绝对值较。

为相反数的两个数之和为0大的数的符号,并用较大的绝对值减去较小的绝对值.任何数与零相的绝对值为 a2.绝对值:表示点到原点的距离,数| a|1加等于原数。

没有实数倒数:乘积为3.1的两个数互为倒数。

非0a的倒数为 . 0a2.有理数的减法法则:减去一个数等于加上这个数的相反数。

倒数。

3.乘法法则:和正04.相反数是它本身的数只有;绝对值是它本身的数是非负数(0a)两数相乘,同号得正,异号得负,并把绝对值相乘;零乘以任何数都数);倒数是它本身的数是±1.得零.三、平方根与立方根b)几个不为0的有理数相乘,积的符号由负因数的个数决定,当负因数的,这个数叫做平方根:如果一个数的平方等于1.aa的平方根。

数a的个数为奇数时,积为负,为偶数,积为正a?)a>=0(平方根记作题型归纳,积就为0c)几个数相乘,只要有一个因数为04.有理数除法法则:经典例题)同号得正,异号得负,并把绝对值相0a)两个有理数相除(除数不为类型一.有关概念的识别。

八上实数全章节题型分类知识点+例题+练习分类全面

八上实数全章节题型分类知识点+例题+练习分类全面

三.开平方开平方的概念:求一个非负数的平方根的运算,叫做开平方.开平方与平方是互逆运算,可以通过平方运算来求一个数的平方根或算术平方根,以及检验一个数是不是另一个数的平方根或算术平方根.开平方运算的性质:1.当被开方数扩大(或缩小)二倍,它的算术平方根相应地扩大(或缩小)n倍(「:).2.平方根和算术平方根与被开方数之间的关系:(1)若二丁,则,'=-;;好叫.吟。

)(2)不管.;为何值,总有一八,;注意二者之间的区别及联系.题模一平方根例 1.1.1、士3 是 9 的()A、平方根B、相反数C、绝对值D、算术平方根例1.1.2、仪的平方根是()A、2B、±2C、22D、土 <2例1.1.3、若2a-1和a-5是一个正数m的两个平方根,则a=, m=.练习:1.的平方根为()C、二三D、二述2.若二二二,:=、户,则()A 、8 C 、8 或-2 3.4耳的平方根为()C 、二二例1.2.5、若也工T 有意义,则x 的取值范围是练习:1 . J8T 的算术平方根是B 、二三 D 、2 或-B 、2D 、二尤4.已知一个正数的平方根是3x-2和5x+6, 题模二算术平方根例1.2.1、4的算术平方根是( )A 、2 C 、±2例1.2.2、29的算术平方根是 例1.2.3、下列说法正确的是( )A 、4的算术平方根是2 C 、V 同的平方根是2例1.2.4、一个自然数的算术平方根为a , A 、a+1则这个数是. B 、-2 D 、五B 、0和1的相反数都是它本身D -—、-是分数则和这个自然数相邻的下一个自然数是( )B 、a 2+1 D 、知识点二:立方根知识精讲一•立方根立方根的定义及表示方法:如果一个数的立方等于「那么这个数叫做•;的立方根;若;:=•、则;就叫做・;的立方根,一个数•、的立方根可用符号表“石”,其中“3”叫做根指数,不能省略.立方根的特点:1.任意一个数都有立方根;2.正数立方根是正值;3.负数的立方根是负值;4.0的立方根是0二.开立方开立方的概念:求一个数的立方根的运算.开立方与立方是互逆运算,可以通过立方运算来求一个数的立方根,以及检验一个数是不是另一个数的立方根.开立方运算的性质:1.当被开方数(大于0)扩大(或缩小)::倍,它的立方根相应地扩大(或缩小):倍.易错点:1.平方根“F”其实省略了根指数“二”,即:H也可以表示为F,而立方根“盗” 的根指数“3”不能省略.2.立方根等于本身的数有“二[”和“0” .3.两个数互为相反数,则它们的立方根也互为相反数.题模一立方根例2.1.1、27的立方根是.q -例2.1.2、7的立方根是.64例2.1.3、一五的立方根是. 例2.1.4、9的立方根是. 例2.1.5、下列说法正确的是( )A 、16的算术平方根是-4B 、25的平方根是5C 、1的立方根是二1D 、-27的立方根是-3练习:1 .如果一个实数的平方根与它的立方根相等,则这个数是() A 、0 B 、正整数 C 、0 和 1D 、12 .下列说法正确的是()题模二开立方例2.2.1、求符合下列各条件中的x 的值. x* -1 = 0 -x 1 -1 = 0(1) -(2)-例2.2.2、已知343的立方根是7,那么343000的立方根是A 、如果一个数的立方根是这个数的本身,那么 这个数一定是零 B 、 一个数的立方根不是正数就是负数 C 、负数没有立方根D 、一个数的立方根与这个数同号,零的立方根 是零例2.2.3、已知与互为相反数,求.例2.2.4、已知“:是4的算术平方根,丁三是8的立方根,求;「「的平方根练习:1.下列各式中,正确的是()A、二忑=二二C、石一D、-# = 32.正确的个数是()①]”二一"②止〜与③0=二;④==-二A、B、C、D、3.若,则k的取值范围为(A、士B、C、< =-D、二为任意数4.求符合下列各条件中的x的值.(2)「3 —(1) J一一二5.如果,求―的值知识点三:实数知识精讲一.无理数无理数的概念:无理数是无限不循环小数;常见的无理数有:无限不循环小数(例如.), 开方开不尽的数.二.实数的概念及分类:实数的概念:有理数和无理数统称为实数.实数的性质:£1.有理数都可以写成有限小数或循环小数的形式,都可以表示成分数-二的形式;2.任何两个有理数的和、差、积、商还是有理数;3.两个无理数的和、差、积、商不一定是无理数.实数的分类■:正整数-整数。

实数重难点题型分类(八大题型)(原卷版)

实数重难点题型分类(八大题型)(原卷版)

专题03 实数重难点题型分类(八大题型)【题型1 无理数的概念】【题型2 平方根、算术平方根与立方根的概念】 【题型3 实数大小比较、无理数的估算】 【题型4 最简二次根式及同类二次根式】 【题型5 无理数在数轴上的表示】 【题型6 绝对值的非负性】 【题型7 算术平方根的非负性】【题型8 算术平方根钰绝对值的非负性综合】类型一: 绝对值的非负性任何一个实数的绝对值是非负数类型二:算术平方根的非负性1. 二次根式具有双重非负性,即)(≥≥a 0a2. 几个非负数的和为0,这几个非负数都为0.【题型1 无理数的概念】 1.(2023春•庄河市期末)实数,0.6,0,﹣2中,无理数是( )A .B .0.6C .0D .﹣22.(2023春•福田区校级期末)在,3.1415926,(π﹣2)0,﹣3,,﹣,0这些数中,无理数有( ) A .2个B .3个C .4个D .5个3.(2023春•肇源县期末)下列各数中,无理数是( ) A .﹣2B .3.14C .D .4.(2023春•徐汇区校级期中)若a 、b 是不相等的无理数,则( )A.a+b一定是无理数B.a﹣b一定是无理数C.a•b一定是无理数D.不一定是无理数5.(2022•福建)如图,数轴上的点P表示下列四个无理数中的一个,这个无理数是()A.B.C.D.π6.(2022•包头自主招生)下列说法中正确的是()A.带根号的数是无理数B.无理数不能在数轴上表示出来C.无理数是无限小数D.无限小数是无理数【题型2 平方根、算术平方根与立方根的概念】7.(2023•荔湾区校级二模)实数4的算术平方根是()A.B.±C.2D.±2 8.(2023•东营区校级三模)的算术平方根是()A.4B.2C.±4D.±2 9.(2023春•榆树市期末)若x2=4,则x的值是()A.2B.±2C.16D.±16 10.(2023春•长宁区期末)下列等式中,正确的是()A.()²=5B.(﹣)²=5C.D.11.(2023春•和平区校级期末)若在实数范围内有意义,则m的取值范围是()A.m≥0B.m≥﹣2C.m D.m 12.(2023春•邕宁区期末)如图,用边长为3的两个小正方形拼成一个大正方形,则大正方形的边长最接近的整数是()A.3B.4C.5D.6 13.(2023•碑林区校级一模)8的立方根为()A.2B.4C.﹣4.D.﹣2 14.(2023•灞桥区校级模拟)计算的结果是()A.﹣8B.﹣4C.±8D.±4 15.(2023春•长沙期末)下列运算正确的是()A.B.C.=﹣3D.16.(2023春•梁山县期中)立方根和算术平方根都等于它本身的数是()A.0B.1,0C.0,1,﹣1D.0,﹣1 17.(2023春•惠城区校级期中)若a2=4,b3=27,则a﹣b的值为()A.﹣1B.5C.﹣1或﹣5D.﹣1或5 18.(2023春•龙江县期中)﹣的立方根与36的平方根的和为()A.4B.6C.4或﹣6D.4或﹣8【题型3 实数大小比较、无理数的估算】20.(2023春•滨海新区期末)估计的值在()A.3与4之间B.4与5之间C.5与6之间D.6与7之间21.(2023•和平区模拟)实数﹣π,﹣3.14,0,四个数中,最小的是()A.﹣πB.﹣3.14C.D.0 22.(2023春•巴南区期末)估计的值在()A.3到4之间B.4到5之间C.5到6之间D.6到7之间23.(2023春•丰都县期末)比较大小:.24.(2022秋•慈溪市期末)比较大小:1.(填“>”,“=”或“<”)25.(2023•鄞州区校级一模)比较大小:﹣﹣2.(填“>”、“=”或“<”)【题型4 最简二次根式及同类二次根式】26.(2023春•巴南区期末)下列二次根式中,是最简二次根式的是()A.B.C.D.27.(2023春•花都区期末)下列根式是最简二次根式的是()A.B.C.D.28.(2023春•武昌区期末)下列二次根式中,与是同类二次根式的是()A.B.C.D.29.(2023春•大观区校级期末)下列根式中,与为同类二次根式的是()A.B.C.D.30.(2023春•蒙城县校级期中)若最简二次根式与是同类二次根式,则a=()A.﹣1B.1C.3D.﹣3 31.(2023春•凤台县期末)如果最简二次根式与是同类根式,那么a 的值是()A.a=5B.a=3C.a=﹣5D.a=﹣3 32.(2023春•大连期末)若最简二次根式与可以合并,则a=﹣.【题型5 无理数在数轴上的表示】33.(2023春•嵩明县期末)数轴上点A所表示的实数可能是()A.B.C.﹣1.5D.π34.(2023春•海淀区期末)如图,一条数轴被污渍覆盖了一部分,把下列各数表示在数轴上,则被覆盖的数可能为()A.﹣πB.C.D.35.(2023春•路北区期中)如图,两个边长为1的正方形并排放在数轴上,且OA=OB,则数轴上点A所表示的数是()A.B.C.﹣2.5D.﹣2 36.(2023春•历城区期末)如图,在数轴上点A表示的实数是()A.B.2.2C.2.3D.37.(2023春•西吉县期中)如图,OA=OB,BD=1,则数轴上点A所表示的数为()A.B.C.D.38.(2023•浠水县二模)如图,数轴上点A表示的实数是()A.﹣1B.C.+1D.﹣1【题型6 绝对值的非负性】39.(2023•都昌县校级模拟)已知实数a,b在数轴上对应的点的位置如图所示,则化简|a﹣b|﹣|1﹣a|+|b﹣2|的结果是.40.(2023春•防城区期中)实数a,b在数轴上的位置如图所示,则|b﹣a|﹣|a+b|=.41.(2022秋•高新区期末)实数a、b在数轴上的位置如图所示,则化简|a+3b|+|a ﹣b|的结果为.42.(2022秋•成县期中)实数a,b在数轴上的位置如图所示,化简代数式|b ﹣a|﹣|a﹣2|+|b+1|的结果是.【题型7 算术平方根的非负性】43.(2022秋•青神县期末)若,则x的取值范围是()A.x=2B.x≤﹣2C.x≤2D.x≥2 44.(2023春•上城区校级期中)若,则x的取值范围是()A.x>3B.x≥3C.x<3D.x≤3 45.(2022秋•广饶县校级期末)若,|b|=5,且ab<0,则a+b的算术平方根为()A.4B.2C.±2D.3【题型8 算术平方根和绝对值的非负性综合】46.(2023春•无棣县期中)已知实数x、y满足,则的值是()A.1B.2C.3D.4 47.(2023春•繁峙县期中)若a,b为实数,且,则(a+b)2023=()A.1B.﹣1C.﹣2023D.2023 48.(2023春•八步区期中)已知,则a+b=()A.8B.﹣8C.6D.﹣6 49.(2023春•江城区期中)若,则5x+y2的平方根是()A.3B.2C.±2D.±3 50.(2023•巧家县校级三模)若,则a b的值为.。

专题02 实数的运算(三大题型,50题)(解析版)

专题02 实数的运算(三大题型,50题)(解析版)

专题02实数的运算(三大题型,50题)(解析版)学校:___________姓名:___________班级:___________考号:___________一、用数轴上的点表示实数,中档题20题,难度三星1.如图,若5x =,则表示2211(1)x x x x -+÷-的值的点落在()A .段①B .段②C .段③D .段④【答案】C 【分析】首先对原式进行化简,然后代入x 的值,最后根据5 2.236≈即可判断.【详解】原式=2211()x x x x x-+-÷=()211x xx x -- =1x -当5x =时,原式=51-∵5 2.236≈∴51 1.236-≈故选C .【点睛】本题考查了分式的乘除法化简,无理数的估算,无理数的估算是难点,关键是要熟记一些常用的完全平方数,和一些常用无理数的近似值.2.若实数p ,q ,m ,n 在数轴上的对应点的位置如图所示,且满足0p q m n +++=,则绝对值最小的数是()A .pB .qC .mD .n【答案】C 【分析】根据0p q m n +++=,并结合数轴可知原点在q 和m 之间,且离m 点最近,即可求解.A.a b>B.π+A.πB.1【答案】B【分析】根据数轴与实数的一一对应关系解答即可.A .a b-+B .a b +C .a 【答案】21π--【分析】求出圆的周长,再根据实数与数轴上的点的对应关系解答即可.【答案】﹣2a﹣b【分析】直接利用数轴结合绝对值以及平方根的性质化简得出答案.【答案】32-或32+【分析】分顺时针旋转和逆时针旋转,两种情况讨论求解即可.【详解】解:∵点A 表示的数为3,点B 表示的数为4,∴1AB =,此时C '表示的数为:32-;当正方形ABCD 绕点A 逆时针旋转,使得点C 落在数轴上的点C '处时,如图:此时C '表示的数为:32+;【答案】2π2+【分析】先求出圆的周长为2π,再利用数轴的性质求解即可得.【详解】解:由题意可知,将圆沿数轴向右转动一周,转动的距离为∴点A 向右移动了2π个单位长度,【答案】280905--+/809052【分析】本题考查的是数轴的一个知识,解题的关键是找到规律:第移动25个单位,从第2次落在数轴上开始,比上一次又向右多移动了(1)图1中的阴影部分为正方形,它的面积是_________;(2)请利用(1)的解答,在图1的数轴上画出表示10的点;并简洁地说明理由.(3)如图2,请你利用正方形网格,设计一个面积方案,在数轴上画出表示理由.【答案】(1)10(3)解:如图,阴影部分为正方形,面积为所以,其边长为5,在数轴上截取5==,CDOC OK则点K表示的数为5,点D表示的数【点睛】本题主要考查正方形的性质以及网格,熟练掌握正方形的性质是解题的关键.20.阅读下面的文字,解答问题.大家知道,2是无理数,而无理数是无限不循环小数,因此【点睛】此题考查的是估算无理数及求代数式的值,能够得到一个无理数的整数部分与小数部分是解决此题的关键.二、实数的大小比较,中档题15题,难度三星π-<-<根据数轴上点的特点可得: 1.5333.在数轴上表示数0,π-303π-<-<<.2【点睛】本题考查了实数与数轴,实数的大小比较,能利用数轴比较实数的大小是解此题的关键,注意:。

实数_知识点+题型归纳

实数_知识点+题型归纳

第六章实数知识讲解+题型归纳知识讲解一、实数的组成1、实数又可分为正实数,零,负实数2.数轴:数轴的三要素——原点、正方向和单位长度。

数轴上的点与实数一一对应二、相反数、绝对值、倒数1. 相反数:只有符号不同的两个数互为相反数。

数a的相反数是-a。

正数的相反数是负数,负数的相反数是正数,零的相反数是零. 性质:互为相反数的两个数之和为0。

2.绝对值:表示点到原点的距离,数a的绝对值为3.倒数:乘积为1的两个数互为倒数。

非0实数a的倒数为 . 0没有倒数。

4.相反数是它本身的数只有0;绝对值是它本身的数是非负数(0和正数);倒数是它本身的数是±1.三、平方根与立方根1.平方根:如果一个数的平方等于a,这个数叫做a的平方根。

数a的平方根记作(a>=0)特性:一个正数有两个平方根,它们互为相反数,零的平方根还是零。

负数没有平方根。

正数a的正的平方根也叫做a的算术平方根,零的算术平方根还是零。

开平方:求一个数的平方根的运算,叫做开平方。

2.立方根:如果一个数的立方等于a,则称这个数为a立方根。

数a的立方根用表示。

任何数都有立方根,一个正数有一个正的立方根;一个负数有一个负的立方根,零的立方根是零。

开立方:求一个数的立方根(三次方根)的运算,叫做开立方。

四、实数的运算有理数的加法法则:a)同号两数相加,取相同的符号,并把绝对值相加;b)异号两数相加。

绝对值相等时和为0;绝对值不相等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值. 任何数与零相加等于原数。

2.有理数的减法法则:减去一个数等于加上这个数的相反数。

3.乘法法则:a)两数相乘,同号得正,异号得负,并把绝对值相乘;零乘以任何数都得零.b)几个不为0的有理数相乘,积的符号由负因数的个数决定,当负因数的个数为奇数时,积为负,为偶数,积为正c)几个数相乘,只要有一个因数为0,积就为04.有理数除法法则:a)两个有理数相除(除数不为0)同号得正,异号得负,并把绝对值相除。

(完整版)实数知识点和典型例题练习题总结(超全面)

(完整版)实数知识点和典型例题练习题总结(超全面)

(4)《实数》知识点总结及典型例题练习题第一节、平方根1.平方根与算数平方根的含义平方根:如果一个数的平方等于,那么数x 就叫做的平方根。

即,记作x=a a a x =2a±算数平方根:如果一个正数x 的平方等于a ,那么正数x 叫做a 的算术平方根,即x 2=a ,记作x=a 。

2.平方根的性质与表示 ⑴表示:正数的平方根用表示,叫做正平方根,也称为算术平方根,a a ±a 叫做的负平方根。

a -a ⑵一个正数有两个平方根:(根指数2省略)a ±0有一个平方根,为0,记作00=负数没有平方根⑶平方与开平方互为逆运算 开平方:求一个数的平方根的运算。

a == ()a a =2⎩⎨⎧-a a 00<≥a a ()a a =20≥a ⑷的双重非负性:且 (应用较广)a 0≥a 0≥a 例: 得知y x x =-+-440,4==y x ⑸如果正数的小数点向右或者向左移动两位,它的正的平方根的小数点就相应地向右或向左移动一位。

区分:4的平方根为 的平方根为 4开平方后,得____4________4=____(6)若,则0>>b a ba >(7)))0,0(0,0>≥=≥≥=⨯b a b a ba b a ab b a 典型习题:(1)求算数平方根与平方根1:求下列数的平方根36 0.09 (-4)² 0 102:求eg1中各数的平方根(2)解简单的二次方程3:281250x -= 4 :4(x+1)2=8(3)被开方数的意义5:若a 为实数,下列代数式中,一定是负数的是( )A. -a 2B. -( a +1)2C.-2aD.-(a -+1)6:实数a 在数轴上的位置如图所示,化简:2)2(1-+-a a (4):有关x 的取值范围目前中考的所有考点考点:例题:求使得下列各式成立的x 的取值范围7:53-x 8: 当______m 时,m -3有意义;当______m 时,33-m 有意义9:x-1110.等式1112-=+⋅-x x x 成立的条件是( ).A 、1≥xB 、1-≥x C 、11≤≤-x D 、11≥-≤或x(5)非负性知识点:总结:若几个非负数的和为零,则每个非负数都为零,这个性质在代数式求值中经常被使用.10.已知b a ,是实数,且有0)2(132=+++-b a ,求b a ,的值.11: .已知实数a 、b 、c 满足,+ =0,,求a+b+c 的值.2)21(-c 13.若,求x ,y 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A. -1 B.1- C.2- D. -2 3、 已知实数 、 、 在数轴上的位置如图所示:
化简
七、分数的指数幂 例 1 求值
① 3 (8)3 = -8 ;
② (10)2 = |-10| = 10 ;
③ 4 (3 )4 = | 3 | = 3 ;
④ (a b)2 (a b) = |a- b| = a- b .
去掉‘a>b’结果如何? 练习求值:
(1) 5 2 6 7 4 3 6 4 2 ; (2)2 3 3 1.5 6 12
例 2.用分数指数幂表示下列分式(其中各式字母均为正数)
(1) 3 a 4 a
(2) a a a
(3) 3 (a b)2
(4) 4 (a b)3 (5) 3 ab2 a2b
8、已知 x、y 互为倒数,c、d 互为相反数,a 的绝对值为 3,z 的算术平方根是 5, 求:4×(c+d)+xy+ z 的值。
a 9、已知 x、y、z 满足关系式
3x y z 2 2x y z x y 2002 2002 x y 试求 x+y+z 的值。
10、在实数范围内,设 a= ( 4x | x | 2 2 | x | )2006 ,则 a 的个位数字是
1 6、 代数式 1 a 在实数范围内有意义的条件是___________
四、非负数之和为 0
1. 如果 x 4 ( y 6)2 0 ,那么 x y

2、已知 y x 2 2 x 3 ,求 y x 的平方根 3、已知实数 x 、 y 满足 2x 3y 1 x 2y 2 0,求 2x 4 y 的值;
例 6 已知 x+x-1=3,求下列各式的值:
1
1
3
3
(1)x 2 x 2 , (2)x 2 x 2 .
1、已知 的整数部分为 a,小数部分为 b,求 a2-b2 的值.
2、已知 m 、 n 是有理数,且 ( 5 2)m (3 2 5)n 7 0 ,求 m 、 n 的值。
3、已知 x 、 y 是有理数,并且 x 、 y 满足 2x2 3y 2 y 23 3 2 ,求 x y 的值。 4、已知 a 是整数,求 12 5a 4 6a 3 3 (a 1)0 的值
B,±4
C ,2
D,±2
5,下列等式中:①,
1
1
3
②,
( 2 )3
2
③,
(4)2 4
④,
106 =0.001
16 8
⑤,
3 27 3 ⑥,
3 8 3 8 ⑦,—
2
5 25 中正确的有(
64 4
A,2
B ,3
C,4
D.5
6、若一个正数的平方根分别为 3a+1 和 4-2a,则这个正数是多少?
_________的绝对值等于它本身;
_________的倒数等于它本身;
_________的平方等于它本身;
_________的立方等于它本身;
_________的平方根等于它本身; _________的立方根等于它本身; _________的偶次方根等于它本身; _________的奇次方根等于它本身;
7, 64 的平方根是
(5)0 的平方根是
)个。
8、已知 1.5 23.5,3121 5.1 1,则8 12500__________。
已知 34.63 1.66,364763 7.73,则6320.000 4_6_3_3_0._ 0_ 0,46 _3 ___。____ 例 1 已知一个数的平方根是 2a-1 和 a-11,求这个数. 例 2 已知 2a-1 和 a-11 是一个数的平方根,求这个数.
5、 若 5 2.236 , 50 7.071,求 4.5的值 。
三、平方根有意义
1. 若 a 和 a 都有意义,则 a 的值是
()
2. 200 a 是个整数,那么最小正整数 a 是_____.
3. 要使 3 a 13 a 1 成立,那么 a 的取值范围是(
).
4.y= x 3 3 x 8 ,求 3 x +2 y 的算术平方根.
5、已知实数 a 满足 1 3 5 a ,则 a 的取值范围值验证法
例 7:当 0 x 1时, x 2 , x , 1 的大小顺序是______________。 x
六、数形结合题
1、点 A 在数轴上表示的数为 离为______
,点 B 在数轴上表示的数为
,则 A,B 两点的距
2、如图,数轴上表示 1, 的对应点分别为 A,B,点 B 关于点 A 的对称点为 C,则点 C 表示的数是( ).
.
2.若 a+b<0,ab<0,则 ( )
A a>0,b>0
B a<0,b<0
C a,b 两数一正一负,且正数的绝对值大于负数的绝对值
D a,b 两数一正一负,且负数的绝对值大于正数的绝对值
方法一:差值比较法
例 1:(1)比较 3 1 与 1 的大小。 (2)比较 1- 2 与 1- 3 的大小。 55
(6) 4 (a3 b3 )2
21
11
15
例 3⑴ (2a 3b 2 )(6a 2b 3 ) (3a 6b 6 ) ;

(m
1 4
n
3 8
)8
.
例 4⑴ (3 25 125 ) 4 5 ;⑵
a2 (a>0). a 3 a2
1
1
1
1
例 5 化简: (x 2 y 2 ) (x 4 y 4 )
10、 5 、 7 分别介于哪两个正整数间?
请写出 3 个大小在 3 和 4 之间的无理数。
二、平方根、立方根定义及求法
1. 81 的平方根是
; 42 的平方根是
2. 2004 的被开方数是
;根指数是
3. 144 有 为
个平方根,它们是 ;
; ;它们的和是
;它们互
4. 16 的算术平方根是( )
A ,4
方法二:商值比较法
例 2:比较 3 1 与 1 的大小。 55
方法三:倒数法
例 3:比较 2004 - 2003 与 2005 - 2004 的大小。
方法四:平方法
例 5:比较 2 6 与 3 5 的大小
方法五:估算法
例 4:比较 13 3 与 1 的大小
8
8
方法六:移动因式法
例 6:比较 2 7 与 3 3 的大小
5 4,若 (b 10)2 a 8 0 ,则 a b的平方根是 _____
5.若 a 1 (b 2)2 c 3 0 ,则 a b2 c3 的值等于(
A. 0
B. 6
C. 24
6、若 a 1 a b 2 0 ,求 a100 b101 的值。
) D. 32
7、若实数 a、b 满足(a+b-2) 2 + b 2a 3 =0,求代数式:2a+b-1 的值。
6.以下说法错误的是( )
A. 是无理数 B. 是无限不循环小数 C. 是实数 D. 是无限循环小数
7.若 a 是 1- 的相反数,则 a 的值为( )
A.1+
B.—1—
C.—1+
D.以上都不是
8.边长为 2 的正方形的对角线长是( )
A.整数
B.分数
C.有理数
D.无理数
9 _________的相反数等于它本身;
3. 下列说法正确的是( A. 有理数只是有限小数
) B. 无理数是无限小数
C. 无限小数是无理数
2 D. 3 是分数
4、下列语句中正确的是【 】
(A)带根号的数是无理数
(B)不带根号的数一定是有理数
(C)无理数一定是无限不循环的小数 (D)无限小数都是无理数
5. - 的相反数是________, - 的相反数是____________。
实数章节常见题型
一、实数的有关概念及分类
1. 实数 2 ,0, ,3.1415926, 3 , 3 , 3 3 中无理数有 m 个,则 m ---( )
3
7
A1
B2
C3
D4
2. 下列各数中,不是无理数的是 ( )
A 7 B 0.5 C 2 D 0.151151115… (两个5之间依次多1个1)
x 1
|2x|
____________.
若 y x2 4 4 x2 ,求 2x y 的值. x2
五、比较大小
1. 比较大小: 5 7 ____ 4 11 ;(填 或 符号) 1 2 =

2,若规定误差小于 1, 那么 60 的估算值为( )
A. 3
B. 7
C. 8
D. 7 或 8
3,满足 2 x 3 的整数 x 是
相关文档
最新文档