风力机的类型与结构PPT课件
合集下载
海上风电机组基础结构课件

能源安全
海上风力发电可以减少对 化石燃料的依赖,提高能 源安全性。
经济发展
海上风力发电项目可以促 进当地经济发展,提高就 业率,同时为政府带来税 收收入。
海上风电机组的基础结构类型
单桩基础
单桩基础由一个大型桩柱 和上部结构组成,通过桩 柱将机组重量传递到海底 地基。
导管架基础
导管架基础由一个或多个 导管架组成,上面安装有 叶片和机舱等设备。
疲劳分析
考虑到海上风电机组运行过程中承受的疲劳载荷 ,对关键部位进行疲劳分析和优化。
结构设计的优化
材料选择
选择高强度、轻质、耐腐蚀的材料,提高基础结构的性能和耐久 性。
构造优化
通过优化基础结构的构造方式,提高整体性能和稳定性。
细节处理
对关键部位进行细节处理,如加强筋、倒角等,提高结构的安全性 和可靠性。
安装质量控制
验收质量控制
在安装过程中,进行质量检验和监督,确 保安装精度和质量。
在验收时,进行质量检验和评估,确保基 础结构的质量和安全性。
安装过程中的问题及解决方案
定位精度问题
在安装过程中,可能存在定位精度不足的问题,导致安装 困难。解决方案是使用高精度的GPS等定位设备,提高定 位精度。
支撑架稳定性问题
浮体基础
浮体基础由浮体和锚链组 成,通过锚链将机组固定 在指定位置。
海上风电机组的基础结构材料
高强度钢材
用于制造桩柱、导管架和锚链 等结构件。
铝合金
用于制造叶片和其他轻量化部件。
复合材料
用于制造机舱罩、导流罩等部件, 具有轻量化和抗腐蚀等优点。
02
海上风电机组基础结构设 计
结构设计原则
安全性
海上风电机组基础结构应能够承 受极端自然环境和地震等自然灾 害的影响,确保结构安全性和稳
《风力发电介绍》课件

成功风力发电项目介绍
01
成功案例一
荷兰的“巨人风车”项目
02
成功案例二
丹麦的哥本哈根风电场
03
04
成功案例三
德国的勃兰登堡风电场
成功案例四
美国加利福尼亚州的“沙漠之 风”风电场
风力发电在偏远地区的实际应用
应用一
为偏远地区提供电力供应,解决能源问题
应用二
促进偏远地区的经济发展,创造就业机会
应用三
改善偏远地区的生态环境,减少对化石燃料 的依赖
风力发电的原理
风力发电的基本原理是利用风的动力 ,通过风力发电机组的风轮机叶片旋 转,从而驱动发电机转动,将机械能 转化为电能。
风轮机叶片受到风的作用产生旋转动 力,驱动发电机转动,进而产生电能 。发电机产生的电能通过变压器升压 后接入电网,供给用户使用。
风力发电的优势与局限性
优势
风能是一种可再生、无污染的能源,风力发电能够减少化石 燃料的消耗和二氧化碳等温室气体的排放,有助于环境保护 和气候变化应对。同时,风能分布广泛,尤其在资源丰富的 地区,风力发电具有很大的开发潜力。
《风力发电介绍》ppt课件
目 录
• 风力发电概述 • 风力发电技术 • 风力发电的应用 • 风力发电的未来展望 • 风力发电案例研究
01
风力发电概述
风力发电的定义
01
风力发电是指利用风能转化为电 能的发电方式,通过风力发电机 组将风能转化为机械能,再通过 发电机将机械能转化为电能。
02
风力发电是一种可再生能源,具 有清洁、环保、可持续等优点, 是全球范围内大力推广的能源利 用方式。
应用四
提高偏远地区的能源安全,保障能源供应的 稳定性
大型风电场的建设与管理
风力机空气动力学知识-64帧课件.ppt

5.风轮转速 当风力机额定功率和风轮直径确定后,增加风轮转速,可 以减小风轮转矩,即减少作用在风力机传动系统上的载荷和 降低齿轮箱的增速比。风轮转速增加后,在额定风速相同 时,叶片的弦长可以减小,使叶片挥舞力矩的脉动值减小, 有利于叶片的疲劳特性和机舱塔架的结构设计。
6.塔架高度 塔架高度是风力机设计时要考虑的一个重要参数。一般, H/D=0.8~1.2。
3.2风力机空气动力设计参数
1.叶片数 水平轴风力发电机组的风轮叶片一般是2片或3片,其中3 片占多数。 当风轮直径和风轮旋转速度相同时,对刚性轮毂来说,作 用在两叶片风轮的脉动载荷要大于三叶片风轮。另外,实际 运行时,两叶片风轮的旋转速度要大于三叶片风轮,因此, 在相同风轮直径时,由于作用在风轮上的脉动载荷引起的风 轮轴向力(推力)的周期变化要大一些。
力特性。当雷诺数较小时,前缘分离气泡的存在、发展 和破裂对雷诺数非常敏感;当雷诺数较大时,翼型最大 升力系数也相应增大。
3.4风力机叶片气动外形设计
风力机叶片气动外形设计的任务是根据风力机总体设计技 术指标,确定风力机叶片的几何外形,包括叶片扭角、弦长 和相对厚度沿展向的分布。对于变桨距叶片还要给出桨距中 心位置和桨距角随风速变化的规律。
在迎角不大时,前缘就发生层流分离,然后转捩为湍流后 再附着于翼型表面,在分离点与再附着点之间形成气泡,随 着迎角的增加,向后缘迅速扩展,到一定迎角时,变成完全 分离。
图3-2给出了翼型在不同分离形式时的升力特性。前缘分 离、后缘分离、薄翼分离如图所示。
需要指出的是:翼型边界层的分离一旦引起翼型失速后, 即使马上回复到失速前的迎角,翼型边界层也不会马山再 附,恢复到分离前的流动状态,这种现象称为流动迟滞现象。
根据风力机性能的需要,风力机翼型一般应要求在分离区 内有稳定的最大升力系数,有很大的升阻比,表面粗糙度对 翼型空气动力特性影响小等特性。
风力发电PPT课件

.
14
下风向风力发电机是风轮在塔架的后面, 叶 片的阻力可以保证迎风面的正确取向, 但是 风先经过塔架, 再到风轮, 会影响风力机出 力。
由于尾翼结构并不复杂, 因此, 目前大量生产的是上风向风力机。
.
15
二 垂直轴式
特点:凡风轮转轴与地面呈垂直状态的风力机叫垂 直抽风力机。
形式有:如s型、H型、Ф型等。
.
20
(二)调向机构
作用:用来调整风力机的风轮叶片旋转平而与空气
流动方向相对位置的机构。因为当风轮叶片旋转平 面与气流方向垂直时,也即是迎着风向时,风力机 从流动的空气中获取的能量最大,因而风力机的输 出功率最大,所以调向机构又称为迎风机构(国外 通称偏航系统)。
类型:小型水平轴风力机常用的调向机构有尾 舵和尾车;风电场中并网运行的中大型风力 机则采用由伺服电动机。
.
12
风力机
一 水平轴式风力机
特点:风力机的风轮轴与地面呈水平状态, 称水平轴风力机。
组成:它一般内风轮增速器、调速器、调向 装置、发电机和塔架等部件组成,大中型 风力机还有自动控制系统
• 水平轴式风力发电机又可分为上风向风力 发电机和下风向风力发电机。
.
13
上风向风力发电机是风轮在塔架的前面迎风 旋转, 迎风面的调整依靠尾翼;
.
6
全球风电装机容量
• 2001年以来, 全球每年风电装机容量增长速 度为20% ~ 30%. 全球风能协会发布最新一 期全球风电的增长数据显示,2008年全球范 围内新增风电装机容量2 705万kW,使得全 球风电装机容量达到1. 20亿kW, 较2007年 增长28. 8%.
.
7பைடு நூலகம்
.
风力发电机基础知识及电气控制.ppt

发电机变频器在NCC320
2021/9/15
48
10、基础
为钢筋混凝土结构,承载整个风力发电机组的重量。基础周围设置有预 防雷击的接地系统。
2021/9/15
49
11、机舱
风力发电机组的机舱承担容纳所有的机械部件,承受所有外力(包括静 负载及动负载)的作用。
2021/9/15
50
风力发电机组简图
转速范围 rpm
11.5-21.2
11-22
9.7-19
9.8-18.3
额定转速 2021/9/15
rpm
20.1
20.1
17.4
17.4 5
并网型风力发电机组由以下部分组成
1、 风轮(叶片和轮毂) 2、 传动系统 3、 偏航系统 4、 变浆系统 5、 液压系统 6、 制动系统 7、 发电机 8、 控制与安全系统 9、 塔筒 10、基础 11、机舱
26
制动系统
使风轮减速和停止运转的系统。 SL1500系列风力发电机所用的制动器是一个液压动作的盘式制动器,用 于锁住转子。例如,在风力发电装置紧急切断时,制动器制动,使系统 停机。它具有自动闸瓦调整功能,也就是说当闸瓦磨损时不需要手动调 整制动器.
2021/9/15
27
制动器在风力发电机组中的安装位置
例如:运行、停机、故障
查看即时的故障信息
例如:故障代码、简单描述
各个设备的即时参数
例如:温度、电压、角度
各个设备所处的状态
例如:启动、停止
信息的记录
例如:发电量、发电时间、 耗电量
2021/9/15
41
Control-控制面板
2021/9/15
42
Control-菜单内容
2021/9/15
48
10、基础
为钢筋混凝土结构,承载整个风力发电机组的重量。基础周围设置有预 防雷击的接地系统。
2021/9/15
49
11、机舱
风力发电机组的机舱承担容纳所有的机械部件,承受所有外力(包括静 负载及动负载)的作用。
2021/9/15
50
风力发电机组简图
转速范围 rpm
11.5-21.2
11-22
9.7-19
9.8-18.3
额定转速 2021/9/15
rpm
20.1
20.1
17.4
17.4 5
并网型风力发电机组由以下部分组成
1、 风轮(叶片和轮毂) 2、 传动系统 3、 偏航系统 4、 变浆系统 5、 液压系统 6、 制动系统 7、 发电机 8、 控制与安全系统 9、 塔筒 10、基础 11、机舱
26
制动系统
使风轮减速和停止运转的系统。 SL1500系列风力发电机所用的制动器是一个液压动作的盘式制动器,用 于锁住转子。例如,在风力发电装置紧急切断时,制动器制动,使系统 停机。它具有自动闸瓦调整功能,也就是说当闸瓦磨损时不需要手动调 整制动器.
2021/9/15
27
制动器在风力发电机组中的安装位置
例如:运行、停机、故障
查看即时的故障信息
例如:故障代码、简单描述
各个设备的即时参数
例如:温度、电压、角度
各个设备所处的状态
例如:启动、停止
信息的记录
例如:发电量、发电时间、 耗电量
2021/9/15
41
Control-控制面板
2021/9/15
42
Control-菜单内容
风力发电技术基础教程ppt课件

a的范围: ½ > a > 0
完整编辑ppt
31
—由于叶轮吸收的功率为
P=P’= 1/2 SV (V21_ V22) 2 = 2 S V13a( 1- a )
令dP/da=0,可得吸收功率最大时的入流因子。
解得:a=1和a=1/3。取a=1/3,得
注意到1/P2maSx V=1136是/27远(前1/2方单SV位13时)间内气流的
—几何螺旋线的描述:半径r,螺旋升角。 —此处的螺旋升角为该半径处的安装角r。
—该几何螺旋线 与r处翼剖面 的弦线相切。辑ppt
27
二、贝兹理论
1. 贝兹理论中的假设
—叶轮是理想的; —气流在整个叶轮扫略面上是均匀的; —气流始终沿着叶轮轴线; —叶轮处在单元流管模型中,如图。 —流体连续性条件:S1V1 = SV = S2V2
考察翼型剖面气体流动的情况:
① 上翼面突出,流场横截面面积减小,空气流速大,
即V2>V1。而由伯努利方程,必使: P2 < P1,即静压 力减小。
② 下翼面平缓, V3≈V1,使其几乎保持原来的 大气压,即: P3 ≈ P1。
结论: 由于机翼上下表面所受的压力差,使得机
翼得到向上的作用力——升力。
完整编辑ppt
完整编辑ppt
7
• 基本特征 —水平轴 —上风式
—三叶片 —双速发电机
• 机型的发展趋势 —定桨距 ——〉变桨距 —定速型 ——〉变速型 — Kw级 ——〉 MW级 — 有齿轮箱式 ——〉直接驱动式
完整编辑ppt
8
三、风力发电机组中的关键技术
• 机组的设计方法与技术 • 叶片的设计与制造技术
—气动设计 —结构设计 —制造工艺 • 机组控制技术 —功率控制技术 —载荷控制技术 —并网技术 —远程监控技术
完整编辑ppt
31
—由于叶轮吸收的功率为
P=P’= 1/2 SV (V21_ V22) 2 = 2 S V13a( 1- a )
令dP/da=0,可得吸收功率最大时的入流因子。
解得:a=1和a=1/3。取a=1/3,得
注意到1/P2maSx V=1136是/27远(前1/2方单SV位13时)间内气流的
—几何螺旋线的描述:半径r,螺旋升角。 —此处的螺旋升角为该半径处的安装角r。
—该几何螺旋线 与r处翼剖面 的弦线相切。辑ppt
27
二、贝兹理论
1. 贝兹理论中的假设
—叶轮是理想的; —气流在整个叶轮扫略面上是均匀的; —气流始终沿着叶轮轴线; —叶轮处在单元流管模型中,如图。 —流体连续性条件:S1V1 = SV = S2V2
考察翼型剖面气体流动的情况:
① 上翼面突出,流场横截面面积减小,空气流速大,
即V2>V1。而由伯努利方程,必使: P2 < P1,即静压 力减小。
② 下翼面平缓, V3≈V1,使其几乎保持原来的 大气压,即: P3 ≈ P1。
结论: 由于机翼上下表面所受的压力差,使得机
翼得到向上的作用力——升力。
完整编辑ppt
完整编辑ppt
7
• 基本特征 —水平轴 —上风式
—三叶片 —双速发电机
• 机型的发展趋势 —定桨距 ——〉变桨距 —定速型 ——〉变速型 — Kw级 ——〉 MW级 — 有齿轮箱式 ——〉直接驱动式
完整编辑ppt
8
三、风力发电机组中的关键技术
• 机组的设计方法与技术 • 叶片的设计与制造技术
—气动设计 —结构设计 —制造工艺 • 机组控制技术 —功率控制技术 —载荷控制技术 —并网技术 —远程监控技术
水平轴风力发电机组工作原理及结构 ppt课件

片
70
传动链
水R平E轴PO风W力发ER电机组工作原理及结
5M
构
发电机
CLIPPER LIBERTY 水平轴风力发电机组工作原理及E结NERCON E-112
2.5MW
构
偏航系统
水平轴风力发电机组工作原理及结 构
塔架
水平轴风力发电机组工作原理及结 构
塔架
桁架式塔架
水平轴风力发电机组工作原理及结
的保障机制,包括调速、调向和安全。 地基:支撑整个机组。
水平轴风力发电机组工作原理及结 构
二.风电机组分系统简介
水平轴风力发电机组工作原理及结 构
风轮系统
MY1水.5平s风轴风力力发发电电机机组组工吊作装原理及结
构
风轮系统
ENERCON E-112叶 水平轴风力发电构机组工作原理及结ENERCON E-
水平轴风力发电机组 工作原理及结构
2009.10.19
概要
一.风电机组空气动力学简述 二.风电机组基本类型 三.风电机组分系统简介
水平轴风力发电机组工作原理及结 构
一.风电机组空气动力学简述
1.翼型 2.攻角 3.翼型气动特性参数 4.作用在叶片上的气动力 5.作用在机组上的气动力 6.机组功率系数和推力系数 7.叶片气动外形设计简介
按气动控制方式分类: 1.定桨失速型 2.变桨变速型 3.主动失速型
水平轴风力发电机组工作原理及结 构
1.定桨失速型
水平轴风力发电机组工作原理及结 构
1.定桨失速型
水平轴风力发电机组工作原理及结 构
1.定桨失速型
水平轴风力发电机组工作原理及结 构
2.变桨变速型
水平轴风力发电机组工作原理及结 构
风力发电技术PPT课件

规模化的风力发电场80年代后期投入运行。
18
截至2006年底, 我国除台湾外 累计安装风电 机组3311台, 装机容量 259.9万kW,共 建设91个风电 场,分布在16 个省。
19
“九五”期间,并网型风电机组得到快速发展。 定桨距失速型200kW、250kW、 300kW 、600kW风电 机组; 变桨距双速型600 kW风电机组; 中国一拖和西班牙Made合资建立一拖美德风电设备 公司,生产660kW风电机组; 中国西航和德国Nordex合作建立西安维德风电设备 公司,生产600kW风电机组。
德国Enercon E112型风力发电机最大输出功率达到6MW,风 力发电机全高186m,风轮直径为114m,切出风速为 28~34m/s,是目前世界上最大的风轮机。
11
丹麦和西班牙----紧随德国之后 丹麦和西班牙的风电也在高速发展。西班牙
的2006年装机容量达到11.6GW,欲挑战德国争 夺欧洲之冠的地位。丹麦已经成功地用风电来 满足国内23%的电力需求,是世界上风电贡献 率最高的国家。丹麦在风电机组制造、风能资 源评价和风电场接入电网等领域的技术均居世 界领先地位。
世界风能市场上风力发电机的主要供应商来自 欧洲和美国,其中丹麦一直居世界领先地位, 占全部市场份额的60%以上。
10
德国一直引领着世界风电市场的发展。德国2006年底发电 装机容量2194MW,是目前世界上发电装机容量最多和风力 发电机组技术最先进的国家。
德国风力发电的制造技术和生产规模都处于世界领先水平, 目前世界上在运行的最大的商用风力发电机组就产自德国。
15
中国的风能资源主要集中在两个带状地区,一条是“三 北(东北、华北、西北)地区丰富带”,其风能功率密度 在200瓦/平方米~300瓦/平方米以上,有的可达500瓦/ 平方米以上,如阿拉山口、达坂城、辉腾锡勒、锡林浩 特的灰腾梁等,这些地区每年可利用风能的小时数在 5000小时以上,有的可达7000小时以上。从新疆到东北, 面积大、交通方便、地势平,风速随高度增加很快,三 北地区风能在上百万千瓦的场地有四五个,这是欧洲没 法比的。而这个地带的缺点是建网少,发出的电上不了 网。
18
截至2006年底, 我国除台湾外 累计安装风电 机组3311台, 装机容量 259.9万kW,共 建设91个风电 场,分布在16 个省。
19
“九五”期间,并网型风电机组得到快速发展。 定桨距失速型200kW、250kW、 300kW 、600kW风电 机组; 变桨距双速型600 kW风电机组; 中国一拖和西班牙Made合资建立一拖美德风电设备 公司,生产660kW风电机组; 中国西航和德国Nordex合作建立西安维德风电设备 公司,生产600kW风电机组。
德国Enercon E112型风力发电机最大输出功率达到6MW,风 力发电机全高186m,风轮直径为114m,切出风速为 28~34m/s,是目前世界上最大的风轮机。
11
丹麦和西班牙----紧随德国之后 丹麦和西班牙的风电也在高速发展。西班牙
的2006年装机容量达到11.6GW,欲挑战德国争 夺欧洲之冠的地位。丹麦已经成功地用风电来 满足国内23%的电力需求,是世界上风电贡献 率最高的国家。丹麦在风电机组制造、风能资 源评价和风电场接入电网等领域的技术均居世 界领先地位。
世界风能市场上风力发电机的主要供应商来自 欧洲和美国,其中丹麦一直居世界领先地位, 占全部市场份额的60%以上。
10
德国一直引领着世界风电市场的发展。德国2006年底发电 装机容量2194MW,是目前世界上发电装机容量最多和风力 发电机组技术最先进的国家。
德国风力发电的制造技术和生产规模都处于世界领先水平, 目前世界上在运行的最大的商用风力发电机组就产自德国。
15
中国的风能资源主要集中在两个带状地区,一条是“三 北(东北、华北、西北)地区丰富带”,其风能功率密度 在200瓦/平方米~300瓦/平方米以上,有的可达500瓦/ 平方米以上,如阿拉山口、达坂城、辉腾锡勒、锡林浩 特的灰腾梁等,这些地区每年可利用风能的小时数在 5000小时以上,有的可达7000小时以上。从新疆到东北, 面积大、交通方便、地势平,风速随高度增加很快,三 北地区风能在上百万千瓦的场地有四五个,这是欧洲没 法比的。而这个地带的缺点是建网少,发出的电上不了 网。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 现装机72台,总容量42.7MW。 • 股东:龙源电力集团公司(50%)
辉腾锡勒风电场图
4、南通将建成亚洲最大风电场
国家特许权示范项目——江苏龙源如东100.5兆瓦风力发 电量超过1亿千瓦时。
位于南黄海之滨的如东县环港外滩耸立起风电机组, 实现了江苏作为经济大省风电“零的突破”。记者获悉,如 东风电特许权二期后续49.5兆瓦项目正在小洋口港全面铺 开,全部33台风电机组计划于年底建成发电。同时,100.5 兆瓦项目也将于年底实现吊装33台风电机组的目标。届时, 南通黄海之滨将成为全国乃至亚洲最大、最先进的风电场, 年发电量将达到6亿千瓦时。
2、SERI翼型系列:
这种翼型具有较高的升阻比和较大的升力系数,其失 速时对翼型表面的粗糙度敏感也较低。对于直径为 10-30m风轮的叶片设计了SERI S805 A翼型,应用该 翼型系列时主要用于年平均风速在10m高度处为4.56.2之间的风场。
(1)FFA-W1翼型系列 3、FFA-W翼型系列:(2)FFA-W2翼型系列
(4)NACA六位数字翼型
(1)NACA XYZZ
X表示翼型最大相对弯度的百倍数值;Y表示最大弯度相对位 置的10倍数值;ZZ表示最大相对厚度的百倍数值。 NACA 2412表示翼型的相对弯度为2%,最大弯度在弦长的0.4位置处, 相对厚度为12%
(2)NACA XYWZZ X表示翼型弯度,这个数乘以3/2就是设计升力系数的 10倍;Y表示最大弯度相对位置的20倍;W表示中弧 线后段的类型:直线取1,其他取0;ZZ表示最大相对 厚度的百倍数值。 NACA 23012表示设计升力系数为 2 ×(3/20)=0.3 ,最大弯度在30/20=1.5,中弧线后段为 直线,相对厚度为12%
(3)NACA XXXX-YY或NACA XXXXX-YY X为未修改的NACA四、五位数字翼型的表达式;第 一个Y表示前缘半径的大小,第二个Y表示最大厚度 相对位置的10倍数值。
(4) NACA 653-218 6表示六系列;5表示厚度分布使零升力下的最小压力 位置的0.5位置处;3表示有利升力系数范围为±0.3; 2表示设计升力系数为0.2;18表示相对厚度为18%。
风力机的类型与结构
水平轴风力机
2.2、风力发电机的结构
1、风轮:捕捉和吸收风能并将其转化为机械能 2、控制系统:( (12) )调 调速 向( 机限 构速 :) 尾机 舵构 、舵轮等 3、传动装置:齿轮、皮带、曲柄连杆等 4、作功装置:发电机、水泵、粉碎机、铡草机 5、蓄能装置:蓄电池、蓄水罐 6、塔架:支撑到高空
• 1989年建成了当时亚洲最大的大型风力发电场, 并成功地高质量运行管理至今,新疆金风科贸公 司现装机42台,总容量18.4MW。
大阪城风电场图
3、辉腾锡勒风电场
• 辉腾锡勒风电场是1995年成立的风电企业。 场址位于内蒙中旗,海拔2010~2131m,风 速7.4~8.2m/s。规划容量1200MW,年发电 量33亿千瓦时。
1、NACA翼型系列:
2、SERI翼型系列:
(1)FFA-W1翼型系列
3、FFA-W翼型系列:( 2)FFA-W2翼型系列
( 3)FFA-W3翼型系列
4、NREL翼型系列
5、DU翼型系列
(1)NACA四位数字翼型 1、NACA翼型系列:( (23) )NNAACCAA五 四位 、数 五字 位翼 数型 字翼型
(3)FFA-W3翼型系列
4、NREL翼型系列
该翼型由美国国家可再生能源实验室所研制,主要应 用与大中型叶片,有3个薄翼型族和3个厚翼型族。这 些翼型能有效减小由于昆虫残骸和灰尘积累使桨叶表 面粗糙度增加而造成的风轮性能下降,并且能增加能 量最大输出和改善功率控制。
5、DU翼型系列
设计实践表明,使用航空翼型虽然可以得到很高的升阻比 ,但是在低雷诺数环境下,航空翼型易于发生泡式分离,从 而使升阻比特性恶化。
另外,航空翼型对表面粗糙度比较敏感,在翼型几何形状 由于灰尘、结冰等原因发生变化时,翼型的气动特性往往也 会迅速恶化,从而不适于直接作为风力机叶片翼型使用。
因此,选择翼型常根据以下原则:对低速风轮,由于叶片 数较多,不需要特殊的翼型升阻比;对于高速风轮,叶片数 较少,应选择在很宽的风速范围内具有较高的升阻比和平稳 失速特性的翼型,对粗糙度不敏感,以便获得较高的功率系 数;另外要求翼型的气动噪声低。
• 已安装风力机132台, 总装机容量达57MW,年发电量达1.1亿 千瓦时,成为亚洲海岛最大的风力发电场.
南澳风电场图
2、达坂城风力发电一场
• 达坂城风力发电一场位于兰新铁路及乌喀公路一 侧,达坂城谷地,年平均风速8.1m/s。
• 新疆水利厅1986年成立新疆风能公司、新疆风能 研究所、新疆新风科工贸有限责任公司“三位一 体”的高科技实体。
风力发电机结构原理图
我上到风机上了
风力发电机的一扇叶片
发电机的风扇叶被人们组装在一起
吊车正在组装发电机机身
发电机叶片即将装在高大的机身上
工人们陆续安装好其它海上风力发电机
1、广东省南澳风电场
• 南澳地处台湾海峡西南端喇叭口,风力资源丰富,风电 场年平均风速达8.54米/秒,年有效风速时数超过7000小 时,有效风能密度达1011瓦/平方米,风况属世界最佳之 列,是我国少有的可以大规模开发风力发电场的地域之 一。
威海风电场图
2.3、翼型介绍
翼型空气动力特性的好坏直接影响风力机的性能, 翼型的形状也影响叶片的主体结构形式。
设计原则:使单位叶素有最大的功率利用系数。
但风力机的工作条件和飞机有较大的区别: 一方面风力机叶片工作时,其攻角变化范围大; 另一方面风力机叶片设计要考虑低雷诺数的影响, 风力机和飞机工作的雷诺数范围有所不同,其影响将 就也不完全一样,
辉腾锡勒风电场图
4、南通将建成亚洲最大风电场
国家特许权示范项目——江苏龙源如东100.5兆瓦风力发 电量超过1亿千瓦时。
位于南黄海之滨的如东县环港外滩耸立起风电机组, 实现了江苏作为经济大省风电“零的突破”。记者获悉,如 东风电特许权二期后续49.5兆瓦项目正在小洋口港全面铺 开,全部33台风电机组计划于年底建成发电。同时,100.5 兆瓦项目也将于年底实现吊装33台风电机组的目标。届时, 南通黄海之滨将成为全国乃至亚洲最大、最先进的风电场, 年发电量将达到6亿千瓦时。
2、SERI翼型系列:
这种翼型具有较高的升阻比和较大的升力系数,其失 速时对翼型表面的粗糙度敏感也较低。对于直径为 10-30m风轮的叶片设计了SERI S805 A翼型,应用该 翼型系列时主要用于年平均风速在10m高度处为4.56.2之间的风场。
(1)FFA-W1翼型系列 3、FFA-W翼型系列:(2)FFA-W2翼型系列
(4)NACA六位数字翼型
(1)NACA XYZZ
X表示翼型最大相对弯度的百倍数值;Y表示最大弯度相对位 置的10倍数值;ZZ表示最大相对厚度的百倍数值。 NACA 2412表示翼型的相对弯度为2%,最大弯度在弦长的0.4位置处, 相对厚度为12%
(2)NACA XYWZZ X表示翼型弯度,这个数乘以3/2就是设计升力系数的 10倍;Y表示最大弯度相对位置的20倍;W表示中弧 线后段的类型:直线取1,其他取0;ZZ表示最大相对 厚度的百倍数值。 NACA 23012表示设计升力系数为 2 ×(3/20)=0.3 ,最大弯度在30/20=1.5,中弧线后段为 直线,相对厚度为12%
(3)NACA XXXX-YY或NACA XXXXX-YY X为未修改的NACA四、五位数字翼型的表达式;第 一个Y表示前缘半径的大小,第二个Y表示最大厚度 相对位置的10倍数值。
(4) NACA 653-218 6表示六系列;5表示厚度分布使零升力下的最小压力 位置的0.5位置处;3表示有利升力系数范围为±0.3; 2表示设计升力系数为0.2;18表示相对厚度为18%。
风力机的类型与结构
水平轴风力机
2.2、风力发电机的结构
1、风轮:捕捉和吸收风能并将其转化为机械能 2、控制系统:( (12) )调 调速 向( 机限 构速 :) 尾机 舵构 、舵轮等 3、传动装置:齿轮、皮带、曲柄连杆等 4、作功装置:发电机、水泵、粉碎机、铡草机 5、蓄能装置:蓄电池、蓄水罐 6、塔架:支撑到高空
• 1989年建成了当时亚洲最大的大型风力发电场, 并成功地高质量运行管理至今,新疆金风科贸公 司现装机42台,总容量18.4MW。
大阪城风电场图
3、辉腾锡勒风电场
• 辉腾锡勒风电场是1995年成立的风电企业。 场址位于内蒙中旗,海拔2010~2131m,风 速7.4~8.2m/s。规划容量1200MW,年发电 量33亿千瓦时。
1、NACA翼型系列:
2、SERI翼型系列:
(1)FFA-W1翼型系列
3、FFA-W翼型系列:( 2)FFA-W2翼型系列
( 3)FFA-W3翼型系列
4、NREL翼型系列
5、DU翼型系列
(1)NACA四位数字翼型 1、NACA翼型系列:( (23) )NNAACCAA五 四位 、数 五字 位翼 数型 字翼型
(3)FFA-W3翼型系列
4、NREL翼型系列
该翼型由美国国家可再生能源实验室所研制,主要应 用与大中型叶片,有3个薄翼型族和3个厚翼型族。这 些翼型能有效减小由于昆虫残骸和灰尘积累使桨叶表 面粗糙度增加而造成的风轮性能下降,并且能增加能 量最大输出和改善功率控制。
5、DU翼型系列
设计实践表明,使用航空翼型虽然可以得到很高的升阻比 ,但是在低雷诺数环境下,航空翼型易于发生泡式分离,从 而使升阻比特性恶化。
另外,航空翼型对表面粗糙度比较敏感,在翼型几何形状 由于灰尘、结冰等原因发生变化时,翼型的气动特性往往也 会迅速恶化,从而不适于直接作为风力机叶片翼型使用。
因此,选择翼型常根据以下原则:对低速风轮,由于叶片 数较多,不需要特殊的翼型升阻比;对于高速风轮,叶片数 较少,应选择在很宽的风速范围内具有较高的升阻比和平稳 失速特性的翼型,对粗糙度不敏感,以便获得较高的功率系 数;另外要求翼型的气动噪声低。
• 已安装风力机132台, 总装机容量达57MW,年发电量达1.1亿 千瓦时,成为亚洲海岛最大的风力发电场.
南澳风电场图
2、达坂城风力发电一场
• 达坂城风力发电一场位于兰新铁路及乌喀公路一 侧,达坂城谷地,年平均风速8.1m/s。
• 新疆水利厅1986年成立新疆风能公司、新疆风能 研究所、新疆新风科工贸有限责任公司“三位一 体”的高科技实体。
风力发电机结构原理图
我上到风机上了
风力发电机的一扇叶片
发电机的风扇叶被人们组装在一起
吊车正在组装发电机机身
发电机叶片即将装在高大的机身上
工人们陆续安装好其它海上风力发电机
1、广东省南澳风电场
• 南澳地处台湾海峡西南端喇叭口,风力资源丰富,风电 场年平均风速达8.54米/秒,年有效风速时数超过7000小 时,有效风能密度达1011瓦/平方米,风况属世界最佳之 列,是我国少有的可以大规模开发风力发电场的地域之 一。
威海风电场图
2.3、翼型介绍
翼型空气动力特性的好坏直接影响风力机的性能, 翼型的形状也影响叶片的主体结构形式。
设计原则:使单位叶素有最大的功率利用系数。
但风力机的工作条件和飞机有较大的区别: 一方面风力机叶片工作时,其攻角变化范围大; 另一方面风力机叶片设计要考虑低雷诺数的影响, 风力机和飞机工作的雷诺数范围有所不同,其影响将 就也不完全一样,