分段函数与二次函数
二次函数与分段函数.doc

第六讲:分段函数与二次函数第一部分:分段函数6. 设函数g (x )=x 2-2(x ∈R ),f (x )=⎩⎪⎨⎪⎧g (x )+x +4,x <g (x ),g (x )-x ,x ≥g (x ),则f (x )的值域是__________. 答案 [-94,0]∪(2,+∞)1.(2014·山西四校联考)定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧log 2(8-x ),x ≤0,f (x -1)-f (x -2),x >0,则f (3)的值为( )A .1B .2C .-2D .-32.(2015·全国Ⅱ卷)设函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( )A.3B.6C.9D.123.(2014·新课标全国Ⅰ卷)设函数f (x )=⎩⎪⎨⎪⎧e x -1,x <1,x 13,x ≥1,则使得f (x )≤2成立的x 的取值范围是________.(-∞,8]4.(2014·上海卷)设f (x )=⎩⎪⎨⎪⎧(x -a )2,x ≤0,x +1x +a ,x >0.若f (0)是f (x )的最小值,则a 的取值范围为( )A .[-1,2]B .[-1,0]C .[1,2]D .[0,2]5.(2015·福建卷)若函数f (x )=⎩⎪⎨⎪⎧-x +6,x ≤2,3+log a x ,x >2(a >0,且a ≠1)的值域是[4,+∞),则实数a的取值范围是________.(1,2]6.(2014·浙江卷)设函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2,x ≥0.若f (f (a ))≤2,则实数a 的取值范围是________.(-∞,2]7.(2015·山东卷)设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x ,x ≥1,则满足f (f (a ))=2f (a )的a 取值范围是( )A.⎣⎡⎦⎤23,1 B.[0,1] C.⎣⎡⎭⎫23,+∞ D.[1,+∞)8.【2015高考北京,理14】设函数()()()2142 1.x a x f x x a x a x ⎧-<⎪=⎨--⎪⎩‚‚‚≥①若1a =,则()f x 的最小值为;1②若()f x 恰有2个零点,则实数a 的取值范围是.112a ≤<或2a ≥. 9,则函数1)]([-=x f f y 的零点个数是 .7.10.已知函数222(1)(0)()4(3)(0)x k a x f x x x a x ⎧+-≥=⎨-+-<⎩,其中R a ∈. 若对任意的非零实数1x ,存在唯一的非零实数212()x x x ≠,使得12()()f x f x =成立,则k 的取值范围为 A .0k ≤ B .8k ≥ C .08k ≤≤ D .0k ≤或8k ≥11.已知函数f (x )=mx 2+(m -3)x +1的图象与x 轴的交点至少有一个在原点右侧,则实数m 的取值范围是________.(-∞,1] 第二部分:二次函数1.是否存在这样的实数a ,使函数f (x )=x 2+(3a -2)x +a -1在区间[-1,3]上恒有一个零点,且只有一个零点?若存在,求出a 的取值范围;若不存在,说明理由. 解 令f (x )=0,则Δ=(3a -2)2-4(a -1)=9a 2-16a +8=9⎝⎛⎭⎫a -892+89>0恒成立,即f (x )=0有两个不相等的实数根,∴若实数a 满足条件,则只需f (-1)·f (3)≤0即可. f (-1)·f (3)=(1-3a +2+a -1)·(9+9a -6+a -1)=4(1-a )(5a +1)≤0,∴a ≤-15或a ≥1.检验:(1)当f (-1)=0时,a =1,所以f (x )=x 2+x .令f (x )=0,即x 2+x =0,得x =0或x =-1.方程在[-1,3]上有两个实数根,不合题意,故a ≠1.(2)当f (3)=0时,a =-15,此时f (x )=x 2-135x -65.令f (x )=0,即x 2-135x -65=0,解得x =-25或x =3.方程在[-1,3]上有两个实数根,不合题意,故a ≠-15.综上所述,a 的取值范围是⎝⎛⎭⎫-∞,-15∪(1,+∞). 2.已知f (x )=x 2+(a 2-1)x +(a -2)的一个零点比1大,一个零点比1小,求实数a 的取值范围.则有f (1)<0,(-2,1)7. 设函数f (x )=3ax 2-2(a +c )x +c (a >0,a ,c ∈R ).(1)设a >c >0.若f (x )>c 2-2c +a 对x ∈[1,+∞)恒成立,求c 的取值范围;(2)函数f (x )在区间(0,1)内是否有零点,有几个零点?为什么? 解 (1)因为二次函数f (x )=3ax 2-2(a +c )x +c的图象的对称轴为x =a +c3a,由条件a >c >0,得2a >a +c ,故a +c 3a <2a 3a =23<1,即二次函数f (x )的对称轴在区间[1,+∞)的左边,且抛物线开口向上,故f (x )在[1,+∞)内是增函数.若f (x )>c 2-2c +a 对x ∈[1,+∞)恒成立,则f (x )min =f (1)>c 2-2c +a ,即a -c >c 2-2c +a ,得c 2-c <0,所以0<c <1. (2)①若f (0)·f (1)=c ·(a -c )<0,则c <0,或a <c ,二次函数f (x )在(0,1)内只有一个零点. ②若f (0)=c >0,f (1)=a -c >0,则a >c >0. 因为二次函数f (x )=3ax 2-2(a +c )x +c的图象的对称轴是x =a +c3a.而f ⎝ ⎛⎭⎪⎫a +c 3a =-a 2+c 2-ac 3a <0, 所以函数f (x )在区间⎝ ⎛⎭⎪⎫0,a +c 3a 和⎝ ⎛⎭⎪⎫a +c 3a ,1内各有一个零点,故函数f (x )在区间(0,1) 内有两个零点.3.若关于x 的方程22x +2x a +a +1=0有实根,求实数a 的取值范围. 解 法一 (换元法)设t =2x (t >0),则原方程可变为t 2+at +a +1=0,(*) 原方程有实根,即方程(*)有正根.令f (t )=t 2+at +a +1.①若方程(*)有两个正实根t 1,t 2,则⎩⎪⎨⎪⎧Δ=a 2-4(a +1)≥0,t 1+t 2=-a >0,t 1·t 2=a +1>0,解得-1<a ≤2-22;②若方程(*)有一个正实根和一个负实根(负实根,不合题意,舍去),则f (0)=a +1<0,解得a <-1;③当a =-1时,t =1,x =0符合题意. 综上,a 的取值范围是(-∞,2-22].法二 (分离变量法)由方程,解得a =-22x +12x +1,设t =2x (t >0),则a =-t 2+1t +1=-⎝⎛⎭⎫t +2t +1-1=2-⎣⎡⎦⎤(t +1)+2t +1,其中t +1>1,由基本不等式,得(t +1)+2t +1≥22,当且仅当t =2-1时取等号,故a ≤2-2 2.综上,a 的取值范围是(-∞,2-22].4.已知函数f (x )=4x +m ·2x +1有且仅有一个零点,求m 的取值范围,并求出该零点. 解 ∵f (x )=4x +m ·2x +1有且仅有一个零点,即方程(2x )2+m ·2x +1=0仅有一个实根. 设2x =t (t >0),则t 2+mt +1=0.当Δ=0,即m 2-4=0,∴m =-2时,t =1;m =2时,t =-1(不合题意,舍去),∴2x =1,x =0符合题意. 当Δ>0,即m >2或m <-2时,t 2+mt +1=0有两正根或两负根,即f (x )有两个零点或没有零点.∴这种情况不符合题意.综上可知,m =-2时,f (x )有唯一零点,该零点为x =0.5.已知a 是正实数,函数f (x )=2ax 2+2x -3-a .如果函数y =f (x )在区间[-1,1]上有零点,求a 的取值范围.解 f (x )=2ax 2+2x -3-a 的对称轴为x=-12a .①当-12a ≤-1,即0≤a ≤12时,须使⎩⎪⎨⎪⎧ f (-1)≤0,f (1)≥0,即⎩⎪⎨⎪⎧a ≤5,a ≥1,∴a 的解集为∅.②当-1<-12a <0,即a >12时,须使⎩⎪⎨⎪⎧ f (-12a )≤0,f (1)≥0,即⎩⎪⎨⎪⎧-12a -3-a ≤0,a ≥1,解得a ≥1,∴a 的取值范围是[1,+∞). 第三部分:解答题1.已知函数kx x x x f ++-=221)(.(1)若对于区间()0,+∞内的任意x ,总有()0f x ≥成立,求实数k 的取值范围; (2)若函数()f x 在区间()2,0内有两个不同的零点21,x x ,求: ①实数k 的取值范围; ②2111x x +的取值范围.试题解析:(1,易知()g x 在上(]0,1递增,在 ()1,+∞上递减,∴()max ()11g x g ==-,∴1k ≥-即可(2)①ⅰ)10≤<x 时,方程0)(=x f 化为01=+kx ,0=k 时,无解;0≠k 时, ⅱ)21<<x 时,方程0)(=x f 化为0122=-+kx x而其中,故0)(=x f 在区间()2,1内至多有一解 综合ⅰ)ⅱ)可知,0≠k ,且10≤<x 时,方程0)(=x f 有一解故1-≤k ;21<<x 时,方程0)(=x f 也仅有一解,令,得,所以实数k 的取值范围是 9分 ②方程0)(=x f 的两解分别为2.设函数)且10()1()(≠>--=-a a a k a x f xx 是定义域为R 的奇函数.(Ⅱ)且)(2)(22x mf a a x g xx -+=-在[)+∞,1上的最小值为2-,求m 的值. 解析:(Ⅰ)由题意,对任意R x ∈,,)()(x f x f -=-,即x x x xa k a a k a ---+-=--)1()1(,0))(2(=+--x x a a k 因为x 为任意实数所以2=k .(Ⅱ)由(1)xx a a x f --=)(,因所解得2=a 故x x x f --=22)(,)22(222)(22x x x x m x g ----+=,令x x t --=22,则由[)+∞∈,1x ,得2222)(22)()(m m t mt t t h x g -+-=+-==,时,)(t h 在时,则2)(-=m f ,222-=-m ,4.(2015·雅安模拟)已知函数f (x )=3ax 2+2bx +c ,a +b +c =0,且f (0)·f (1)>0. (1)求证:-2<ba <-1;(2)若x 1、x 2是方程f (x )=0的两个实根,求|x 1-x 2|的取值范围.(1)证明 当a =0时,f (0)=c ,f (1)=2b +c ,又b +c =0,则f (0)·f (1)=c (2b +c )=-c 2<0与已知矛盾,因而a ≠0,则f (0)·f (1)=c (3a +2b +c )=-(a +b )(2a +b )>0 即⎝⎛⎭⎫b a +1⎝⎛⎭⎫b a +2<0,从而-2<ba<-1. (2)解 x 1、x 2是方程f (x )=0的两个实根,则x 1+x 2=-2b3a ,x 1x 2=-a +b 3a,那么(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=⎝⎛⎭⎫-2b 3a 2+4×a +b 3a =49·⎝⎛⎭⎫b a 2+4b 3a +43=49⎝⎛⎭⎫b a +322+13. ∵-2<b a <-1,∴13≤(x 1-x 2)2<49,∴33≤|x 1-x 2|<23,即|x 1-x 2|的取值范围是⎣⎡⎭⎫33,23.5,其中a R ∈.(1)求函数()f x 的单调区间;(2)若不等式()416f x ≤≤在[]1,2x ∈上恒成立,求a 的取值范围.解析:(1)故当0a ≥时,()f x 在(),a -∞和(),a +∞上递增,又∵()2f a a =,∴()f x 在R 上递增,当0a <时,()f x 在(),a -∞和 (2)由题意只需()()min max 4,16f x f x ≥≤,首先,由(1)可知,()fx 在[]1,2x∈上恒递增,其次,时,()f xf x在时,()。
二次函数--利润问题-分段函数

22.3(3.3)---利润问题-分段函数一.【知识要点】1.分段求最值,进行比较。
2.销售利润=(售价-成本价)×销售量.3.解题步骤:(1).设:设出两变量;(2).列:列出函数解析式;(3).定:确定自变量的取值范围;(4).判:判断存在最大(小)值;(5).求:求出对称轴,并判断对称轴是否在取值范围;(6).算:计算最值。
二.【经典例题】1.九(13)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:已知该商品的进价为每件30元,设销售商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问该商品第几天时,当天销售利润最大,最大利润是多少?22018年非洲猪瘟疫情暴发后,专家预测,2019年我市猪肉售价将逐月上涨,每千克猪肉的售价y1(元)与月份x(1≤x≤12,且x为整数)之间满足一次函数关系,如下表所示.每千克猪肉的成本y2(元)与月份x(1≤x≤12,且x为整数)之间满足二次函数关系,且3月份每千克猪肉的成本全年最低,为9元,如图所示.月份x…3456…售价y1/元…12141618…(1)求y1与x之间的函数关系式.(2)求y2与x之间的函数关系式.(3)设销售每千克猪肉所获得的利润为w(元),求w与x之间的函数关系式,哪个月份销售每千克猪肉所获得的利润最大?最大利润是多少元?3.某工厂计划在每个生产周期内生产并销售完某型设备,设备的生产成本为10万元/件. (1)如图,设第x (0<x ≤20)个生产周期设备售价z 万元/件,z 与x 之间的关系用图中的函数图象表示.求z 关于x 的函数解析式(写出x 的范围). (2)设第x 个生产周期生产并销售的设备为y 件,y 与x 满足关系式y =5x +40(0<x ≤20).在(1)的条件下,工厂第几个生产周期创造的利润最大?最大为多少万元?(利润=收入﹣成本)4.为喜迎佳节,某食品公司推出一种新年礼盒,每盒成本为20元.在元旦节前30天进行销售后发现,该礼盒在这30天内的日销售量p (盒)与时间x (天)的关系如下表:在这30天内,前20天每天的销售价格1y (元/盒)与时间x (天)的函数关系式为11254y x =+(1≤x ≤20,且x 为整数),后10天每天的销售价格2y (元/盒)与时间x (天)的函数关系式为21402y x =-+(21≤x ≤30,且x 为整数). (1)直接写出日销售量p (盒)与时间x (天)之间的关系式;(2)请求出这30天中哪一天的日销售利润最大?最大日销售利润是多少?(3)元旦放假期间,该公司采取降价促销策略.元旦节当天,销售价格(元/盒)比第30天的销售价格降低a%,而日销售量就比第30天提高了4a%,日销售利润比前30天中的最大日销售利润少380元,求a 的值.三.【题库】【A】1.数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在前49天销售中,每销售一件商品就捐赠m元(0<m<10)给希望工程,若前49天销售获得的最大日利润为5408元,求出m的值时间x(天)1≤x<5050≤x≤90售价(元/件)x+4090每天销量(件)200﹣2x【B】1.我县云蒙湖被临沂市人民政府定位“饮用水水源地”,为净化水源,某水产养殖企业在净化水源的同时,为谋求养殖利润最大化,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价y1(元)与销售月份x(月)满足关系式y=﹣x+36,而其每千克成本y2(元)与销售月份x(月)满足的函数关系如图所示.“五•一”之前,月份出售这种品每千克的利润最大.【C】1.(本题满分11分)绵阳经开区“万达广场”开业在即,开发商准备对一楼的40个商铺出租,小王和开发商约定:小王租赁的每个商铺每个月的租金y(元/个.月)与租赁的商铺数量x(个)之间函数关系的图象如图中的折线段ABC 所示(不包含端点A ,但包含端点C ). (1)求y 与x 之间的函数关系式;(2)已知开发商每个月对每个商铺的投入成本共280元,那么当小王租赁的商铺数量为多少时,开发商在这次租赁中,每个月所获的利润w 最大?最大利润是多少?【D 】1.大学生小张利用暑假50天在一超市勤工俭学,被安排销售一款成本为40元/件的新型商销售单价q (元/件)与x 满足:当1≤x <25时q=x+60;当25≤x ≤50时. (1)请分析表格中销售量p 与x 的关系,求出销售量p 与x 的函数关系. (2)求该超市销售该新商品第x 天获得的利润y 元关于x 的函数关系式. (3)这50天中,该超市第几天获得利润最大?最大利润为多少?2.某商场在销售旺季临近时 ,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售。
分段函数

3、 出下列函数图象 y=┃x+2┃-┃x-5┃
f ( 0) 1 4、已知函数 y= f (1) 3 ,则 f(4)=_______. f (n 1) f (n) nf (n 1)
3
高中数学讲师
4
2
高中数学讲师
朱屿 15044088809
15567700080
追踪训练
1、设函数 f(x)=
x 2 2, ( x 2) 则 f(-4)=___________,若 f(x0)=8,则 x0=________ 2 x , ( x 2)
x 2 ( x 0) 2、已知函数 f(x)= 1( x 0) 0( x 0)
二、实际生活中分段函数解析式问题 例 5、某同学从甲地以每小时 6 千米的速度步行 2 小时到达乙地,在乙地耽搁 1 小时后, 又以每小时 4 千米的速度步行返回甲地。写出该同学在上述过程中,离甲地的距离 S(千 米)和时间 t(小时)的函数关系式,并作出函数图象。
三、二次函数在区间上的最值问题 例 6、已知函数 f(x)=2x2-2ax+3 在区间[-1,1]上有最小值,记作 g(a). (1)求 g(a)的函数表达式 (2)求 g(a)的最大值。
高中数学讲师朱屿 150440 Nhomakorabea8809
15567700080
分
【学习导航】
段
函
数
知识网络
分段函数定义 分段函数 分段函数定义域值域 分段函数图象
学习要求
1、了解分数函数的定义; 2、学会求分段函数定义域、值域; 3、学会运用函数图象来研究分段函数; 自学评价: 1、分段函数的定义 在函数定义域内,对于自变量 x 的不同取值范围,有着不同的对应法则,这样的函数叫 做分段函数; 2、分段函数定义域,值域; 分段函数定义域各段定义域的并集,其值域是各段值域的并集(填“并”或“交”) 3、分段函数图象 画分段函数的图象,应在各自定义域之下画出定义域所对应的解析式的图象; 【精典范例】 一、含有绝对值的解析式 例 1、已知函数 y=|x-1|+|x+2| (1)作出函数的图象。 (2)写出函数的定义域和值域。
二次函数专题——含参二次函数完整版题型汇总

二次函数专题——含参二次函数完整版题型汇总含参的二次函数在高中阶段考试中经常出现,因为参数的存在使得函数形成一种动态,随着参数的变化,函数也会不同。
这就使得本来简单的二次函数变得复杂起来。
例如,考虑求解$f(x)=x-2ax$在$[2,4]$上的最大值和最小值。
由于参数的存在,这个函数是动态的。
为了解决这个问题,我们需要考虑动轴定区间问题,即对称轴随着参数的变化而变化,但是在给定区间上问最大值和最小值。
对于这个问题,需要分类讨论。
在$[2,4]$这个区间上,可能出现对称轴不在这个区间里面的情况,对称轴就在区间里面的情况,或者对称轴在区间右侧的情况。
因此,我们需要分别考虑这些情况。
具体来说,我们需要找到在整个函数的区间上,哪个数离对称轴最远。
这个分界线就应该在$2$和$4$中间的位置上,即$3$。
当对称轴在$x=3$这条线左边的时候,对称轴离$2$就比较近,离$4$就比较远;对称轴在右边的时候,离$2$就比较近,离$4$就比较远。
因此,这个函数的最大值可以表示为:f_{\max}(x)=\begin{cases}f(4)=16-8a& (a\leq 3)\\f(2)=4-4a&(a>3)\end{cases}$$当$a=3$时,放在哪边都可以。
代入上面的式子,得到$f_{\max}(x)=-8$。
因此,最大值为$-8$。
接下来,我们来讨论含参的二次函数的最大值和最小值问题。
这类问题的重点在于能否清晰地做分类讨论,得到一个分段函数的解析式。
我们可以按照对称轴的位置进行分类讨论。
首先,对于对称轴在区间左侧,且$a\leq 2$的情况,函数在$x=2$处取得最小值,即$f_{min}(x)=f(2)=4-4a$。
其次,对于对称轴在区间中间,即$24$的情况,函数在$x=4$处取得最小值,即$f_{min}(x)=f(4)=16-8a$。
另外,还有一类问题叫做定轴动区间的问题。
对于这类问题,我们同样需要进行分类讨论,只不过区间在变化。
分段函数与二次函数

问题背景:有A 、B 两家水果店,两家的西瓜销售价格如下:提问:买x 斤西瓜应该付多少钱?归纳:在自变量的不同取值范围内,有不同的对应法则,需要用不同的解析式来表示.三.分段函数1.概念:在函数的定义域内,对于自变量的不同取值范围,有着不同的解析式, 这样的函数叫做分段函数2.定义域:分段函数的定义域是自变量的各段取值范围的并集3.函数值:求分段函数的函数值()0f x时,应该首先判断0x 所属的取值范围,然后再把0x 代入到相应的解析式中进行计算.4.函数图像:分段函数的图像是各段上图像的和 (一)、分段函数——例题讲解:例1.如图所示,是某分段函数y=f (x )的图像, 试求其定义域、值域。
思考:画出函数2y x =+的图像,并求f (2)、f (-2)(二) 、分段函数的应用——生活中的分段函数出租车计价问题某市出租汽车收费标准如下:在3km 已内(含3km 已内)路程按起步价12元收费,超过3km 以外的路程按2.1元/km 收费.试写出收费额y 关于路程x 的函数解析式.小结:1. 分段函数的概念2. 分段函数的函数值3. 分段函数图像的作法4. 分段函数的解析式的一般步骤:确定自变量和它的取值范围。
对自变量的取值范围进行分段。
分段写出函数解析式。
(从前到后)1、设()1232,2()log 1,2x e x f x x x -⎧<⎪=⎨-≥⎪⎩,则((2))f f 的值为( ) A.0 B.1 C.2 D.32、(2009山东卷)定义在R 上的函数)(x f 满足)(x f =⎩⎨⎧>---≤-0),2()1(0),4(log 2x x f x f x x ,则)3(f 的值为( )A .1- B. 2- C. 1 D. 22643、给出函数⎪⎩⎪⎨⎧<+≥=)4()1()4()21()(x x f x x f x ,则=)3(log 2f ( )A.823-B. 111C. 191 D. 241 4、函数21sin(),10,(),0.x x x f x e x π-⎧-<<⎪=⎨≥⎪⎩,若()()21=+a f f ,则a 的所有可能值为( )A.1B.2-C.1,- D.15、(2009天津卷)设函数⎩⎨⎧<+≥+-=0,60,64)(2x x x x x x f ,则不等式)1()(f x f >的解集是( )A.),3()1,3(+∞⋃-B.),2()1,3(+∞⋃-C.),3()1,1(+∞⋃-D.)3,1()3,(⋃--∞6、设函数10221,0,()()1,0x x f x f x x x -⎧-≤⎪=>⎨⎪>⎩若,则0x 的取值范围是( ) A .)1,1(- B .),1-(+∞C .),0()2,(+∞--∞D .),1()1,(+∞--∞ 7、已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是(A )(0,1) (B )1(0,)3(C )11[,)73(D )1[,1)78、(2010天津卷)设函数⎪⎩⎪⎨⎧<->=)0()(log )0(log )(212x x x xx f ,若)()(a f a f ->,则实数a 的取值范围是( )A .)1,0()0,1( -B .),1()1,(+∞--∞C .),1()0,1(+∞-D .)1,0()1,( --∞9、(2010全国卷)已知函数⎪⎩⎪⎨⎧>+-≤<=)10(,621)100(,lg )(x x x x x f ,若c b a ,,互不相等,且)()()(c f b f a f ==,则实数abc 的取值范围是( )A .)10,1(B .)6,5(C .)12,10(D .)24,20( 10、(2010天津卷)设函数)(2)(2R x x x g ∈-=,⎩⎨⎧≥-<++=)(,)()(,4)()(x g x x x g x g x x x g x f ,则)(x f 的值域是( )A .),1(]0,49[+∞-B .),0[+∞C .),49[+∞- D .),2(]0,49[+∞-11、设⎩⎨⎧>-≤-=-)0)(1()0(3)(x x f x a x f x ,若x x f =)(有且仅有三个解,则实数a 的取值范围是( )A .]2,1[B .()2,∞-C .[)+∞,1D .(]1,∞-12、函数2x +2x-3,x 0x)=-2+ln x,x>0f ⎧≤⎨⎩(的零点个数为 ( ) A .0B .1C .2D .313.函数2441()431x x f x x x x -≤⎧=⎨-+>⎩, ,,的图象和函数2()log g x x =的图象的交点个数是( ) A .4 B .3C .2D .114、设函数3,(10)()((5)),(10)x x f x f f x x -≥⎧=⎨+<⎩,则(5)f = 。
分段函数的几种常见题型及解法--学生版

分段函数的几种常见题型及解法分段函数是指自变量在两个或两个以上不同的范围内, 有不同的对应法则的函数, 它是一个函数, 却又常常被学生误认为是几个函数; 它的定义域是各段函数定义域的并集, 其值域也是各段函数值域的并集. 由于它在理解和掌握函数的定义、函数的性质等知识的程度的考察上有较好的作用, 时常在高考试题中“闪亮”登场, 笔者就几种具体的题型做了一些思考, 解析如下:1.求分段函数的定义域和值域例1.求函数1222[1,0];()(0,2);3[2,);x x f x xx x +∈-⎧⎪=-∈⎨⎪∈+∞⎩的定义域、值域.2.求分段函数的函数值3.例2.(05年浙江理)已知函数2|1|2,(||1)()1,(||1)1x x f x x x--≤⎧⎪=⎨>⎪+⎩求12[()]f f .3.求分段函数的最值例3.求函数43(0)()3(01)5(1)x x f x x x x x +≤⎧⎪=+<≤⎨⎪-+>⎩的最大值.4.求分段函数的解析式例4.在同一平面直角坐标系中, 函数()y f x =和()y g x =的图象关于直线y x =对称, 现将()y g x =的图象沿x 轴向左平移2个单位, 再沿y 轴向上平移1个单位, 所得的图象是由两条线段组成的折线(如图所示), 则函数()f x 的表达式为( )22(10).()2(02)x x x A f x x +-≤≤⎧=⎨+<≤⎩222(10).()2(02)xx x B f x x --≤≤⎧=⎨-<≤⎩ 222(12).()1(24)x x x C f x x -≤≤⎧=⎨+<≤⎩226(12).()3(24)xx x D f x x -≤≤⎧=⎨-<≤⎩ 5.作分段函数的图像 例5.函数|ln ||1|x y ex =--的图像大致是( )y xACD6.求分段函数得反函数例6已知()y f x =是定义在R 上的奇函数, 且当0x >时, ()31x f x =-, 设()f x 得反函数为()y g x =, 求()g x 的表达式.7.判断分段函数的奇偶性例7.判断函数22(1)(0)()(1)(0)x x x f x x x x ⎧-≥⎪=⎨-+<⎪⎩的奇偶性.8.判断分段函数的单调性例8.判断函数32(0)()(0)x x x f x xx ⎧+≥⎪=⎨-<⎪⎩的单调性.例9.写出函数()|12||2|f x x x =++-的单调减区间.9.解分段函数的方程例10.(01年上海)设函数812(,1]()log (1,)x x f x x x -⎧∈-∞=⎨∈+∞⎩, 则满足方程1()4f x =的x 的值为10.解分段函数的不等式例11.设函数1221(0)()(0)x x f x xx -⎧-≤⎪=⎨⎪>⎩, 若0()1f x >, 则0x 得取值范围是( ).(1,1)A - .(1,)B -+∞ .(,2)(0,)C -∞-⋃+∞ .(,1)(1,)D -∞-⋃+∞例12.设函数2(1)(1)()4(1)x x f x x ⎧+<⎪=⎨≥⎪⎩, 则使得()1f x ≥的自变量x 的取值范围为( )A .(,2][0,10]-∞-⋃ B. (,2][0,1]-∞-⋃ C. (,2][1,10]-∞-⋃ D. [2,0][1,10]-⋃必修一测试题一. 选择题(每题4分,共64分):1. 若集合}8,7,6{=A ,则满足A B A =⋃的集合B 的个数是( ) A. 1 B. 2 C. 7 D. 82.方程062=+-px x 的解集为M,方程062=-+q x x 的解集为N,且M ∩N={2},那么p+q 等于( ) A.21 B.8 C.6 D.73. 下列四个函数中,与y=x 表示同一函数的是( )A.()2x y = B.y=33x C.y=2x D.y=x x 24.已知A={x|y=x,x ∈R},B={y|2x y =,x ∈R},则A ∩B 等于( ) A.{x|x ∈R}B.{y|y ≥0}C.{(0,0),(1,1)}D.∅5.32)1(2++-=mx x m y 是偶函数,则)1(-f ,)2(-f ,)3(f 的大小关系为( ) A. )1()2()3(->->f f f B. )1()2()3(-<-<f f fC. )1()3()2(-<<-f f fD. )2()3()1(-<<-f f f6. 已知函数⎩⎨⎧≤>=0,30,log )(2x x x x f x ,则)]41([f f 的值是( ) A. 91 B. 9 C. 9- D. 91-7. 已知A ba ==53,且211=+b a ,则A 的值是( )A. 15B. 15C. 15±D. 2258、f(x)=(m-1)x 2+2mx+3为偶函数,则f(x)在(2,5)上是( ) A.增函数 B.减函数 C.有增有减 D.增减性不确定9.函数 f(x)=x 2-4x+5在区间 [0,m]上的最大值为5,最小值为1,则m 的取值范围是( ) A . ),2[+∞ B .[2,4] C .(]2,∞- D. [0,2]10. 设10<<a ,在同一直角坐标系中,函数xa y -=与)(log x y a -=的图象是( )11.已知f(x)是定义在R 上的奇函数,则f(0)= ( )A. 0B.1C. -1D.不存在 12.已知f(x)=3X -x1则f(x)是( ) A 奇函数 B 偶函数 C 既是奇函数又是偶函数 D 既不是奇函数也不是偶函数二. 填空题(每题5分:共20分)13. 函数()23log 32-=x y 的定义域为______________14.24,02(),(2)2,2x x f x f x x ⎧-≤≤==⎨>⎩已知函数则__________;若00()8,f x x ==则_________15. 函数xa y =(0>a ,且1≠a )在]2,1[上的最大值比最小值大2a,则a 的值是__________16、函数xy 3log =(x>0),则其反函数是三. 解答题(21、22各10分:23、24各12分;25、26各14分) 17.已知f(x)是奇函数,g(x)是偶函数,且f(x)+g(x)=1+x1,求:f(x),g(x)解析式(10分)18. 函数x x y 22+= x ∈[2, 3].求:函数的最大值和最小值 (10分)19. 设集合}023|{2=+-=x x x A ,}02|{2=+-=mx x x B ,若A B ⊆,求:实数m 的值组成的集合(12分)20. 已知全集U=}60|{≤<∈x N x ,集合A={}51|<<∈x N x ,集合B ={}62|<<∈x N x求(1)B A ⋂ (2) (A C U )B ⋃ (2) )()(B C A C U U ⋂ (12分)21.设244)(+=x xx f ,若10<<a ,试求:(1))1()(a f a f -+的值; (2))40114010()40113()40112()40111(f f f f ++++ 的值; (13分)22. 已知1222)(+-+⋅=x x a a x f )(R x ∈,若)(x f 满足)()(x f x f -=-, (1)求实数a 的值;(2)判断函数的单调性,并加以证明。
3.4 函数的应用(一)

课堂小结
KE TANG XIAO JIE
1.知识清单: 实际问题中四种函数模型:一次函数模型,二次函数模型,幂函数模型, 分段函数模型. 2.方法归纳:配方法、判别式法、换元法. 3.常见误区:函数的实际应用问题易忽视函数的定义域.
所以月产量为23吨时,可获最大利润12.9万元.
三、分段函数模型的应用
例 3 经市场调查,某新开业的商场在过去一个月内(以 30 天计),顾客人 数 f(t)(千人)与时间 t(天)的函数关系近似满足 f(t)=4+1t (t∈N*),人均消费 g(t)(元)与时间 t(天)的函数关系近似满足 g(t)=110300-t,t,1≤7<t≤t≤7,30t,∈tN∈*,N*. (1)求该商场的日收益w(t)(千元)与时间t(天)(1≤t≤30,t∈N*)的函数解 析式;
60t,0≤t≤2.5,
所求函数的解析式为 x=150,2.5<t≤3.5, -50t+325,3.5<t≤6.5.
(2)求当t=5小时时汽车离A地的距离.
解 当t=5时,x=-50×5+325=75, 即当t=5小时时汽车离A地75千米.
3 课堂练习
PART THREE
1.小婷经营一花店,每天的房租、水电等固定成本为100元,每束花的进 价为6元,若日均销售量Q(束)与销售单价x(元)的关系为Q=100-5x,则 当该店每天获利最大时,每束花应定价为
二、二次函数与幂函数模型的应用
例2 某水果批发商销售每箱进价为40元的苹果,假设每箱售价不得低 于50元且不得高于55元.市场调查发现,若每箱以50元的价格销售,平 均每天销售90箱,价格每提高1元,平均每天少销售3箱. (1)求平均每天的销售量y(箱)与销售单价x(元/箱)之间的函数关系式; 解 根据题意,得y=90-3(x-50),化简, 得y=-3x+240(50≤x≤55,x∈N).
二次函数综合之分段函数与动态交点问题

二次函数专题复习之分段函数与动态交点问题目标:1.进一步巩固二次函数的图像性质2.了解分段函数及图像的画法3.会运用二次函数的知识解决动态交点问题4.培养综合分析问题的能力、动态观察分析能力、画图能力及分类讨论的意识重点:运用二次函数的知识解决动态交点问题难点:动态图形的观察与分析活动一:热身练习例1:如图,已知抛物线2y ax bx =+经过点A (3,0),B (4,4)两点,将直线OB 向下平移m 个单位长度得到直线l.(1)若直线l 与抛物线只有一个公共点D ,求m 的值及点D 的坐标。
(2)若直线l 与抛物线至少有一个公共点,直接写出m 的取值范围.活动二:小试牛刀例2: 已知抛物线C 1:y =-x 2+4x -3,把抛物线C 1先向右平移3个单位长度,再向上平移3个单位长度,得到抛物线C 2,将抛物线C 1和抛物线C 2这两个图象在x 轴及其上方的部分记作图象M .若直线21+=kx y 与图象M 至少有2个不同的交点,则k 的取值范围是__________活动三:学以致用练习1.将函数22y x x =--的图象位于x 轴下方的部分沿x 轴翻折至其上方后,所得的图形是函数22y x x =--的图象.已知经过点D (0, 4)的直线4y kx =+恰好与22y x x =--的图象只有三个交点,则k 的值是活动四:勇攀高峰例3:我们把b a ,两个数中较大的数记作{}b a D ,,直线 12y kx =+ 与函数{}21,1y D x x =-+的图像有且只有两个交点,则k 的取值范围是 。
活动五:超越自我练习2.我们把 a ,b ,c 三个数的中位数记作 Z {},,a b c ,直线 y =kx +12(k >0)与函数 y =Z {}21,1,1x x x -+-+的图象有且只有2个交点,则k 的取值为__________.作业:认真完成学案,要求写出解析过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数与分段函数知识点梳理 二次函数一、基础知识1、 二次函数的解析式(1) 一般式: (2) 顶点式: (3) 双根式: 求二次函数解析式的方法: ○1已知 时,宜用一般式 ○2已知 时,常使用顶点式 ○3已知 时,用双根式更方便 2、二次函数的图像和性质二次函数())0(2≠++=a c bx ax x f 的图像是一条抛物线,对称轴的方程为 顶点坐标是( ) 。
(1)当0>a 时,抛物线的开口 ,函数在 上递减,在 上递增,当abx 2-=时,函数有最 值为(2)当0<a 时,抛物线的开口 ,函数在 上递减,在 上递增,当abx 2-=时,函数有最 值 为 。
(3)二次函数())0(2≠++=a c bx ax x f当 时,恒有 ()0.>x f , 当 时,恒有 ()0.<x f 。
(4)二次函数())0(2≠++=a c bx ax x f ,当042>-=∆ac b 时,图像与 x 轴有两个交点,.),0,(),0,(21212211ax x M M x M x M ∆=-= 二、基础训练1、已知二次函数())0(2≠++=a c bx ax x f 的对称轴方程为x=2,则在f(1),f(2),f(3),f(4),f(5)中,相等的两个值为 ,最大值为 。
2函数()322+-=mx x x f ,当]1,(-∝-∈x 时,是减函数,则实数m 的取值范围是 。
3函数()a ax x x f --=22的定义域为R ,则实数a 的取值范围是4已知不等式02<++c bx x 的解集为),则,(3121-=+c b 5 设二次函数y=f(x)的最大值为13,且f(3)= f(-1)=5,则f(x)=6已知二次函数)(624)(2R x a ax x x f ∈++-=的值域为),0[∞,则实数a = 三、例题精讲例1 求下列二次函数的解析式(1) 图像顶点的坐标为(2,-1),与y 轴交点坐标为(0,11); (2) 已知函数f(x)满足f(0)=1,且f(x+1)-f(x)=2x ; (3) f (2)=0,f(-1)=0且过点(0,4)求f(x).例 2 已知函数ab a x b ax x f ---+=)8()(2,当)2,3(-∈x 时,,0)(>x f 当),2()3,(+∞⋃--∞∈x 时,0)(<x f 。
(1)求)(x f 在]1,0[内的值域。
(2)若02≤++c bx ax 的解集为R ,求实数c 的取值范围。
例3 已知函数)0()(2≠+=a bx ax x f 满足条件)3()5(-=+-x f x f 且方程x x f =)(有等根,(1)求)(x f 的解析式;(2)是否存在实数)(,n m n m <,使)(x f 的定义域和值域分别是],[n m 和]3,3[n m ?如果存在,求出n m ,的值;若不存在说明理由。
例4已知关于x 的方程mx 2+(m-3)x+1=0 ①若存在正根,求实数m 的取值范围 ②2个正根m 的取值范围 ③一正一负根m 的取值范围 ④2个负根的m 的取值范围四、巩固练习1. 若关于x 的不等式x 2-4x ≥m 对任意 x ∈(0,1]恒成立,则 m 的取值范围为2. 不等式ax 2+bx+c >0 的解集为(x 1,x 2)(x 1 x 2<0),则不等式 02<+-a bx cx 的解集为 3 函数x x y sin cos 22+=的值域为 4 已知函数)0,()(≠+=ab b a bax xx f 为常数且且1)2(=f ,x x f =)(有唯一解,则)(x f y =的解析式为 5.已知b a ,为常数,若2410)(,34)(22++=+++=x x b ax f x x x f ,则=-b a 5 6.函数54)(2+-=mx x x f 在区间),2[+∞-上是增函数,则)1(f 的取值范围是7.函数f(x)=2x 2-mx+3, 当x ∈[-2,+∞)时是增函数,当x ∈(-∞,-2]时是减函数,f(1)= 8.若二次函数c bx ax x f ++=2)(满足))(()(2121x x x f x f ≠=则=+)(21x x f 9.若关于x 的方程0122=++x ax 至少有一个负根,则a 的值为11.若函数f(x)=x 2+(m-2)x+5的两个相异零点都大于0,则m 的取值范围是 12.已知关于x 的二次方程x 2+2mx+2m+1=0(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的范围。
(2)若方程两根均在(0,1)内,求m 的范围。
13.设f(x)=lg(ax 2-2x+a)(1)若f(x)的定义域为R,求实数a 的取值范围; (2)若f(x)的值域为R ,求实数a 的取值范围。
分段函数一、定义:分段函数是指自变量在不同范围内,有不同对应法则的函数。
二、注意:1、分段函数是一个函数,而不是几个函数;2、分段函数的定义域是自变量各段取值的并集;3、分段函数的值域是各段函数值的并集。
4、解决分段函数的方法:先分后合三、涉及的内容及相应的常用方法:1、求解析式: 利用分段中递推关系,如平移、周期、对称关系,已知其中一段的解析式,得到整个定义域的解析式;2、求值、解不等式:注意只有自变量在相应的区间段才可以代入对应的解析式。
不能确定时常需要分情况讨论;3、单调性: 各段单调(如递增)+连接处不等关系。
A(如()()()12,(,],[,)f x x a f x f x x a ∈-∞⎧⎪=⎨∈+∞⎪⎩在R 上是增函数,则()()()()1212(,)[,)f x a f x a f a f a ⎧-∞↑⎪⎪+∞↑⎨⎪≤⎪⎩①在上②在上③);4、奇偶性: 分段讨论,各段均符合相同的定义中的恒等式,才有奇偶性,否则为非奇非偶函数;5、图像性质或变换等: 作图、赋值等,注意变量的范围限制;6、最值: 求各段的最值或者上下界再进行比较;7、图像: 分类讨论,如零点分段法得到各段解析式再作图;例题讲解:题型一、分段函数的图像。
1.作出函数()1y x x =+的图象 2. 函数ln |1|xy ex =--的图象大致是 ( )题型二、分段函数的奇偶性 1、判断函数(1)(0),()(1)(0).x x x f x x x x -<⎧=⎨+>⎩的奇偶性2、已知函数)(x f 是定义在R 上的奇函数,且当20,()2 3.x f x x x>=-+时求f(x)的解析式。
题型三、分段函数的最值1、(2005上海高考题)对定义域分别是,fgD D的函数(),()y f x y g x ==.规定:函数()(),,()(),(),f gf g g f f x g x x x h x f x x x g x x x D D D D D D ⎧∈∈⎪⎪=∈∉⎨⎪∈∉⎪⎩当且当且当且 (I )若函数21(),()1f xg x x x ==-,写出函数()h x 的解析式; (II )求问题(I )中函数()h x 的值域;题型四、与分段函数有关的不等式与方程1、已知1(0)()1(0)x f x x ≥⎧=⎨-<⎩ ,则不等式(2)(2)5x x f x +++≤的解集是________2、(2011年高考北京卷理科13)已知函数32,2()(1),2x f x x x x ⎧≥⎪=⎨⎪-<⎩若关于x 的方程f(x)=k 有两个不同的实根,则数k 的取值范围是_______题型五、分段函数创新题 1、定义运算⎩⎨⎧>≤=*)()(y x yy x x y x ,若,11-=*-m m m 则m 的取值范围是( )A.21≥m B. 1≥m C. 21<m D. 0>m 2、(2011年高考天津卷理科8)对实数a 与b ,定义新运算“⊗”:,1,, 1.a ab a b b a b -≤⎧⊗=⎨->⎩ 设函数()()22()2,.f x x x x x R =-⊗-∈若函数()y f x c =-的图像与x 轴恰有两个公共点,则实数c 的取值范围是( )A .(]3,21,2⎛⎫-∞-⋃- ⎪⎝⎭B .(]3,21,4⎛⎫-∞-⋃-- ⎪⎝⎭C .11,,44⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭D. 总结:1、分段函数是高考的一个热点,它可以考查函数的很多重要知识,如求值、作图、解方程、求解析式、求周期和最值、函数的定义域、单调性、奇偶性等。
2、解分段函数的问题时,关键的是根据自变量的分段情况选择相应解析式。
3、解不等式或求范围时应根据自变量的分段情况,转化为若干个不等式(组)求解,然后取这些不等式(组)解集的并集。
4、研究分段函数的最值问题时,应先分段进行,再整体进行判断。
课后作业:1、设f(x)= 1232,2,log (1),2,x e x x x -⎧<⎪⎨-≥⎪⎩ 则不等式f(x)>2的解集为 (A)(1,2)⋃(3,+∞)(B)(10,+∞)(C)(1,2)⋃ (10 ,+∞)(D)(1,2) 2、已知(3)4,1()log ,1a a x a x f x x x --⎧=⎨≥⎩<,是(-∞,+∞)上的增函数,那么a 的取值范围是( )(A )(1,+∞) (B )(-∞,3) (C)[53,3) (D)(1,3)311,,44⎛⎫⎡⎫--⋃+∞ ⎪⎪⎢⎝⎭⎣⎭3、设定义为R 的函数lg 1,1,()0,1.x x f x x ⎧-≠⎪=⎨=⎪⎩则关于x 的方程2()()0f x bf x c ++=有7个不同的实数解的充要条件是 ( ) A. 0b <且0c > B. 0b >且0c < C. 0b <且0c = D. 0b ≥且0c =4、定义在R 上的函数)(x f 满足⎩⎨⎧>---≤-=,0),2()1(,0),1(log )(2x x f x f x x x f 则)2009(f 的值为( )A.-1B.0C.1D.25、求函数43(0)()3(01)5(1)x x f x x x x x +≤⎧⎪=+<≤⎨⎪-+>⎩的最大值6、(2011年高考湖北卷理科17)(本小题满分12分)提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车速度为0;当车流密度不超过20辆/千米时,车流速度为60千米,/小时,研究表明:当20200x ≤≤时,车流速度v 是车流密度x 的一次函数.(Ⅰ)当0200x ≤≤时,求函数()v x 的表达式;(Ⅱ)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)()()f x x v x =可以达到最大,并求出最大值.(精确到1辆/小时)。