人教版必修一数学2-3
2018版高中数学必修一学案:2-3 映射的概念 精品

2.3映射的概念学习目标 1.了解映射的概念,掌握映射的三要素(难点);2.会判断给出的两集合,能否构成映射(重点).预习教材P46-47,完成下面问题:知识点一映射的概念一般地,设A,B是两个非空集合,如果按照某种对应法则f,对于A中的每一个元素,在B中都有唯一的元素与之对应,那么这样的单值对应叫做从集合A 到集合B的映射,记为f:A→B.【预习评价】下面各图表示的对应构成映射的有________.解析①②③这三个图所表示的对应都符合映射的定义,即A中的每一个元素在对应法则下,B中都有唯一的元素与之对应.对于④⑤,A中的每一个元素在B中有2个元素与之对应,所以不是A到B的映射;对于⑥,A中的元素a3,a4,在B中没有元素与之对应,所以不是A到B的映射.答案①②③知识点二映射与函数的关系函数与映射有何区别与联系?提示函数是一种特殊的映射,即一个对应关系是函数,则一定是映射,但反之,一个对应关系是映射,则不一定是函数.题型一映射的判断【例1】以下给出的对应是不是从集合A到集合B的映射?(1)集合A={P|P是数轴上的点},集合B=R,对应关系f:数轴上的点与它所代表的实数对应;(2)集合A={P|P是平面直角坐标系中的点},集合B={(x,y)|x∈R,y∈R},对应关系f:平面直角坐标系中的点与它的坐标对应;(3)集合A={x|x是三角形},集合B={x|x是圆},对应关系f:每一个三角形都对应它的内切圆;(4)集合A={x|x是新华中学的班级},集合B={x|x是新华中学的学生},对应法则f:每一个班级都对应班里的学生.解(1)按照建立数轴的方法可知,数轴上的任意一个点,都有唯一的实数与之对应,所以这个对应f:A→B是从集合A到集合B的一个映射.(2)按照建立平面直角坐标系的方法可知,平面直角坐标系中的任意一个点,都有唯一的一个实数对与之对应,所以这个对应f:A→B是从集合A到集合B的一个映射.(3)由于每一个三角形只有一个内切圆与之对应,所以这个对应f:A→B是从集合A到集合B的一个映射.(4)新华中学的每一个班级里的学生都不止一个,即与一个班级对应的学生不止一个,所以这个对应f:A→B不是从集合A到集合B的一个映射.规律方法映射是一种特殊的对应,它具有:(1)方向性:映射是有次序的,一般地从A到B的映射与从B到A的映射是不同的;(2)唯一性:集合A中的任意一个元素在集合B中都有唯一的元素与之对应,可以是:一对一,多对一,但不能一对多.【训练1】设集合A={x|1≤x≤2},B={x|1≤x≤4},则下述对应法则f中,不能构成从A 到B 的映射的是________. ①f :x →y =x 2 ②f :x →y =3x -2 ③f :x →y =-x +4④f :x →y =4-x 2解析 对于①,任一实数x 都有唯一的x 2与之对应,是映射,这个映射是一对一;对于②,任一x 都有唯一3x -2与之对应,是映射,一对一.③类似于②.对于④,当x =2时,由对应法则y =4-x 2得y =0,在集合B 中没有元素与之对应,所以④不能构成从A 到B 的映射. 答案 ④题型二 利用对应法则求对应元素【例2】 设集合A 和B 为坐标平面上的点集{(x ,y )|x ∈R ,y ∈R },映射f :A →B 使集合A 中的元素(x ,y )映射成集合B 中的元素(x +y ,xy ),那么(1,2)在映射f 作用下的对应元素为________;若在f 作用下的对应元素为(-2,-3),则它原来的元素为________.解析 根据映射的定义,当x =1,y =2时,x +y =3,xy =2,则(1,2)在映射f 作用下的对应元素为(3,2);由⎩⎨⎧ x +y =-2,xy =-3,得⎩⎨⎧ x =-3,y =1或⎩⎨⎧x =1,y =-3, 即(-2,-3)所对应的原来的元素为(-3,1)或(1,-3). 答案 (3,2) (-3,1)或(1,-3)规律方法 求一个映射(f :A →B )中,A 中元素在B 中的对应元素或B 中元素在A 中的对应元素的方法,主要是根据对应法则列方程或方程组求解.【训练2】 已知集合A =R ,B ={(x ,y )|x ,y ∈R },f :A →B 是从A 到B 的映射,f :x →(x +1,x 2+1),求A 中元素2在B 中的对应元素和B 中元素⎝ ⎛⎭⎪⎫32,54在A 中的对应元素.解 将x =2代入对应法则,可求出其在B 中的对应元素为(2+1,3). 由⎩⎪⎨⎪⎧x +1=32,x 2+1=54,可得x =12.所以2在B 中的对应元素为(2+1,3),⎝ ⎛⎭⎪⎫32,54在A 中的对应元素为12.【探究(1)从A 到B 可以建立多少个不同的映射?从B 到A 呢?(2)若f (a )+f (b )+f (c )=0,则从A 到B 的映射中满足条件的映射有几个? 解 (1)从A 到B 可以建立8个映射,如下图所示.从B 到A 可以建立9个映射,如图所示.(2)欲使f (a )+f (b )+f (c )=0,需a ,b ,c 中有两个元素对应-1,一个元素对应2,共可建立3个映射.【探究2】 已知集合A ={a ,b ,c },B ={1,2,3},映射f :A →B 满足A 中元素a 在B 中的对应元素是1,问这样的映射有几个. 解 由已知f (a )=1,所以,①f (b )=f (c )=1时有1个; ②f (b )=f (c )=2或f (b )=f (c )=3时各有1个,共2个; ③f (b )=1,f (c )=2时有1个; ④f (b )=1,f (c )=3时有1个; ⑤f (c )=1,f (b )=2时有1个; ⑥f (c )=1,f (b )=3时有1个; ⑦f (b )=2,f (c )=3时有1个; ⑧f (b )=3,f (c )=2时有1个. 综上可知,共有不同映射9个.【探究3】 已知从集合A 到集合B ={0,1,2,3}的映射f :x →1|x |-1,则集合A 中的元素最多有几个? 解 ∵f :x →1|x |-1是从集合A 到集合B 的映射, ∴A 中的每一个元素在集合B 中都应该有对应元素. 令1|x |-1=0,该方程无解,分别令1|x |-1=1,2,3, 解得x =±2,x =±32,x =±43, ∴集合A 中的元素最多有6个.【探究4】 设M ={a ,b ,c },N ={-2,0,2}. (1)求从M 到N 的映射个数;(2)从M 到N 的映射满足f (a )>f (b )≥f (c ),试确定这样的映射f 的个数. 解 (1)M 中元素a 可以对应N 中的-2,0,2中任意一个,有3种对应方法,同理,M 中元素b ,c 也各有3种对应方法.因此从M 到N 的映射个数为3×3×3=27. (2)满足f (a )>f (b )≥f (c )的映射是从M 到N 的特殊映射,可具体化,通过列表求解(如下表).故符合条件的映射有4规律方法 (1)映射是一种特殊的对应,一对一,多对一均为映射,但一对多不构成映射.(2)判断两个集合的一种对应能否构成函数,首先判断能否构成映射,且构成映射的两个集合都是数集,这样的映射才能构成函数.①如果集合A 中有m 个元素,集合B 中有n 个元素,那么从集合A 到集合B 的映射共有n m 个,从B 到A 的映射共有m n 个.②映射带有方向性,从A 到B 的映射与从B 到A 的映射是不同的.课堂达标1.若f :A 中元素(x ,y )对应B 中的元素(x +y ,x -y ),则B 中元素________与A 中元素(1,2)对应,A 中元素________与B 中元素(1,2)对应. 解析 由⎩⎨⎧1+2=3,1-2=-1,得B 中元素(3,-1)与A 中(1,2)对应.由⎩⎨⎧x +y =1,x -y =2,得⎩⎪⎨⎪⎧x =32,y =-12,所以A 中元素⎝ ⎛⎭⎪⎫32,-12与B 中元素(1,2)对应.答案 (3,-1) ⎝ ⎛⎭⎪⎫32,-122.设集合A ={1,2,3},集合B ={-1,-2,-3},试问,从集合A 到集合B 的不同映射有________个.解析 每个元素都有3种对应,所以3×3×3=27. 答案 273.设f ,g 都是由A 到A 的映射,其对应法则如下表: 映射f 的对应法则如下:映射g则f (g (1))=________. 解析 因为g (1)=4, 所以f (g (1))=f (4)=1. 答案 14.设f :x →x 2是集合A 到集合B 的函数,若B ={1},则A ∩B =________. 解析 由f :x →x 2是集合A 到集合B 的函数,如果B ={1},则A ={-1,1}或A={-1}或A={1},所以A∩B=∅或{1}.答案∅或{1}5.已知B={-1,3,5},若集合A使得f:x→3x-2是A到B的映射,求集合A. 解由f:x→3x-2,分别令:3x-2=-1,3x-2=3,3x-2=5,得x=13,53,73.∴A是集合{13,53,73}的非空子集.即A为:{13},{53},{73},{13,53},{13,73},{53,73},{13,53,73},共7个.课堂小结对映射定义的理解(1)A、B必须是非空集合(可以是数集,也可以是其他集合);(2)对应关系有“方向性”,即从集合A到集合B的对应与从B到A的对应关系一般是不同的;(3)集合A中每一个元素,在集合B中必须有对应元素,并且对应元素是唯一的;(4)集合A中不同元素,在集合B中对应的元素可以是相同的;(5)不要求集合B中的每一个元素在集合A中都有对应元素.。
新人教版高一数学必修一目录

新人教版高一数学必修一目录
一、第一章函数
1. 基本概念
2. 函数的表示法
3. 函数的图象
4. 函数的性质
二、第二章曲线
1. 曲线的表示法
2. 曲线的切线
3. 兰联形曲线
4. 椭圆曲线
5. 双曲线
三、第三章相关与回归
1. 相关系数
2. 线性回归与回归直线
四、第四章初等函数
1. 指定法求方程的根
2. 二次函数及加减乘除法
3. 牛顿迭代法求方程的根
五、第五章指数函数
1. 指数函数的基本性质
2. 常用指数函数
3. 对数函数及其应用
六、第六章对数函数及其应用
1. 对数函数的基本性质
2. 对数函数及其应用
七、第七章几何极限
1. 无穷小分析法
2. 无穷量极限
3. 二元函数极限
4. 级数的极限
八、第八章函数的微分
1. 导数的概念
2. 定义型微分
3. 导数的性质及应用
九、第九章函数的积分
1. 定积分及其应用问题
2. 微积分的应用ii
3. 曲线的积分性质。
高一数学必修一 教案 2.3 二次函数与一元二次方程、不等式

2.3 二次函数与一元二次方程、不等式第1课时二次函数与一元二次方程、不等式学习目标 1.从函数观点看一元二次方程.了解函数的零点与方程根的关系.2.从函数观点看一元二次不等式.经历从实际情景中抽象出一元二次不等式的过程,了解一元二次不等式的现实意义.3.借助一元二次函数的图象,了解一元二次不等式与相应函数、方程的联系.知识点一一元二次不等式的概念定义只含有一个未知数,并且未知数的最高次数是2的不等式,叫做一元二次不等式一般形式ax2+bx+c>0,ax2+bx+c<0,ax2+bx+c≥0,ax2+bx+c≤0,其中a≠0,a,b,c均为常数知识点二一元二次函数的零点一般地,对于二次函数y=ax2+bx+c,我们把使ax2+bx+c=0的实数x叫做二次函数y=ax2+bx+c 的零点.知识点三二次函数与一元二次方程的根、一元二次不等式的解集的对应关系判别式Δ=b2-4ac Δ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象一元二次方程ax2+bx+c=0(a>0)的根有两个不相等的实数根x1,x2(x1<x2)有两个相等的实数根x1=x2=-b2a没有实数根ax2+bx+c>0(a>0)的解集{x|x<x1,或x>x2}⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x⎪⎪⎪x≠-b2aRax2+bx+c<0(a>0)的解集{x|x1<x<x2}∅∅预习小测自我检验1.下面所给关于x的几个不等式:①3x+4<0;②x2+mx-1>0;③ax2+4x-7>0;④x2<0.其中一定为一元二次不等式的有________.(填序号) 答案 ②④解析 一定是一元二次不等式的为②④. 2.不等式x (2-x )>0的解集为________. 答案 {x |0<x <2}解析 原不等式可化为x (x -2)<0,∴0<x <2. 3.不等式4x 2-9<0的解集是________.答案 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-32<x <32 解析 原不等式可化为x 2<94,即-32<x <32.4.已知一元二次不等式ax 2+2x -1<0的解集为R ,则a 的取值范围是________. 答案 {a |a <-1} 解析 由题意知⎩⎪⎨⎪⎧a <0,Δ<0,∴⎩⎪⎨⎪⎧a <0,4+4a <0,∴a <-1.一、解不含参数的一元二次不等式 例1 解下列不等式: (1)-x 2+5x -6>0; (2)3x 2+5x -2≥0; (3)x 2-4x +5>0.解 (1)不等式可化为x 2-5x +6<0.因为Δ=(-5)2-4×1×6=1>0,所以方程x 2-5x +6=0有两个实数根:x 1=2,x 2=3. 由二次函数y =x 2-5x +6的图象(如图①),得原不等式的解集为{x |2<x <3}.(2)因为Δ=25-4×3×(-2)=49>0,所以方程3x 2+5x -2=0的两实根为x 1=-2,x 2=13.由二次函数y =3x 2+5x -2的图象(图②),得原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤-2或x ≥13. (3)方程x 2-4x +5=0无实数解,函数y =x 2-4x +5的图象是开口向上的抛物线,与x 轴无交点(如图③).观察图象可得,不等式的解集为R .反思感悟 解一元二次不等式的一般步骤第一步:把一元二次不等式化为标准形式(二次项系数为正,右边为0的形式);第二步:求Δ=b 2-4ac ;第三步:若Δ<0,根据二次函数图象直接写出解集;若Δ≥0,求出对应方程的根写出解集. 跟踪训练1 解下列不等式: (1)4x 2-4x +1>0; (2)-x 2+6x -10>0.解 (1)∵方程4x 2-4x +1=0有两个相等的实根x 1=x 2=12.作出函数y =4x 2-4x +1的图象如图.由图可得原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠12.(2)原不等式可化为x 2-6x +10<0, ∵Δ=36-40=-4<0, ∴方程x 2-6x +10=0无实根, ∴原不等式的解集为∅.二、三个“二次”间的关系及应用例2 已知二次函数y =ax 2+(b -8)x -a -ab ,且y >0的解集为{x |-3<x <2}. (1)求二次函数的解析式;(2)当关于x 的不等式ax 2+bx +c ≤0的解集为R 时,求c 的取值范围. 解 (1)因为y >0的解集为{x |-3<x <2},所以-3,2是方程ax 2+(b -8)x -a -ab =0的两根,所以⎩⎪⎨⎪⎧-3+2=-b -8a,-3×2=-a -aba,解得⎩⎪⎨⎪⎧a =-3,b =5,所以y =-3x 2-3x +18.(2)因为a =-3<0,所以二次函数y =-3x 2+5x +c 的图象开口向下,要使-3x 2+5x +c ≤0的解集为R ,只需Δ≤0,即25+12c ≤0,所以c ≤-2512.所以当c ≤-2512时,-3x 2+5x +c ≤0的解集为R .反思感悟 三个“二次”之间的关系(1)三个“二次”中,二次函数是主体,讨论二次函数主要是将问题转化为一元二次方程和一元二次不等式的形式来研究.(2)讨论一元二次方程和一元二次不等式又要将其与相应的二次函数相联系,通过二次函数的图象及性质来解决问题,关系如下:特别提醒:由于忽视二次项系数的符号和不等号的开口易写错不等式的解集形式. 跟踪训练2 已知关于x 的不等式ax 2+5x +c >0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪13<x <12. (1)求a ,c 的值;(2)解关于x 的不等式ax 2+(ac +2)x +2c ≥0.解 (1)由题意知,不等式对应的方程ax 2+5x +c =0的两个实数根为13和12,由根与系数的关系,得⎩⎪⎨⎪⎧-5a =13+12,c a =12×13,解得a =-6,c =-1.(2)由a =-6,c =-1知不等式ax 2+(ac +2)x +2c ≥0可化为-6x 2+8x -2≥0,即3x 2-4x +1≤0,解得13≤x ≤1,所以不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪13≤x ≤1. 三、含参数的一元二次不等式的解法例3 设a ∈R ,解关于x 的不等式ax 2+(1-2a )x -2>0.解 (1)当a =0时,不等式可化为x -2>0,解得x >2,即原不等式的解集为{x |x >2}. (2)当a ≠0时,方程ax 2+(1-2a )x -2=0的两根分别为2和-1a.①当a <-12时,解不等式得-1a<x <2,即原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1a <x <2;②当a =-12时,不等式无解,即原不等式的解集为∅;③当-12<a <0时,解不等式得2<x <-1a,即原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2<x <-1a ; ④当a >0时,解不等式得x <-1a或x >2,即原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-1a 或x >2. 反思感悟 解含参数的一元二次不等式的步骤特别提醒:对应方程的根优先考虑用因式分解确定,分解不开时再求判别式Δ,用求根公式计算. 跟踪训练3 (1)当a =12时,求关于x 的不等式x 2-⎝ ⎛⎭⎪⎫a +1a x +1≤0的解集;(2)若a >0,求关于x 的不等式x 2-⎝⎛⎭⎪⎫a +1a x +1≤0的解集.解 (1)当a =12时,有x 2-52x +1≤0,即2x 2-5x +2≤0,解得12≤x ≤2,故不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12≤x ≤2. (2)x 2-⎝⎛⎭⎪⎫a +1a x +1≤0⇔⎝ ⎛⎭⎪⎫x -1a (x -a )≤0,①当0<a <1时,a <1a ,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪a ≤x ≤1a; ②当a =1时,a =1a=1,不等式的解集为{1};③当a >1时,a >1a,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 1a≤x ≤a. 综上,当0<a <1时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪a ≤x ≤1a ; 当a =1时,不等式的解集为{1};当a >1时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1a≤x ≤a.1.不等式9x 2+6x +1≤0的解集是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠-13 B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-13≤x ≤13 C .∅ D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =-13 答案 D解析 原不等式可化为(3x +1)2≤0, ∴3x +1=0,∴x =-13.2.如果关于x 的不等式x 2<ax +b 的解集是{x |1<x <3},那么b a等于( ) A .-81 B .81 C .-64 D .64 答案 B解析 不等式x 2<ax +b 可化为x 2-ax -b <0, 其解集是{x |1<x <3},那么,由根与系数的关系得⎩⎪⎨⎪⎧1+3=a ,1×3=-b ,解得a =4,b =-3;所以b a=(-3)4=81.故选B. 3.不等式x 2-2x >0的解集是( ) A .{x |x ≥2或x ≤0} B .{x |x >2或x <0} C .{x |0≤x ≤2} D .{x |0<x <2}答案 B解析 解x 2-2x >0,即x (x -2)>0, 得x >2或x <0,故选B.4.不等式x 2-3x -10<0的解集是________. 答案 {x |-2<x <5}解析 由于x 2-3x -10=0的两根为-2,5,故x 2-3x -10<0的解集为{x |-2<x <5}.5.若方程x 2+(m -3)x +m =0有实数解,则m 的取值范围是________________. 答案 {m |m ≥9或m ≤1}解析 由方程x 2+(m -3)x +m =0有实数解, ∴Δ=(m -3)2-4m ≥0, 即m 2-10m +9≥0, ∴(m -9)(m -1)≥0, ∴m ≥9或m ≤1.1.知识清单:解一元二次不等式的常见方法 (1)图象法:①化不等式为标准形式:ax 2+bx +c >0(a >0)或ax 2+bx +c <0(a >0);②求方程ax 2+bx +c =0(a >0)的根,并画出对应函数y =ax 2+bx +c 图象的简图; ③由图象得出不等式的解集.(2)代数法:将所给不等式化为一般式后借助分解因式或配方求解. 2.方法归纳:数形结合,分类讨论.3.常见误区:当二次项系数小于0时,需两边同乘-1,化为正的.1.(2019·全国Ⅰ)已知集合M ={x |-4<x <2},N ={x |x 2-x -6<0},则M ∩N 等于( ) A .{x |-4<x <3} B .{x |-4<x <-2} C .{x |-2<x <2} D .{x |2<x <3}答案 C解析 ∵N ={x |-2<x <3},M ={x |-4<x <2}, ∴M ∩N ={x |-2<x <2},故选C.2.若0<m <1,则不等式(x -m )⎝⎛⎭⎪⎫x -1m <0的解集为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1m <x <m B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >1m 或x <m C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >m 或x <1m D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪m <x <1m 答案 D解析 ∵0<m <1,∴1m>1>m ,故原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪m <x <1m ,故选D. 3.二次方程ax 2+bx +c =0的两根为-2,3,如果a <0,那么ax 2+bx +c >0的解集为( ) A .{x |x >3或x <-2} B .{x |x >2或x <-3} C .{x |-2<x <3} D .{x |-3<x <2}答案 C解析 由题意知-2+3=-ba ,-2×3=c a, ∴b =-a ,c =-6a ,∴不等式ax 2+bx +c >0可化为ax 2-ax -6a >0, 又a <0,∴x 2-x -6<0,∴(x -3)(x +2)<0, ∴-2<x <3,故选C.4.若不等式5x 2-bx +c <0的解集为{x |-1<x <3},则b +c 的值是( ) A .5 B .-5 C .-25 D .10 答案 B解析 由题意知-1,3为方程5x 2-bx +c =0的两根, ∴-1+3=b 5,-3=c5,∴b =10,c =-15,∴b +c =-5.故选B.5.若关于x 的二次不等式x 2+mx +1≥0的解集为R ,则实数m 的取值范围是( ) A .{m |m ≤-2或m ≥2} B .{m |-2≤m ≤2} C .{m |m <-2或m >2} D .{m |-2<m <2}答案 B解析 ∵x 2+mx +1≥0的解集为R , ∴Δ=m 2-4≤0,∴-2≤m ≤2,故选B. 6.不等式x 2-4x +4≤0的解集是________. 答案 {2}解析 原不等式可化为(x -2)2≤0,∴x =2. 7.不等式x 2+3x -4<0的解集为________. 答案 {x |-4<x <1}解析 易得方程x 2+3x -4=0的两根为-4,1,所以不等式x 2+3x -4<0的解集为{x |-4<x <1}.8.关于x 的不等式(mx -1)(x -2)>0,若此不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1m<x <2,则m 的取值范围是________. 答案 {m |m <0}解析 ∵不等式(mx -1)(x -2)>0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1m <x <2,∴方程(mx -1)(x -2)=0的两个实数根为1m和2,且⎩⎪⎨⎪⎧m <0,1m<2,解得m <0,∴m 的取值范围是m <0.9.已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B . (1)求A ∩B ;(2)若不等式x 2+ax +b <0的解集为A ∩B ,求不等式ax 2+x +b <0的解集. 解 (1)由x 2-2x -3<0,得-1<x <3, ∴A ={x |-1<x <3}. 由x 2+x -6<0,得-3<x <2,∴B ={x |-3<x <2},∴A ∩B ={x |-1<x <2}.(2)由题意,得⎩⎪⎨⎪⎧1-a +b =0,4+2a +b =0,解得⎩⎪⎨⎪⎧a =-1,b =-2.∴-x 2+x -2<0,∴x 2-x +2>0, ∵Δ=1-8=-7<0,∴不等式x 2-x +2>0的解集为R .10.若不等式(1-a )x 2-4x +6>0的解集是{x |-3<x <1}. (1)解不等式2x 2+(2-a )x -a >0; (2)b 为何值时,ax 2+bx +3≥0的解集为R?解 (1)由题意知1-a <0,且-3和1是方程(1-a )x 2-4x +6=0的两根,∴⎩⎪⎨⎪⎧1-a <0,41-a=-2,61-a =-3,解得a =3.∴不等式2x 2+(2-a )x -a >0,即为2x 2-x -3>0, 解得x <-1或x >32.∴所求不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-1或x >32. (2)ax 2+bx +3≥0,即为3x 2+bx +3≥0, 若此不等式解集为R ,则Δ=b 2-4×3×3≤0,∴-6≤b ≤6.11.下列四个不等式:①-x 2+x +1≥0;②x 2-25x +5>0;③x 2+6x +10>0;④2x 2-3x +4<1. 其中解集为R 的是( ) A .① B .② C .③ D .④ 答案 C解析 ①显然不可能;②中Δ=(-25)2-4×5>0,解集不为R ; ③中Δ=62-4×10<0.满足条件;④中不等式可化为2x 2-3x +3<0,所对应的二次函数开口向上,显然不可能.故选C.12.在R 上定义运算“⊙”:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围为( ) A .{x |0<x <2} B .{x |-2<x <1} C .{x |x <-2或x >1} D .{x |-1<x <2}答案 B解析 根据给出的定义得,x ⊙(x -2)=x (x -2)+2x +(x -2)=x 2+x -2=(x +2)(x -1), 又x ⊙(x -2)<0,则(x +2)(x -1)<0, 故不等式的解集是{x |-2<x <1}.13.若关于x 的方程(a -2)x 2-2(a -2)x +1=0无实数解,则a 的取值范围是________. 答案 2≤a <3解析 若a -2=0,即a =2时,原方程为1=0不合题意, ∴a =2满足条件,若a -2≠0,则Δ=4(a -2)2-4(a -2)<0, 解得2<a <3,综上有a 的取值范围是2≤a <3.14.已知不等式x 2-2x +5≥a 2-3a 对∀x ∈R 恒成立,则a 的取值范围为________. 答案 {a |-1≤a ≤4}解析 x 2-2x +5=(x -1)2+4≥a 2-3a 恒成立, ∴a 2-3a ≤4,即a 2-3a -4≤0, ∴(a -4)(a +1)≤0,∴-1≤a ≤4.15.在R 上定义运算:⎪⎪⎪⎪⎪⎪a b cd =ad -bc .若不等式⎪⎪⎪⎪⎪⎪x -1 a -2a -1 x ≥1对任意实数x 恒成立,则实数a 的最大值为________. 答案 32解析 原不等式等价于x (x -1)-(a -2)(a +1)≥1,即x 2-x -1≥(a +1)(a -2)对任意x 恒成立,因为x 2-x -1=⎝ ⎛⎭⎪⎫x -122-54≥-54, 所以-54≥a 2-a -2,解得-12≤a ≤32. 16.已知不等式ax 2+2ax +1≥0对任意x ∈R 恒成立,解关于x 的不等式x 2-x -a 2+a <0.解 ∵ax 2+2ax +1≥0对任意x ∈R 恒成立.当a =0时,1≥0,不等式恒成立;当a ≠0时,则⎩⎪⎨⎪⎧ a >0,Δ=4a 2-4a ≤0,解得0<a ≤1.综上,0≤a ≤1.由x 2-x -a 2+a <0,得(x -a )[x -(1-a )]<0.∵0≤a ≤1,∴①当1-a >a ,即0≤a <12时,a <x <1-a ; ②当1-a =a ,即a =12时,⎝ ⎛⎭⎪⎫x -122<0,不等式无解; ③当1-a <a ,即12<a ≤1时,1-a <x <a . 综上,当0≤a <12时,原不等式的解集为{x |a <x <1-a };当a =12时,原不等式的解集为∅;当12<a ≤1时,原不等式的解集为{x |1-a <x <a }.。
人教版高中数学必修1课件全册

因此,函数就是表达了两个变量之间变化关系的一个表达式。其准 确定义如下:
设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集 合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么 就称f:A→B为集合A到集合B的一个函数(function),记作y=f(x), x∈A。
其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相 对应的y值叫做函数值(因变量),函数值的集合{f(x)|x ∈A}叫做函数 的值域。而对应的关系f则成为对应法则,则上面两个例子中,对应法则 分别是“乘以10再加20”和“平方后乘以4.9”
{ 例题、不等式组
2x-1>0 3x-6 0
的解集为A,U=R,试求A及CUA,并把它们
分别表示在数轴上。
A={x|1/2<x<2},CuA={x|x≤1/2,x≥2}
思考:
1、CUA在U中的补集是什么?
A
2、U=Z,A={x|x=2k,k∈Z}, B={x|x=2k+1,K∈Z},则CUA=_B__, CUB=__A__。
解: A∪B={x|-1<x<2} ∪ {x|1<x<3} ={x|-1<x<3}
-1 1 2 3
并集的运算性质:
(1) A A A (2) A A (3) A B B A (4) A A B, B A B, A B A B (5) A B则A B B
注意:计算并集和交集的时候尽可能的转化为图像,减少 犯错的几率,常用的图像有Venn图,数轴表示法,坐标表 示法。尤其是涉及到不等式和坐标点的时候。
6、已知A {x | x 2 3x 2 0},B {x | x 2 ax a 1 0}若A B A,求实数a的值.
高中数学人教版必修一《2-3》课件

分析:(1)利用 y=x 的单调性比较大小;(2)利用 y=x-1 的单调性比 较大小;(3)利用中间量
1 2
比较大小.
ห้องสมุดไป่ตู้
上一页
返回首页
下一页
-16-
探究一
探究二
探究三
1 2
思维辨析
解:(1)∵幂函数 y=������ 在 [0,+∞)上是增函数 , 又 > ,∴
5 3 2 1
(2)∵幂函数 y=x-1 在(-∞,0)上是减函数 , 2 3 又 - <- ,
∴ ∴
3 4 3 4
> >
1 2 1 2
. .
上一页 返回首页 下一页
-17-
探究一
探究二
探究三
思维辨析
上一页
返回首页
下一页
-18-
探究一
探究二
探究三
思维辨析
变式训练 3 列:2 ,
2 3
把下列各数按由小到大的顺序排 , 2 3 3
5 -3 3 3
1
,
解: -
2 3
<0,0<
2 3
3 3 . 2 1 5
上一页
返回首页
下一页
-7-
探究一
探究二
探究三
思维辨析
上一页
返回首页
下一页
-8-
探究一
探究二
探究三
思维辨析
变式训练1 已知f(x)=(m2-m-1)
-2������ -2 ������ ������ ,问当 m为何值时,f(x)既是幂函数又是偶函
2
数? 解:∵f(x)是幂函数,∴m2-m-1=1, ∴m=2或m=-1. 当m=2时,m2-2m-2=-2,此时f(x)=x-2为偶函数. 当m=-1时,m2-2m-2=1,此时f(x)=x为奇函数,不合题意. 综上所述,m的值为2.
最新人教A版高中数学必修一第三章函数的概念与性质 第2节函数的基本性质 第3课时函数奇偶性的概念

3.2.2 奇偶性第1课时 函数奇偶性的概念教材要点要点1.偶函数的概念一般地,设函数f (x )的定义域为I ,如果∀x ∈I ,都有-x ∈I ,且f (-x )=f (x ),那么函数f (x )就叫做偶函数.2.奇函数的概念一般地,设函数f (x )的定义域为I ,如果∀x ∈I ,都有-x ∈I ,且f (-x )=-f (x ),那么函数f (x )就叫做奇函数.3.奇、偶函数的图象特征(1)奇函数的图象关于________成中心对称图形;反之,如果一个函数的图象是以坐标原点为对称中心的中心对称图形,则这个函数是奇函数.(2)偶函数的图象关于________对称;反之,如果一个函数的图象关于y 轴对称,则这个函数是偶函数.状元随笔 奇偶函数的定义域关于原点对称,反之,若定义域不关于原点对称,则这个函数一定不具有奇偶性.基础自测1.思考辨析(正确的画“√”,错误的画“×”)(1)已知f (x )是定义在R 上的函数.若f (-1)=f (1),则f (x )一定是偶函数.( ) (2)奇函数的图象一定过原点.( )(3)偶函数的图象与x 轴交点的个数一定是偶数.( ) (4)f (x )是定义在R 上的奇函数,则f (0)=0.( ) 2.下列函数为奇函数的是( ) A .y =|x | B .y =3-xC .y =1x 3 D .y =-x 2+143.若函数y =f (x ),x∈[-2,a ]是偶函数,则a 的值为( ) A .-2 B .2C .0D .不能确定4.下列图象表示的函数是奇函数的是________,是偶函数的是________.(填序号)题型1 函数奇偶性的判断 例1 判断下列函数的奇偶性 (1)f (x )=√1−x 2+√x 2−1; (2)f (x )=2x 2+xx+1;(3)f (x )=x 2−1|x|;(4)f (x )={x (1−x ),x <0x (1+x ),x >0.方法归纳判断函数奇偶性的方法(1)定义法:根据函数奇偶性的定义进行判断.步骤如下:①判断函数f (x )的定义域是否关于原点对称.若不对称,则函数f (x )为非奇偶函数,若对称,则进行下一步.②验证.f (-x )=-f (x )或f (-x )=f (x ). ③下结论.若f (-x )=-f (x ),则f (x )为奇函数; 若f (-x )=f (x ),且f (x )为偶函数;若f (-x )≠-f (x ),且f (-x )≠f (x ),则f (x )为非奇非偶函数.(2)图象法:f (x )是奇(偶)函数的等价条件是f (x )的图象关于原点(y 轴)对称. 跟踪训练1 (1)(多选)下列函数中,是偶函数的是( )A .y =√1+x 2B .y =x +1x C .y =x 2+1x 2 D .y =x +x 2 (2)函数f (x )={12x 2+1,x >0,−12x 2−1,x <0是()A .奇函数B .偶函数C .既是奇函数又是偶函数D .既不是奇函数也不是偶函数 题型2 函数奇偶性的图象特征例2 已知函数y =f (x )是定义在R 上的偶函数,且当x ≤0时,f (x )=x 2+2x .现已知画出函数f (x )在y 轴左侧的图象,如图所示.(1)请补出完整函数y =f (x )的图象.(2)根据图象写出函数y =f (x )的递增区间.(3)根据图象写出使y =f (x )<0的x 的取值范围.方法归纳1.巧用奇偶性作函数图象的步骤 (1)确定函数的奇偶性.(2)作出函数在[0,+∞)(或(-∞,0])上对应的图象.(3)根据奇(偶)函数关于原点(y 轴)对称得出在(-∞,0](或[0,+∞))上对应的函数图象. 2.奇偶函数图象的应用类型及处理策略(1)类型:利用奇偶函数的图象可以解决求值、比较大小及解不等式问题.(2)策略:利用函数的奇偶性作出相应函数的图象,根据图象直接观察.跟踪训练2 设奇函数f (x )的定义域为[-5,5],若当x ∈[0,5]时,f (x )的图象如图,则不等式f (x )<0的解集是________.题型3 利用函数奇偶性求值 角度1 利用函数的奇偶性求参数例3 (1)已知函数f (x )=x 2-(2-m )x +3为偶函数,则m 的值是( ) A .1 B .2 C .3 D .4(2)函数f (x )=x+2a+3x 2+8为奇函数,则实数a =( )A .-1B .1C .-32D .32角度2 利用函数的奇偶性求函数值例4 (1)已知函数f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+2,则f (1)+g (1)=( )A .-2B .-1C .1D .2(2)已知函数f (x )=ax 3+bx +3,且f (-2)=10,则函数f (2)的值是________.方法归纳1.已知函数的奇偶性求参数值的三种思路(1)若表示定义域的区间含有参数,则可利用对称性列出关于参数的方程.(2)一般化策略:对x 取定义域内的任一个值,利用f (-x )与f (x )的关系式恒成立来确定参数的值.(3)特殊化策略:根据定义域内关于原点对称的特殊自变量值对应的函数值的关系列方程求解,不过,这种方法求出的参数值要代入解析式检验,看是否满足条件,不满足的要舍去.2.利用函数的奇偶性求函数值的方法已知函数的某一个值,求对应的函数值时,常利用函数的奇偶性或部分函数的奇偶性求值.跟踪训练3 (1)设函数f (x )=(x+1)(x+a )x为奇函数,则a =________.(2)若函数f (x )=ax 2+bx +3a +b 是偶函数,定义域为[a -2,2a ],则a =________,b =________.(3)已知f (x )=x 5+ax 3+bx -8,且f (-2)=10,则f (2)=________. 易错辨析 忽视函数的定义域致误例5 关于函数f (x )=√x 2−4+√4−x 2与h (x )=√x −4+√4−x 的奇偶性,下列说法正确的是( )A .两函数均为偶函数B .两函数都既是奇函数又是偶函数C .函数f (x )是偶函数,h (x )是非奇非偶函数D .函数f (x )既是奇函数又是偶函数,h (x )是非奇非偶函数解析:函数f (x )=√x 2−4+√4−x 2的定义域满足{x 2−4≥0,4−x 2≥0,即x 2=4,因此函数f (x )的定义域为{-2,2},关于原点对称,此时f (x )=0,满足f (-x )=-f (x ),f (-x )=f (x ),所以函数f (x )既是奇函数又是偶函数,而函数h (x )=√x −4+√4−x 的定义域为{4},不关于原点对称,因此函数h (x )是非奇非偶函数.故选D.答案:D课堂十分钟1.(多选)下列函数是奇函数的有( )A .y =x 3+√x 3B .y =1x (x >0)C .y =x 3+1D .y =x 2+1x2.函数f (x )=√1−x 2|x+3|−3的奇偶性是( ) A .奇函数 B .偶函数C.既不是奇函数也不是偶函数D.既是奇函数又是偶函数3.函数y=4xx2+1的图象大致为()4.已知函数f(x)={−x2+x,x>0,ax2+x,x<0是奇函数,则a=________.5.已知奇函数f(x)的定义域为[-5,5],且在区间[0,5]上的图象如图所示.(1)画出在区间[-5,0]上的图象;(2)写出使f(x)<0的x的取值集合.3.2.2 奇偶性第1课时 函数奇偶性的概念 新知初探·课前预习要点3.原点 y 轴[基础自测]1.答案:(1)× (2)× (3)× (4)√ 2.答案:C 3.答案:B4.答案:(2)(4) (1)(3)题型探究·课堂解透例1 解析:(1)函数f (x )=√1−x 2+√x 2−1的定义域为{-1,1},关于原点对称,此时f (x )=0,所以函数f (x )=√1−x 2+√x 2−1既是奇函数又是偶函数.(2)函数f (x )的定义域是(-∞,-1)∪(−1,+∞),不关于原点对称,∴f (x )是非奇非偶函数.(3)函数f (x )=x 2−1|x|的定义域为(-∞,0)∪(0,+∞),关于原点对称.又f (-x )=(−x )2−1|−x|=x 2−1x =f (x ),所以函数f (x )=x 2−1|x |是偶函数.(4)方法一:∵函数f (x )的定义域是(-∞,0)∪(0,+∞),关于原点对称. 当x >0时,-x <0,∴f (-x )=(-x )[1-(-x )]=-x (1+x )=-f (x ). 当x <0时,-x >0, ∴f (-x )=-x (1-x )=-f (x ). ∴函数f (x )为奇函数.方法二:作出函数的图象,如图所示的实线部分:由图可知,该函数为奇函数.跟踪训练1 解析:(1)由偶函数的定义可知AC 是偶函数.故选AC.(2)函数的定义域为(-∞,0)∪(0,+∞),关于原点对称.当x >0时,-x <0,f (-x )=-12(-x )2-1=-(12x 2+1)=-f (x );当x <0时,-x >0,f (-x )=12(-x )2+1=12x 2+1=-(-12x 2-1)=-f (x ). 综上可知,函数f (x )={12x 2+1,x >0,−12x 2−1,x <0是奇函数.故选A. 答案:(1)AC (2)A例2 解析:(1)由题意作出函数图象如图:(2)据图可知,单调递增区间为(-1,0),(1,+∞).(3)据图可知,使f (x )<0的x 的取值范围为(-2,0)∪(0,2).跟踪训练2 解析:由奇函数的性质知,其图象关于原点对称,则f (x )在定义域[-5,5]上的图象如图,由图可知不等式f (x )<0的解集为{x |-2<x <0或2<x ≤5}.答案:{x |-2<x <0或2<x ≤5}例3 解析:(1)f (-x )=(-x )2-(2-m )(-x )+3=x 2+(2-m )x +3,由函数y =f (x )为偶函数,知f (-x )=f (x ),即x 2+(2-m )x +3=x 2-(2-m )x +3,∴2-m =-(2-m ),∴m =2.故选B.(2)由题意f (x )为奇函数,则f (0)=0,即0+2a +3=0,∴a =-32.此时f (x )=xx 2+8为奇函数.故选C.答案:(1)B (2)C例4 解析:(1)∵f (x )-g (x )=x 3+x 2+2, 由-x 代入x 得:f (-x )-g (-x )=-x 3+x 2+2 由题意知f (-x )=f (x ),g (-x )=-g (x ), ∴f (x )+g (x )=-x 3+x 2+2,所以f (1)+g (1)=-1+1+2=2.故选D. (2)令g (x )=ax 3+bx∵g (-x )=a (-x 3)+b (-x )=-ax 3-bx =-(ax 3+bx )=-g (x ), ∴g (x )为奇函数.∴f (-x )=g (-x )+3=-g (x )+3, ∴g (2)=-7,∴f (2)=g (2)+3=-7+3=-4. 答案:(1)D (2)-4跟踪训练3 解析:(1)方法一(定义法) 由已知f (-x )=-f (x ), 即(−x+1)(−x+a )−x=-(x+1)(x+a )x.显然x ≠0得,x 2-(a +1)x +a =x 2+(a +1)x +a , 故a +1=0,得a =-1.(经检验满足题意) 方法二(特值法) 由f (x )为奇函数得 f (-1)=-f (1), 即(−1+1)(−1+a )−1=-(1+1)(1+a )1,整理得a =-1.解析:(2)由f (x )为偶函数知,其定义域关于原点对称, 故有a -2+2a =0,解得a =23.又f (x )为偶函数,所以其图象关于y 轴对称, 即-b2a =0,解得b =0. (3)令g (x )=x 5+ax 3+bx , 则g (x )是定义在R 上的奇函数. 从而g (-2)=-g (2).又f (x )=g (x )-8,∴f (-2)=g (-2)-8=10. ∴g (-2)=18,∴g (2)=-g (-2)=-18. ∴f (2)=g (2)-8=-18-8=-26. 答案:(1)-1 (2)23 0 (3)-26[课堂十分钟]1.答案:AD 2.答案:A 3.答案:A 4.答案:15.解析:(1)如图,在[0,5]上的图象上选取5个关键点O ,A ,B ,C ,D .分别描出它们关于原点的对称点O ′,A ′,B ′,C ′,D ′, 再用光滑曲线连接即得.(2)由(1)图可知,当且仅当x ∈(-2,0)∪(2,5)时,f (x )<0. ∴使f (x )<0的x 的取值集合为(-2,0)∪(2,5).。
数学人教版高一必修一电子课本

第一章 集合与常用逻辑用语
1.1集合
1.1.1集合及其表示方法
1.1.2集合的基本关系
1.1.3集合的基本运算
1.2 常用逻辑用语
1.2.1命题与量词
1.2.2 全称量词命题与存在量词命题的否定
1.2.3 充分条件、必要条件
第二章 等式与不等式
2.1等式
2.1.1 等式的性质与方程的解集
2.1.2一元二次方程的解集及其根与系数的关系
2.1.3方程组的解集
2.2不2.2.2不等式的解集
2.2.3一元二次不等式的解法
2.2.4均值不等式及其应用
第三章 函数
3.1函数的概念与性质
3.1.1 函数及其表示方法
3.1.2 函数的单调性
3.1.3 函数的奇偶性
3.2函数与方程、不等式之间的关系
3.3函数的应用(一)
3.4数学建模活动:决定苹果的最佳出售时间点
人教版数学必修一第三章知识点总结

人教版数学必修一第三章知识点总结平时数学考试会发现,马虎精彩导致算错,所以要想提高数学成绩,一定要注意细节。
在考试的过程做到不该丢的不能丢,分分计较。
下面是整理的人教版数学必修一第三章知识点,仅供参考希望能够帮助到大家。
人教版数学必修一第三章知识点1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。
即:方程有实数根函数的图象与轴有交点函数有零点.3、函数零点的求法:求函数的零点:1(代数法)求方程的实数根;2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.4、二次函数的零点:二次函数.1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.3)△0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.数学映射、函数、反函数知识点1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射.2、对于函数的概念,应注意如下几点:(1)掌握构成函数的三要素,会判断两个函数是否为同一函数.(2)掌握三种表示法——列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式.(3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数.3、求函数y=f(x)的反函数的一般步骤:(1)确定原函数的值域,也就是反函数的定义域;(2)由y=f(x)的解析式求出x=f-1(y);(3)将x,y对换,得反函数的习惯表达式y=f-1(x),并注明定义域.注意①:对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起.②熟悉的应用,求f-1(x0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算.数学的学习方法1、养成良好的学习数学习惯。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[答案] C [解析] 直线对应函数y=x,曲线对应函数为y=x-1,1≠-1.故A 错;直线对应函数为y=2x,曲线对应函数为y=x,2≠.故B错;直线对 应函数为y=2x,曲线对应函数为y=x2,2=2.故C对;直线对应函数为y =-x,曲线对应函数为y=x3,-1≠3.故D错. 7.(2010·安徽文,7)设a=(),b=(),c=(),则a,b,c的大小关系
2≤0,即-1≤m≤2,故m=2或1. 5.
函数y=xa,y=xb,y=xc的图象如图所示,则实数a、b、c的大小 关系为( ) A.c<b<a B.a<b<c C.b<c<a D.c<a<b [答案] A 6.函数y=xα与y=αx(α∈{-1,,2,3})的图象只可能是下面中的 哪一个( )
意. 11.设f(x)=(m-1)x ,如果f(x)是正比例函数,那么m= ________;如果f(x)是反比例函数,那么m=________;如果f(x)是幂函 数,那么m=________. [答案] ± -1 2 [解析] 若f(x)是正比例函数,则即m=±;若f(x)是反比例函数,则 即m=-1;若f(x)是幂函数,则m-1=1,即m=2. 12.(2012~2013海南中学高一测试)下列函数中,在(0,1)上单调递 减,且为偶函数的是________. ①y=x;②y=x4;③y=x-2;④y=-x. [答案] ③ [解析] ①中函数y=x不具有奇偶性;②中函数y=x4是偶函数,但 在[0,+∞)上为增函数;③中函数y=x-2是偶函数,且在(0,+∞)上 为减函数;④中函数y=-x是奇函数.故填③. 三、解答题 13.已知函数f(x)=(m2-m-1)x-5m-3,m为何值时. (1)f(x)是正比例函数; (2)f(x)是反比例函数; (3)f(x)是二次函数; (4)f(x)是幂函数. [解析] (1)若f(x)是正比例函数,则-5m-3=1,解得m=-,此时 m2-m-1≠0,故m=-. (2)若f(x)是反比例函数,则-5m-3=-1,解得m=-,即m2-m -1≠0,故m=-. (3)若f(x)是二次函数,则-5m-3=2,即m=-1,此时m2-m- 1≠0,故m=-1. (4)∵f(x)是幂函数,故m2-m-1=1,即时m2-m-2=0,解得m=
是( ) A.a>c>b C.c>a>b [答案] A
B.a>b>c D.b>c>a
[解析] 对b和c,∵指数函数y=()x单调递减.故()<(),即b<c. 对a和c,∵幂函数.y=x在(0,+∞)上单调递增, ∴()>(),即a>c,∴a>c>b,故选A. 8.(2012~2013山东省临沂市临球县实验中学高一教学阶段性测试 题)幂函数的图象过点(2,4),则它的单调增区间为( ) A.(-∞,1) B.(-∞,0) C.(0,+∞) ) D.(-∞,+∞) [答案] C [解析] 设f(x)=xα,代入(2,4)得x=2,f(x)=x2, ∴f(x)=x2在(0,+∞)为增函数,故选C. 二、填空题 9.(2012~2013湖南益阳模拟)已知幂函数y=f(x)过点(3,),则f()= ________. [答案] 8 [解析] 设幂函数为y=xα,将点(3,)代入,得=3α,则α=-,所 以f()=()=8.
m2-m-2 4.如果幂函数y=(m2-3m+3)x 的图象不过原点,那么 ( ) A.-1≤m≤2 B.m=1或m=2 C.m=2 D.m=1 [答案] B
[解析] 幂函数y=(m2-3m+3)x ∴m=2,1.又∵y=(m2-3m+3)x
m2-m-2
中,系数m2-3m+3=1,
m2-m-2
的图象不过原点,故m2-m-
m2-2m-1 10.若函Байду номын сангаасy=(m2-m-1)x 是幂函数 ,且是偶函数,则m= ________. [答案] -1 [解析] 由题意,知m2-m-1=1,
解得m=2,或m=-1. 当m=2时,m2-2m-1=-1,函数为y=x-1,不是偶函数; 当m=-1时,m2-2m-1=2,函数为y=x2,是偶函数,满足题
-n2+2n+3
∴f(x2-x)>f(x+3)可转化为x2-x>x+3.解得x<-1或x>3, ∴原不等式的解集为(-∞,-1)∪(3,+∞). 16.(2012~2013温州联考)已知幂函数f(x)=x-m2+2m+3(m∈Z) 为偶函数,且在区间(0,+∞)上是单调增函数. (1)求函数f(x)的解析式; (2)设函数g(x)=+2x+c,若g(x)>2对任意的x∈R恒成立,求实数c 的取值范围. [解析] (1)∵f(x)在区间(0,+∞)上是单调增函数, ∴-m2+2m+3>0,即m2-2m-3<0,作出函数y=m2-2m-3的 图象(图略)观察图象知-1<m<3.又m∈Z,∴m=0,1,2,而m=0,2 时,f(x)=x3不是偶函数,m=1时,f(x)=x4是偶函数. ∴f(x)=x4. (2)由(1)知f(x)=x4,则g(x)=x2+2x+c=(x+1)2+(c-1). ∵g(x)>2对任意的x∈R恒成立, ∴g(x)min>2,且x∈R,则c-1>2,解得c>3. 故实数c的取值范围是(3,+∞).
m2-2
2或m=-1. 14.已知函数y=x (n∈Z)的图象与两坐标轴都无公共点,且其 图象关于y轴对称,求n的值,并画出函数的图象. [解析] 因为图象与y轴无公共点,所以n2-2n-3≤0,又图象关于 y轴对称,则n2-2n-3为偶数,由n2-2n-3≤0得,-1≤n≤3,又 n∈Z.∴n=0,±1,2,3 当n=0或n=2时,y=x-3为奇函数,其图象不关于y轴对称,不适 合题意. 当n=-1或n=3时,有y=x0,其图象如图A.
n2-2n-3
当n=1时,y=x-4,其图象如图B. ∴n的取值集合为{-1,1,3}. 15.已知f(x)=x (n=2k,k∈Z)的图象在[0,+∞)上单调递 增,解不等式f(x2-x)>f(x+3). [解析] 依题意,得-n2+2n+3>0,解得-1<n<3. 又∵n=2k,k∈Z,∴n=0或2. 当n=0或2时,f(x)=x3, ∴f(x)在R上单调递增,
一、选择题 1.下列函数不是幂函数的是( ) A.y=2x B.y=x-1 C.y= D.y=x2 [答案] A [解析] y=2x是指数函数,不是幂函数. 2.下列函数定义域为(0,+∞)的是( ) A.y=x-2 B.y=x C.y=x D.y=x [答案] D 3.若幂函数y=xn,对于给定的有理数n,其定义域与值域相同, 则此幂函数( ) A.一定是奇函数 B.一定是偶函数 C.一定不是奇函数 D.一定不是偶函数 [答案] D [解析] 由y=x知其定义域与值域相同,但是非奇非偶函数,故能排 除A、B;又y=x3的定义域与值域相同,是奇函数,故排除C.