数学建模 简单优化模型
优化模型一:线性规划模型数学建模课件

混合整数线性规划问题求解
要点一
混合整数线性规划问题的复杂性
混合整数线性规划问题是指包含整数变量的线性规划问题 。由于整数变量的存在,混合整数线性规划问题的求解变 得更加困难,需要采用特殊的算法和技术来处理。
要点二
混合整数线性规划模型的求解方 法
为了解决混合整数线性规划问题,可以采用一些特殊的算 法和技术,如分支定界法、割平面法等。这些方法能够将 问题分解为多个子问题,并逐步逼近最优解,从而提高求 解效率。
目标函数的类型
常见的目标函数类型包括最小化、最大化等。
确定约束条件
约束条件
01
约束条件是限制决策变量取值的条件,通常表示为数学不等式
或等式。
确定约束条件的原则
02
根据问题的实际情况,选择能够反映问题约束条件的条件作为
约束条件。
约束条件的类型
03
常见的约束条件类型包括等式约束、不等式约束等。
线性规划模型的建立
也可以表示为
maximize (c^T x) subject to (A x geq b) and (x leq 0)。
线性规划的应用场景
生产计划
物流优化
在制造业中,线性规划可以用于优化生产 计划,确定最佳的生产组合和数量,以满 足市场需求并降低成本。
在物流和运输行业中,线性规划可以用于 优化运输路线、车辆调度和仓储管理,降 低运输成本和提高效率。
初始基本可行解
在线性规划问题中,一个解被称为基 本可行解,如果它满足所有的约束条 件。
在寻找初始基本可行解时,可以采用 一些启发式算法或随机搜索方法,以 快速找到一个可行的解作为起点。
初始基本可行解是线性规划问题的一 个起始点,通过迭代和优化,可以逐 渐逼近最优解。
数学建模中的优化模型

数学建模中的优化模型优化模型在数学建模中起着重要的作用。
通过优化模型,我们可以找到最优的解决方案,以满足不同的约束条件和目标函数。
本文将介绍优化模型的基本概念、常见的优化方法以及在实际问题中的应用。
让我们来了解一下什么是优化模型。
优化模型是指在给定的约束条件下,寻找使目标函数达到最大或最小的变量值的过程。
这个过程可以通过建立数学模型来描述,其中包括目标函数、约束条件以及变量的定义和范围。
在优化模型中,目标函数是我们希望最大化或最小化的指标。
它可以是一个经济指标,如利润最大化或成本最小化,也可以是一个物理指标,如能量最小化或距离最短化。
约束条件是对变量的限制,可以是等式约束或不等式约束。
变量则是我们需要优化的决策变量,可以是连续变量或离散变量。
常见的优化方法包括线性规划、非线性规划、整数规划和动态规划等。
线性规划是指目标函数和约束条件都是线性的优化模型。
它可以通过线性规划算法来求解,如单纯形法和内点法。
非线性规划是指目标函数和约束条件中包含非线性项的优化模型。
它的求解方法相对复杂,包括梯度下降法、牛顿法和拟牛顿法等。
整数规划是指变量取值只能是整数的优化模型。
它的求解方法包括分支定界法和割平面法等。
动态规划是一种递推的优化方法,适用于具有最优子结构性质的问题。
优化模型在实际问题中有着广泛的应用。
例如,在生产计划中,我们可以通过优化模型来确定最佳的生产数量和生产时间,以最大化利润或最小化成本。
在资源分配中,我们可以通过优化模型来确定最佳的资源分配方案,以最大化资源利用率或最小化资源浪费。
在交通调度中,我们可以通过优化模型来确定最短路径或最优路径,以最小化行驶时间或最大化交通效率。
优化模型还可以应用于金融投资、供应链管理、电力系统调度、网络优化等领域。
通过建立数学模型和选择合适的优化方法,我们可以在复杂的实际问题中找到最优的解决方案,提高效率和效益。
优化模型在数学建模中是非常重要的。
它通过建立数学模型和选择合适的优化方法,帮助我们找到最优的解决方案,以满足不同的约束条件和目标函数。
(完整版)数学模型姜启源-第三章(第五版)

平均每天费用950元 • 50天生产一次,每次5000件, 贮存费4900+4800+…+100 =122500元,准备费5000元,总计127500元.
平均每天费用2550元
c2 t1x x
c3 x
其中 c1,c2,c3, t1, ,为已知参数
模型求解 求 x使 C(x)最小
dC 0 dx
x
c t 2 2c t
11
21
2c 2
3
结果解释 x c1t12 2c2t1
2c32
dB
dt
/ 是火势不继续蔓延的最少队员数
x
x 0.45
0.4 0.35
0.3 0.25
0.2 0.15
0.1 0.05
0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 a
a
1
空杯质量w2取决于材料 (纸杯、塑料杯、玻璃杯).
设w2=150g 半升啤酒杯w1=500g a=0.3 x=0.3245
一杯啤酒约剩1/3时重心最低,最不容易倾倒!
问题分析与模型假设 x
w1 ~ 啤酒 (满杯) 质量
1
w2 ~空杯侧壁质量, w3 ~空杯底面质量
啤酒杯重心s(x)由啤酒重心和空杯 重心合成.
• s2=1/2 •xs(x) 液面 • s1=x/2 0
液面高度x时啤酒质量w1x, 啤酒重心位置 s1=x/2
忽略空杯底面质量w3 空杯重心位置 s2=1/2
数学建模课程内容

2
微分 3. 运用这些规律列出方程和定解条件。 HOW? 方程 建模 采用如下一种或多种方法进行微分方程建模:
(i)按规律直接列方程 —— 在数学、力学、物理、化学等学科
中许多自然现象所满足的规律已为人们所熟悉,并直接由微分方程所描述。
(ii)微元分析法与任意区域上取积分的方法——自然
假设
建模
区分已感染者(病人)和未感染者(健康人)
1)总人数N不变,病人和健康
人的 比例分别为 i(t), s(t)
SI 模型
2)每个病人每天有效接触人数
为, 且使接触的健康人致病 ~ 日接触率
N[i(t t) i(t)] [s(t)]Ni(t)t
di si
dt
s(t) i(t) 1
di dt
传染病蔓延 1/σ ~
传染病不蔓延 阈值
14
模型4 SIR模型 预防传染病蔓延的手段
传染病不蔓延的条件——s0<1/ • 提高阈值 1/ 降低 (=/)
,
(日接触率) 卫生水平
(日治愈率) 医疗水平
• 降低 s0
的估计
提高 r0
s0 i0 r0 1
s0
i0
s
1
ln s s0
27
上图中,共有三条曲线,代表三个 状态参数随时间变化的图形
上图中只出现一条曲线,此曲线代表以 三个状态参数为坐标、以时间为参数的 一条三维空间中的曲线
28
小提示: 要观看Lorenz 混沌方程随时间而变的动画, 可在MATLAB 命令窗口下执行"lorenz"命令。
29
界中也有许多现象所满足的规律是通过变量的微元之间的关系式来表达的。 可是通过微元分析法,利用已知的规律建立一些变量(自变量与未知函数) 的微元之间的关系式,然后再通过取极限的方法得到微分方程,或等价地 通过任意区域上取积分的方法来建立微分方程。
数学建模 四大模型总结

四类基本模型1 优化模型1.1 数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。
1.2 微分方程组模型阻滞增长模型、SARS 传播模型。
1.3 图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。
1.4 概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。
1.5 组合优化经典问题● 多维背包问题(MKP)背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。
如何将尽可能多的物品装入背包。
多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。
如何选取物品装入背包,是背包中物品的总价值最大。
多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。
该问题属于NP 难问题。
● 二维指派问题(QAP)工作指派问题:n 个工作可以由n 个工人分别完成。
工人i 完成工作j 的时间为ij d 。
如何安排使总工作时间最小。
二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。
二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。
● 旅行商问题(TSP)旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。
● 车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。
TSP 问题是VRP 问题的特例。
● 车间作业调度问题(JSP)车间调度问题:存在j 个工作和m 台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。
数学建模论文--优化模型(完整版)

会议筹备的优化模型摘要:本文针对会议筹备过程中的有关问题,从经济、方便、代表满意等方面,为会议筹备组制定一个预订宾馆客房、租借会议室、租用客车的合理方案。
在尚不知道实际参加会议人数的情况下,我们根据以往几届会议代表回执和与会情况(详见附表3),通过Excel进行数据拟合,建立起指数函数拟合,从而预测出本届会议代表的实际参加人数。
我们把整个会议筹备方案分成三个子方案,即预订宾馆客房方案、租借会议室方案、租用客车方案。
在满足经济、方便、代表满意这三个方面的前提下,对其逐一进行解决,最后再进行汇总,即可得到我们所需要的会议筹备方案。
以下是本文的简要流程。
首先,我们根据附表2,分析了本届会议的代表回执中有关住房要求的信息,运用比例权重的方法,确定每一类型住房要求所占的权重,从而得出本届会议代表每一类型住房的房间个数。
其次,我们通过对附表2进行统计分析,运用比例权重的方法,计算出附表2中各项住房要求所占的权重,得出每一项住房要求在总体中所占的比例。
再依据假设7,可得到实际参加会议代表的不同类型住房的人数,从而解决了住房要求的问题。
在确定不同类型住房的人数的情况下,考虑各代表的满意度及路程上的远近,从经济的角度出发,从低价选起,对备选的10家宾馆进行筛选,即可得出预订宾馆客房方案。
接着,对于租借会议室方案,我们运用0-1规划的方法来进行解决。
通过考虑第i个宾馆第j种会议室和第i个宾馆第j种会议室的价格之间的关系,以及有关的约束条件,将目标函数设为租借会议室的费用达到最低,然后运用LINDO 求解,即可得到租借会议室的最优方案。
最后,关于租用客车方案,我们考虑了代表满意度和租车费用之间的动态平衡,采取就近原则策略,运用初等数学知识,确定需要达到各宾馆的人数。
并以此为租用客车方案的理论人数依据,得到租用客车的优化方案。
关键字:指数函数拟合,0-1规划模型,最优方案,会议筹备1.问题重述某市的一家会议服务公司负责承办某专业领域的一届全国性会议,会议筹备组要为与会代表预订宾馆客房,租借会议室,并租用客车接送代表。
数学建模:第五章 运筹与优化模型

max c j x j
n
s.t aij x j bi
j 1
n
j 1
i 1.2 m
xj 0
j 1.2 n
8
二、整数规划模型
n min f c j x j j 1 n aij x j bi j 1 x j 0
对于线性规划:
22
二、货机装运
问题 某架货机有三个货舱:前仓、中仓、后仓。三个 货舱所能装载的货物的最大重量和体积都有限制,如表 3所示。并且,为了保持飞机的平衡,三个货舱中实际 装载货物的重量必须与其最大容许重量成比例。
重量限制 (吨)
前仓 中仓 后仓 10 16 8 6800 8700 5300
体积限制 (米3)
5
解:设x ij 表示 Ai (i=1.2)煤厂提供给 B j (j=1.2.3)居民区的煤量; f表示总运输费 此问题归结为:
min f 10 x11 5 x12 6 x13
s.t
x11 x12 x13 60 x21 x22 x23 100 x11 x21 50
s.t gi ( X ) 0
hi ( X ) 0
(1)
(2)
(3)
i 1,2,, m .
j 1,2,, l .
X D
其中X ( x1 , x2 ,, xn )T , D R n为可行集
f(X)为目标函数,(2)、(3)为约束条件, (2)为不等式约束,(3)为等式约束; 若只有(1)称为无约束问题。
max f x1 x2 15 x1 12 x2 85 如 5 x1 11 x , x 0 1 2 x1 , x2 为整数
数学建模组合优化模型

数学建模组合优化模型数学建模是一种将实际问题转化为数学模型,并通过数学方法进行求解的技术。
在实际应用中,很多问题都可以使用组合优化模型来描述和解决。
组合优化模型主要研究如何在给定的约束条件下,找到最优的组合方式。
组合优化模型最早出现在20世纪50年代,当时主要应用于军事领域。
随着计算机技术的发展和应用范围的扩大,组合优化模型的研究逐渐扩展到了经济、交通、电力、通信等各个领域。
组合优化模型的基本思想是将问题抽象为一个图或者网络,通过定义合适的目标函数和约束条件,寻找使得目标函数最优的节点或者路径。
在组合优化模型中,最常见的问题包括最短路径问题、旅行商问题、背包问题、任务调度问题等。
在组合优化模型中,最常见的方法是枚举法、贪心法、动态规划法和分支定界法等。
枚举法是最简单的方法,它逐个考虑每种组合情况,然后计算出目标函数的值,并找出最优解。
贪心法是一种局部最优的方法,它每次都选择使得目标函数最优的节点或者路径,然后不断迭代直到找到最优解。
动态规划法是一种通过将问题划分成若干个子问题,并通过求解子问题的最优解得到原问题的最优解的方法。
分支定界法是一种通过将问题划分成若干个子问题,并剪枝掉不可能成为最优解的子问题,从而找到最优解的方法。
为了解决组合优化模型,需要建立合适的数学模型,并采用适当的求解方法。
建立数学模型的过程主要包括以下几步:明确问题目标、确定决策变量、建立目标函数、建立约束条件。
在建立模型的过程中,需要根据实际问题的特点选择合适的模型和方法。
总之,组合优化模型是一种将实际问题抽象为数学模型,并通过数学方法进行求解的技术。
组合优化模型已经广泛应用于各个领域,并取得了很多重要的成果。
未来,随着计算机技术的进一步发展和应用需求的不断增加,组合优化模型将会发挥越来越重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Q (t ) = p (t ) w(t ) − 4t
Q ′( t ) = 0
p ′( t ) w ( t ) + p ( t ) w ′( t ) = 4
每天利润的增值 每天投入的资金
保留生猪直到利润的增值等于每天的费用时出售 由 S(t,r)=3 若 1.8 ≤ w′ ≤ 2.2(10%), 则 7 ≤ t ≤ 13 30%) ( ) 建议过一周后(t=7)重新估计 p , p ′, w , w ′ , 再作计算。 重新估计 再作计算。 建议过一周后
T = 2 c1 rc 2
2c1r Q = rT = c2
模型分析
c1 ↑⇒ T,Q↑
模型应用
• 回答问题
c2 ↑ ⇒ T, Q ↓
r ↑ ⇒T ↓, Q ↑
c1=5000, c2=1,r=100 , T=10(天), Q=1000(件), C=1000(元) 天 件 元
• 经济批量订货公式(EOQ公式) 经济批量订货公式( 公式) 公式
Q = rT
一周期贮存费为
0
T
t
2
c2 ∫0 q (t ) dt = c2 A
T
Q rT 一周期 ~ C = c1 + c2 T = c1 + c2 总费用 2 2
~ C c1 c 2 rT C (T ) = = + T T 2
每天总费用平均 目标函数) 值(目标函数)
模型求解
dC =0 dT
c1 c2 rT → Min 求 T 使C (T ) = + T 2
∂C ∂C = 0, =0 ∂T ∂Q
为与不允许缺货的存贮模型 为与不允许缺货的存贮模型 相比, 记作 记作T 记作Q 相比,T记作 ’, Q记作 ’ 记作
2c1 c2 + c3 T′ = rc2 c3
2c1r c3 Q′ = c2 c2 + c3
允许 2c1 c2 + c3 T '= rc2 c3 缺货 模型 2c1r c3 Q' = c 2 c 2 + c3
3.1
问题
存贮模型
配件厂为装配线生产若干种产品, 配件厂为装配线生产若干种产品,轮换产品时因更换设 备要付生产准备费,产量大于需求时要付贮存费。 备要付生产准备费,产量大于需求时要付贮存费。该厂 生产能力非常大,即所需数量可在很短时间内产出。 生产能力非常大,即所需数量可在很短时间内产出。 已知某产品日需求量100件,生产准备费5000元,贮存费 件 生产准备费 已知某产品日需求量 元 每日每件1元 试安排该产品的生产计划, 每日每件 元。试安排该产品的生产计划,即多少天生产 一次(生产周期),每次产量多少,使总费用最小。 ),每次产量多少 一次(生产周期),每次产量多少,使总费用最小。 不只是回答问题,而且要建立生产周期、 要 不只是回答问题,而且要建立生产周期、产量与 需求量、准备费、贮存费之间的关系。 求 需求量、准备费、贮存费之间的关系。
建模目的
已知, 使每天总费用的平均值最小。 设 r, c1, c2 已知,求T, Q 使每天总费用的平均值最小。
模型建立
离散问题连续化
q
贮存量表示为时间的函数 q(t) t=0生产 件,q(0)=Q, q(t)以 生产Q件 生产 以 需求速率r递减 递减, 需求速率 递减,q(T)=0.
Q r
A=QT/2
问题分析与思考
日需求100件,准备费5000元,贮存费每日每件 元。 件 准备费 日需求 元 贮存费每日每件1元 • 每天生产一次,每次 每天生产一次,每次100件,无贮存费,准备费 件 无贮存费,准备费5000元。 元
每天费用5000元 元 每天费用
• 10天生产一次,每次 天生产一次, 天生产一次 每次1000件,贮存费 件 贮存费900+800+…+100 =4500 准备费5000元,总计 元,准备费 元 总计9500元。 元
原模型假设:贮存量降到零时 件 原模型假设:贮存量降到零时Q件 立即生产出来(或立即到货 或立即到货) 立即生产出来 或立即到货
0
现假设:允许缺货, 每天每件缺货损失费 c3 , 缺货需补足 现假设:允许缺货
周期T, 周期 t=T1贮存量降到零 一周期 贮存费 一周期 缺货费
c2 ∫0 q (t )dt = c2 A
3.2 生猪的出售时机
饲养场每天投入4元资金 用于饲料、人力、 元资金, 问 饲养场每天投入 元资金,用于饲料、人力、设 题 备,估计可使 千克重的生猪体重增加 公斤。 估计可使 千克重的生猪体重增加2公斤 可使80千克重的生猪体重增加 公斤。 市场价格目前为每千克8元 但是预测每天会降 市场价格目前为每千克 元,但是预测每天会降 预测 低 0.1元,问生猪应何时出售。 元 问生猪应何时出售。 如果估计和预测有误差,对结果有何影响。 如果估计和预测有误差,对结果有何影响。 估计 有误差 投入资金使生猪体重随时间增加, 分 投入资金使生猪体重随时间增加,出售单价随 析 时间减少,故存在最佳出售时机,使利润最大 时间减少,故存在最佳出售时机,
Q (t ) = (8 − gt )(80 + rt ) − 4t
4r − 40 g − 2 t= =10 rg
10天后出售,可多得利润20元 天后出售,可多得利润 元 天后出售
敏感性分析
4r − 40 g − 2 t= rg
估计r=2, 估计 , g=0.1
研究 r, g变化时对模型结果的影响 变化时对模型结果的影响 • 设g=0.1不变 不变
不允 许缺 货模 型
T =
2 c1 rc 2
2c1r Q = rT = c2
记
µ=
c 2 + c3 c3
T ′ = µT ,
Q′ =
Q
µ
不 允 许 缺 货
µ >1
T '> T , Q '< Q
c3 ↑ ⇒ µ ↓
c3 → ∞ ⇒ µ →1
T ′ → T , Q′ → Q
允许 缺货 模型
2c1 c2 + c3 T′ = rc2 c3
问题分析与思考
• 周期短,产量小 周期短, • 周期长,产量大 周期长, 贮存费少, 贮存费少,准备费多 准备费少, 准备费少,贮存费多
存在最佳的周期和产量,使总费用(二者之和) 存在最佳的周期和产量,使总费用(二者之和)最小 • 这是一个优化问题,关键在建立目标函数。 这是一个优化问题,关键在建立目标函数。 显然不能用一个周期的总费用作为目标函数
建模及求解
估计r=2, 估计 , g=0.1 若当前出售,利润为 × 若当前出售,利润为80×8=640(元) ( t天 出售 生猪体重 w=80+rt 出售价格 p=8-gt 销售收入 R=pw 资金投入 C=4t
利润 Q=R-C=pw -C 求 t 使Q(t)最大 最大 Q(10)=660 > 640
用于订货、供应、 用于订货、供应、存贮情形 每天需求量 r,每次订货费 c1,每天每件贮存费 c2 , , 每天每件贮存费 T天订货一次 周期 每次订货 件,当贮存量降到 天订货一次(周期 每次订货Q件 天订货一次 周期), 零时, 件立即到货 件立即到货。 零时,Q件立即到货。
T =
2 c1 rc 2
问题 分析
记队员人数x, 失火时刻 开始救火时刻t 记队员人数 失火时刻t=0, 开始救火时刻 1, 灭火时刻t 时刻t森林烧毁面积 森林烧毁面积B(t). 灭火时刻 2, 时刻 森林烧毁面积
• 损失费 1(x)是x的减函数 由烧毁面积 2)决定 损失费f 的减函数, 决定. 是 的减函数 由烧毁面积B(t 决定 • 救援费 2(x)是x的增函数 由队员人数和救火时间决定 救援费f 的增函数, 是 的增函数 由队员人数和救火时间决定. 存在恰当的x, 存在恰当的 ,使f1(x), f2(x)之和最小 之和最小
第三章 简单的优化模型
3.1 3.2 3.3 3.4 存贮模型 生猪的出售时机 森林救火 最优价格
3.5 血管分支 3.6 消费者均衡 3.7 冰山运输
静 态 优 化 模 型
• 现实世界中普遍存在着优化问题 • 静态优化问题指最优解是数 不是函数 静态优化问题指最优解是数(不是函数 不是函数) • 建立静态优化模型的关键之一是根 据建模目的确定恰当的目标函数 • 求解静态优化模型一般用微分法
平均每天费用950元 元 平均每天费用
• 50天生产一次,每次 天生产一次, 天生产一次 每次5000件,贮存费 件 贮存费4900+4800+…+100 =122500元,准备费 元 准备费5000元,总计 元 总计127500元。 元
平均每天费用2550元 元 平均每天费用 10天生产一次平均每天费用最小吗? 10天生产一次平均每天费用最小吗? 天生产一次平均每天费用最小吗
40r − 60 t= , r ≥ 1.5 r
20
t 对r 的(相对)敏感度 相对)
t
15 10 5 0 1.5
∆ t / t dt r S (t , r ) = ≈ ∆ r / r dr t 60 S (t , r ) ≈ =3 40 r − 60
2
2.5
r
3
生猪每天体重增加量r 增加1%,出售时间推迟 生猪每天体重增加量 增加 ,出售时间推迟3%。 。
问题 分析
• 关键是对 关键是对B(t)作出合理的简化假设 作出合理的简化假设. 作出合理的简化假设 失火时刻t=0, 开始救火时刻 1, 灭火时刻 2, 开始救火时刻t 灭火时刻t 失火时刻 森林烧毁面积B(t)的大致图形 画出时刻 t 森林烧毁面积 的大致图形
2c1r Q = rT = c2
不允许缺货的存贮模型 • 问:为什么不考虑生产费用?在什么条件下才不考虑? 为什么不考虑生产费用?在什么条件下才不考虑?